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Abstract

We consider a two-period duopoly characterized by a one-way spillover structure in process
R&D and a very broad specification of product market competition. We show that a priori
identical firms always engage in different levels of R&D, at equilibrium, thus giving rise to an
innovator/imitator configuration and ending up with different sizes. In view of this endogenous
firm heterogeneity, the social benefits of, and the firms’ incentives for, research joint ventures
are somewhat different from the case of ex post firm symmetry. The key properties of the
game are submodularity (R&D decisions are strategic substitutes) and lack of global
concavity.
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1 Preliminaries

1.1 Introduction

This paper develops a simple two-stage strategic model of process R&D/product
market competition characterized by a stochastic directed R&D spillover structure.
Know-how may only flow from the more R&D intensive firm to its rival (in a duopoly
setting). Leakages in the reverse direction are simply ruled out. This spillover speci-
fication suggests that the associated R&D process can be suitably approximated by a
one-dimensional representation. This is discussed in Section 2 where we provide pre-
cise and independent interpretations of the spillover parameter as (i) the probability
that a full spillover occurs, (ii) an inverse measure of patent length, or (iii) an inverse
measure of imitation lag.

We derive two different sets of results. First, with a relatively wide scope of
generality in the product market specification, we establish the existence of subgame-
perfect equilibrium, as well as some general characterization of its properties. In
particular, we show that no equilibrium can be symmetric although the two competing
firms are (ez ante) identical. This suggests that inter-firm differences can emerge
naturally through the very process of technological progress.

In view of the resulting (inherent) asymmetry between the two firms, it is rea-
sonable to question the validity of the general results from the theory of research
joint ventures (henceforth RJV’s), since these results were derived in a framework of
ez ante and ex post identical firms: See d’Aspremont-Jacquemin (1988, 1990) and
Kamien-Muller-Zang (1992). Our second set of conclusions confirms the superior
performance of the joint lab or cartelized RJV, established by Kamien-Muller-Zang
(1992), but only under some additional assumptions, the analogs of which were not
needed for the analysis under full symmetry.

Thus, as outlined above, the present work relates to two different research areas
in applied microeconomics, one dealing with intra-industry firm heterogeneity and
the other with strategic R&D and RJV’s. In order to relate our work more precisely

to these two independent areas, we begin with a literature summary for each..




1.1.1 Inter-Firm Heterogeneity

Variability across firm characteristics within a given industry is a ubiquitous phe-
nomenon. Firms tend to differ in several ways including product niches, advertising
strategy, corporate culture, organizational forms, incentive/compensation schemes,
R&D strategy ... More obviously, they often differ in their size, market conduct and
overall performance. Economists have long sought to reconcile this observed het-
erogeneity with conventional economic wisdom. In providing a brief review of the
numerous attempts to fill this gap, it is instructive to distinguish between the emer-
gence of intra-industry heterogeneity and its persistence over time. A thorough yet
concise overview is given by Roller and Sinclair-Desgagné (1996) who also develop a
simple model showing that initial differences among firms may either amplify or die
down depending on market characteristics.

A standard explanation of intra-industry heterogeneity postulates that firms have
different production technologies and inputs available to them, or face different fac-
tor prices, Katz-Rosen (1994). Among many evolutionary studies, Alchian (1950)
emphasizes the key role (historical) random events may play in shaping the rela-
tive fortunes of firms in an industry. Similarly, Barney (1986), argues that firms
can (consistently and systematically) read their common business environment dif-
ferently, and thus behave differently. This may also happen in game-theoretic models
of multi-stage competition with firms making different conjectures about their rivals’
types and moves in a framework of rational behavior and incomplete information [see
Kreps-Spence (1985)]. Another strand of the literature on the variety of firms’ beliefs
is based on bounded rationality on the part of firms (operating in a highly complex
environment) and evolutionary theory [see, e.g., Nelson-Winter (1982)].

Since firms are generally able to observe the relative performance of their rivals
over time, and since superior technological know-how and organizational forms cannot
be kept secret from one’s rivals for long, explaining the long-run persistence of firm
heterogeneity necessarily entails identifying barriers to convergence and imitation.
Among others, Caves-Porter (1977) and Sutton (1991) provide various arguments

along these lines within the traditional paradigm of industrial economics.




Management theorists and business strategists have also convincingly argued for
some time that organizational factors often play a fundamental role in explaining the
absence of convergence. Teece (1980) reported that the diffusion of administrative
innovation (such as the “M form” organization) can take two to five times longer
than the diffusion of technological innovation (for which Mansfield (1985) estimates
an upper bound of 15 months for US firms). Rumelt (1995) provides an extensive
list of reasons why organizations might resist change, accounting for inertia factors
and corporate culture. Hermalin (1994) develops a model capturing the relation
between the internal control structures of (ex ante identical) firms and their strategic
interaction in the product market, and leading to asymmetric equilibria.

In the context of industry dynamics, some models have established that exogenous
idiosyncratic random shocks lead to persistent differences among firms in a compet-
itive industry: Jovanovic (1982), Hopenhayn (1992), Lambson (1992), Fishman-Rob
(1995). In a deterministic infinite-horizon setting, Flaherty (1980) analyses process
R&D competition among a fixed number of firms using open-loop strategies. She
finds that, under reasonable assumptions, only industry steady-states with differ-
ent market shares across firms can be locally stable. A related model is studied by
Spence (1984) who also initiated the standard way imperfect appropriability of R&D

is modelled via constant multidirectional spillover rates.

1.1.2 Research Joint Ventures

The central aim of the literature on RJV’s is to provide a performance comparison
between various R&D cooperation scenarios, ranging from full cooperation as in a
cartelized RJV to pure (strategic) competition, among firms which remain competi-
tors in the product market. See Katz (1986), d’Aspremont-Jacquemin (1988, 1990)
and Kamien-Muller-Zang (1992). The main result is that the cartelized RJV, which
may be viewed as a situation where firms run one joint R&D lab at equal cost to
each, yields the best performance among all scenarios considered, in terms of R&D
propensity, consumer surplus and producer surplus. Several studies have built on the

results of d’Aspremont-Jacquemin (1988) and Kamien-Muller-Zang (1992) to address




related questions, including Suzumura (1992), DeBondt-Slaets-Cassiman (1992) and
Salant-Shaffer (1992).

More recently, another set of papers dealing with similar questions in some-
what modified models only partially confirms the above (and related) conclusions:
Reynolds-Isaac (1992) and Stenbacka-Tombak (1995) consider models with stochas-
tic R&D processes, and Amir (1995a) deals with the standard model, but with R&D
returns that are not strongly decreasing (thus changing a crucial assumption of pre-
vious work). Under these modified specifications, the latter studies report a reduced
scope of validity for the superiority of the cartelized RJV over the other scenarios.

We are now ready to resume the introduction of the present study.

1.1.3 The Present Paper

We consider the standard two-period model of process R&D/product market compe-
tition modified only in the way imperfect appropriability of R&D results is modelled.
We assume that R&D spillovers are uni-directional and stochastic. They can only
take place from the firm with higher R&D activity to its rival (but never vice-versa)
in a binomial fashion: With probability 8, full spillover occurs and with probabil-
ity (1 — B) no spillover occurs. A detailed justification and interpretation of this
specification is provided in Section 2.

Due to the one-way nature of the spillover process at hand, the overall payoff
structure of a firm changes, depending on whether it is receiving or giving away R&D
leakages, i.e., depending on whether we are above or below the diagonal in R&D space.
Nonetheless, it turns out that the payoff functions inherit the strategic substitutes?
property of the equilibrium profit function from the product market competition.
Through the very nature of the spillover process, it follows that a firm would never
find it optimal to exactly reproduce its rival’s level of R&D activity. Together, these
two properties of the model lead to existence of only asymmetric subgame-perfect

equilibria for the symmetric two-stage game at hand, thereby yielding endogenous

In other words, the marginal payoff to increasing a firm’s own R&D expenditure is decreasing

in the rival’s expenditure.




roles of R&D innovator (the more R&D intensive firm) and R&D imitator. Further-
more, the innovator ends up with a lower unit (production) cost than that expected
by the imitator, and thus with a higher market share in the product market. Since
the innovator also invests more in R&D, and the imitator receives some R&D for free
(in expected terms), the equilibrium profit comparison is generally ambiguous.

