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Abstract

Modelling the growth rate of economic time series with a Markov switching process in their
mean and/or their variance allows to take account of two facts that are often encountered in
~such series, namely that the periods in which each mean is prevailing differ in their duration
and that the variance of the time series differ in each period. In a first part, we will motivate
the class of regime switching models, and revue the estimating and testing procedures. in the
second part, we will present a brief survey of the literature on regime switching models and
their applications, and also present first results of actual own research.
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1 Introduction

The present working paper is a summary of several presentations we held at the Institute
for Advanced Studies in Vienna. The purpose was to introduce the new field of estimating
and testing Markov switching models in applied econometric work. The main part of
the paper will be a condensed exposition of review material. So it can be used by
researchers, who wish to acquaint with this new econometric field and who look for a
brief summary of the literature. It is clear that we cannot survey the literature entirely.
Rather, we selected out the papers according to our own research, and enabling us to
give an overview of what we thought to be milesteps in the field.

The seminal papers of Hamilton[23, 24] established the method of modelling time series
with changes in regime following a Markov process as one alternative of the nonlinear
modelling methods. His approach is based on Goldfeld and Quandt’s[19] Markov switch-
ing regression to characterize the change in the parameters of the time series process.
He presents a nonlinear filter and smoother to obtain statistical estimates of the regime
in which the unobserved state variable is in a specific period in time. This inference is
based on the time path of an observed variable. The second step of his procedure is
to solve for the marginal likelihood function of the observed variable, to maximize this
likelihood function with respect to the parameters, and then use the estimates and the
data to draw the optimal statistical inference about the unobserved regimes. The new
technique is applied to postwar US quarterly data on real GNP. The best empirical fit to
the data is given when the growth states are associated with the business cycle. Detailed
results are found in the application section.

In the following, researchers developed further the new framework. Hamilton[24] intro-
duces the EM algorithm to obtain maximum likelihood estimates of the parameters for
time series processes subject to discrete regime shifts. In Lam[32] the Hamilton model
is extended to the case where the autoregressive part has no unit root. The important
issue of testing N versus N — 1 regimes is addressed in Hansen[27], who derives a bound
for the likelihood ratio test. Garcia[16] derives analytically the asymptotic null distribu-
tion of the likelihood ratio test and the related covariance functions for various Markov
switching models. Finally, Kim[29] casts the Markov-switching model into a state space
form which allows a much broader class of models to be estimated than before within
that framework. Moreover, his algorithm proves to be much more efficient than the
previous ones.

Why has this framework become so attractive for economic research? One advantage is
certainly that several facts arising in time series can be modelled in a simultaneous way.
Often we observe that time series undergo several breaks in the trend, that some peri-
ods without shifts last longer than others, and that periods with high volatility follow
periods with low volatility. All these facts may arise in macroeconomic time series if the
business cycle is asymmetric. Previous research tried to assess for asymmetries. Already
in Neftgi[35] a finite state Markov process is used to test if the unemployment rate is
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asymmetric over the business cycle. He finds considerable evidence that time series go
through two different processes over the business cycle. However, in Falk[12] the evidence
for asymmetry in U.S. GNP, investment and productivity, and in industrial production
for five other countries is weaker than in the unemployment evidence. Westlund and
()hlén[48] find also only weak evidence in Swedish data. They cannot reject the null
of symmetry in deterministically detrended data and in data detrended by Beveridge-
Nelson. Nevertheless, the Markov regime switching framework of Hamilton has revived
the discussion about asymmetric business cycles. The evidence found in data analysis
would enforce the relevance of theoretical work presented recently. The statistical prop-
erties of these models are well described py processes following a Markov process. As
we will concentrate on the estimation and testing procedures, the interested reader can
find a brief overview of the macroeconomic literature in Diebold and Rudebusch[6] and
a survey on financial econometrics in Pagan[36].

The remaining part of the paper is organized as following. Section 2 and 3 describe
the EM algorithm of Hamilton. Notation and description therein are closely following
Hamilton[25, chap. 22]. Hansen's approach to test the Markov switching model is repro-
duced in section 4. Finally, section 5 and 6 give a selective survey on Markov switching

models in macroeconomics and in finance, respectively.

Part I

Modelling, estimating and testing

2 Basic concepts

2.1 An example

In figure 1 we see the first differences of the logarithm of US real GNP. We can observe
that longer periods of positive growth rates are followed by shorter periods of negative
growth rates. Moreover, the duration of these periods is changing over time, so that
shifts from positive to negative (or from negative to positive) growth rates are often
difficult to forecast and not observable. A simple model should then describe with what
probability a shift from positive to negative growth rate can occur. Modelling the time

series as a first order autoregressive process with changes in mean, we can write:

Yt — ts; = P(Yr-1-ps;_,) + &t (1)

where pig; is gy < 0 when s =1, and is pg > 0 when sf = 2.
sf is a discrete variable, that takes on the values 1 or 2. One possibility of modelling
such a variable is to let her follow a Markov process. To simplify notation we further

assume ¢ = 0.
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Then we have

Yy = Cs, +E g ~ t.i.d. N(0,0%) (2)
Cse = M1, if St = 17
Csy = M2, if St = 27

with the matrix of transition probabilities:

P pa | _ P11 —po
P12 P22 l=pnn  p2

P (s; = jlst—1 = 1) = py; 4,j=1,2

P =

2
dopp=1 i=12 (3)
=1

Assuming a Markov process of order 1! for s; is not restrictive, as a N-state Markov
process of order p can always be rewritten as a NP-state Markov process of order 1 (see
example II on page 6).

Before we turn to the estimation of the parameters governing this process, we introduce
two useful concepts in the next subsections.

2.2 The Markov process as a vector autoregression

Asin (2) let us assume that the process for the unobservable state variable s; is described
by a first-order, 2-state Markov process. We get a useful representation when we define
a 2 x 1 vector &, whose jth element is 1 when s; = j and 0 otherwise.

!

o={ b nn ’

,1) 8t=2

If s, = 1, then the first element of &4 is a stochastic variable, that takes on the value
1 with probability p;; and the second element of &, takes on value 1 with probability
1 — p11. Thus, the conditional expectation of &1 given s; =1 is

E(rlse=1) = { ZL: } (5)

This vector is the ¢th column of P. If s; = 4, then the vector & is the ith column of I
(the 2 x 2 identity matrix), so that we can write the previous equation (5) as

E (&41]&) = P& (6)

IThis meens that the probability of s; = j depends on the past only through the lagged value s;—1:

P(St = jlst—l =1, 8t-2 =Kk, ) = P(Sc =].[S£—l = 7') =Pij-
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Having assumed a Markov process of order one we can further write:

E (&1l &-1, .- -) = P& (7)

This implies that we can express a Markov process as:

§iv1 = P& + Vi (8)

where
Vil = &1 — B (Gq1lées -1, -0)

Expression (8) is a first order vector autoregression. v; is a martingale difference se-
quence: Although it can take on a finite set of values, on average it is zero and moreover,
its value is impossible to forecast on the basis of previous states of the process.

2.3 Ergodic probabilities, unconditional probabilities

From the summation restriction (3) we have
P'1=1, (9)

where here 1 is a 2 x 1 vector of ones. This equation means that 1 is an eigenvalue of P’
and that 1 is the corresponding eigenvector. As a matrix and its transpose have the same
eigenvalues, 1 is an eigenvalue of P for every Markov process. If a non-reducible Markov
process? with transition probabilities matrix P has an eigenvalue equal to one and all
other eigenvalues are smaller than 1, then this Markov process is said to be ergodic.
The vector of ergodic probabilities is represented by . This vector is the eigenvector
corresponding to the eigenvalue 1. Thus the vector of ergodic probabilities 7 satisfies:

Pr =, (10)

The elements of 7 are normalized to sum to unity. It can be shown (see Hamilton[25,
chap. 22.2]) that if P is the matrix of transition probabilities of an ergodic Markov

process, then
lim P =qx-1', (11)

m-—+00
This result implies that the long run forecast of an ergodic Markov chain is independent

of the current state:
E (4mlét éi-1,.. ) = P& o m - V6 = . (12)

The vector of ergodic probabilities can also be interpreted as the vector of the uncondi-
tional probabilities of being in state j: P (sy =j), J = 1,2. The vector « is then the
unconditional expectation of &;:

m=E (&) (13)

2Suppose that p1; is 1, so that P is upper triangular. This means that once the process enters state
1, it will never return to state 2. In this case we name state 1 an absorbing state and the Markov chain
reducible. If a Markov chain is not reducible it is called irreducible or non-reducible.
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We easily derive this by taking unconditional expectations of (8),
E(&+1) =P - E(&). (14)
Assuming stationarity and using (13) this becomes
7=P- . (15)

But 7 is the eigenvector corresponding to the unit eigenvalue of P. For an ergodic
Markov chain, this eigenvector is unique. Thus the vector of ergodic probabilities 7 can
be interpreted as the vector of unconditional probabilities.

