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Abstract

In a two-stage extensive form game where followers can observe moves by leaders only
with noise, pure subgame perfect Nash equilibria of the limiting game without noise may not
survive arbitrarily small noise. Still, for generic games, there is always at least one subgame
perfect equilibrium outcome of the game with no noise that is approximated by equilibrium
outcomes of games with small noise. This, however, depends crucially on generic payoffs.

Keywords
Commitments, imperfect observability, subgame perfection

JEL-Classifications
c72




Comments
The last author gratefully acknowledges support by the HCM-program "Games and Markets" CHRX-
CT94-04889, '




1. INTRODUCTION

Consider a Stackelberg duopoly with firms choosing quantities (from
a finite set). Under standard assumptions the firm which is the leader
is better off in the subgame perfect Nash equilibrium of the Stackelberg
game than it would be in the Nash equilibrium of the associated Cournot
simultaneous-move game. Now suppose that the follower, instead of
observing the leader’s choice directly, receives a noisy, but quite accurate
signal about the leader’s choice. Then the only Nash equilibrium in pure
strategies generates the same outcome as the Nash equilibrium of the
Cournot simultaneous-move game.

This observation is due to Bagwell [1995]: In any (finite) generic two-
player game, where one player, the “leader”, moves first, and then the
“follower” decides, after having observed a noisy signal about the leader’s
choice, the pure strategy Nash equilibrium outcomes coincide with those
of the associated simultaneous-move game. This has been interpreted
as showing that the first-mover advantage is eliminated when there is
a slight amount of noise associated with the observation of the leader’s
choice.

Such an interpretation, of course, depends on the validity of noise in
the signals that the follower receives. Consider, for instance, a monop-
olist setting a price for a (finite) number of (identical) objects which (a
finite number of)) consumers may buy at the quoted price or reject (and
thus remain without such an object). If there is noise in the observa-
tions of the price, then some consumers may find themselves accepting
a bargain that the monopolist has never offered. So, whether or not
the introduction of noise into the observations of the leader’s choice is a
valid procedure, depends on the situation which is modeled.

But even if noisy signals make sense, subsequent analysis has shown
that it is the focus on pure strategy equilibria which seems to eliminate
the first-mover advantage. Call an outcome accessible if it is induced by
a subgame perfect Nash equilibrium in the game with perfect observabil-
ity and every game with sufliciently small noise in the observations has
a (possibly) mixed equilibrium inducing an outcome close to the acces-
sible one. Hurkens and van Damme [1994] show that for any generic
two-player game the (unique) subgame perfect equilibrium outcome of
the game without noise is accessible. They also show that the approx-
imating mixed equilibria in the games with noise get selected by an
appropriate equilibrium selection theory in the spirit of Harsanyi and
Selten [1988], and are in this sense preferable to the (pure) equilibria
of the “one-shot” game.

The present paper adresses the issue in the general set-up of n-player
games. Any such “one-shot” game can be transformed into an exten-




sive form game by splitting the player set into two non-empty subsets,
the “leaders” and the “followers”, such that leaders move first, followers
observe a possibly noisy signal about the leaders’ strategy combination,
and finally make their choices simultaneously. Payoffs need not necessar-
ily be generic, so extensive forms underlying each of the two interactions
among leaders and among followers, respectively, are allowed for.

We show that one part of Bagwell’s [1995] observation continues to
hold. In particular, equilibria of the “one-shot” game in which leaders
play pure remain as equilibria in which leaders play pure after the in-
troduction of noise. But also the result by Hurkens and van Damme
[1994] continues to hold. If the underlying “one-shot” game has generic
payoffs, then for any partition of the player set into leaders and followers
there exists an accessible outcome.

By means of examples we also show that these results are binding in
the following sense: For non-generic payoffs there are two-player games
for which not all subgame perfect equilibrium outcomes qualify as ac-
cessible. The same class of games contains examples which have no
accessible outcome at all. Moreover, there are games with non-generic
payoffs and with more than two players for which evén a set-valued
generalization of accessability fails to exist. Finally, games with several
followers and with generic payoffs may have subgame perfect equilibrium
outcomes which are not accessible.

The paper is organized as follows: Section 2 contains definitions and
notation. Section 3 gives the positive results which generalize the two
results from the earlier literature. Section 4 contains the examples, all
of which, except Example 1, are negative in spirit. Section 5 concludes.

2. DEFINITIONS AND NOTATION

Let I' = ((Si)ien, (vi)ien) be a finite normal form game with players
i € N = {1,...,n}, (finite) pure strategy sets S;, S = X;enS;, and
payoff functions u;: S — R. Mixed strategy sets are given by A(S;) =
{oi: Si = Ry | 22,5, 0i(si) = 1}, with the space of mixed strategy
combinations O(5) = x;enA(S;), and payoff functions for the mixed
extension U;: ©(S) — R are defined as usual, Vi € N. For the “one-
shot” game I' let, for all: € N, the best-reply correspondence 7 : ©(S) —
A(S;) be defined by

Bi(o) = {a: € A(S:) | Ui(o~s, G1) 2 Us(0-s, 07), Yoi € A(Si)},

1What is not allowed for is that one player moves at both stages, i.e., one of the
leaders and one of the followers are agents of the same original player. Under perfect
recall this would conflict with the informational assumptions on the extensive form.
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and let 8° = x;enfB?: O(S) — O(S). Denote by E(T') C ©(S) the set
of (possibly mixed) Nash equilibria of T', i.e., E(I') = {0 € ©(5) | ¢ €
B°(c)}. For convenience identify S; (S) with the set of vertices of A(S;)
(©(S)), Vi € N. The game I is called generic if u;(s) = ui(s') = s =
s, Vs, € §,Vie N.

Partition the player set N into two non-empty sets, the set of “leaders”
I and the set of “followers” I, IUI = N, INIT = @, denote ST = x;¢15;
and ST = x;crS;, and define the extensive form game G as follows: First
all players ¢ € I choose simultaneously their pure strategies s; € S;.
Then all players ¢ € I get to see s € S7 and choose simultaneously
their pure strategies s; € S;, Vi € I. Payoffs at terminal nodes are as
in I'. The normal form game that corresponds to G is denoted by I'g.