Thus, our model postulates ez ante identical firms and yields only equilibria with
(endogenously) heterogeneous firms: In size (which in a Cournot or Bertrand frame-
work is tied to unit production cost) and in R&D intensity (which might involve R&D
strategy, lab type and size, the composition of R&D, etc., if the R&D process were
explicitly modeled). In view of the level of generality of our model formulation and
the simplicity of the underlying asymmetry-generating mechanism, the present analy-
sis offers an interesting new perspective on both the emergence and the persistence of
intra-industry heterogeneity, for industries characterized by nearly one-dimensional
R&D processes (again, this is discussed in detail in Section 2). According to this
perspective, the mere knowledge that R&D leakages flow (in a stochastic sense) only
from the more R&D intensive firm to the rival, leads firms to (endogenously) settle
for innovator and imitator roles, thereby trading off profits in the product market
and R&D costs in complementary ways.

The second part of the paper deals with the usual performance comparison of
RJV scenarios, applied to our new framework. Of particular interest here is the
comparison between a cartelized RJV (denoted Case J), which may be viewed as a
joint lab run at equal cost by the firms together, and the purely noncooperative case
(denoted Case V). The reason for questioning the robustness of the RJV analysis of
previous studies (all based on multi-directional spillovers and symmetric outcomes)
lies in Lemma 3.6% once one has observed that Case J has ez post firm symmetry
as a built-in feature while Case N always leads to er post asymmetry. Naturally,

the appeal to Lemma 3.6 here is only to provide a sense of intuition, since in both

“This is an intrinsic property of Cournot and Bertrand competition, which is stated precisely
in Lemma 3.6, and holds under a broad specification of these models. It roughly states that total
equilibrium profits, given a fixed total unit cost K is lowest with equal unit costs for each firm and

highest with one firm having cost K and the other 0.




Cases N and J, total unit cost is clearly endogenous. Moreover, even if total profits
improve through cooperation, an asymmetric outcome in Case IV also means different
incentives for the firms to cooperate in R&D.

We find that a strengthening of the usual assumption of strongly diminishing
returns to R&D is crucially needed to restore the validity of the central conclusion
from previous work on RJV’s. Thus, our initial premise - that symmetry of outcomes

plays an important role in the analysis of RJV’s - is founded.

1.2 Summary of Submodular Optimization/Games

Here, we define all the notation and state all the results from submodular optimization
needed in our analysis, in the simplest (but self-contained) form. Let I, I; be compact
real intervals and F : I; X Iy — R.

F' is submodular [strictly submodular] if for all z; > z3in I; and all 43 > ¥y, in
Iy, we have F(z1,y1) — F(21,y2) < [<] F(29,y1) — F(z2,y2). The following result is a
special case of Topkis’s Monotonicity Theorem (Topkis (1978)).

Theorem 1.1. If F is continuous in y and submodular [strictly submodular] in (z,y),
then argmaxyer, F'(z,y) has mazimal and minimal [all of its] selections nonincreasing

inx €.

The next result identifies an easy test for submodularity, and is often called Top-

kis’s Characterization Theorem:

Theorem 1.2. If I is twice continuously differentiable, F is submodular iff Fia(z,y) =
-a—ial—;%—g;ﬂ < 0. Furthermore, Fio(z,y) < 0 tmplies strict submodularity.

Finally, we need the following definition and existence result. A two-player game
is submodular if both payoff functions are submodular and both action spaces are

compact real intervals.




Theorem 1.3. A two-player submodular game possesses a pure strategy Nash equi-

lebrium.

Topkis (1979) proved this result for (n-player) supermodular games (F is super-
modular iff —F' is submodular). Vives (1990) extended it to two-player submodular
games. See also Milgrom-Roberts (1990). For n > 2, Theorem 1.3 is not valid in
general. As a closing remark, the more general (ordinal) versions of Theorem 1.1 and

1.3 developed by Milgrom-Shannon (1994) are not applicable to our model.

2 The Noncooperative Model

2.1 The Model

Consider an industry composed of two a priori identical firms, each with initial unit
cost ¢, engaged in the following two-stage game. In the first stage, Firms 1 and 2
decide on unit cost reduction z and y, z,y € [0, ¢, on the basis of a known R&D cost
schedule f(-). In the second stage, upon observing the new unit costs, the firms com-
pete in the product market by choosing outputs (i.e., Cournot competition) or prices
(i.e., Bertrand competition). There is no need to specify the mode of competition as
the equilibrium profits of the second stage are modeled by a general function which
has both models as special cases.

While this two-stage framework is standard in the recent R&D literature, our
set-up departs from previous ones in the way imperfect appropriability of R&D is
modelled. We consider R&D processes where leakages flow only from the more R&D-
active firm to the rival in an all-or-nothing probabilistic fashion. Specifically, our
stochastic one-way spillover process may be described as follows: Given that the
autonomous cost reductions by Firms 1 and 2 are z and y, respectively, with (say)

z > y, the effective (or final) cost reductions are given by X and Y, respectively, with
x with probability £

X=zandY = - (2.1)
y with probability 1 — .

7




In view of the central role of the spillover process in our model, we provide a detailed
discussion/justification for it in the next subsection.

We restrict attention to subgame-perfect equilibria only. A (pure) strategy for
Firm i is a pair (z;,a;) where z; € [0,¢] and a; is a map from [0,¢]* to the set of
product market decisions (outputs or prices). The overall payoff to a firm is simply
its second-stage profit minus its first-stage R&D cost.

The following basic assumptions are in effect throughout the paper (interpreta-

tions and illustrative examples are given below).

(A1) For every pair of R&D decisions (,y) € [0, c]?, the second-stage game (product
market game) has a unique Nash equilibrium, with corresponding payoffs (i.e., profits)
given by a function II of the two firms’ post R&D unit costs. Here, II(-,-) denotes
the Nash profits of the firm whose unit cost is the first argument.

(A2) (i) II: [0,c]? — R is continuous, and strictly submodular.
(ii) II is nonincreasing (nondecreasing) in its first (second argument).

(111) H(Cl, Cl) < H(Cz,Cg) if Ci > Coy.

(A3) f is nondecreasing.

These conditions can be interpreted as follows. (A1) allows for a broad scope of
product market competition modes, including in particular Cournot and Bertrand
specifications. The equilibrium uniqueness assumption is convenient and not partic-
ularly restrictive. For the Cournot model, for instance, Amir (1996b) shows that it
holds whenever P(-) — ¢; is a log-concave function, where P(-) is the inverse demand
function and ¢; the unit cost of Firm 4, ¢ = 1,2. This is implied, in particular, by
P(-) itself being log-concave, and is thus quite general. Milgrom-Roberts (1990) give
a uniqueness argument with examples for Bertrand competition with differentiated

products.




(A2)(i) may be viewed, in the present context, as a (negative) complementarity
condition as it holds that the improvement in a firm’s profits resulting from a unit
drop in own costs increases with the unit cost of the rival firm. (A2)(ii) is self-
explanatory: a firm’s profits decrease with own cost, but increase with rival’s cost.
(A2)(iii) says that in a symmetric duopoly, a unit drop in both firms’ costs raises
their profits. Put differently, own cost effects dominate rival’s cost effects on profit.

