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Abstract

The present paper shows how cointegration analysis within a multivariate framework may be
applied for the estimation of energy demand elasticities in order to account for the non—
stationarity of the time series used. The dynamic modelling approach followed is one based
on general-to-specific modelling within a system. The case is for annual Austrian
residential energy demand over the period 1970 to 1993. The explanatory variables used
are real energy price, real disposable income, and the temperature variable heating degree
days. The results indicate that there is one cointegrating vector only. The long—run energy
demand elasticities derived are -0.02 for price, +1.13 for income, and +0.77 for
temperature. The long—run system of energy demand makes sense from an economist's
point of view and provides evidence that the aggregate price elasticity may be much lower
than commonly assumed, and suggested by many other, more traditional empirical studies
in this field. In the short-run analysis, the error—correction term turns out to play an
important role, thereby clearly disqualifying a traditional VAR model in first differences
investigated as a rival model.
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energy demand elasticities, cointegration, system analysis
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1 Introduction

Over the past decade, one of the most important developments in empirical modelling
has certainly been the introduction of cointegration analysis in time series econometrics.
This has given rise to a renewed interest in the well-known problem that traditional
estimation of time series econometric models may, in the presence of unit roots in the
time series data, lead to nonsense or “spurious” regression results, or — in case of taking
differences — at least to the loss of important long-run information about the underlying
data generating process (DGP).

In the energy economics literature, the penetration of aggregate demand studies that
use methods of cointegration analysis is still remarkably modest. Outstanding examples
are the relatively early study by Hunt and Manning [21] and the more recent work done
by Yu and Jin [42], Bentzen and Engsted [4], Engsted and Bentzen [13], and Bentzen [3].
Among these studies, however, only Bentzen and Engsted [4] and Engsted and Bentzen
[13] have applied cointegration analysis within a multivariate framework, and none has
explicitly employed a progressive modelling strategy like Hendry’s general-to-specific
approach. Moreover, none of the studies mentioned has focused on the residential sector
of energy demand, where conservation potentials are generally regarded to be largest
and thus reliable demand elasticity estimates of particularly great importance to energy
policy planners and decision-makers, respectively. Lastly, in my opinion these studies
neglect to clearly emphasize the importance of starting from the joint densitif function
and testing for weak exogeneity of the variables before using any type of single-equation
model.

The present paper, based essentially on more extensive work done in Madlener
[31] [32], is designed to fill this gap. It shows in some detail how cointegration ana-
lysis within a multivariate framework and in the presence of an naturally exogenous
variable may be applied for an improved way of estimating energy demand elasticities.
The case is for the log of annual Austrian residential energy demand, denoted by ¢, over
the time period 1970 to 1993. Four explanatory variables, also in logs, are employed:
real energy price p, real disposable income of the private households y, and a temperat-

ure variable “heating degree days” that enters the model both in levels (k) and in first
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differences (denoted Ah; cf. Section 3 for a detailed data description). In order to avoid
the worst features of data mining (see, for example, Lovell [29]), the dynamic modelling
approach followed is one based on general-to-specific modelling within a system. This
methodology, originally introduced by Sargan [39], is today most often associated with
Hendry (see Hendry [17] for a thorough treatment), and — for historical reasons —
sometimes referred to as the “LSE-methodology” (cf. Miz;)n [33] for a recent discussion
of the history of the approach).

In this context, a “system” denotes a system of linear dynamic equations, designed
to represent the joint density function of a set of related variables. Thus a system ap-
proach is generally a much more comprehensive analysis of the relationships between the
variables employed than a single-equation analysis and, as a consequence, also involves
a larger modelling burden. Nowadays, however, with the availability of easy-to-use eco-
nometrics computer packages for PCs, it is certainly fair to argue that in principle
“ .. computational problems no longer provide an ezcuse for avoiding system methods”
(Hendry and Doornik [18], p.5).

As a matter of fact, several very important advantages are linked to a system ap-
proach, as compared to more traditional single-equation studies of, say, energy demand
(for the case of Austria, Wohlgemuth [41] has recently provided a detailed study of this
kind). By modelling the joint distribution of the variables, regime shifts and structural
breaks, for example, may be investigated and also their links to changes in the exogen-
eity status of the variables. Another advantage is the possibility of testing for the precise
form of the relationships between the variables. Finally, cointegration is essentially a sys-
tem property in the sense that the determination of a matrix § of cointegration vectors
requires system analysis and is linked to the issue of testing for weak exogeneity.

The structure of the paper is as follows: In Section 2, the stage for the investigation
is set up by discussing the system of equations employed and by briefly outlining Jo-
hansen’s approach to cointegration analysis. Next, in Section 3, the data are presented
and inspected, covering some unit root testing. In Section 4, firstly, the general un-
restricted system of the three endogenously treated variables ¢, p, and y is estimated,

analyzed, and tested.! Secondly, a detailed cointegration analysis and some testing for

!Note that the variable h is a~priori regarded to be a natural exogenous variable, determined by
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weak exogeneity and (over)identification is pursued. Thirdly, the system is mapped into
1(0) space by use of a vector error—correction form and subsequently simplified in order
to end up with a satisfactory structural model. Lastly, Section 5 contains a summary of

the findings and some conclusions drawn from the analysis.