Let K > 1 be the number of strategy combinations of leaders, K =
|S7], and let T be a finite set of types with the same number of elements as
ST,|T| = K. Let A be the set of Markov matrices A = (Ass)(1, s)eTxst =
(A(t | $)), s)eTx s, 1.e., A satisfies A(t | s) > 0, V(¢,5) € T x ST, and
derMtls)=1,Vse ST, The set A will be the parameter set for the
families of games defined below.

For : € I let F; be the set of all functions f: T — S; and denote
by Ff = {f € F; | f(t) = f(¢'), V(t,t") € T x T} the subset of
all functions which are constant in types. Product sets are accordingly
denoted F' = X;eyF; and F° = X;epF?. Next, let A(F;) = {0s: F; —
R+ | Xfer 0i(f) = 1} be the set of mixed strategies and A(FY) =
{o; € A(F}) | supp(o;) C F?}, for all followers ¢ € I. With the product
sets O(ST) = X;e7A(S;) and O(F) = x;epA(F;) define © = O(S7) x
O(F). Finally, denote O(ST) = x;erA(S;) and O(F°) = x;er A(F?),
the vector of strategies of followers f = (fi)ier, and

ol(sT)y =[[oish), vs' € 8T, oX(f) =[] oi(fi), Vf € F.
el el

Associated with any A € A there are two games: First, a normal form
game T'(\) = (((Si)ier, (Fier), (v))ien) with (pure strategy) payoff
function v?: ST x F' — R defined by

vt £ =Y At | sDuisT, f(t), VieN,

teT

with a mixed extension with payoff functions V;*: © — R defined by

Vo)=Y, ol (fui, f), YieN.

(1, fleSTXF




Second, there is an extensive form game G()) defined as follows: First
leaders ¢ € I choose simultaneously their strategies s; € S;, Vi € I.
Then, given s/ € S%, a chance move selects a type ¢ € T according
to the probability distribution A(¢ | s?), V¢ € T. Finally, all followers
1 € I get to seet € T and choose simultaneously their strategies s; € S;,
V1 € I, in response to the type. Payoffs at terminal nodes are as in the
game I'(N).
On the parameter space A define d: A — [0, 1] by

1
d(x) = —2-[1 + max ;e min gegr A(t | 8) — minermax egr A(2 ] 8)],

and denote my(s) = arg maxier A(t | 8), Vs € ST, If d(\) = 0, then
min;ermax ,esr A(t | s) = 1 implies from 3., Mt | s) =1, Vs € S7,
that A is a permutation of the identity matrix and thus has full rank,
rank(A) = K. If d(A\) = 1, then max;ermin egr A(¢ | s) = 1 implies
from ) ,er A(t | 8) = 1, Vs € 57, that A has a single row of 1’s and
zeros elsewhere, thus rank(A) = 1, and there is a single type that occurs
with probability 1 conditional upon any strategy combination of leaders.
- Define int(A) as the set of all A € A with A(t]|s) >0, V(¢,s) € T x S7,
l.e., all types occur with positive probability. There is noise in types
whenever A € int(A). , |

Clearly, I'(A) is the normal form associated with the extensive form
game G(A), VA € A. Inparticular, if d(A) = 1, then I'(1) is “strategically
equivalent” to I', and if d(X) = 0, then I'(A) resp. G()) are “strategically
equivalent” to G. Despite this “strategic equivalence”, the extensive
form game G(A) is radically different to the extensive form game G,
even if d(\) = 0. The number of terminal nodes of G is |S| = |57||S¥|,
while the number of terminal nodes of G(}) is |S7|? |SZ|, for all A € A.
Moreover, the number of nodes in an information set of a follower 7 € I
in G is at most as large as the number of strategy combinations of the
other followers, while in G(A) the number of nodes in an information set
of a follower is at least as large as the number of strategy combinations
of leaders. Therefore, only I'(A) and I'¢ may be close games, if d(}\) is
close to zero, but G(A) and G cannot be close to each other, at least
when distance between games is distance between payoff functions.

Denoting by o—; € ©_; the vector of strategies of all players except
player ¢ € N define her best-reply correspondence 87: ©® — A; in the
game I'(\) by

B(o) = {5: € Ai | ViNo—i, 5i) = Vo, o)), Vol € A},

where A; = A(S;), Vi € I and A; = A(F;), Vi € I, VA € A, and let
B = x;enB: © — ©. The set of Nash equilibria of T'()) is E(T'())) =
{o€0 | 0epo)}




Similarily, denote by 89 = x;exB¢: O(S) — O(ST) the best reply
correspondence of followers in the “one-shot” game I'. A subgame perfect
Nash equilibrium of G is some o = (o7, o¥) € © such that o € E(T(}))
for some A € A with d(A) = 0 and behavior strategy combinations
b(t) = ((b:(si | t))s;es:)icr induced by of € O(F) satisfy b(my(s)) €
B5(s, b(ma(s))), Vs € ST, where my: ST — T is one-to-one because
d(A) =0.

Beliefs at information sets ¢ € T of players ¢ € I in the game G(}),
A € A, are defined by

(T4 = ol(sH) At | )
pi(s® [ £) = Yeest oL(s) At | )’

whenever this quantity is defined, and arbitrary otherwise. Obviously,
pi(s? | t) is determined by the above whenever the probability that in-
formation set ¢ is reached, ) c g1 ol(s) A(t | s), is positive. If X € int(A),
then every information set ¢ € T is reached with positive probability and
in this case beliefs are independent of : € I.