With (A3) clearly being a natural assumption, we now argue that this set of
assumptions yields a rather general framework, which, as noted earlier, leaves open
the possibility that the second-stage game may encompass other modes of competition
(in addition to Cournot and Bertrand). First, note that all three parts of (A2) are

satisfied in the case of

(i) Cournot competition with linear demand P(Q) = a — bQ and unit costs k; and
k, which leads to equilibrium profits (say) for Firm 1 given by II(ki, ky) =
(@ — 2k1 + kq)?/9b, and

(ii) Bertrand competition with differentiated products, linear demand ¢; = a —
pi+bp;, 0 <b< 1,15 =121 j, and units costs k1, ko, which leads to
equilibrium payoff for Firm 1 equal to II(ky, ko) = [(2+b)a — (2 — b?)ky + bky)2.

While precise assumptions on inverse demand in a Cournot duopoly (say) implying
(A2)(i) are not known, this condition is widely accepted since it is satisfied in the
most commonly chosen specifications. In particular, (A2)(i) holds when demand is
given by P(Q) =a —bQ?, Q < \/% , the tedious derivation being left to the reader.

Finally, we observe that II is ordinally submodular (i.e., —II satisfies the single-
crossing property, Milgrom-Shannon (1994)), as a consequence of Assumption (A2)(ii).
However, it turns out that our analysis requires the stronger notion of cardinal sub-
modularity (or (A2)(i)).

Some of our results require the following smoothness assumption (with Part (ii)

being a minor strengthening of (A2)(iii) given (A2)(ii)).

(A4) (i) II and f are twice continuously differentiable.

9




(i) |Ti(z, 2)| > |Ha(z, 2)], for all z € [0, ¢].

We now complete the description of the two-stage game by deriving the payoff
functions. Observe that the game is perfectly symmetrical, i.e., independent of a
relabeling of the players. The expected payoff to Firm 1 (say) is, with z,y € [0, ¢],

Floy) = Plllc—z,c—z)+ (1 = P)llc—z,c—y) — f(z) fz>y 2.2)

Pll(c—y,c—y)+ (1 =Pll(c—z,c—y) - flz) fz<y.
The expected payoff to Firm 2, defined similarly, is given by F(y, z), in view of the
symmetry of the game. The expressions in (2.2) reflect the facts that the firms get
(i) the same second-stage profits corresponding to the larger cost reduction for both,
with probability g, (ii) the profits corresponding to their autonomous cost reductions
with probability (1 — 8), and (iii) pay for their autonomous cost reduction only.

It is easy to see that F' inherits the continuity property of II (from Assumption
(A2)(1)). It turns out that F' also inherits the submodularity of II (also in (A2)(i)),
but not the differentiability of II and f, which fails along the diagonal of [0, c]?, nor
the concavity of each line in (2.2) assumed below for some of our results. This is

intended only as a preview here and will be established later.

2.2 The Spillover Process

As described by (2.1), the stochastic spillover process at hand is new and a thorough
justification is warranted. The key feature of this process is that know-how may only
flow from the more R&D intensive firm (the innovator) to the other firm (the imi-
tator). While this terminology might be suggestive of some sequentiality in carrying
out R&D, such a feature is not part of our model.

Furthermore, the effective cost reduction of the imitator (given by Y in (2.1)) is a
binomial random variable with the spillover parameter J as success probability. Thus
the spillover process only admits extreme realizations: Either full or no spillover will
actually take place, even though § can assume any value in [0,1]. The boundary

values of B have the usual interpretations: A value of 0 means that R&D is perfectly

10




appropriable while a value of 1 means that R&D is a purely public good, both in a
world of certainty.

We now define the certainty-equivalent spillover process for future reference. This
is obviously a deterministic process, characterized by (assuming w.l.o.g. that z > y)
X:=zand Y :=y+ f(z —y) = Bz + (1 — B)y, instead of (2.1). Here, the imitator
ends up with his autonomous cost reduction plus a fraction (given by the spillover
rate ) of the difference in the two cost reductions. This is simply the expected cost
reduction under the original stochastic spillover process.

In previous related studies, spillovers were always treated as a deterministic two-
way process (in the duopoly case). Spence (1984), d’Aspremont-Jacquemin (1988),
De Bond-Slaets-Cassiman (1992) and Kamien-Muller-Zang (1992)), as well as many
others related studies, all assume that a fixed proportion (given by the spillover
parameter) of every firm’s R&D effort or benefit flows freely to (all) the rival(s).® As
argued by Kamien-Muller-Zang (1992), the underlying R&D process in these studies is
implicitly assumed to be a “multi-dimensional heuristic rather than a one-dimensional
algorithmic process.” Thus, it necessarily involves trial and error on the part of the
firms which follow different sets of research paths and/or approaches. Further quoting
Kamien, Muller, and Zang: “The spillover effect in this vision of the R&D process
takes the form of each firm learning something about the other’s experiences: which
approaches appear more or less promising and which are ‘dead ends’.”

By contrast, the R&D process associated with the one-way (or uni-directional)
spillover structure here is best approximated by a one-dimensional process. This
need not mean that firms necessarily pursue only a single path or approach. Rather,
in case of a multi-path R&D process, our spillover structure suggests the presence of
a more or less natural order on the various steps to be performed. Consequently, it
is appropriate in such a setting to postulate that the only spillover potential is from

the firm with higher R&D activity to the laggard(s).*

3Suzumura (1992) has a more general spillover structure, but know-how still flows both way in
his set-up, and the focus is on symmetric equilibria as well. Amir (1995b) provides a critique of the

notion of additive spillovers in cost reductions.
4 Alternatively, the R&D process may be a “multi-dimensional heuristic” whereby firms commit

11




This justification of the one-way nature of the R&D leakages applies equally well to
the stochastic and to the certainty-equivalent versions of the spillover process. How-
ever, the stochastic version considerably enlarges the scope of interpretation of the
spillover effects, thereby allowing for interesting links to the broader R&D literature,
as we now argue.

The spillover process given by (2.1) is a reasonable approximation for potential
leakage effects in several different contexts. We present here the most prominent
examples. The first and perhaps most natural interpretation of § is as the probabil-
ity that R&D leakages will actually take place. In other words, 8 would represent
here a measure of the ease of carrying out industrial espionage and/or reverse en-
gineering eflorts in the industry under consideration. This presumes the absence of
effective patent protection of the differential in know-how between the innovator and
the imitator.

The second possible interpretation of J is as the perceived probability (by the
firms) that effective patent protection will not be granted to protect the innovation
differential of the leading firm. This explanation presumes an environment with po-
tential patent protection, and an R&D process with relatively easy reverse engineering
opportunities (in the absence of patents), and ez ante uncertainty as to the success
of patent applications.

The third possible interpretation of 3 relates it to the length of patent protection
and the interest rate, as follows. Consider a situation where a patent of length
T periods has been issued, thus allowing the innovator (or leading firm) to collect
asymmetric per-period duopoly profits II4 (corresponding to a larger market share)
for the first T periods, and symmetric duopoly profits IIs (corresponding to the
same low unit cost for both firms) thereafter. Assume that, in this fictitious (infinite-
horizon) dynamic scenario, firms discount future profits at a rate § (0 < § < 1). Then

the present value of the innovator’s stream of profits may be written as (omitting R&D

to certain paths and approaches and learn about their success only towards the end of the process.
In this vision, continuous peeking does not help as the paths are assumed unrelated, and S is then
simply the probability that a failing firm is able to change paths at the end and to imitate a successful

firm.

12




costs):
8T I +1—6T
1-6°71-6

Multiplying across by (1—§) and comparing the outcome to the top line in (2.2) leads

II4.

to the identification 8 = 67, which suggests that 3 may also be taken as an inversely
related proxy for patent length, which is quite intuitive. This analogy may serve as
a bridge between the literature on process R&D and that on patent races and patent
design (see, for instance, Gilbert-Shapiro (1990)).

A related alternative in an infinite-horizon setting is to think of T' as the number
of periods it takes for the imitator to successfully reproduce the innovator’s advance,
in the absence of patents. The above expression for the innovator’s stream of profits
is still valid here, with 8 being an (inversely related) measure of the imitation lag
T. This interpretation connects the present work to the literature on R&D-based
growth, see e.g. Grossman and Helpman (1991).