For a Markov process with two states the elements of this vector are:

(1 =p22) /(2= P11 — p22)
(L=p11)/ (2 —p11 — p22)

w o

3 Estimating Markov-switching models

3.1 Notation

We introduce some more notation that we need to estimate the model.

Let y; be a nx 1 vector of observable endogenous variables, x; a k x 1 vector of exogenous
variables and Y: = (¥},...,Y_m: %}, ,x’_m)' be a vector containing all observations
through date ¢. Given the regime s; = j at date ¢, the conditional density of y; is
assumed to be:

f(yﬁ‘si :jaxtayt—l;9)7 (16)

where 6 is a vector of parameters that includes the parameters characterizing the con-
ditional density. If there are NV different regimes, then there are N conditional densities
given by 16. These densities are collected in a N x 1 vector #:

f (ytlst = 17xt)yt—-1;9)
= : . (17)
f(yelse = Nyx¢, Y13 0)

It is assumed that the unobserved stochastic state variable s; evolves according to a
Markov chain that is independent of past observations on y; or current or past x;:

P(St zj"stwl = i)SZ—Q = k;~--»xt>yu~oo§9) =
P (s; = jlsi—1 = 1;0) = py; fori,7=1,2,...,N. (18)

The probabilities p;j, 4,7 = 1,..., N are also included in the parameter vector 6.
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3.2 Examples

I. Let y; be a scalar variable normally distributed with mean p; and variance o2 when the
first regime is prevailing at date ¢t and normally distributed with mean uy and variance
o? if the second regime is prevailing at date t. The model for this variable is simply:

Yy = Cg, + &1 g ~ 1.0.d. N(O, 0‘2)
Csp = p1, i 8¢ =1
Csy = M2, if 8¢ = 2.

The vector 7; of conditional densities then becomes:

1 —(ys— 2

m = f (%[58 =1 9) _ 2o €xp (y;a"’ftl)
- - 2

f (yelse = 2;0) - exp | —zp)

where 0§ = (/‘l‘la/J’Q: 027?711:1022)-
II. Alternatively, assume that y; followed an autoregressive process with changes in

mean:
ye—cf, = dlym1 — ¢, )+ g ~idd N(0,0%)

c;, = M1, if sf =1

cs, = po, if 57 =2

To make y; independent of the lagged state we expand the number of states to four and
define them in the following way:

sg=1 if sf=1, sf ;=1 withprob. P
s =2 if sf=2, sj_;=1 withprob. pj,=1-p};
sg=3 if sf=1, sj_;=2 withprob. pj =1-pi
se=4 if sf=2, sj_;=2 with prob. P39

The matrix of transition probabilities for s; is then:

i 0 p;;p O

Pia 0 plp O
0 p»n 0 piy
0 pp 0 po

P =

Moreover, we get the vector of conditional densities:

[ (Welye-1, 8 = 1,6) 37 ©XP { "(?It’“lil“go(‘:gt—l*lﬁl))Q

_ f (welye—1,80 = 2;8) | _ \/217?0 exp { _(gﬂuuzng)ﬁ‘ghl—u]))z

" f @Welye, 56 =3;0) | \/217;0 exp *<-’/*““1*§§gt-l—m))2
F (Welys—1, 80 = 4;0) \/51% exp —(?/é—ﬂ2—g£§zjt-l“#2))2}

where § = (#17M2>¢, UQ,PTU@Z) :
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3.3 Estimation

The issue will be to estimate the parameters in 6 based on observations of Yr. The
problem that arises now is that even if § were known, because s; is not observable
we don’t know which regime was prevailing at every point in time. Let P (s; = 7|)};0)
be the statistical inference about the value of s; based on data through observation ¢
and based on knowledge of the population parameters 8. This inference is a conditional
probability of the observation ¢ being generated by regime j. These conditional probab-
ilities P (s; = j|W4;6),5 =1,...,N are gathered in a N X 1 vector g},t. Forecasts about
the probability of being in regime j at date ¢ + 1 given information through period ¢
are collected in a vector Zm[t, the jth element of which is P (s¢r1 = 7|)4;8). The op-
timal forecast and inference for each period ¢ is made by iterating through the following

equations:

(gtlt-l © 77t)
1 (a]t—l O] ﬂz)
G = P&y (20)

Etlt (19)

7 1s the N x 1 vector of the conditional densities of y;, P is the matrix of transition
probabilities, 1 is a IV x 1 vector of ones and the symbol ® means the Hadamard vector
product. Given a starting value EHO and given a first guess of the population parameters
in 8 we can iterate through both equations and compute values for Etlt and for Emu.
As a by-product we can evaluate the likelihood function L (6) for the observations Yp
at the value fixed for # that was used to iterate over (19) and (20).

T
L(8) = log f (yelx, Vi-1;6), (21)

t=1

where

f (elxe, Veer;0) = 1 (Ea[z-1 @m) :

3.4 Interpretation of filter equations
We defined
P (sy=1/¥;0)
€ = : , (22)
P (st = N[V 0)
each element of which is the conditional probability s, = j given ), j = 1,... N. The
forecasts given information through period ¢ are summed up in

P (st41 = 1|V 0)

Ea+1]z = : : (23)
P (s441 = N|V;;0)




8 — Kaufmann, Scheicher /| Markov-regime switching in economic variables ~ T H S

The numerator of (19) is given by:

[ P (s =1x, Vee1;0) X £ (else = 1, x4, Vo1 6)
10 = :
| P (st = Nlxt,Ve-1;0) x [ (yelse = N, x¢, Ve—156)

P (ye, st = 1x, V415 6)
= : . (24)

p (e, st = N|x¢, Ve-1;6)

This vector can be interpreted as the joint conditional density of y; and s; given inform-
ation through date t. Note that x; is exogenous and contains no information about s; so
the jth element of Etlt_l can also be written as P (s; = 7|x¢, Vi-1;0).

Let’s turn to the denominator of (19). Summing up over the N values of (24) gives us
the conditional density of y; given past observations. This can be written as

1 (Eﬂc—l © 77z> = f (yelxt, Vi-1;0) (25)
Forming the ratio of (24) and (25) leads to
ySe=1xe, V130 i
p(y}(?z{m!xyte.-f;ﬂl) ) P (st = 1lys, %, Ve-150)
p(y}’&‘;}:;;‘i‘;}ya) | P (st = Nlyt,xt, Ye-1;0)
P(s; = 1|V 0)
= 5 (26)
L P (st = N|Y:; 6)
= Et]t-

Dividing the joint conditional density of y; and s; by the conditional density of y; gives
the conditional probability of s; given the observations through ¢. This way, we obtain
a statistical inference about the probability with which s; was in state 5 at date ¢

Taking expectations of (8) yields

=0
E(&41|V0) = P-E(&|Vi0) + E(via| Vs 6)
P (541 = 1]24;0) P(sy=1{)};0)
: = P : (27)
P (st+1 = N[Wi;0) P (sy=N|Y;6)

§t+1|e = P'gm»

which is the forecast of {At given information up to period ¢.
In appendix C we show how the EM algorithm is implemented for example I and II on

page 6.
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3.5 Smoothing

The result of the smoothing algorithm is an inference about the probability of being in
state 7 at date ¢ given the information in the whole sample.

gt|T = gt[t OP- [gt+1[T(+)gt+11tJ (28)

(+) is similar to © and means elementwise division.