For all followers ¢ € I denote by Fi(t, s;) = {f € F; | f(t) = s:},
V(t, s;) € T x S;, the set of pure strategies which prescribe s; after ¢.
For followers 7 € II every mixed strategy o; € A(F;) induces a behavior
strategy b;(. | t) at every information set ¢t € T by

bisi|t)= Y odf), Vsi€S,VteT
FEF: (2, si)

Vsl e §1,

The induced probability distribution on S¥ is given by

b(s™ 1) =[] bi(sF %), V(s",t)e ST xT.
i€

Using this notation payoffs in the mixed extension of I'(A) can be written

VM) = Y ol (YoMl Do bt [ tuisT, sT) =

stes? teT sIest
= 3 AN 1Y AN, ),
(s, fIESTXF sTeST tgf-1(s¥)

for all i € N, where f~1(s¥) = {t € T | f(t) = s¥}. Let A(S) =
{o: 8 = Ry | Yo,es(s) = 1} be the set of probability distributions
on S. The mapping ¢: © x A — A(S) defined by

80, \) = {p € A(S) | p(s) = o™ (sT) YAt | ) b(sT | 1),

teT
Vs =(s!, s7) e S}
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gives the outcome induced by ¢ € © and A € A. Note that the out-
come induced by a pure strategy combination (s?, f) € S7 x F need
not be pure (need not be in S) unless f € F°. Also define the map-
ping ®: A(S) — O(S) which gives the marginals corresponding to an
outcome by '

Q(p) = (‘I’i(@))ieN = (( Z @(8-1 Si)) ) ’
$-i€S-i 8;€8:/ {eN

where s_; denotes the (pure) strategy combination of all players except
player 7 in T', and S_; = X en\(i}5;-

The issue here is whether a given subgame perfect Nash equilibrium
of G induces an outcome which is close to some outcome induced by
an equilibrium of I'(A\) for sufficiently small noise. Call an outcome
© € A(S) accessible if -

(i) there exists a subgame perfect Nash equilibrium of G’ which induces
© € A(S), and

(ii) for any sequence {A,}22; with A € int(A), Vr, and d(A;) —rnceo 0,
there exists an associated sequence {¢"}22, with ¢” € E(I'()\;)), Vr,
such that ¢(o”, A;) —=rae @ € A(S).

3. PosiTivE RESULTS

The first result makes precise what is meant by “strategic equivalence”

between I'(A) and I for d(A\) = 1 and between I'(A) and I'g for d()) = 0:

PROPOSITION 1. (a) If d(\) = 1, then o € E(I'())) if and only if
&(¢(0, A)) € E(T). |
(b) If d(A) = 0, then o € E(I'())) if and only if 0 € E(I'g).

ProOF: (a) Assume d(A) = 1, so there exists a unique type t, € T such
that A(t, | ) = 1, Vs € S!, and, therefore, v;(s?, f) = u;(s?, f(2,)),
Vie N. If o € E(T())), then

VM) = Y ol b(s | t)ui(sl, 1) = Ui(ol, B&)), Vie N,
(sf,987)eS

where b(t,) = ((bi(si | t0))s;€s; )icr denotes the behavior strategy combi-
nation induced by of € O(F) after the type t,, implies from ¢(a, A)(s) =
ocl(sH)b(sT | to), Vs = (sT, sT) € S, that &(¢4(o, A)) € E(T). Con-
“versely, if & € E(T) and ¢(s) = 1(s") 67(sT), Vs = (s1, sT) € S, then
for any strategy combination o € ©(F) for the followers which induces
b(t,) = &¥ one has (57, of) € E(T'())) and ¢((37, o¥), \) = o.
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(b) If d(\) = 0, then for each s € S7 the most likely type ma(s) € T
is one-to-one from strategy combinations of leaders to types and occurs
with probability 1, ie., ma(s) = ma(s') = s = s, Vs, s' € 57,
and A(mx(s) | s) = 1, Vs € ST. Thus, one can replace for all followers
fi; € F; by f; omy, so I'(A) and I'g are the same game. §

Ifd(A) < 1,evenif At | s) = 1/K,V (¢, s) € TxS!, where d()) = 1/2,
followers may correlate their strategies and, therefore, such a game I'()
need not be “strategically equivalent” to I'.

Since followers move simultaneously in G(A), any informationset t € T
is reached with (strictly) positive probability, whenever A € int(A).
Therefore, any Nash equilibrium of I'(A) induces a sequential equilib-
rium [Kreps and Wilson, 1982] of G()A), for any A € int(A). Se-
quential equilibria of G(A) encompass beliefs for all followers. These
beliefs are governed, within the present structure, by the types which
followers observe and by what leaders (are supposed to) do in equilib-
rium. Any Nash equilibrium can be thought of as a situation where
every player learns the strategy combination of the opponents from an
umpire (and behaves optimally). If, within the present setup, a follower
receives conflicting information from the observation of the type and
from the umpire’s recommendation, then, if the umpire’s recommenda-
tion for leaders is deterministic (a pure strategy combination) and types
are (non-degenerate) random, the follower will trust the umpire rather
than the observation of the type. If leaders could commit to (a suffi-
ciently large level of) strategy trembles, they could offset this effect and
guarantee (almost) subgame perfect equilibrium payoffs. This possibility
absent, one obtains:

'PROPOSITION 2. For all A € int(A): There exists o € ©(F°) such that
(s, oT) € E(T())) if and only if there exists 67 € ©(ST) such that
(s',3%) € E(D).

ProOF: First suppose 3(37, o) € E(T())), for some A € int(A), with
ol € ©(F°). Then beliefs at all information sets are u(3’ | t) = 1,
YVt € T, and behavior strategies b(t) = ((bi(si | t))s;es; )ier induced by
oT are independent of t € T by 0¥ € ©(F°). Consequently, 57 = b(t) €
6;’[(51, 1), V¥t e T, and

VAT 0T =Y A1) Do ot [u(s, 1) = Ui(E, 67) 2

teT sfest
> VAL, siy 0T) = 3Nt 1550 00) Y BT [Duisly, si, o) =
teT sfesk
= Ui(g-l——i7 Si, 5”), Vs; € 5;,Veel,
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imply (54, 1) € E(T).

Conversely, assume (37, 37) € E(T) and let of € ©(F°) be such
that it induces b(t) = ((bi(si | t))s;es;)ier = 6%, Vt € T. Then by
construction b(t) € B%(&7, b(t)), YVt € T, and the above equalities and
inequalities imply that (37, o¥) € E(T'())), for all A € int(A). &

The above Proposition generalizes Bagwell’s [1995] observation in
the following sense: '

COROLLARY 1. IfT is a generic game and G has a single follower, I =
{1}, then the pure strategy equilibrium outcomes of I' and I'(\) coincide
for all A € int(A).