Another interpretation of (1—f) is as a measure of a firm’s inertia, or its inability
to effectively implement internal changes. In a world where process R&D is mainly
organizational, in the sense that it amounts to improving management structure,
compensation and incentive schemes, production technique ..., a firm may fail to ef-
fectively imitate a rival’s superior organization form due to various internal and global
factors such as managerial myopia, union policy, barriers to entry (i.e., weak com-
petitive pressures)... This interpretation relates our model to the (business) strategy
literature: See, e.g., Rumelt (1995) and Sinclair-Desgagné and Réller (1996).

While these (and other possible) interpretations distinguish our spillover process
from the standard multi-directional structure prevalent in the process R&D literature
so far, some common features between the two processes exist. [ here is also a
characteristic of the technological environment, assumed exogenous to the model. A
constant value for  is a highly stylized simplification, for a firm’s ability to absorb
spillover (or imitate) ought to depend explicitly on its own R&D investment.

We now conclude this discussion with two final observations. @ should be re-
garded throughout this paper as the perceived er ante probability of full spillover

taking place. Also, we point out that the certainty-equivalent version of the spillover
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process leads to a (deterministic) model which is not as tractable as our model here.
In particular, existence of a subgame-perfect equilibrium would entail one extra as-
sumption restricting the value of # and depending on the properties of the product

market profit function.

2.3 Properties of the Noncooperative R&D Model

Here, we state and interpret all the results pertaining to the two-stage game under
consideration. Since the second-stage game admits a unique Nash equilibrium, every
Nash equilibrium (z*,y*) of the game with payoffs (2.2) induces a subgame-perfect
equilibrium of the two-stage game, and vice-versa. In view of this one-to-one corre-
spondence, we use the two terminologies interchangeably.

We begin with the fundamental property of the game at hand (strategic substi-
tutability), and a key structural characteristic of its equilibria (asymmetry).

Theorem 2.1. Assume (A1)-(A2) hold. Then the following are true:

(i) The game with payoffs (2.2) is submodular, and hence has a pure-strategy Nash

equtlibrium.
(ii) Bwery interior Nash equilibrium is asymmetric if (A4) holds and 8 > 0.

(ili) Every Nash equilibrium is asymmetric if, in addition to the hypothesis of (%),

the following holds (here subscripts denote partial derivative)
J'(0) < =BTIy(c,c) — (¢, c) and f'(c) > —(1 — B)I1;(0,0). (2.3)

A discussion of these results is provided at the end of this subsection. The next
result deals with uniqueness of equilibrium. Observe that in view of the symmetry
of the game and the fact that no equilibrium can involve the firms taking the same

decisions (Theorem 2.1), the sharpest uniqueness result would yield two equilibria.
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Theorem 2.2. Under Assumptions (A1)-(A4) and (2.3), the R&D game (with pay-
offs (2.2)) has ezactly two Nash equilibria, of the form (Z,z) and (z,Z), with (say)
z > z, if in addition B € (0,1] and

f”(') > (Hll — H]_Q)[C — ('),Z], VZ € [O,C] (24)

and

() > (g + 2 + Tge)c — (), ¢ — ()] (2.5)

Define the best-response correspondence in the usual way, i.e., (say) for Firm
1,71(y) = argmax{F(z,y) : z € [0,¢]}. The next result holds that r; and 7, are
essentially as depicted in Figure 1 (note that r; = 7y, by symmetry).

Corollary 2.3. Under the hypothesis of Theorem 2.2 (i.e., (A1)-(A4), (2.5)-(2.5)),

ry and 7y are continuous nonincreasing functions everywhere in [0,c| except at one

point d € (0,c) where r;(d™) > d > r;(dF).
Figure 1 goes here.

The last results in this section deal with comparative statics of the equilibrium

(Z,z) as f increases in (0, 1].

Theorem 2.4. Under (A1)-(A2), the following hold as B increases in (0,1] :

(i) Holding one firm’s R&D level constant, the extremal best-responses of the other

firm are nonincreasing (in other words, r1 and ro shift down).

(i) The total equilibrium RED level T + z (associated with the unique Nash equi-
librium pair [(Z,z) and (z,Z)]) decreases if, in addition, (2.4)-(2.5) hold.

(iii) Z dtself decreases if, in addition, (2.4)-(2.5) and the following holds

1) 2 (1= ) [Mule ~ (),c ~ 2) + mfies s L) Y2 > ().
(2.6)
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‘We now provide a discussion of the results of this section. Theorem 2.1(1) suggests
that our model is well-defined under remarkably general conditions. In particular,
the absence of any concavity/convexity assumptions on the primitives of the model
is new in the R&D literature. From the proof of Theorem 2.1, one easily sees that
Assumption (A3), i.e., the monotonicity of f is not needed. For the overall payoff
function F' to inherit the submodularity property of the equilibrium profit function
II, Assumption (A2)(iii) turns out to be crucial. Submodularity of F here has the
usual negative complementarity interpretation: The marginal returns to increasing a
firm’s R&D expenditure decrease with the rival’s R&D expenditure, and this holds
independently of whether the firm is receiving or giving away spillovers!

The asymmetric structure of equilibria is a central feature of our analysis. It
says that it would never be optimal for a firm to exactly reproduce its rival’s R&D
behavior. Either the rival is conducting too little R&D so it pays for the firm to
engage in strictly more R&D activity (even though it knows that it will potentially
go to its rival), or the rival is conducting too much R&D so it pays for the firm
to perform strictly less R&D and potentially acquire the R&D differential for free
(i.e., imitate). Graphically, this property translates into the graph of F' having a
nonconcave kink along the diagonal in [0, c]?.

In view of this asymmetry feature of equilibrium outcomes, our model is a nat-
ural candidate for explaining the ubiquitous inter-firm heterogeneity within most
industries. The driving force behind this endogenous firm heterogeneity lies in the
(probabilistic) anticipation of one-way flow of R&D spillovers from the leading firm
to its rival. Under such a spillover structure (which is thoroughly discussed in the
next subsection), firms endogenously emerge with different production cost structures
through the very process of adopting (costly) technological progress. Thus, the com-
peting firms end up with different levels of R&D activity (hence with different types
of R&D strategy/labs), different firm sizes and market shares in the product market.

Theorem 2.2 is a convenient result as it allows for more straightforward analysis
of equilibrium behavior, unencumbered with some of the difficulties associated with

multiple equilibria. For instance, it is needed for clear-cut answers to the compar-
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ative statics analysis of Theorem 2.4. Both theorems require assumptions on f”,
which would translate into strong convexity of f since II is typically convex in own
costs or even jointly. Similar assumptions have always been made in related studies
(e.g., d’Aspremont-Jacquemin (1988), Kamien-Muller-Zang (1992)), and are crucially
needed to insure that payoffs are concave in own R&D decision. In our model, such
assumptions can only yield concavity of each line in (2.2), but not of F itself.

While Theorem (2.4)(i)-(ii) are intuitively clear, (iii) is perhaps less so. The fact
that each firm would decrease its R&D level as § increases, holding the rival’s R&D
level constant does not imply that, at equilibrium, both R&D levels go down.® In
other words, there are two effects governing the response of Z (say) to changes in 8.
The first is captured in Part (i) and is rather intuitive: The leading firm (or innovator)
would always cut down on R&D as the likelihood of full spillover to the rival increases,
with the rival’s R&D level constant. However, if the rival also decreases his R&D
level, the other effect is that the firm under consideration will want to respond by
increasing R&D activity. The overall effect on Z then depends on the relative strength
of these two effects. The added condition (2.6) is thus needed to shift the balance
towards a decline of Z. A similar argument would apply to z. We leave this to
the reader, but point out that Part (i) is also very intuitive for the lagging firm (or
imitator): As the likelihood of the innovator’s edge freely spilling over increases, it

finds it advantageous to cut down on its own autonomous (costly) R&D activity.