3.6 Maximizing

The second step consists in maximizing the log likelihood with respect to 8. If the
transition probabilities are restricted only by p;; > 0 and (ps1 + ...+ pin) = 1 for all 4,
and if the initial probability 5“0 is assumed to be a fixed value p, then the maximum
likelihood estimates of the transition probabilities are

Y, P(se=doser =ilyrid)

pij = = (29)
TSP (s =ilvrsh)

where @ is the maximum likelihood estimate of . Ds; is the number of times that state

7 seemed to be followed by state j divided by the number of times the process was in

state 7. This inference is made on the basis of the smoothed probabilities in (28) obtained

through the filter equations.

The maximum likelihood estimates of the other parameters governing the conditional

density (16) are given by ‘
> (-——-———ak’gm)'? =0 (30)
— oo tr

where « is equal to § without the transition probabilities.

If for example we have

Yo = 2105, +e, e ~iid N(0,0%)
IBSL =ﬁl ifSt-:l

Bs,=Bnif sy =N
with a = (8],..., 8, 0?).

Here z; is a vector of explanatory variables that could include lagged values of ;. The
coeflicients take on the value 8; if state j is prevailing at date {. The vector of conditional

' 2
1 exp{“(yt;azztﬁl) }

N = : . (32)

densities is




10 ~ Kaufmann, Scheicher / Markov-regime switching in economic variables — I H S

Condition (30) yields for ﬁj:

5 ey 2yt - P (s = j|Vr; 0)

B = : (33)
I Zfsl 2z, - P (st = j|Yr;0)
and for &2:
T N .2
52 =771 Z Z (?jt - Ziﬁj) - P (sy = §|Yr; 0) (34)
t=1 j=1

In this case, we see that §; can be estimated by weighted least squares, where observa-
tions for y; and z; are weighted by the probability that they came from regime j. ,Bj is
then estimated by an OLS regression from y; (j) on 2 (j), where

yi(G) = we- A/ Plse = jVi;6)
25 = z- A Plss = 4|V 0)

The estimate of o2 is then % times the combined sum of squared residuals from these N
regressions. A derivation of the estimators (33) and (34) can be found in appendix D.
Maximum likelihood estimators for further model specifications are found in Hamilton[23,
28].

3.7 Extensions of estimation procedure

The EM-algorithm of Hamilton is easily implemented, but has proven to be time-
consuming (especially when estimating multivariate models). Moreover, when the mod-
els become more sophisticated the variable transformation and the derivation of the
maximum likelihood estimates are not straightforward any more. Kim[29] has extended
the Hamilton estimation procedure. He casts the regime switching model into a state
space model and presents a new filtering and smoothing algorithm. The approximation
needed to make the Kalman filter operable is not restrictive. The major improvements
are that his algorithm allows a broader class of models to be estimated than before and
the extremely increased efficiency in computing smoothed probabilities.

Moreover, Hamilton’s model is not restricted to constant transition probabilities. The ex-
tension to time-varying transition probabilities is presented in Diebold, Lee and
Weinbach[5]. They develop the EM algorithm for this specification and present a simu-
lation example. They suggest that the extended model may be applied to exchange-rate
dynamics, as transition probabilities may vary with fundamentals, or to output dynam-
ics to model duration dependence. In the latter case varying transition probabilities
reflect the fact that the longer a contraction or recovery period persists the more likely
they are to end.
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4 Testing Markov switching models

One question we would like to answer is “How many states are governing the process
of s;7”. Unfortunately, the well-known likelihood ratio (LR) test cannot be performed.
If we estimate a model with N states and test the null of N — 1 states, the parameter
for the Nth state are not identified under the null. The issue was first addressed in
Hansen[27]. Recently, Garcia[16] derived the asymptotic null distributions of the LR
statistic for several specific Markov switching models commonly used in the literature.

We begin with a simple model to illustrate the testing purpose. Assume that y, follows
a first-order two-state Markov process with an autoregressive component.

Yt = [+ pqSe + U, ¢(L)us = e,
P(st=1lst-1=1)=p (35)
P(s;=0[s;-1 =0) =q.

The hypothesis we want to test is one against two states, that is
Hy: pg=0. (36)

Two problems arise when we want to perform this test. First, under the null, the para-
meter p and ¢ are not identified, that is, under the null we get the same value for the
likelihood for every value of p and ¢ between 0 and 1. Second, under the null of a linear
model with p = 0 or p = 1 the information matrix becomes singular, because the scores
of p, ¢ and pg4 are zero. In this case, asymptotic distributional theory cannot be applied
to derive the distribution of the LR statistic under the null.

Instead, Hansen views the likelihood function as an empirical process of the unknown
parameters and uses empirical process theory to derive a bound for the asymptotic dis-
tribution of a standardized LR statistic. This distribution depends upon the covariance
function of the empirical process associated with the likelihood surface, but neverthe-
less can be obtained by simulation®. In this paper, we will briefly reproduce Hansen’s
intuitive description of the approach and sum up the final results?.

Assume that the log likelihood of a likelihood function that depends on unknown para-

meters can be written as

n
Ln(@) = ) li(e). (37)
i=1
The hypothesis we want to test is

H()ZCY:‘-O!O Hl:a#ag. (38)

3The interested reader may refer to Gaenssler and Stute[15, 14] and to Dold and Eckmann(7] for

further readings on empirical process theory.
“In the following, = denotes weak convergence of probability measures with respect to the uniform

metric.
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The corresponding LR function is

n

LRy(@) = Ln(@) = Ln(ao) = Y [li(a) = li(a)]. (39)

i=1
Because the LR function is a linear transformation of the log likelihood function, the
maximum likelihood estimate of « is given by the parameters that maximize the LR
function. Moreover, the LR statistic for Hy versus H; is given by the supremum of the

LR function:
LR, = supae s LRy (a). (40)

Further, the LR function can be decomposed in its mean plus the deviation from the

mean

LRy(a) = Rn(a) + Qn(a), (41)

where
Rp(a) = E[LRy(c)]

is the mean,

Qn(a) = Z Qi(a)
1
is the deviation from the mean and
gi(a) = [li{a) = li(ap)] — E [li(a) = Li{)] .

Under standard regularity conditions n™'R,(a) —, R(a) for all «, where R(a) =
E[l;(a) = l;(a)]. The function R,(«) is maximized at the true value for a. Under the
null, then, R,(«) is not positive, strictly negative for o # ap. If we could observe
R,(a) there would be no uncertainty. Instead we observe LR, («), which contains the
influence of the random function @, (a). Some insights may then be gained by studying
the stochastic process @n(«). When standardized, we find

1

1 i3
%Qnm) = ;qxa) = Q(a), (42)

where Q(«) is a Gauss process with mean 0 and covariance function®
o]
K(on,00) = Y E(gion)quss(0z)) .

k=00

For every value of a, @(«) is a normal random variable with mean 0 and variance
K(a, a). The function K(-,-) describes the covariances between Q(«) at different values

for o.