ProoF: If T' is generic and I is a singleton set, I = {7}, then the
follower has a unique (and, therefore, pure) best reply in any proper
subgame of G. In particular, if (s?, o) € E(T'()\)), for some X € int(A),
then u(s! |t) =1, Vt € T, implies

b(arg max,,es; ui(s?, s;) [t) =1, VteT,

and, therefore, of € A(F?). The rest of the statement of the Corollary
follows from Proposition 2. §

For games G with more than one follower it is, of course, not true
that the pure strategy equilibrium outcomes of I' and T'(A) coincide.
Certainly, from the “if” part of Proposition 2, every equilibrium of " at
which leaders play a pure strategy combination always corresponds to
some equilibrium of I'(A) at which leaders play the same pure strategy
combination, for all A € int(A). But, for A € int(A), the game I'()\) may
have more equilibria at which leaders play a pure strategy combination,
because follower may correlate their strategies conditional on types. A
necessary condition for these extra equilibria of I'(A) at which leaders
play pure is given by the next result:

PROPOSITION 3. If there exists € > 0 such that for all A € int(A) with
d(A) < e there exists (s?, oT) € BE(T(A\)N (ST x ©(F)), then there exists
be B%(s?, b) such that

Ui(sf, b) > max,es; minbeﬁ;(az’b) Ui(sﬂi, si, b), Viel.
PROOF: Assume Je > 0 such that YA € int(A) with d(A) < ¢ there
is of € O(F) such that (s?, of) € E(I'()\)). When leaders play pure,
namely s?, beliefs are u(s? | t) = 1, Vt € T. The equilibrium property,
therefore, implies ((bi(s;i | t))s;es; )ier = b(t) € BY(s?, b(2)), Vt € T, for
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followers, and

VAT, o) = D At | sT) Ui(sT, b(t)) 2 maxg,es, VA(sLy, 1, 07) =
teT

=max g;e5; Z )‘(t [ 3{—2'7 Si) Ui(sl—iv Siy b(t)) 2
teT

: I
>maX ;es; Ml pego (s7,b) Ui(si;, s;, b),

for all leaders 7 € I. Since the payoff on the left hand side of the first
of these two inequalities converges to U;(s, b(my(s?))) as d()) goes to
zero, Vi € I, this establishes the desired result. i

So, in the sense that followers play a correlated equilibrium against
the pure strategy combination of leaders also these equilibria of I'(A), at
which leaders play pure and which are not in E(T"), are tied to the “one-
shot” game I'. In a case which is of particular interest for applications
Proposition 3 has the following consequence:

COROLLARY 2. If G has a unique subgame perfect equilibrium at which
leaders play pure with associated outcome (57, ) € 57 x O(ST) and
(51, oT) € E(T(N)) for some A € int(A) and some of € O(F), then
(5%, b) € B(T).

PROOF: Because A € int(A), every information set is reached with pos-
itive probability, A(t | 57) > 0, V¢t € T. If leaders choose 57 € S’ in
the game T'(\), then u(3% | ¢) = 1, V¢ € T, uniformly for all followers.
By the assumption of a unique and pure subgame perfect equilibrium in
G, there exists one but only one b € 8%(5%, b). But then the necessary
condition in Proposition 3 becomes the equilibrium condition for I'. §

This seems to indicate that pure subgame perfect equilibria of G do
not survive the introduction of a small amount of noise in types, unless
they are equilibria of the “one-shot” game I'. But Hurkens and van
Damme [1994] have shown that for generic 2-player games there is al-
ways a (mixed) equilibrium of I'(X), for A € int(A), the outcome of which
converges to the pure subgame perfect equilibrium outcome of G as d(A)
converges to zero. While their proof relies on a single follower and on
inequalities describing the (single) leader’s optimal choice, the general-
ization below uses well-known results from game theory to establish an
analoguous conclusion for the general n-player case.

THEOREM 1. IfT is a generic normal form game, then for any partition
of the player set into leaders and followers there exists an accessible
outcome,




PRrOOF: First observe that the number of terminal nodes of the exten-
sive form game G equals the number of strategy combinations of the
normal form game T', [[;cy |Si|. Hence, if T is a generic normal form
game, then G is a generic extensive form game. Generic extensive form
games have only a finite number of equilibrium outcomes [Kreps and
Wilson, 1982, Theorem 2], so the outcome is constant across each of the
finitely many components of the set of Nash equilibria of the associated
normal form [Kohlberg and Mertens, 1986, Proposition 1]. Moreover,
every game has an essential component which contains a hyperstable set
[Kohlberg and Mertens, 1986, p. 1022] by Zorn’s Lemma. Every hy-
perstable set contains a proper equilibrium [Myerson, 1978; Kohlberg
and Mertens, 1986, Proposition 3]. Since every proper equilibrium in-
duces a sequential equilibrium in any extensive form corresponding to
the given normal form [van Damme, 1984; Kohlberg and Mertens,
1986, p. 1009], among the outcomes associated with an essential compo-
nent of a normal form game there is at least one that corresponds to a
sequential equilibrium of any associated extensive form game.

For any A € A with d()\) = 0 the games I'(A\) and I'g are identical
up to a relabelling of the followers’ strategies. Let C C E(I'g) be an
essential component. Because I' is generic, so is G, and there is a single
outcome corresponding to C which is induced by some subgame perfect
Nash equilibrium of G, because C contains a proper equilibrium. But
since C is essential, every game I'(A) with A € int(A) such that d(}) is
sufficiently close to zero has a Nash equilibrium close to C, because d is
continuous. Since the mapping ¢ is continuous, the outcomes induced
by those Nash equilibria of T'(A) close to C must be close to the outcome
induced by (all equilibria in) C. R

4, EXAMPLES

The following example is representative for all generic games with two
players (which by generic payoffs in G have a unique and pure subgame
perfect Nash equilibrium). It illustrates the concepts used in this pa-
per and the fact that approximation of subgame perfect equilibrium in
strategies cannot be hoped for, not even in generic two-player games.