3 Research Joint Ventures

Following d’Aspremont-Jacquemin (1988) and Kamien-Muller-Zang (1992), we con-
sider here different R&D cooperation schemes among firms which remain competitors
in the product market. These schemes are characterized by two key features: whether

firms coordinate in choosing R&D expenditure (i.e., “collude” in the first-stage of the

°In the language of supermodularity analysis, one cannot find orders on the two actions sets that
would make each payoff supermodular in the two decisions and in the pair (own decision, 5). Hence,
the comparative statics result for supermodular games cannot be invoked (Milgrom-Roberts (1990),

Sobel (1988)).
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game), and whether firms cooperate in the actual conduct of R&D (by increasing 3).

Here, we are mainly concerned with only one RJV scenario: the joint lab. This
is characterized by the firms running one joint R&D facility at half the cost each,
and will be denoted by J. We prove below that J is equivalent (for our model) to
Kamien-Muller-Zang’s case CJ, or cartelized RJV, whereby firms coordinate R&D
expenditures in the first-stage and fully communicate during the R&D process (i.e.
set the spillover rate equal to 1).

In the course of investigating the properties of Case J, it turns out that it is
useful to also consider the following broader RJV speciﬁcatibn. Let C; denote the
scenario whereby firms coordinate their R&D investments (so as to maximize total
profits), while the spillover parameter is given by s € [0,1]. Thus, in particular,
s =0,,1 stand for the cases where the spillover rate is reduced to 0, kept as it is®,
and increased to 1 (its maximum vélue), respectively. Note here that the case s < (3
is not necessarily economically meaningful within the context of our model in the
sense that spillovers are generally thought of as being unpreventable by the firms.
Nonetheless, the case s = 0 is particularly useful below for comparative purposes.

The joint objective function of the two firms in Case C; (assuming w.l.o.g. that
z > y) is to maximize F(z,y)+ F(y, z) over z,y in [0, ¢|, with 3 set equal to s, which

reduces to
28T1(c - 2, — ) + (1 8)[[(e — 3¢ ) + (e — y,c — )] — f(a) — F(3). (3.)
The single-firm objective in Case J is to maximize over z € [0, ¢|
1
I{c — z,c—x) — §f(:c) (3.2)

Observe that (3.1) reflects the (potential) operation of two separate R&D labs by
the cartel, with variable spillover parameter, while (3.2) reflects the operation of one
joint lab with equal cost sharing. In both cases, the two firms face competition in the

product market, as captured by the function II (see Section 2). Thus, in particular, a

8The case Cj here is clearly the analog of the second scenario analyzed in d’Aspremont-Jacquemin

(1988).
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symmetric outcome necessarily obtains in Case J (by construction). As will be seen
below, this may or may not be true for Case Cs, s € [0,1).

Our central concern in this section is a performance comparison between the
noncooperative model of Section 2 (to be denoted N) and Case J (which we show
below to be essentially equivalent to Case Cy). The performance criteria of interest
here are: propensity for R&D, firm profits, consumer and social welfare. The cases
Cp and C'g'are analyzed here only as useful intermediate steps in the overall analysis.

We first point out that Cases J and C} are interchangeable in the following precise

sense (proofs are in the next section).

Lemma 3.1. Cases J and Cy are equivalent in the sense that they both lead to
the same joint objective function, and hence to the same optimal RE&D levels (one of

which is equal to zero) and the same optimal total profits.

In view of this lemma, one might wonder why two different definitions of the
same cooperation scenario are provided here. The answer is that Case J offers the
convenient feature of built-in symmetry, by its very definition, thus doing away with
the need to discuss profit and R&D cost sharing. On the other hand, stating it as
Case C} is useful below through its properties as the limit case of C; as s — 1.
Furthermore, it is as Case (] that this scenario is established in Kamien-Muller-Zang
(1992) as yielding the best performance (among three other possibilities) in market
price, R&D propensity and social welfare.

Our first comparison of Cases J and N concerns R&D propensities. This requires,
however, an intermediate lemma which is of independent interest, a comparison be-
tween Case J and Case N with § = 0 (the latter is denoted Ny below). In dealing
with this comparison, an additional assumption is now introduced as a new version
of (A4). It quantifies the dependence of profits on own vs. cross cost reductions in a

symmetric duopoly setting.

(A5) II and f are twice continuously differentiable and |I1;(z, 2)| > 2|TIy(z, 2)|, Vz €
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[0, ¢].

Clearly, (A5) is a stronger version of (A4). We now argue that (A5) is not as
restrictive as it might appear at first. It is easily seen to be satisfied under Cournot
competition with linear demand and costs, with strict inequality if products are differ-
entiated and with equality for homogeneous products (see Section 2 for the expression
of II). For Bertrand competition with differentiated products, (A5) can be seen to
hold if and only if the cross-demand coeflicient (denoted by b in the discussion of (A1)-
(A3) in Section 2) is in the interval (0,4/3 — 1] & (0,.73],” i.e., as long as demand is

somewhat away from the well-known case of homogenous products (b = 1).®

Lemma 3.2. Under Assumptions (A1)-(A3), (A5) and (2.4), we have:
(i) In Case Ny, there is a unique and symmetric equiltbrium (Zo,Zo).

(ii) The equilibrium RED level of Case J, x;, satisfies z; > xq.

We are now ready for the comparison of R&D propensities (interpretations of the

results are given later on).

Proposition 3.3. Under Assumptions (A1)-(A8), (A6) and (2.4)-(2.6),z; > T >z
(with strict inequality throughout unless 8 =0).

7In their treatment of Bertand competition, Kamien, Muller and Zang (1992) give % as a lower
bound for this critical value of b. Since the two models are equivalent when 8 = 0 (and our model
is specified as in theirs), the fact that our bound is sharper indicates that (A5) is tight (see also the

proof of Lemma 3.2(ii)).
8Tt can easily be seen that the IT function corresponding to the case b = 1, given by

II{cy,c2) = { (c2 —c1)D(cz) ifer <co

ifc; > 2,

(where D(:) is the demand function) is not submodular in (c;, c2). Hence this case fails Assumption

(A.2) anyway, and thus does not fit our model.
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The next comparison deals with equilibrium total profits. Due to the asymmetric
nature of the equilibria in Case N, single-firm profit comparisons do not seem possible

at this level of generality.

Proposition 3.4. Total equilibrium profits are higher in Case J than in Case N,

provided that at least one of the following conditions holds:
2I1(ca, c2) > {ey, c2) + H(ca, 1), for all ¢; > co. (3.3)

F0) > (IMyy — ye) (e — (), 2) + (gp — IIyg) (2, — (), for all z € [0,¢].  (3.4)

The welfare comparison essentially follows from Proposition 3.3-3.4 once the fol-
lowing plausible assumption about consumer surplus is added (note that given the
level of generality of the product market competition here, consumer surplus cannot

be explicitly defined in the usual way).

(A6) Consumer surplus is decreasing in the firms’ unit costs.

This assumption holds in most commonly used specifications of Cournot and
Bertrand competition. In particular, it holds for the cases of linear demand reported
in Section 2. For Cournot competition (with homogeneous products), it actually
holds for any demand function, provided production costs are linear and a Cournot
equilibrium exits (see Amir (1996b) for exact conditions). This is because total output

at equilibrium (and hence price) depends only on total unit cost (Bergstrom-Varian

(1985)).

Proposition 3.5. Regardless of whether full or no spillover is realized, (ez-post)
social welfare is higher under Case J than under Case N, assuming (A1)-(A6),
(2.4), (2.5), and either (8.83) or (8.4).