SThis covariance function and the sample analogue in 56 as well as equation 57 are taken from
Hansen’s own erratum to his paper that he kindly sent us upon request.
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The decomposition (41) can be written as an asymptotic approximation:

1 1 1
—ﬁLRn(a) = -\/—ﬁRﬂ(a) + ﬁQn(a)
= —=Ra(@)+Q(a) + 1) (43)

where op(1) holds uniformly in . This equality states that the LR function is equal to
the mean function plus a Gaussian process. The Gaussian process Q(«) is completely
determined by its covariance function, which can be estimated from the data. The mean
function R, («) is unknown. But it is possible to derive a bound for the LR test statistic
from the fact that R,{a) <0 for all «, if the null is true. We get then
1 1

“ﬁLRn(a) < “\/‘T—‘;Qn(a) = Qo). (44)
Using this equation we can find a bound for the asymptotic distribution of the LR test
of Hy against Hy. Since LR, = sup, LR, (), we have as n — o0,

1 1

P{%Lam}g{sgp ﬁczaa)m}—w{sgp@(a)z:c} (45)

However, the process @Q{«) is not standardized. It can be shown that this test has true
size that converges to zero as the sample diverges. In this form, the test is overconservat-
ive. Alternatively, we can standardize the LR function, so that all values of « yield the
same variance. Moreover, we must account for nuisance parameters as they are present
in most problems. Suppose the log likelihood is

Ln(8,7,6) = D L(8,7,6). (46)
i==1

The parameter v and 6 are nuisance parameters. 8 is identified, v is not identified under
the null. This means that L,(0,~,8) does not depend on 7. To apply the test, first 8
must be eliminated. It is concentrated out of the likelihood function. Let o = (#',%).

Define the sequence of parameter estimates

o~

f(a) = max Ly(a,0) (47)

which represents the maximum likelihood estimate of 8 for fixed values of «. The con-

centrated log likelihood function is then
Ln(a) = Ln(e, (). (48)

With analogous arguments as before a bound for the LR test statistic and for its distri-
bution can be derived. To standardize the LR process we can use the sample variance:

V(o 80()) = > gi(e, B(e))? (49)
3=1
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where

o~ o~ -~

ai(a B() = b, A(@)) = 100, 7,80, 7)) = ~TFn(e)

with LR function
LRn(“) = Ln(a) - Ln(oa'Y)'

The standardized LR function is defined as

=%, , _ LRy(o)
and the standardized LR test statistic is
Zﬁ; = sup ﬁ;(a). (51)
aEA

Next define the centered stochastic process and his “large sample” counterpart as

gty @n * Qn
Qi) = 2 Qe = 22 52)

assume additionally that Q} («) satisfies an empirical process law
Qn(a) = Q*(a) (53)

where Q*(a) = Q(a)/V (a)!/? is a Gaussian process with covariance function

K(oq; )

Klesien) =y PV a7

As before, we obtain

sup Qy(a)
afA

< sup Qp(a) + op(1) = sup Q*(a) = Sup Q" (54)
a€A €A

LR,

IN

The following result then holds:
P {ZR: > :z,} <P {sup Qx(a) > ’E} — P{Sup @Q* > z}. (55)
acA

This gives a bound for the standardized LR test statistic, which is characterized by the
distribution of the random variable Sup @*. This random variable is the supremum of
the empirical process @Q*(«), which is characterized by its covariance function K*(:).

K*(-) is unknown but we have the sample analogue

K (onag)
K = z
where
R ’ n M
Ralaras) = > Gle)Gilea) + Y winr | Y, Glo)Gsklon) + Y. Gilo)Giilaz) |,
. i=1 k=1 1<i<n—k 1+k<i<n

G(@) = gla,d(a)).
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wry = 1 — |k|/(M + 1) is the Bartlett kernel and M is a bandwidth number. If we can
generate processes with covariance function K*(:), then the supremum of each of these
processes has approximately the distribution Sup Q*.

Sample draws with covariance function K*(-) can be generated by the construction of

M swn e
IR (o) = 2 k=0 ?i:ﬁz{(/:(,z)(?/)z)uwk , (57)

where {u;}77M is a draw of A'(0,1) random variables.

To implement this test the following steps have to be done:

o Fix a grid for « (the parameters that become zero under the null and for p and ¢.)

e Maximize the likelihood function for the nuisance parameters.

-~

o Compute the values g;(c, 8(a)).

o Compute the test statistic and its distribution.

Despite the implementation being rather easy, the computational burden becomes heavy
when the number of parameters that depend on the regime increases. Moreover, this
method provides a bound and not a critical value for the LR statistic. Using previous
work of Hansen, Garcia[16] derives the asymptotic null distribution of the LR test and
the related covariance functions for various Markov switching models. He defines

LRy ()

2n | Qn(6,5) — Qu(0)] (58)
2n | Qu(0(7),7) — Qn(0)] (59)

where @, is the average log likelihood function of a sample of n observations:

1
Qn(0,(v) = glogp(yn,m,yl;ﬁ,'r)- (60)

v = (p,q) and @ is the vector of parameters characterizing the Markov switching process.
The first statistic represents the difference between the estimated unconstrained and
constrained model. For the second the maximizing value of ¢ under the alternative is
obtained for a given value of . Both are related by

LRy, = sup LRn(7), (61)
~yel

where T" is a metric space from which the values 0 and 1 have to be excluded to keep
the information matrix positive definite.
With this result, to test for the null of one against two regimes in Markov switching
models has further been simplified. All we need here is to estimate the constrained and
the unconstrained model for given values of 7, to compute the test statistic in (61). The
critical values for the corresponding model can then be looked up in Garcia.
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Part I

A selective survey

5 Markov switching models in macroeconomics

Hamilton[23] applies the introduced method to US real GNP. He uses quarterly data
running from 51:2 to 84:4 and fits an AR(4)-process with potentially switching mean to
100 times the change in log real GNP:

4

(ys — #sc) = Z ¢i('!/t—i - usz—i) + £t

1=1

It turns out that the estimated two means can be associated with the dynamics of the
business cycle, one being negative (-0.4% ) during state 0 and the other being positive
(+1.2% ) during state 1. Moreover, using a rule based on the full sample smoothed
probabilities he can date turning points of business cycles that are quite in line with the
chronology of the NBER. He even demonstrates that where the dating differs his is more
in line with political events. Also, the expected duration of a recession is 4.1 quarter
and that of an expansion 10.5 quarters, which are 4.7 and 14.3 quarters, respectively,
according to the NBER. An interesting investigation follows the presentation of the
results. He addresses the question why linear model seem to fit the data well even if the
true process is the nonlinear Markov switching one. An AR(4) specification is fitted to
Monte Carlo draws of a Markov switching series. It turns out that the average residual
autocorrelation function would provide only negligible evidence against a linear AR(4)
representation, even though the true model is in fact the nonlinear one. The forecasts
of growth rates restricted to linear functions of past values will be suboptimal, however,
because they will differ when we know wether the economy was in expansion rather than
in recession last period. Finally, he derives the permanent effect of business cycle shocks
on the long run level of output and finds that if in ¢ the economy is in the recession
state, the long run effect of this shock will be a 3% decline in GNP.

The problem that is not addressed is his work and in all the following ones is to find
appropriate starting values for the parameters. Rather informally, the iterations are
initialized with many combination of starting values. Those are chosen, that maximize
the likelihood.

A bivariate application is found in Phillips[38] who evaluates the transmission of business
cycles from one country to another. The results give evidence that worldwide shocks
dominate the transmission of business cycles. For the research he uses quarterly time
series in industrial production for the US, Canada, Germany and Great Britain. The
data cover the period 62:2 to 83:3. He investigates the business cycles relationships
between the US and each other country within a bivariate framework. Let y; denote the
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growth of output in period ¢:

Yy = npte

Ty = 181t + oS + 14383 F e Sqs

e = pe—1+u u ~N(0,X)

The last equation allows the error term to be vector-autocorrelated. For the two-country
model, ¥, nt, €, Uy and each of the u’s are 2 x 1 vectors. As there can be a high growth
or a low growth state in each country, the combination of these will define the four states
of the Markov process. The four values for u will then be:

h h h
2 2 2
, M2 = ? y M3 — }‘ y M4 = _2f )
1 ) Ha

with u§ > p§, ¢ = h, f. The superscripts 2 and f refer to home and foreign country,

h

H1 = "
u

respectively. This set up is rather elegant as several assumptions about the business
cycles correlation between the two countries are easily implemented by restricting ap-
propriately the matrix of transition probabilities. The business cycles correlations are
reflected in the Markov processes governing the state variable in each country. If the
business cycles of two countries are independent, then the two Markov processes will be
independent. In this case the matrix of transition probabilities for the bivariate model
is not restricted. If the two Markov processes are perfectly correlated, the four-by-four
matrix of transition probabilities reduces to a two-by-two matrix, because state 2 and
3 defined above will in fact never occur. It is also possible to account for the fact that
one country may lead the other or to incorporate leads that last longer than one period.
Each specification may be tested against the alternative of independence using a LR
statistic.