EXAMPLE 1: Let N = {1, 2} and S; = {s}, s?}, Vi € N, with payoff
function u(si, s3) = (1, 2), u(s?, s3) = (2, —1), u(sl, s2) = (-1, 0),
and u(s?, s%) = (0, 1). This game I has a unique Nash equilibrium with
payoff (0, 1), where player 1 chooses her dominant strategy s?. But with
I = {1} and I = {2} the extensive form game G has a unique subgame
perfect Nash equilibrium with payoff (1, 2), where player 1 chooses si.

The latter can never be an equilibrium of I'(A) for any A € int(A).
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Let T = {1, 2}, denote A(t | s1) = Ay, Y(t,j) € T x T, and f;(t) =
s}, Vt € T,Vj = 1,2, fa(t) = s57%, fu(t) = sb, YVt € T, such that
Fy, ={f1, f2, f3, fa}. Then I'(}) is the bimatrix game in Table 1:

Tab.1.
(v}, v3) fi fa f3 fa
s (1,2)  (=1,0) (P21 — A1, 2221) (D11 — Az1, 2A41)

s3 (2, =1)  (0,1)  (2A22, A12 — Az2)  (2A12, Azz — Ag2)

For Ayy > 1/2, Vt € T, and A € int(A) the follower’s strategy fs is
strictly dominated and the game I'(A) has three Nash equilibria: First
(s2, f2), second

)\22 1

Yoi T e oa(fi)=1=09(fs)=1- 5

) = e
71(s1) Oz — Ma2)

and third

A 1
1 12
o = 7 =1—0 = ] e

The second of those equilibria converges to ¢1(s]) = 1 and o3(f;) =
1—09(fs) =1/2, a8 Ay — 1, Vit € T, and thus converges in outcomes
to the outcome of the subgame perfect equilibrium of G. In fact, the
outcome of the subgame perfect equilibrium (s}, f4) is supported by all
equilibria in the connected component of Nash equilibria

{0 €O |o1(s1) =1, o2(f1) + 02(fs) = 1, 02(fs) > 1/2} C E(Tq).

Two observations are worth noting about this example: First, the
subgame perfect equilibrium of G cannot be supported in strategies
for interior noise, because the follower is mislead by beliefs at the off-
equilibrium information set. Second, for interior noise all three equi-
libria can be shown to be regular [cf. Harsanyi, 1973; van Damme,
1987; Ritzberger, 1994] and, therefore, strictly perfect [Okada, 1981],
(trembling hand) perfect [Selten, 1975], and proper [Myerson, 1978].
In fact, for interior noise, each of the three equilibria is a singleton strate-
gically stable set in the sense of Kohlberg and Mertens [1986]. This
illustrates that selecting an equilibrium from E(I'())), A € int(A), by
some refinement does not necessarily yield an accessible outcome in the
limit as the noise vanishes. As a matter of fact, it also shows that none
of the refinement concepts which imply sequential outcomes is u.h.c. on
the space of normal form games.
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While for generic two-player games uniqueness of the subgame perfect
equilibrium outcome of G yields from Theorem 1 that this outcome is
accessible, multiplicity of subgame perfect equilibrium outcomes of G
changes things.

EXAMPLE 2: For a non-generic game I' not all subgame perfect equilib-
rium outcomes may be accessible, even if there are only two players.

Let I' be given by the gamein Table 2, where S; = {s}, s, s}, Vi ¢
N ={1, 2}

Tab.2.

(w1, u2) 53 s 53
51 (2,0)  (=2,0) (0,-1)
s (0,00 (0,1)  (0,0)

si @-1 =0 (11

where z € {—1,1}. The game G with I = {1} and I = {2} has
infinitely many subgame perfect equilibrium outcomes: Either player
1 cooses s? and player 2 responds with s%, or player 1 chooses s} and
player 2 responds by randomizing between sj and s2 with probability
at least 1/2 on the strategy that gives player 1 positive payoff, or player
1 randomizes between s} and s? and player 2 responds after s? with s3
and randomizes after s& between si and s2 precicely with probability
1/2. Let Ay = At ]s]),Vi=1,23VteT={1,2,3}. Player 2%
conditional payoff given type ¢ € T from playing the behavior strategy
bo(s3 | 1) = 4, ba(sd | t) = yr, and ba(s3 | #) =1 — 24 —y; s

VZA(O' I t) = (Et[01<81)(/\t1 + 2)\13) + 20’1(3%))\13 —_ 2At3]+
+ye[o1(s1) e + Aez) + 01 () (Deg + Aiz) = Ais]+
+(1 = o1(s1) = o1(sT)Aea — 01(s1) A -

The key observation is the following: If it is ever optimal for player 2
to choose z; > 0 at some ¢ € T, for interior noise, i.e., for Ay > 0,
V(t,7) € T x T, then

0> —(1—o01(sy) - Ul(Sf)))\w > 01(83)&2 >0

implies 01(s]) = 1. Denoting X; = 3, cp Ajze and Yj = 3,0 Aej ¥t
V7 € T, player 1’s payoff is given by

V(o) = o1(s1)[L — 3(Xs + Ya) + 2(X1 — Y1))+
+o1(sPL = 3(Xs + Y3)] +3(Xs + Y3) — 1.
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Now consider the case z = 1 and suppose there is an equilibrium of
I'(\) with o1 (s]) > 0 for interior noise. If 04(s}) = 1, then in equilibrium
z; +y. = 1, Vt € T, must hold which implies 01(s1) = o1(s?) = 0,
because 1 — 3(X3 + Y3) = —2, contradicting the hypothesis. If o1(s}) €
(0, 1), then in equilibrium z, = 0, Vt € T, such that ¢1(s]) > 0 implies
under z = 1 that y; = 0, V¢ € T. But then oy(s}) + o1(s?) = 1 holds
which implies from

VMo | 1) = z01(s1) A + yeloa(s1)ha + (1 — o1(s1))Aez] — 01(s1) A

that y; = 1, Vt € T, a contradiction. Thus, for z = 1, no outcome with
o1(s}) > 0is accessible. In particular, the leader’s best subgame perfect
equilibrium outcome (si, s3) € S is not accessible.