We now provide a discussion of the results of this section emphasizing their rela-

tionship to related work on RJV’s, namely d’Aspremont-Jacquemin (1988, 1990) and
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Kamien-Muller-Zang (1992). As discussed in the Introduction, the main motivation
behind our investigation here is a sort of robustness analysis of the principal con-
clusion from previous work: That a joint lab or cartelized RJV dominates all other
scenarios considered (including, in particular, the noncooperative case) in terms of
equilibrium prices (and thus consumer welfare), firm profits, and hence social welfare.
The reasons for questioning the validity of this conclusion in the present context are
that (i) the firms have different equilibrium profits in Case N, and hence different
incentives to engage in R&D cooperation, (ii) Case J yields symmetric outcomes as a
built-in feature while Case N always leads to asymmetric equilibria (see Salant-Shaffer
(1992)). This last feature is important as firms (jointly) prefer not to compete on
equal terms in the product market in typical specifications of Cournot and Bertrand

competition (see examples in Section 2.1), as we now show:

Lemma 3.6. Let II be jointly convez on [0,c]?, k > 0 and consider the following

objective (with constraint):

{(c1,c0) + Meg,¢1) : ¢ +co =k}

P

3.5)

Then the argmax of (3.5) consists of (0,k) and (k,0), while the argmin is (£, ).

Roughly, the main finding here is that the central conclusion of the RJV literature
is fairly robust to the change in spillover structure introduced here and to its associ-
ated asymmetry consequence discussed above. Nonetheless, additional assumptions
are needed here to ensure the validity of this conclusion (see Propositions 3.3-3.5).
Next, we discuss the meaning of these extra assumptions.

First, observe that for Case IV, our model is equivalent to those of d’Aspremont-
Jacquemin (1988) and Kamien-Muller-Zang (1992). Thus, our Lemma 3.2(ii) may
be viewed as a generalization of their analogous result to a broader class of profit
functions (instead of that corresponding to linear demand). Assumption (A5), crucial
for this generalization, was discussed earlier.

Condition (2.6), needed for Proposition 3.3, was also discussed in Section 2.3. As

suggested by the upcoming Example, (2.6) is not necessary for the comparison of R&D
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propensities, since total effective R&D can be declining in f§ even if the innovator’s
level Z is not, in which case Proposition 3.3 would not need Lemma 3.2(ii).

Condition (3.3), rewritten as II(cy, ca) — II(c1, ¢2) > {cg, ¢1) — I(eq, c2), says that
effects on profits of any discrete change in own cost exceeds those due to the same
change in rival’s cost, starting from a symmetric duopoly. Thus (3.3) strengthens
(A.4)(ii) which says the same thing but only for infinitesimal changes. Also, (3.3) has
a simple interpretation in the context of Cournot competition with linear demand. It
is then equivalent to 2a+3cy—5¢; > 0 (with ¢p < ¢;), and thus boils down to assuming
high demand (relative to costs). Condition (3.4) is needed to ensure concavity of the
joint objective in Case Gy, resulting then in a symmetric R&D choice. (3.3) or (3.4) is
needed to guarantee that total profits are higher for Case C; than for Case Cy. (3.4)
works by removing the asymmetry bias captured in Lemma 3.6. The idea is that if
symmetry prevails in both cases, the cartelized firms prefer full to no spillover. (Note
that due to the linearity of profits in f, either 8 = 0 or 8 = 1 is always preferred to
any other 3.)

Finally, Proposition 3.5, being a corollary of Propositions (3.3)-(3.4), needs all of

their assumptions.

4 An Example

Here, we provide a brief summary of an example that illustrates many of the general
results of Sections 2-3 in addition to allowing for more precise versions of those results
and for many new results. The latter do not seem tractable at the level of generality of
the present paper. A detailed analysis of this example is presented in the companion
paper Amir-Wooders (1996).

Let Cournot competition, with linear demand P(Q) = a — @ and common initial
cost c, prevail in the second-stage. As in d’Aspremont-Jacquemin (1988), take as the
R&D cost function f(z;) = 3yx?. Assuming a > 2c and 9y > 4(1 — B)2 V (8 — 68),
Amir-Wooders (1996) establish the following:

1. There exists a unique pair of equilibria (Z,z) and (z, Z) given in closed-form.
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2. (i) z; 2 z, (i) z; > Ziff 9y < 42 or 9y > 16(1 — f) and (iii) Expected total
cost reduction (1 + 8)Z + (1 — f)z < 2z,.

3. Total profits are higher for Case J than for case N if (i) a > 2.5¢, or (ii)
9y > 18, or (ili) 9y > 12 — 78 and (Z, z) is interior.

4. Consumer surplus is higher for Case J than for Case N.

We now comment on the necessity of the assumptions of Section 3 in light of
this central example. We begin with Condition (2.6). With the specification of this
example, it can easily be shown that 9y > 16(1 — f) is sufficient for (2.6). Since
zy > Z for f = 0 (see Lemma 3.2), Z must decline in § for 8 near 0 in order to
guarantee z; > Z. So 2(ii) suggests that Condition (2.8) is tight. Note though that
the Example yields 9y < 42 as an alternative condition. Also, no version of 2(iii) is
developed in the present paper.

For Part 3., (i) and (ii) are easily verified to be (tight) sufficient conditions for
(3.3) and (3.4) in the Example. On the other hand, 3.(iii) and 4. are obtained via
direct calculation and have no counterpart in this paper. Combining 3. and 4. yields
that social welfare is higher for Case J than for Case N if any one of the three
conditions of 3. holds. Hence, the above remark on total profit applies to the social
welfare comparison as well.

Finally, we report that a number of other results are derived in the context of
the Example in Amir-Wooders (1996), including a three-way comparison between
innovator, imitator and RJV participant of profits and markets shares, a complete
characterization of the (v, ) regions for which % > 0 and % > 0, as well as other

results.

5 Extensions

In view of the fact that one important dimension of value added in this paper is the
level of generality of the analysis, we argue here that the present framework does

extend to n firms. We assume that spillovers can occur only from the firm with
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the highest R&D activity to all the other firms. The key observation here is that
the equilibrium profit function II for Cournot competition of a firm in the second-
stage depends only on its own unit cost and on the sum of other firms’ unit costs.
Hence, the overall payoff of each firm in the two-stage game (analogous to (2.2))
depends only on the firm’s own R&D decision and on the sum of other firms’ R&D
decisions. Furthermore, the game remains submodular (i.e., the marginal returns
to increasing one’s R&D level decrease as any rival(s) increase(s) R&D). Together,
these two properties are sufficient to yield existence of a Nash equilibrium, using the
backward mapping technique of Novshek (1985). This equilibrium would involve one
“innovator” with a higher R&D level and (n — 1) imitators with the same lower R&D
level.

Another extension of interest would be to develop a more general notion of spillover
effects, characterized by ez ante symmetry but ez post potential asymmetry, that
would yield endogenous emergence of innovator /imitator roles.

Finally, it can be shown that the game at hand has a symmetric mixed-strategy
equilibrium. Under such a solution, the firms would still end up (endogenously)

different with positive probability.

6 Proofs

This section provides all the proofs for the results given in the previous sections, in
the order given. Recall that a brief review of the lattice-theoretic concepts needed
here is provided in Section 1. We begin with some notation:

It is convenient to introduce the following sets and functions (note that, contrary

to usual practice, z is along the vertical axis while y is on the horizontal axis below).

Auz{(x,y) € [O,c]zszy},A,E{(m,y) e[o,d?: mgy}
U(e,4) = BT1(c ~ 7,¢ — 2) + (1~ A)TI(c — z,¢ ) — / (2
L(z,y) =fll{c—y,c—y)+ (1 = Hlllc —z,c—y) - f (z)

U and L are respectively the top and bottom lines in the expression F(z,y) of
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firm’s payoff, as given by (2.2). By symmetry then, Firm 2’s payoff is F(y,z) =
L(y,z) ify <z, and Uy, z) if y > =.

Figure 2 goes here.

Proof of Theorem 2.1. (i) We show that F, as given by (2.2) is strictly submodular
in (z,y).® To this end, fix 21, Z9, Y1, %2 in [0, ¢] with z; > zq,y; > ys. If all four points
(z1,91), (®1,92), (x2,71) and (22,y2) lie in A, or in A, strict submodularity of F'
follows directly from the strict submodularity of II (i.e., Assumption (A2)(i)), since
only the middle term of U and L depends on both z and y.