The results give only weak evidence for the transmission of business cycles from one
country to the other. Rather, recessions and recoveries seem to occur at the same time
in all countries. Moreover, there is no evidence for the US leading or following into or
out of recessions. Of course, as Phillips mentions himself, the results may change when
considering the relationships between large industrialized and developing countries or
between large and small country pairs. To get his results, he first estimates the model
with a bunch of starting values and a weak convergence criterion. In a second round he
takes the parameters that maximized the likelihood as starting values and estimates the
model again with a strong convergence criterion.

Goodwin[20] estimates the Hamilton model for eight countries (G-7 and Switzerland)
using quarterly data. To get the parameter estimates he first defines a grid for the state-
dependent mean and the transition probabilities. Next the likelihood is maximized with
respect to the nuisance parameters for each fixed gridpoint. The parameters yielding the
maximum of the likelihood are then used as starting values to find the optimum of all the
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parameters jointly. To assess the improvement a Markov switching model may bring over
a linear AR(4) model a bunch of specification and forecasting tests are performed. The
most striking result is that for all countries the null of one regime against the alternative
of two cannot be rejected using the Hansen standardized LR test. Moreover, although
the Markov switching model has more explanatory power than the linear model, it
cannot explain all the nonlinearities in the data. Goodwin concludes that the Hamilton
model brings only a marginal improvement over linear models for output series. He uses
smoothed probabilities to date turning points of economic activity. The chronologies,
except for Italy, are quite in line with that of the NBER for the US and with the dating
of previous studies for other countries. For Italy, some outliers are recognized as the
high-growth state relegating all other observations to the low-growth state. As dating is
not very sensible in this case, it is left apart for this analysis.

Ghysels[17] presents a Markov switching framework to assess for the periodic structure
of the business cycle. To test wether recoveries can begin in each month of the year with
equal probability, he relies on LR, Lagrange multiplier (LM) and Wald tests. Using data
for the US he finds evidence that spring months and December are most favourable for
recoveries to begin and that the lengths of recessions or booms are different depending
on which period in the year the turning point occurred. According to his results the
business cycle then displays a seasonal pattern. In the model the matrix of transition
probabilities is quarter or month dependent:

t+1
Expansion Recession
Expansion > i, dupi 1= dupi
t
Recession 1—3 7 ditgs Yoiy ditdis

where d;; is a seasonal dummy process. However, this process can be brought into a
time-independent form when expanding appropriately the number of states. For the
analysis, Ghysels derives the likelihood function of the transition probabilities. Their
maximum likelihood estimates are based on two chronologies of business cycle turning
points, one dated by the NBER and the other by Romer[40]. The null of equal transition
probabilities across seasons and equal transition probabilities for either expansions or

recessions are rejected, giving evidence for a periodic structure of the business cycle.

Observing that in the long run there are equilibrium relationhips between economic vari-
ables, but that these relationships may change as the economic environment changes,
leads Hall, Psaradakis and Sola[22] to allow for time-varying cointegration. Thereby, the
long run parameters are allowed to switch stochastically between two different cointeg-
ration regimes. They illustrate their approach using quarterly, seasonally not adjusted
Japanese data for real total consumption and real disposable income from 61:1 to 87:4.
They find considerable evidence in favour of a time-varying cointegration model, in
which the parameters of a cointegration regression depend on two regimes. Let ¢; and
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y¢ represent consumption and disposable income in ¢, respectively, define D{ a dummy
variable for season j, then the model fitted to the data is:

3
¢t = (Bo+ Brse)ye + (o + pasy) + (o + afs,) D + [wo(1 — 5¢) + wyseluy,
=1

where {u;} is a stochastic sequence with zero mean and variance of unity. In their analysis
the residual variance is also dependent on the regime. Their specification tests are based
on the standardized residuals of the Markov switching cointegration regressions. Using
the augmented Dickey-Fuller test, the test of Phillips and Ouliaris and the Durbin-
Hausmann DHS test of Choi, the null of no cointegration can firmly be rejected in all
cases.

The ability of the Markov switching model to account for the changing pattern of eco-
nomic variables over the business cycle is combined in Diebold and Rudebusch[6] with
a dynamic factor model. The latter models can additionally describe the correlation of
macroeconomic variables over the business cycle. The number of driving forces in the
economy is often less than the number of variables affected by these forces, implying a
factor structure for the variables. Collect n variables in a n x 1 vector X;. The factor
regime switching model can then be set up:

AX,; = /8 -+ )\ft + Uy
D(L)ut = &
ML) fe—ps) = m

Movements in n macroeconomic variables are described by the one-dimensional non-
observable common factor f; and by the n-dimensional idiosyncratic component w;. The
common factor potentially switches regime depending on the state of a latent variable s;
following a two-state, first-order Markov process. Collect the relevant past for the factor

in zp = (8t,81=1, - s Stmpy fim1, - - ;f{,—-p),- Then, the conditional density of f; given z; is
1 — - =S b (Fo— 2
p(filz;0) = exp ((fe = ps,) 21-12¢z(fa ) .
2ro 2

The common factor follows then an autoregressive process of order p with a potentially
switching mean. The results presented by Diebold and Rudebusch are based on four
quarterly time series of coincident indicators, namely personal disposable income minus
transfer payments, index of industrial production, manufacturing and trade sales, num-
ber of persons on non-agricultural payrolls. They use the composite index of coincident
indicators computed by the Commerce department as common factor. The time series
run from 52:1 to 93:1. They estimate a first-order autoregressive process with switching
mean for each series. A full factor regime switching model is not estimated. However,
the similarity of the results across the series makes it very plausible. The two means
capture business cycle patterns for all series. pg is negative and p is positive, repres-
enting recession or recovery periods, respectively. Moreover, using critical values from
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Garcia[16], the null of one against two regimes can be rejected significantly in each case.
The estimated transition probabilities suggest that there is a persistence to remain in
the prevailing state and that expansions last longer than recessions. The evidence of
these preliminary results is reinforced in Kim and Nelson[30], who estimate the full
factor model for four monthly coincident indicators by Gibbs sampling. They find pos-
itive duration dependence for recessions and recoveries, and further that the effect is
concentrated in the months before the switches in regime occur.

We did the same investigation as Diebold and Rudebusch for three quarterly, seasonally
adjusted time series of macroeconomic data for the G-7 countries plus Austria and
Switzerland. The sample runs from 70:1 to 94:4. We took the series for real GNP or GDP,
real consumption and real investment as economic theory suggests that these three are
driven by a common stochastic trend. This common I(1)-factor (depicted in figure 2) is
estimated by the principal component that explains most of the variation in the variables
(see Stock and Watson[44] who use this approach to test for common trends). Taking
these series we will also be able to partly compare our results with those of Goodwin[20].
To restrict the analysis we estimated a Markov switching model only for the common
factor. Table 1 displays the results. Except for Austria no AR(1) term was included.
For Switzerland, Italy, Japan and the US the estimation of an autoregressive first-order
model with switching mean yields no plausible results, for Canada, Germany, France
and Great Britain the inclusion of an AR(1) term brings no significant improvement in
the inference. Worth mentioning is also that the data for Austria need special treatment
to get sensible results. In 1972 the general sales tax system was replaced by the value
added tax system. Later on, in 1977 the value added tax rate for expensive (mostly
imported) goods was increased above the normal rate (Luzussteuer). Correspondingly,
we observe outliers in the changes of the principal component in the third and fourth
quarters of these years. We account for this with dummy-variables. It is only after
this transformation that we can obtain usable results for Austria. Moreover, an AR(1)-
term must be included in the analysis as no maximum is found when omitting it. For
all countries but France the two means capture business cycles features. There is a
considerable persistence to remain in the prevailing state, the persistence being higher
for the positive (France: for the high) growth state. Moreover, using the critical values
in Garcia[16] we can reject the null of one against two regimes at the 1% significance
level for all countries except Austria and Great Britain. We further dated business
cycles turning points as Goodwin[20] did in his paper. We designate date ¢ a peak if
P(s; = 2|Yr) > 0.5 and P(s¢41 = 2|Yr) < 0.5. Similarly, a date ¢ is designated a trough
if P(s; =2|Yr) < 0.5 and P(s;41 = 2|Yr) > 0.5. The dating is based on the smoothed
probabilities estimated by the filter. The probabilities of being in state 1 at date ¢ are
shown in figure 3 and 4. The chronologies are shown in table 2. The column labeled FS
refers to our dating using the common factor of real GNP or GDP, real consumption and
real investment, the others are reproduced from Goodwin. Our dating closely follows
previous ones. Using the common factor rather than GDP even improves the dating
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for two countries. In the case of Switzerland, the inference of Goodwin reproduced
only the recession in the middle of the 70ies. The recession at the beginning of the
80ies can be reproduced when using the common factor. Regarding Italy, a fourth-
order autoregressive Markov-switching model for GDP identified two outliers as the
high growth state. A dating is not very sensible in this case and is left out in Goodwin.
Again, using the common factor yields plausible results and we can also date business
cycle turning points in this case. Finally, Austria seems to have undergone an additional
business cycle in the middle of the 80ies. Again, this may be a reflection of changes in

