Norets, Andriy and Pelenis, Justinas (December 2011) Posterior Consistency in Conditional Density Estimation by Covariate Dependent Mixtures. Former Series > Working Paper Series > IHS Economics Series 282
es-282.pdf
Download (506kB) | Preview
Abstract
Abstract: This paper considers Bayesian nonparametric estimation of conditional densities by countable mixtures of location-scale densities with covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways. First, we consider finite covariate dependent mixture models, in which the mixing probabilities are proportional to a product of a constant and a kernel and a prior on the number of mixture components is specified. Second, we consider kernel stick-breaking processes for modeling the mixing probabilities. We show that the posterior in these two models is weakly and strongly consistent for a large class of data generating processes.;
Item Type: | IHS Series |
---|---|
Keywords: | 'Bayesian nonparametrics' 'Posterior consistency' 'Conditional density estimation' 'Mixtures of normal distributions' 'Location-scale mixtures' 'Smoothly mixing regressions' 'Mixtures of experts' 'Dependent Dirichlet process' 'Kernel stick-breaking process' |
Classification Codes (e.g. JEL): | C11, C14 |
Date Deposited: | 26 Sep 2014 10:39 |
Last Modified: | 19 Sep 2024 08:49 |
ISBN: | 1605-7996 |
URI: | https://irihs.ihs.ac.at/id/eprint/2108 |