If some of the four points lie in A, and the rest in 4, it is easily seen that there
are 4 different cases. It turns out that the proofs of strict submodularity of F' are
all similar, so we present the case depicted in Figure 2, i.e., (z1,¥1), (z1,¥2), (2, y2)
are in A, while (z,%;) is in A;. We must then show that U(zy,y1) — U(z1,%2) <
L{zg,y1) — U(z2,y2). We clearly have, given the location of the points, z2 < 1.
Hence, by Assumption (A.2)(iii),

0 < f(c—y1,¢c—y1) — Bll(c — z9,¢c — z9). (6.1)

Since II is strictly submodular and f only depends on one variable,

[(1 = B)II(c — z1,¢ — y1) = f(z1)] = [(1 = B)IL(c — z1,¢ — y2) — f(z1)]
< (1= P)(e—z2,¢—y1) ~ f(z2)] = [(1 = BIc — 2, ¢ ~ y2) — f(z2)].

Adding up (6.1), (6.2) and the trivial equality SII(c—z1,c—21)—BIl(c—2z1,¢—21) = 0

(6.2)

and rearranging terms yields

[BTI( +(

[Bl(c — zy,¢— z1) + (1
< Bl(c—y1,c—y1) + (

[BI(c — z2,¢c — z2) + (1

{c — z1,¢— z1) - O(c— z1,¢ — y1) — f(z1)]
= B)Il(c = z1,¢ — ya) — f(1)]
~ B)I(c — zq,¢ — y1) — f(z2)]

— B)II(c — z9,¢ — ya) — f(372)]>

9Note that Topkis’s Characterization Theorem cannot be used here, since F is not differentiable

along the diagonal in [0, c]?, but it can be used in the interior of A, and A; separately.
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which says that F'is strictly submodular for the 4-point choice of Figure 2. This last
inequality is strict since (6.1) is strict if 8 > 0 and (6.2) is strict if 8 < 1.
The argument for each of the remaining choices is similar, and thus left to the

reader. Existence of a pure-strategy Nash equilibrium follows from Theorem 1.3.

(i) Partial differentiation w.r.t. z yields
Us(2,9) = —BlTTs(c = 3,¢ — 2) + Ta(e — 2,¢ — 2)] — (1~ B)Th(c — 3¢~ 3) — F'(x)

and L (z,y) = —(1—F)Ii(c—z,c—y)—f'(z). Along the diagonal z = y, the difference
between these partials is Uy (z, ) — Ly (2, z) = —B[la(c—z, c—2z)+ ;1 (c—z,c~z)] > 0
(by (A4)(i1)). This implies that z can never be a best response to z, for any = €
(0,¢), since a necessary condition for that is U;(z,z) < L;(z,z). (Note that the last
inequality is simply a generalized first-order condition for a maximum in the absence

of differentiability of F'.) Hence no interior equilibrium can be symmetric.

(iii) In view of (ii), it remains to show that (0,0) and (c,c) cannot be equilibria.
To this end, consider U;(0,0) = —II;(c,c) — Blla(c,c) — f(0) > 0 by (2.3), and
Li(c,e) = —(1 — B)1(0,0) — f'(c) < 0 by (2.3). This implies that neither 0 nor c
can be a best response to itself. Hence, all equilibria are asymmetric.

This completes the proof of Theorem 2.1. O

Proof of Theorem 2.2. Since the game is symmetric, (a,b) € [0,¢]? is a Nash
equilibrium whenever (b,a) is. Here, we show that when (2.4) holds, there is exactly
one such pair of equilibria. We first show that 71,79 are as in Figure 1.

It is easily checked that (2.4) and (2.5) imply that U and L are strictly concave
in z (for fixed y), on A, and A, respectively. Hence, if r;(-), say, is discontinuous
at some point yo, then r1(yy ) and r1(yg) cannot both lie in A, or both in A; (note
here that r; is an upper semi-continuous correspondence, due to the joint continuity
of F, so that m1(y5) and 71(yg) are both in 71(yo)). Furthermore, by Theorems 1.1

and 2.1(i), every selection from 7; is nonincreasing. Also, by Theorem 2.1, 7y cannot
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intersect the 45° line. Therefore, there exists a unique point d € (0,c¢) such that (i)
71 is discontinuous at d, with r1(d~) > d > r1(d*), i.e., 71(d7) € A, and i (d*) € A,
(ii) 71 is continuous and lies in A, for y € [0,d], and (iii) r; is continuous and lies in
A, for y € [d, ¢]. In other words, r; and ry are essentially as depicted in Figure 1.
Next, we show that there is a unique equilibrium in the rectangle R := {(z,y) :
0<z<dandd <y<c}C A, Wedo this by showing that r; and 7, are (essentially)
contractions in R. Whenever r; is interior, the first-order condition L1 [r1(y),y] = 0,

the Implicit Function Theorem and (A4) yield that 7 is differentiable in R and

! (?j — _L12[T1(y)ay] — (1”/6)H12[C—T1(y)7c—y] )
! Lulri(y),yl @] = 1 = B)ule —ri(y),c — ¥l

Similarly, on R, rj(z) = — 2@l 5ng thus

T Uszlz,ra(a)]?

(z) = (1= B)Iislc — ro(z), ¢ — 2]
? f're(z)] = (1 = B)ysc — ra(z), ¢ — ] — BTy + 2I03a + Ilpp)[c — ra(z), ¢ — 7o(z)]

Straightforward computations show that 7i(y) > —1 iff

Fri(y)] > (1= B) (I — Iig)le — m1(y), ¢ — ¥ (6.3)
and 75(z) > —1 iff

fre(2)] > (1= 08) (1111 —yg) e —ro(z), c— ]+ B (11 + 2112 +1Igg) [c—ro(z), c— 7o ().
(64)

Clearly, (2.4)-(2.5) imply (6.3) and (6.4), and hence also imply that 7}(-) > —1,
i = 1,2. Recapitulating, we have rj(-) € (—1,0] in the interior of R, i = 1,2. Since
r1(d*) < d and 7y is nonincreasing, whenever r; is not interior in R, it must be that
ry = 0. Hence 7j(-) € (~1,0] in (all of) R. Then, uniqueness of equilibrium in R
follows from a well-known argument (for a proof, see e.g. Amir (1996a), Lemma 2.3).
By symmetry, there must be exactly two Nash equilibria of the form (Z,z) and

(Z,z), and the proof of Theorem 2.2 is now complete. O
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Proof of Corollary 2.3. This has already been proved in the first part of the proof
of Theorem 2.2. O

Proof of Theorem 2.4. (i) Here, we want to show that 7; and 7y shift down as 8
increases. To this end, we need to show that each payoff is submodular in own decision
and g (holding the rival’s decision constant), and then invoke (Topkis’s) Theorem
1.1. In view of the symmetry of the game and Corollary 2.3, it suffices to show
submodularity in R, i.e. (in view of Theorem 1), Lig(z,y) < 0 and Up(y,z) < 0.
We have Lyg(z,y) = IIj(c — z,c — y) < 0, by (A.2)(ii), and

Up(y, z) = ~Tli(c~y, c—y) —Ia(c—y,c—y) + 1 (c—y,c—z) < =Tl (c —y,c — y) < 0,

where the first inequality follows from (A2)(i) and the fact that ¥y > = on R, and the
second inequality follows from (A2)(ii). This completes the proof of Part (i).

(i) This follows directly from Part (i).

(iii) Consider the (unique) equilibrium (z,Z) in R. If (z,Z) is not interior in R, we
know from the (last part of) the proof of Theorem 2.2 that it must be the case that
z = 0. Then the fact that Z decreases in 3 follows directly from the fact that ry shifts
down (as [ increases), i.e., Theorem 2.4(i).