tax policy, namely a change in the value added tax rates.

The conclusions we draw from these preliminary results are mixed. We can make no
general assessment of the appropriateness of the Markov switching model for the prin-
cipal component of real GDP (GNP), consumption and investment. For most countries
investigated the null of one against two regimes is rejected, the exceptions being Austria
and Great Britain. To improve the evidence given in this paper, in future research the
alternatives under test must be generalized (e.g. include more autoregressive terms), so
that the null is able to capture more of the dynamic patterns displayed in the data.
Moreover, it remains to assess the usefulness of Markov switching models in judging
the economic situation prevailing in a country. Our results suggest that the inferred
smoothed probabilities can be used to date business cycles turning points. The dating
closely follows previous ones and is more in line with observed economic evolution for
Italy and Switzerland when compared to the single time series analysis of Goodwin[20].

6 Markov switching models in finance

One of the areas where Markov switching (MS) has been applied successfully is in
financial econometrics. The main motivation for this lies in the stylized facts of financial
time series. So before outlining the specifications of MS used in finance we will briefly
summarize the most important stylized facts. We use the returns of the §/DM exchange
rate to illustrate the stylized facts. Our sample of daily observations starts in January
1980 and ends in December 1992. This series has already been extensively studied, e.g.
in Hsieh (1989) but here it serves as a benchmark.

6.1 Stylized facts for financial time series

In figure 5 we plot the (compound) returns. The first question to ask is whether there
is significant dependence in the levels of the series. The idea that future returns cannot
be predicted by information available today is the main content of the Efficient Mar-
kets Hypothesis (EMH). The benchmark model for the EMH is the random walk (here
without drift):

log P, =log Py + 1wy, g ~ i.4.d. N(0,0?) (62)
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A weaker formulation is obtained under the martingale assumption which leads to the
return process (see Spanos[43]):

E(log P;|I1-1) = log Py—;. (63)

The difference between these two specifications lies in the restrictions on higher mo-
ments: The random walk requires independence whereas the martingale imposes the
much weaker condition of no autocorrelation in the first moment. This means that e.g.,
a process which is uncorrelated but has a time-changing variance (heteroscedasticity) is
rejected under the random walk model ot the EMH and is not rejected under the mar-
tingale model. For our daily series the autocorrelation for 100 lags is plotted in figure
6. There is only little autocorrelation (autocorrelation at lag one is 0.025 with a p-value
of .21) and so the linear dependence is not very pronounced. Linear dependence is the
simplest form of return predictability, namely by using past returns. Later on we will
study nonlinear dependence, which is very important for MS.

Besides the EMH a central topic in work on the behavior of financial time series is the
question of the distribution of returns and how to measure the volatility of returns.
This is important for the specification of any model of returns and it has wide-ranging
consequences in empirical work. Examples reach from event studies in corporate finance
to risk management or the pricing of complex derivative products. The benchmark model
is the time-independent Gaussian as given below:

ry ~ N(p, 0?) (64)

In 64 the variance or the standard deviation can be interpreted as the “volatility” of
returns. However the literature offers a variety of definitions for the term volatility.
Here we only quote the description of Engle[11, p. 73]: “Volatility measures the variab-
ility of returns.” Depending on the information set we differentiate between conditional
volatility (= h;) and unconditional volatility (= ¢2), defined again from Engle[11]:

he = B[(r—pm)* -] (65)
o* = Blry— ) (66)
where My = E["‘tllt~l]

Here p; is the conditional mean, which can also contain exogenous variables and I,y
is the information set known at time ¢ — 1 which is used to compute the conditional
expectations. Most of the time it contains past returns. The conditional model always
nests the unconditional one, but not vice versa. As we will see this difference is very
important in the context of MS.

Since the 1960’s there has been growing doubt on the validity of the time-independent
Gaussian model. In particular the finding of fat tfails and wvolatility clustering, both

discussed below are contrary evidence.
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Mandelbrot[33, p. 418] finds that: “Large changes tend to be followed by large changes
— of either sign — and small changes tend to be followed by small changes”. This finding
is evident for the $/DM when turning again to figure 5. Here we see that high and low
volatilities, i.e. times with variable returns “cluster” together. Once there are large price
movements in the market these “high-volatility regimes” are persistent for some time.
Volatility clustering, also known as nonlinear dependence implies that the variance is not
constant over time, i.e. there is heteroscedasticity. In the simplest case we could imagine
that there are two periods: Times with high and low variance respectively. A consequence
of volatility clustering is that the variance can be predicted reasonably well. The reason is
that the variance remains high for some time once some extreme price moves have taken
place. This hypothesis can be analyzed by estimating the autocorrelations in the squares:
here any predictability in the squares should show up as high autocorrelations. For the
$/DM we illustrate these findings in figure 6: There we plot the autocorrelation of the
squared time series. The values are all very high and they remain significant at least until
lag ten. On this basis a simple model to forecast volatility would use an autoregression
on squared returns. However as we will demonstrate MS offers a superior approach.
Figure 6 also illustrates that the autocorrelation in the squared returns is higher than
in the levels. This means that compared to the pronounced heteroscedasticity there is
relatively little structure in the first moments of financial time series. The consequence
is that in the process of modelling returns more weight is put on finding an appropriate
specification for the second moment (conditional variance and covariance between assets)
instead of the first moment (conditional mean).The dependence in the second moments
implies that the random walk model is rejected, but under the martingale model there
is no contradiction to the EMH.

The finding of volatility clustering is strongly related to the phenomenon of fat tails.
Fama[13] studies daily time series of the thirty stocks in the Dow Jones Industrial
Average index. He finds that (p. 48): “In every case the empirical distributions are
more peaked than the Normal in the centre and have longer tails than the normal
distribution.” This means that the empirical distribution allocates the probability mass
differently from the Normal. We see this result for the $/DM series in figure 7: It plots
a nonparametric estimate of the normalized unconditional distribution of the returns
(FHAT). For a comparison the figure also plots the A/(0,1) distribution. The probability
of extreme positive or negative price movements is much larger than in the Normal
model, thus the tails are “fatter”.