Next consider the case z = —1. If in equilibrium o1(s?) > 0, then
z; = 0, Vit € T, and under z = —1 also y¢ = 0 must hold for all
t € T, because otherwise s} would be strictly better than s? for player
1. But then oy(s}) + o1(s?) = 1 holds which again implies y; = 1,
Vt € T, a contradiction. Thus, for z = —1, no outcome with o7(s%) > 0
is accessible. In particular, the subgame perfect equilibrium outcome
which maximizes the minimal payoff to the leader across equilibria of
proper subgames is not accessible.

Still for Example 2 there always exists an accessible outcome. This,
however, does not generally hold true.

EXAMPLE 3: If T' is non-generic there may not exist an accessible out-
come at all, even if there are only two players.

Let T be given by the 2 X 2-game in Table 3, where S; = {s}, s?},
Vie N ={1, 2}: :

Tab.3.

(uy, ug) 53 s
si 0,1) (1,-1)
s (1,00 (0,2

Define G by setting I = {1} and I = {2}. The game G has a whole set
of subgame perfect equilibria: The leader randomizes with probability
o1(s1) = o1 € [0, 1] on strategy s} and the follower chooses s in the
subgame starting after s} and chooses s2 in the subgame starting after
s2. Denoting by(s} | t) = z;, ¥t € T = {1, 2}, and (¢ | !) = Atjs
V(t,7) € T x T, the follower’s conditional payoff given type ¢t € T can
be written as

V(o | 1) = 2z4fo1(A1 + A2) = Ae2) + 2(1 = 01) A2 — 0101 ©
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For sufficiently small noise, A;; > 0,V (¢, ) € TxT, but Ay; = 0,V # ¢,
A = 1, Vi € T, the follower’s behavior in equilibrium thus satisfies

(0, 0), if o1 < A12/(A11 + A12), A
(z1, z2) = ¢ (1, 0), if A2/(A1 + A2) < o1 < Azz/(Aa1 + Azz),
(1, 1), if Aga/(A21 + Ao2) < o7 .

Denoting X; = ), o Aij %1, VJ € T, the leader’s payoff can be written
as
VFIA(O‘) = 0'1[1 - Xy - Xg] + X5 .

Thus ¢ = 1 implies 7 = z2 = 1 which in turn implies that o; = 0 is the
leader’s unique best choice; similarily, oy = 0 implies z; = z, = 0 which
in turn implies that o7 = 1 is the leader’s unique best choice. Therefore,
in equilibrium 0 < o7 < 1 implies X; + X, = 1. If now A3 + A2 > 1,
then in equilibrium o1 = A12/(A11 + A12) = 0 (which implies a payoff
close to 2 for the follower). If, on the other hand, A;; + A1z < 1, then
in equilibrium o7 = Aga/(A21 + A22) & 1 (which implies a payoff close to
* 1 for the follower). Consequently no single outcome is approximated by
the (outcome induced by a) mixed equilibria of the game with (small)
noise.

Still in the game from Example 3 there at least exists a closed (and
connected) set of outcomes that satisfies the definition of accessability
as a set.? While it seems possible that the existence of such a set-valued
generalization of accessability may hold for all two-player games, the
next example shows that this is false in the general case.

EXAMPLE 4: For a non-generic game I' there may not even exist a set of
outcomes such that every point in the set is supported by some subgame
perfect equilibrium of G' and for every sufficiently small noise there is an
equilibrium of T'(\) with outcome close to the set.

Let T' be the 4-player game in Table 4, where S; = {s}, s?}, Vi ¢
N =1{1,2,3,4}, u = (u1, ug, us, uq), and u* = u(sk, sk ), VE, h e

{1, 2}:

Tab.4.

ultl 51 s2 ul? s} s2

sl (0,0,0,0) (0,0,0,6) s} (1, —5,0,0) (15,0, 0)
o2 (0,0,0,0) (0,0,6,0)0 s (1,5, 0,0 (L, —5,0,0)

?In a suitably modified definition of an accessible set of outcomes, of course, the
outcomes induced by equilibria of I'(X), for A € int(A), need not converge. Only the
(Hausdorff) distance to the accessible set would have to converge to zero.
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21 1 2 u22 1 2

(7 83 84 S5 EX
sl (=5,0,1,0) (=5,0,0,5) s (0,15,6,0) (0,15,0,0)
s2 (1,0,0,1) (1,0,5,0) s (0,-1,0,6) (0,-1,0,0)

Define G by letting players 1 and 2 be the leaders, I = {1, 2}, and

players 3 and 4 be the followers, I = {3,4}. Then G has a single

connected set of subgame perfect equilibria where player 1 randomizes

between her pure strategies with probability between 3/4 and 1 on s]

and player 2 chooses s} with certainty, (o1(s1), o2(s3)) € [3/4, 1] x {1}.

The highest expected payoff that follower ¢ = 4 can obtain in any of
the subgame perfect equilibria of G is 5/24. This set is part of a larger
connected component of Nash equilibria of G. Denote b3(s} | t) = z;

and bs(s) | t) = ys, VI € T = {1, 2, 3, 4}, 01(s1) = o1 and 03(s}) = 02,

and A(t | s¥, s8) = A okan—2, VE, b € {1, 2}. Player 3’s conditional
payoff given type t € T is given by

Vsk(U | ) =z4[6ye(c102 0 + (1 — 01)(02Aes + (1 — 02))\;4))“
~—G'2(60”1)\t1 + 5(1 - 0'1)>\13)] -+ (1 - yt)02(601)\t1 + 5(1 - O'1>)\t3),

and player 4’s conditional payoff given type ¢t € T' is given by

VZ‘(U | ) = y:[(1 — o1)(02 Az + 6(1 — 02) ) — 624(01 02 A+
+(1=01)(og Az + (1 — 02) M) + 24 02(6 01 Ay +5(1 — 01)As3) .