If (z, ) is interior in R, the following first-order conditions must hold:

~Bi{c - Z,c—Z) +Ia(c— Z,c— Z)] — (1 — B)I1{c — Z,c— z) — f(Z) = 0, (6.5)

—(1 = B)i(c—z,c— z) — f'(z) = 0. (6.6)
Totally differentiating w.r.t. 8, and collecting terms yields

(6T + 2Me + Map)(c = Z,¢ = 2) + (1 - B)u(c - Z,c — 7) — f"(2)|%
+ (1 - B)ip(c— 53,0—&)%% = I +I)(c— Z,¢c—Z) — [Ii(¢c — Z,c — z), and

(1= Alale ~z,0- )35 +1(1 — O(c—2,6- 2) ~ (@] 22 = ~Th (e~ g, 2).
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Solving for Z—Z (e.g. using Cramer’s rule), we get -f—i% > 0iff

i(c—z,¢c— z)(c— F,c — z)
(I +o)(c — Z,c— %) — Ii(c— Fc—z) |’

f'(z) > (1-0) |Mu(c—z,c~2)+

which is clearly implied by (2.6). This completes the proof of Theorem 2.4. O

Proof of Lemma 3.1. From (3.1), the objective function for Case C; reduces to

(assuming w.l.o.g. that z > y)
max{2Il(c — z,c — ) — f(z) — f(y) 1 2,y € [0,¢]}. (6.7)

Hence, the optimal choice of y is clearly ¥ = 0, and this objective then coincides with

(3.2), the objective function of Case J. This completes the proof of Lemma 3.1. O

Proof of Lemma 3.2. (i) In the game Nj, the payoff function of Firm 1 (say) is

(e - z,c—y) - f(z). (6.8)

This game is clearly submodular as a consequence of (A2)(i). Hence, it has a Nash
equilibrium. Uniqueness follows from the proof of Theorem 2.2 since (2.4) is the
same as (2.4) with 8 = 0. In other words, uniqueness follows here from the best-
response having slopes in (—1, 0] as shown before (with 8 = 0). Finally, symmetry of
the unique equilibrium in [0, c]? follows from the fact that the payoff (6.8) is strictly
concave in z (implied by (2.4)), thus leading to continuous best-response functions

which intersect at the 45° line.

(ii) Proceed by contradiction and assume that z; < zy. Assuming z; and zp are
both interior, they satisfy the following first-order conditions:
-*2(111 + Hg)(c - X g, C - :ZZJ) - f’(ZEJ) == 0, (69)
and

~IIi(c — 2o, e — 20) — f'(zo) = 0. - (6.10)
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By (A2)(ii) and (AB), II; (¢ — z;,c— ;) + 2Ia(c — zs, ¢ — z;) < 0. Summing up this
inequality and (6.9) yields

1

~Mi(c—zs,c—z5) — f (21)

IN

0
= —Ii(c— zo,c— o) — f'(z0), by (6.10)
< —IIi(c — =g, c - z;) — f(zo),
where the last inequality follows from (A2)(i) and the contradiction hypothesis z; <
Zo. Now, the inequality above (with the two outer terms) clearly contradicts the
concavity of Il{c — (-),¢ — z;7) — f(-) which is itself implied by (2.4).
Without interiority, the only cases that might cause any difficulty are zp = ¢ and
z; = 0 (since we are trying to show that z; > o). First, we show that if 2o = ¢, then
z; = ¢ too. By (A2), ~IIj(c — z,¢ — z) > —II;(c — z,0), for all z € [0,c]. Also, by
(A5), ~II1(c—z,c— ) — 2l3(c — z,c— z) > 0. Adding up the two inequalities yields
=2l (c—z,c—x) — 2l (c—=z,c—z) — f'(z) > —II1(c—,0) — f'(z), which says that
the derivative with respect to z of (6.7) is always higher than that of (6.8) with y = c.
Since II (¢ — (-),0)— f (-) is concave by (2.4), o = ¢ = argmax {II (¢ — (-),0) — f (-)}
implies that the latter maximand is nondecreasing. Hence, so is (6.7) since it has a
larger derivative Vz. Hence z; = ¢ too.
Next, we show that z; = 0 implies 2o = 0. If z; =0, (6.9) becomes —2II;(c, c) —
2IL(c,¢) — f'(0) £ 0. By (A5), IIi{c, ¢) + 2IIz(c, c) < 0. Adding up yields —II;(c,¢) —
f(0) < 0. Since Il(c— (-),c) — f(:) is concave by (2.4), we have zp = 0, and the

proof of Lemma 3.2 is complete. O

Proof of Proposition 3.3. For extra clarity here, let us index the R&D equilibrium
of Section 2 by the associated value of f, i.e. write g for Z and zp for z, for all
B € (0,1]. For 8 = 0, we have Ty =z¢ = zo (from Lemma 3.2).

From Theorem 2.4(iii), we know that Z5 < &y = o, for all 8 € (0, 1]. Hence, from

Lemma 3.2, z; > zo > Zs. This completes the proof of Proposition 3.3. O

Proof of Proposition 3.4. We first show that (3.3) is sufficient for the conclusion

of this Proposition. To this end, note that in case Cg, the Nash equilibrium (Z,z) is
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a feasible joint decision. Hence, equilibrium profits are no lower in Case Cjs than in

Case N. Next rewrite the joint objective (3.1), assuming w.l.o.g. that z > y, as

O(c—z, c—y)+I{c—y, c—z)+s[2Il(c—z, c—z)—I(c—z, c—y)-TI(c—y, c—z)]— f(z)— f (¥).
(6.11)
By (3.3), this objective is nondecreasing in s, for fixed (z,y). Hence, optimal profits
are higher for s = 1, i.e. for Case C} or equivalently (Lemma 3.1) for Case J, than
for any other s € [0,1], in particular s = 8. Thus, profits are higher in Case J than
for case N.
We now show that (3.4) is also sufficient for the same conclusion. The joint

objective for Case Cy is (from (3.1) with s = 0):

G(m,y)éII(c -, c— y) +H(C -y c— SU) - f(m) - f(y) (612)

It can be verified that (6.12) is (jointly) strictly concave in (z,y) if (3.4) holds (to
check this, one can see that G1; > Gyq and Geg > G5 follow from (3.4)). Since (6.12)
is also symmetric in (z,¥y), there must be a unique arg max, which is also symmetric,
i.e. of the form (z*,z*). (Otherwise, if (a,b) is an arg max with a # b, then symmetry
implies that (b,a) is also an argmax. With strict concavity, this leads to (%2, &t2)
yielding a strictly higher value than the max itself, a contradiction.)

Consequently, one can restrict the maximization of (6.12) to choices on the di-
agonal, i.e. replace (6.12) with max, {2II(c — z,¢c — z) — 2f (z)}, which is clearly
below the joint objective in Case J, i.e. (from (3.2)), 2II(c — z,¢c — z) — f(z). Hence,
equilibrium profits are higher in Case J than in Case Cy. Now, since the objective
function for Case C; is linear in s (see (6.11)), total equilibrium profits are lower for
Case Cp than for either Cy or Cy = J. Altogether then, C; = J yields higher profits
than all the Cy, s € [0,1], and thus also higher than Case N (recall that the latter

has lower profits than Cps). The proof is now complete. O

Proof of Proposition 3.5. Since Proposition 3.4 holds here, we know that producer
welfare is higher in Case J than in Case N. From Lemma 3.2 and Theorem 2.4(iii), we

know that z; > xp and that zg dominates Z, the equilibrium R&D of the innovator.
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The imitator’s effective R&D level is z with probability (1— ) and % with probability
B, and is hence always below zg too. Hence, by (A6), consumer welfare is higher in

Case J than in Case N, and thus so is total welfare. O

Proof of Lemma 3.6. First, observe that both the objective and the constraint
in (3.5) are symmetric in (¢, ¢p). Hence, if (a,b) is an optimizer, so is (b,a). Since
the iso-profit curves are concave, the arg max must be a boundary choice. Therefore,
(k,0) and (0,k) must form the argmax. Analogous reasoning for the minimization

case leads to the argmin being unique and equal to (%, %) O
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