It is important to recognize that volatility clustering and fat tails are two related phe-
nomena. The reason is that a series where the variance changes over time can not be
drawn from a stationary Normal and so fat tails are the static representation of the

dynamic phenomenon of time-dependence in second moments.
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6.2 The MS model in finance

Given these stylized facts the literature offers two types of models to explain them: MS
and GARCH®. MS assumes there are two “regimes” or states. State one has a high mean
and low volatility and state two has a low (negative) mean and high volatility, the latter
one being less likely, i.e. it has a lower unconditional probability of being observed. This
specification can be interpreted as a mixture distribution with dynamics generated by a
Markov chain. In contrast to the mixture distribution studied in e.g. Kon[31] the returns
generated by the MS model are not independent. So it is a considerable improvement
over the restrictive static mixture-of-normals model as given in 67.

ry ~ N(u1,0%) with probability p; o
74 ~ N(ua,02) with probability p; = 1 — p;

The probability density function for two regimes is:

2 1 1 5
f(re) =;pj\7;—7:§ exp {—%? (re = 15) :! (68)

In this model the Gaussian distribution is generalized by introducing two regimes with
different moments. Leptocurtosis is obtained here because the variances in the two re-
gimes differ. In Tucker[46] generalizations to more than two regimes are studied. However
the result there is that out of 200 US stocks 172 have 2 or 3 regimes only. This model
is estimated by maximum likelihood techniques.

MS can capture all the stylized facts of section 6.1: The mixture distribution generates
the leptocurtosis and the Markov chain is responsible for the nonlinear dynamics. Engel
and Hamilton[9] are the first to apply MS to financial time series. They study a sample
of quarterly returns, finding that MS gives a good fit. They also apply a variety of tests
to analyze the performance of their model. Applications of MS to stock market returns
started with Pagan and Schwert[37]. There MS is compared with GARCH and several
other volatility models. The best forcasting performance is achieved by nonparametric
models. McQueen and Thorley[34] specify a MS model where the two states differ only
in their means but not in their variances. This model is used for tests of the Efficient
Markets Hypothesis represented as a random walk. Town[45] applies MS to data from
corporate finance: He studies evidence for merger waves in the US. Schmitt[41] repeats
the exercise of Pagan and Schwert for several return series from the German stock mar-
ket. Results are mixed with some evidence in favor of GARCH. Rockinger[39] estimates
a switching regression model for the main French stock index. He introduces innova-
tions in macroeconomic time series as explanatory variables. Sola and Timmerman[42]
estimate GARCH, EGARCH and MS for daily stock returns from the London Stock
Exchange. In an in-sample comparison MS beats GARCH because it can generate skew-
ness in addition to volatility clustering and fat tails which both models share. With a

SRecently stochastic volatility models have also become popular, see the survey by Ghysels et al.[18].
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simulation and application to daily data Sola and Timmerman also show that GARCH
and MS are “observationally equivalent” for generating volatility clustering. Van Norden
and Schaller[47] also apply the MS model to stock returns. They study possible causes
for stock market crashes and test the hypothesis of speculative behavior against the
hypothesis of changes in fundamentals. Their result is that the two explanations are
complements rather than substitutes. Engel[8] studies the forecasting performance of
MS for FX markets, obtaining mixed results. The predictive capabilities of MS are also
studied in Dacco and Satchel[4]. Recently Bekeart and Harvey[l] have introduced a
model which manages to combine MS with multivariate ARCH. They study evidence
for time-dependence in the integration of emerging markets into the “world market”.
The MS model as it is specified for financial econometrics is defined as in 69 or 70, with
S; indicating the state characterized by the value 0 or 1:

State Sy =1i: 7|Se ~ N (p,0%), i=0,1; (69)
Ty = ap + a15; + [w, + w1 St) &y, with g, ~i.4.d. N (0,1). (70)
The conditional mean and variance are then defined as:
pe=ag+a1Sy or=we + w1 St (71)
The transition (conditional) probabilities are:

P’I’Ob(St = 1[8{,_1 = 1) =P P’)‘Ob(St = 0]5#.1 = 1) =1 Y

72
Prob(S; =1]5;-1 =0)=1-¢q Prob(S; =0|S;-1 =0) =g¢. (72)

The Markov behavior of the probabilities allows the following representation of S;:
Si=(l-q)+(p+g—1)S—1+w (73)

where conditional oen S;_1 = 1 : v, = 1 — p with probability p and v, = —p with
probability 1 — p and conditional on S;—; = 0: v; = —(1 — ¢) with probability ¢ and
v; = ¢ with probability 1 —¢.

From 73 an AR(1) representation of the conditional variance o7 can be derived:

ol=(p+g-1oi +(1-p+1l-qQuo+(1=-qwi+u (74)

In this context the MS model can also be interpreted as a stochastic volatility model. The
main difference between the two classes of models is that the innovations in the variance
equation, vy, are a discrete random variable with four states as defined in equation 73.

The ergodic (unconditional) probabilities are:

Prob(S;=1) = 7= 1 (75)
Prob(S; =0) = 1-m. (76)
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The filter probabilities are: p{” = p (S;|r¢, ..., 7o) -

The parameter vector § = (p1, 0%, 1o, 03,p, ) is computed by numerical optimization of
the log likelihood function”. This is a by-product of the filter iteration which estimates
the filter probabilities.

As in the GARCH case we need the standardized residuals for the diagnostic tests.
Their computation is performed in two steps®: First, the one-period forecast based on

the parameter vector # is:

Elrualre., 0 =po+ {7+ (=1+p+q) [pf — 7]} {m — no}. (77)
Then the conditional variance is computed as:
2
Ut2+1]¢ = (1 + U%)pt—}-l]t + (U + o) (1 - Dit1jt) — [Nlpt+11t + po(l = pt+1|t)] . (78)
with pyyp = (1~ ¢) + (=1 +p+q)pf.
Finally the standardized residuals are:

_ Ter1 = E(regare.., 0)
Uty = Gt (79)

The results are displayed in table 3. The 2-state MS model generates one regime with
high volatility and negative mean (less likely) and one with low volatility and positive
mean. The means are not significant. Further information on the performance of this
model is gained from a plot of the filter probabilities of being in state 1 (see figure 8).
There are frequent changes between the two states. This shows that MS can differentiate
between the two states. State one can be interpreted as the “leverage effect”, i.e. an
asymmetry in variance. We will analyze the results of the test statistics by contrasting
them with the results for a GARCH model. As we mentioned above, GARCH is the
main competitor to MS.

6.3 Comparison of MS to GARCH

The basic ARCH model was introduced by Engle[10]. The literature is very comprehens-
ive, for a survey see e.g. Bollerslev et al.[3]. As MS GARCH can also explain the stylized
facts for financial time series. The parameterization for a standard GARCH (1,1) is
given below. The residuals are drawn from a conditional Student’s ¢ distribution. The
reason is that in many cases the volatility clustering does not cause all the nonnormality
found in the data. This extension has been introduced by Bollerslev(2].

T o= c+u (80)
Uy = €& ht gy~ 1IN (81)
hi = ap+ aluf‘_l + aghy_q (82)

"The code for estimating the model was kindly provided by Prof. Hamilton.
8See Engel and Hamilton[9)
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The MS model gives the highest information criterion (See table 4). Its standardized
residuals are much closer to the normal distribution than those from GARCH models.
However the GARCH model gives a better fit for the volatility clustering: Its squared
standardized residuals show no autocorrelation whereas there seem to be some omitted
dynamics in MS residuals. Thus for this sample the question whether MS is superior
to GARCH can not be clearly answered, as the choice depends on the performance
criterion. When using out-of-sample forecasting experiments MS is frequently dominated
by GARCH, see Pagan and Schwert[37]. As we saw here, for in-sample studies MS may
be equal to GARCH depending on the selection criterion.

6.4 Extensions of MS models

Hamilton and Susmel[26] show that GARCH models are very persistent, i.e. the coef-
ficients are close to the nonstationary (integrated GARCH) case. Despite this behavior
the GARCH models do not give a satisfying performance for volatility forecasts. They
propose the following specification to achieve improved forecasts:

re = Cp+eirioy + U Si=1or2 (83)

ug = /g (St)u (84)

Here g(S;) is the state-dependent multiplier with ¢(S; =1) = 1.