Inspection of these conditional payoffs reveals that against any strategy
combination of the leaders which happens to satisfy (o1, 02) € (0, 1]%,
except if o1 = 1, followers play a “Matching Pennies” game, governed by
indifference between the two pure strategies. If oy = 1 and o3 > 0, then
z; = 0 and y; € [0, 1] holds in equilibrium. In any case (a1, 02) € (0, 1]?,
therefore, implies in equilibrium

(1 — O'])[O'z /\tg + 6(1 —_ Ug)/‘\m]
6lo1 02 A1 + (1 —o1)(02 Az + (1 — 02)Aua]

VteT,

Ty =

follows from the required indifference of follower 4 in equilibrium. De-
noting X; = ZtET Aijzy, V3 =1, 2, 3, 4, the leaders’ payoffs can be
written

Vl)‘(a) =01[1=202(1 —3X3)] +02(1 —6X3),
Vo) =0p[401(1 +4X) +1-16X,]—1—4d0o; —16(1 — 07) Xy
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So the leaders’ payoffs depend only on z;, viz. player 3’s strategy, and
player 1’s payoff dependes only on X3, while player 2’s payoff depends
only on Xy. If in equilibrium o; > 0 and X4 < 1/16 would hold,
then o, = 1 is the only optimal choice for player 2 which would imply
zy < 1/6, Vt € T, from the above explicit formula for z,; but then
209(1 —3X3) > 2(1 —3/6) =1 implies that only 01 = 0 is optimal for
player 1 - a contradiction. Similarily, if in equilibrium X3 > 1/3 would
hold, then ¢y = 1 is player 1’s unique best choice which implies that o9 =
1 is player 2’s unique best choice which in turn implies z;, = 0, Vt € T
- again a contradiction. Thus in all equilibria with (o1, 03) € (0, 1)?
one must have X3 < 1/3 and X4 > 1/16. But this implies, from the
leaders’ payoffs, that leaders are also playing a game of the “Matching
Pennies” type with a unique completely mixed equilibrium governed by
indifferences.

Finally, if o2 = 0, then followers in equilibrium must play z, = 1
and y; € [0, 1], Vt € T, implying that o; = 1 is the unique best choice
for player 1 and, therefore, 05 = 1 is player 2’s unique best choice,
contradicting the assumption o, = 0. Similarily, o; = 0 in equilibrium
implies z; > 1/6, Vt € T, and, therefore, X; > 1/6, Vj = 1, 2, 3, 4,
which implies from 1 —202(1 —=3X3) > 1 — oy that g = 1if 03 =0
is an optimal choice; but at ¢; = 0 one has that 1 — 16 Xy, < —5/3
implies o5 = 0, a contradiction. It follows that all equilibria of the game
I'(A\) with noise have a “Matching Pennies” structure with respect to
the leaders. All equilibria must, therefore, be solutions to the following
system of six equations:

6 z¢[oy 02 Ay + (1 —01)(02 Az + (1 = 02)Au)]—
~—(1~0’1)[0‘2 /\tS +6(1—-—0’2))\t4} :‘—0, Vit e T,
401144 Mz +1-16D gz =0,
teT teT
1-205(1-3Y Az =0.
teT
The equation for oy implies that in any equilibrium o; < 3/4. Thus
if there is any equilibrium of the game I'(\) with noise inducing an
outcome close to the set of subgame perfect equilibrium outcomes, then

this equilibrium must converge to (o1, 02) = (3/4, 1). Now consider the
noise structure

1-T7Te € g2 €
€ 1-—3¢ e? €
A= (M), perT = c e 1-3e ¢ ’
5¢ £ 62 1-—~3¢
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with € € (0,1/15). With this A the solutions to the above six equations
can be regarded as functions of . For the outcome induced by a sequence
{(01(€), o2(€), (z¢(€))1eT)}ex0 to converge to an outcome supported by
a subgame perfect equilibrium of G it is necessary that o,(0) = 3/4 and
02(0) = 1. Clearly,

25(e) = (1 —0o)[(1-3e%)oy +6¢(1 —03)] 1
N T Bleoros + (1 —8e2)(1 —o1)os +e(1—o)(1 —o02)] - 6

holds, where o; = 0;(¢), Vi € I. The limit of z4(¢) as € \, 0, however, is
indeterminate. Now observe that the reduced system of (the three) equa-
tions for (z3, 01, 02) at fixed values (z1, 22, z4) = (Z1, Z2, Z4) € [0, 1]?
has a non-singular Jacobian matrix with determinant 72(1 — o4(0))(1 —
474)(4z3(0) — 1) = —24(1 — 01(0))(1 — 4z4) # 0 at € = 0, whenever
T4 # 1/4, and, therefore, has a non-singular Jacobian matrix at all suffi-
ciently small e > 0if Z4 # 1/4. Hence, it is justified to invoke I'Hospital’s
rule to determine the limit of z4(e) as € \, 0. So again with o; = o;(¢),
Vie I

(1 —o01)[e? oy +6(1 —3e)(1 - a3)] .
Sec109 +62(1 —01)og + (1 =3e)(1 —o1)(1 —02)
1o a0 (1-5:(0)ekO)

6 501(0) = (1= 01(0))3(0) (1 —01(0))o3(0) — 504(0)

1.,
1134(0) - '6— llme\o

Since the derivative at € = 0 of 03(¢) is given by 05(0) = 6243(0) and
z5(0) = —01(0)/[6(1 — 01(0))], this yields

01(0)

1
T o M0=%

/
0) = .
05(0) 6

But then from the equation for oy(e) it follows that

_ 16334(0) -1

1
= T62,(0) 1 4 = 01(0) =

[ex] (0) Z .
Since this violates the necessary condition 01(0) = 3/4, the only equilib-
rium of I'(A) with the above noise structure does not induce an outcome
close to any of the outcomes supported by subgame perfect equilibria of
G.

In fact, the unique equilibrium of I'(\) with the above noise structure
does not even induce payoffs close to some subgame perfect equilibrium -
payoff. As ¢ approaches zero, the payoff to follower ¢: = 4 approaches
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15/24 = 5/8 which exceeds the highest payoff to follower 4 in any of the
subgame perfect equilibria of G.

Finally, we return to the question whether all subgame perfect equi-
librium outcomes of G for a generic game I' might be accessible. The
final example shows that this is not the case.

EXAMPLE 5: With more than two players there may exist subgame
perfect equilibrium outcomes which are not accessible, even for generic
games I'.