’ljt = htvt (85)
vy o~ N (O: 1) (86}
R} = ag+ati (87)

Matrix of transition probabilities between states:

Pu1 P12
P21 P22

P= (88)

This model, known as switching ARCH (SWARCH) is a useful extension to the ARCH
model. The main addition here is that the conditional variance is multiplied by a state-
dependent factor. As in the simple MS model, the state probabilities are driven by a
Markov chain. Additionally this model is specified conditional on a Student’s t distri-
bution with N degrees of freedom instead of the Normal. The estimation of this model
is performed with the EM-Algorithm. Hamilton and Susmel[26] find that the model is
superior to GARCH when it comes to forecasting performance. However, when we tried
to estimate this model for the $/DM rate, we could not achieve a regular convergence for
any set of starting values which we tried. The reason is that the starting values for the
transition probabilities and the state-dependent factor have to be specified very close
to the final values for the algorithm to converge. However we found no method to get

these close estimates as also various search procedures proved to be of no help.
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The SWARCH model has been generalized by Gray[21]. This model allows for a GARCH
component in the regime-dependent conditional variance and also for state-dependent

transition probabilities.
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A Tables

Table 1: Estimated Markov switching models for principal components

Start AT CA CH DE FR GB IT JP us
py 0.0-012 -319 -1.77 -0.66 0.06-056 -070 -1.24 -1.66
u2 05 188 214 146 158 170 1.88 149 215 2.05
¢ 1 0.0-0.27
o2 1.0 436 4.07 255 153 1.06 440 123 316 3.00
p;; 069 080 071 086 085 089 088 081 088 0.78
pee 0.69 092 097 096 095 093 092 095 097 0.94
LR 2.28 21.99* 29.62* 19.83* 18.28* 7.23 23.39* 19.71* 24.57*

LR denotes the likelihood ratio test statistic for the null hypothesis of one against two
regimes, * denotes significance at the 1% level using the critical values from Garcia[16]

Table 2: Peaks and troughs

us UK DE JP CA CH FR AT 1T

MS(4) NBER FS [MS(4) FS [MS(4) FS [MS(4) FS |[MS(4) FS |[MS(4) FS [MS(4) FS|FS|FS
P 69:3 694
T 704 70:4
P
T
P 73:4 734 73:2| 73:4 73:1) 734 73:2{ 73:2 734 73:2
T 74:1 73:4
P 74:2 T4:2| 743 74117411741
T 75:1 751 75:1] 75:2 75:2 75:1 75:1 76:1 76:2| 75:1 75:1|75:2|75:2
P 77:4
T 77:1 78:1
P 80:1 80:1 79:3] 79:2 79:2| 80:1 80:1 80:1/80:1180:2
T 80:3 80:3 80:2| 81:2 81:4
P 81:1 81:.3 812 81:2 81:2 81:3
T 824 82:4 82:3 82:4 823 82:3 82:3 82:2 84:4182:4182:4
P 83:4
T 84:2
P 90:1 89:2 92:1 91:3 90:1 90:3 90:1192:1192:1
T g91:2 92:4 93:4 90:4 93:1 94:1193:1193:3
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Table 3: Estimation results of Markov switching model

State 0 State 1
Means 0.0118 (.92) -0.0228 (-.76)
Variances 0.2549 (16.54) 0.9211 (16.67)
Matrix of Markov transition  0.9708 0.0450
probabilities

0.0291 0.9549
Ergodic probs 0.6073 0.3926
SIC -419.79
(24) 39.51 [0.020]
QQ(24) 60.72 [0.000]
Skewness -0.079 [0.060]
Kurtosis 0.3378 [0.000]

(t-statistics) [p-values]

Table 4: Estimation results of GARCH model

Variable Estimate T-Stat
[p-value]

l.c 0.0059 0.55

2. ap 0.0164 3.74

3.0; 0.077 6.36

4. ap 0.895 55.21

6. N 5.85 8.65

SIC -1563.81

Q(24) 42.95 [0.001]
QQ(24) 25.66 [0.141]
Skewness -0.0425 [0.311]
Kurtosis 1.5018 [ ]
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B Figures
Figure 1:
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Figure 2:

100 x first differences of principal component
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Figure 3:

Principal components
smoothed prob(st=1), AR(1) term excluded
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Figure 4:

Principal components
smoothed prob(st=1), AR(1) term included
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Figure 5:
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Figure 6:
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Figure 7:

Normalized Estimated Unconditional Distribution of DM
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Figure 8:
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C EM algorithm

Looking at the first two iterations through 19 and 20 in a detailed way will help un-
derstand the implementation of Hamilton’s EM algorithm. We take example I on page

6 and set the starting value for /:z:\il'o to the vector of unconditional state probabilities

7. Remember that y; is a scalar, there are no exogenous variables and the number of
regimes is 2. First note that

Gp = 7
P &opo

P1171 + P17
D199 + Pagmo

il

The algorithm then yields:

- (gllO @771)
bp = —=—<
v (51[0 © 771)
52|1 = P 5111
- i (Pngow,l +P21§0|0,2) ~flyilsi = 1;0)
1o Om = ~ -
<P1250|o,1 +p22§0|0,2) - f (1ls1 = 2;0)

" (pr1ojoa+p21€ojo,2 ) f(1]s1=1;)
1(€00m)

~ (gllo @771>

&ip =

1 (’* o ) (p12€0j0,1 +P2280j0,2) f (W1 ]51=2;0)
51!0 T i 1'(51;0(3771)
~ - [ Pna 1,1 +P212::1 1,2
p=r-&pn = 2! !
| P12uj1,1 T P22éip,e
- (‘5211 ©) 772)
§op = —F7=—%
v (52]1 © ’Oz)
~ priéip, +paéine ) o f (yels: = 1;0)
E1 O =

pr2éii,y +p2éipe ) - f (vels1 = 2;0)
ete.
The programming steps can be summed up:

e Construct for each observation f (y|se = 7;60) Jj=1,2.

o Multiply f (yi]s: = j;0) with p;; 4,7 =1,2.

e Calculate recursively @“. Note that E,,_H[t has not to be computed explicitly to get
the inference about the probabilities of state j prevailing at date {.
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One additional step is needed to get an inference about the primitive states in example
II on page 6. We had an autoregressive process with switching mean:

yr—ch, = -1 — )+ & & ~idd N(0,0%).

Here
P (s; =1V 0)
Ep = : )
P (sy = 4|V, 0)
and
P(sf=1Y,;0) =P (st =1V 6) + P (st = 3|V; 6)
because

=1 if sf=1, s ;=1
=2 if sf=2, s, =1
=3 if si=1, s5_;=2
se=4 if sf=2, sf_ =2

D Maximum likelihood estimators

Taking logs of 32 and differentiating with respect to ' yields:

[ —Llog2m — Llogo? — 5Ly (3 — 2)B1)?
logm = :
| —1log2r — Llogo? — 5Ly (w1 — 2fn)°
dlo & (g — 281) 2 Oix(v—2) 0 — 503 + 557 (U = 61)°
gn . .
b O(n-2)x1 " Ov-2)x1 :
i 0 Orx(v-2) = W —ZBN) 2 —5ir + oor (e — 24BN)°

Multiplying the transpose of this matrix with Et‘T we get

25 (ye — 211) 2 - P (s, = 1|V 6)

<6logm)'A _ .
da! ur ;lf (ye — 2z0n) 2 - P(s¢ = N|Yr; 9)
SI (o + g (v A85) P s = 31Vrs0) )

Summing over T observations and setting to zero yields

T dlogn:\' ~
Z Scd ft]T

t==1

!
o

T
S (v-#8i)m Plou=3l¥rsf) = 0 j=1,...,N(89)
i=1

i,Nl{[—g%“*-;—(;(yz—%ﬁj)zJ~P(Sc=j|yT;6’)} = 0 (90)

[\~
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Finally, solving for

T
Soa(v-ah;) Ple=ilvri0) =

te=1
T T
' A
Z Yt — Z 742405
t=1 paxl

Zr{:l 2y - P (st = 7Y 0)
Lz P(sy = 5|V 6)

- P(sy = §|Yr;0) =

o
i
—
.
I
-

(]
1=
|
Do
Q)[ bt

(3]

..*_

¥
oy
S
TN

g

|
Ko
;C_b»

S’
P
~
)

i
.
X
=

L ——

i

(91)
0
0
T5?
&2 (92)
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