Consider the generic 3-player game in Table 5, where S; = {s}, s?},

Vi€ N, and u = (uy, ug, uz):

Tab.5.

weh ) g Wit ) 2
3% (0) 27 2> (47 '_1) 1) S% ('(157 %v _41) (_%, 07 0)
s5 (2,1, -1) (-2, -2, -2) 53 (1,3,3) (-1, "%a %)

The associated game G, where player 1 is the leader, I = {1}, and
players 2 and 3 are the followers, I = {2, 3}, has two subgame perfect
equilibrium outcomes, (si, s3, si) and (s, s2, s3). (The payoff to the
leader from the mixed equilibrium in the subgame after s? is —5/14 < 0
and thus cannot be supported by (s3, s3) after s1.) Again denote A;; =
Mt ]s]),Vi=12andVt € T = {1, 2}, denote z; = by(s} | t) and
ye = b3(s} | 1), Vt € T, and ¢ = 01(s}). The conditional payoff to
follower 2 given type t € T is given by

V(o |8) = 2ddo da + 5(1— 0)ha — 2341 — )l
+y:(30 Au + ;(1 —0)A2) =20 A1 — -12-(1 — )z,
and the conditional payoff to follower 3 given type t € T is given by
Vo 18) = il da + S(1 = o - 7 a1~ o hal+
+z4(30 A1 — —g(l —0)A2)—20 A + —2—(1 —0)Ai2 .

What followers in equilibrium do given type ¢ € T' thus depends on o in
the following way: Since

20'/\t1+(1—0')/\t2 3/\t2
<1l &= o< —""%
4(1 — o)Az - 7= 201 +3 A2’ and
40’>\11 +6(1*~O’)>\tz < 1 o< 3)\t2 3/\12

< ,
9(1 - 0'))\12 _ 4:)\,51 -+ 3 )\t2 2 /\tl + 3>‘t2
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for any interior noise, first, o > 3 A;2/(2 Ayy + 3 Ae2) implies (x4, y¢) =
1, 1), second, ¢ = 3 A /(2 A1 + 3 Ai2) implies z;, € [0, 1] and y; = 1,
third, 3/\12/(4 Al 3)\t2) <o < 3/\&/(2 A1+ 3/\t2) implies (IBt, yt) =
(0, 1), fourth, o = 3 As2/(4 A1 + 3 Ayz) implies either (x4, y;) = (0, 1) or
z; = 1 and y; € [0, 5/8], and, finally, 0 < 3 A/(4 Ay + 3 As2) implies
either (z¢, y:) = (0, 1) or (z¢, y¢) = (1, 0) or

(,’1} )_ 4:0'/\t1 +6(1—'0'))\t2 20)‘t1 +(1-—O’)/\t2
A 91— o) 41— o) ‘

More compactly the structure of equilibrium behavior given type t € T
as a function of ¢ can be summarized by the implication

9 1
'yt<1 = yt_<_§:ct-—§,
which holds, because for o € [0, 1]
(@ ) = 4oy +6(l—0)Az 20Aa+(1 —U))\té
b Y= 91— e 41— o)

9 1
—_ yt:-g-xt—§.

Turning to the leader’s payoff, this can be written as

1
VNo) = U[Z A1(6zy +4y: — 8z yr) — ZAtZ(‘Z‘ Ty +2y—
€T teT
4 1 4
- gxtyt)“ 1] +z)‘t2(‘2“mi+29t - §$t~yt)"' L.
teT

If (si, s3, s3) is accessible, then certainly o > 3XA12/(2A11 + 3A12)
must hold, because otherwise sufficiently small noise, A\yy = 1, Vi € T,
and A;; = 0, Vj # t, means that o converges to zero. Consequently,
(z1, y1) = (1, 1) must hold. If ¢ would equal 1, then also (z2, y2) would
equal (1, 1) which would imply V*(¢) = (1—0)/6 or ¢ = 0, a contradic-
tion. Thus accessability of (s1, si, si) requires 0 < ¢ < 1 and, therefore,
with (LCl, yl) = (1, 1),

7 L

4
2)\11“‘5 )\12—1"'(2 A22—6 A1)z = [2>\22~4/\21“(§ A2 —8 Ag1)z2]ya .

If y, would equal 1 this would imply 2 Ay, —1—{—% >\12+(% Aga—2 Ag1)2o =
0 which is equivalent to z2 = (6 — 1231 — 5 A12)/(5A22 — 12X21) > 1
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which is impossible. Hence, y; < 1 implies y; < %xt — % and, therefore,

7 1
211 — 5/\12 -1 (5 Aog —BA21)ze S [2h02 —4 A1 —
4 9 1
-—-(g /\22*8)\21)1‘2}('8“:82*'2') R

3 41 29
= (5 Aga — 9 Aoy )(22)? — (E Agg — 5 A21)zo+

1
+2—4>\21——6§>\12S0-

The final quadratic expression is an upwards opening parabola in z,.
But, because (% )\22 - '2—22 )\21)2 - 4(% )\22 - 9/\21)(2 ~ 4 )\21 - 1—63- /\12) ~
—.326 < 0if Ay = 1, Vit € T, the quadratic expression does not have
a real root for sufficiently small noise. It follows that for arbitrarily
small noise there is no equilibrium with an outcome in a neighborhood
of (s1, sl, si). In fact the only accessible outcome in this example is

2 2 1
(31,32>33)'
CONCLUSIONS

This paper has shown that imperfect observability of commitments
need not necessarily eliminate a first-mover advantage in an extensive
form game: For every generic game there is an accessible outcome, inde-
pendently of how the player set is split into leaders and followers. But
this conclusion depends heavily on generic payoffs. Moreover, the main
theorem of this paper is strictly an existence result in the sense that not
all subgame perfect equilibrium outcomes may qualify as accessible.

The challenge to pure subgame perfect Nash equilibrium by the in-
troduction of noisy observations is brought about by misguided beliefs
at information sets off the equilibrium path. The source of this mis-
perception on the part of followers rests with the solution concept: If
observations on the leaders’ choices are noisy, but the umpire’s recom-
mendation is not, followers trust the umpire rather than what they see.

One way to put the present results is to say that the correspondence
that maps the class of two-stage extensive form games studied here into
sequential equilibria is not u.h.c. on the space of associated normal form
games. But no refinement concepts satisfies such a continuity property.
And that subgame perfect equilibria may not survive a change of the
extensive form which eliminates all proper subgames cannot come as a
surprise.
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