2 The System

2.1 Introduction of the Concept Used

The class of system considered in this study is a three-dimensional vector autoregressive

(VAR) model of the form

k
X = Zijt_j + ®D; + ¢, (1)

j=1 ’
in which x; = (g;,pt,y:) and Dy = (d1 4, ..., ds¢) Is a set of deterministic conditioning
variables (such as constant, dummy variables, and trend) and the stochastic temperature
variable h, assumed to be both stationary and exogenous, and entered in levels and first
differences for reasons that will become clearer later on. ¢ is a three~dimensional error
vector, independently distributed with mean zero and covariance matrix X, i.e. ¢ ~

IN(0,%).

Four a—priori assumptions are being imposed in order to obtain a general congruent
linear VAR model that represents a valid basis for the inference procedures adopted
later on. Firstly, in order to exclude explosive roots, we assume that none of the roots of
det(I — Z?zl A;L7) = 0 lie within the unit circle. Secondly, in order to exclude moving
average error processes from the category of model being considered, we further assume
that & is finite. Thirdly, the initial values xj_g, Xo—4, ..., Xo are assumed to be fixed.

Fourthly, the parameters (A;,..., Ag, ®,X) are required to be constant.

processes outside the system under study, thereby assuming no relevant loss of information by con-
ditioning on it. In other words, as the variable h is not caused by human economic behaviour (and
only altered remarkably over a much longer time horizon than considered here), its treatment as an
exogenous variable is considered to be justified. For a discussion of Hendry’s views on “not caused” and
“exogenous”, respectively, see Hendry [17], Ch.5, esp. p.157. In fact, he uses the interesting example of

“energy from the sun impinging on earth”.
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The following very useful reformulation of Eq. (1) represents an observationally equi-
valent reparameterization of the VAR system into a vector error—correction (VECM)
form (see, inter alia, Hendry, Pagan, and Sargan [20], Engle and Granger [12], Johansen
[23], or Banerjee et.al. [1]):

k—1

Ax; = Z HjAXt_.j + x¢p + PD; + €, <2)
j=1

where II; =(I — Z'z__:l A;) for 7 = 1,2,...,(k — 1) are the “interim multiplier
matrices”, characterizing the short-run behaviour of the system and II = (I — Z;?:l Aj)
is the matrix of static long-run responses. This transformation imposes no further re-
strictions. Note, however, that in case x; ~ I(1), then Ax; is I(0). Hence the sys-
. tem specification is balanced only if IIx;_x is I(0). Obviously, in such a case II cannot
have full rank n, since that would contradict the assumption x; ~ I(1). Therefore, let
rank(II) = p < n, and let further & and S be n x p matrices of rank p such that II = of’
and the linear combinations #'x; are 1(0). This yields the following VECM of reduced
rank:

k-1

Ax; = Z ;A% + af' %k + PDy +¢ (3)
i=1

The linear combinations §'x; comprise the p cointegrating I(0) relations, while the
“loadings matrix” « contains the adjustment coefficients (cf. Johansen [23] [24] and
Hylleberg and Mizon [22]). In this sense II = af’ defines the short-run adjustment o

to the steady-state relations (.

2.2 Cointegration Analysis

In the late 1980s and early 1990s cointegration analysis, originally introduced in the
literature by Engle and Granger [12}, whose 2-step method for the bivariate case was
later on extended by Johansen [23] [24] for the multivariate case, has become a rapidly
developing subject and probably even led to something like a “new era” in economet-

rics. While in the past a great many econometricians have applied ordinary least squares
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estimation on rather simple log-linear single-equation models, implicitly assuming that
the variables under consideration are stationary stochastic processes. More recent re-
search, however, has provided evidence that the majority of economic time series ap-
pear to exhibit stochastically changing time trends (cf. the seminal paper by Nelson and
Plosser [34]).

In general, non—stationarity in levels has strong implications for the estimation of
parameters like, as in our case, energy demand elasticities, because of the rather high
probability that the occurring relationships between the variables are of a nonsense (or
spurious) nature only (the historically seminal works on this topic are Yule [43] and
Granger and Newbold [14]; for more recent discussions see Phillips [36] or Charemza
and Deadman [7], among others).

A common way of handling problems of non-stationarity in levels and multicollinear-
ity has been the differencing of the variables before running estimations. This approach,
however, suffers from the important drawback that lon-run properties of the data are
lost, thereby restricting the models to the explanation of purely short-run effects. The
crucial point is that if the long-run information should be retained, then one has to
~ensure that the existing common (but unrelated) stochastic trends can be separated
from the co-movements of the variables due to any prevailing equilibrating forces in the
economy (see Harris [16] for a nice and very recent discussion of this problem).

In other words, the central issue in any discussion of this kind is (weak) stationarity
of the variables involved. A stochastic process is called weakly stationary if its mean and
variance are time-independent (i.e. constant), and the autocovariance dependent on the
time lag only (i.e. on the gap between the periods and not on the actual point in time
at which the autocovariance is being considered). As already mentioned, however, most
economic time series simply do not possess this property.

The introduction of the cointegration concept by Engle and Granger [12] provided
a potential solution to the problem of non-stationarity in time series econometrics.
The idea of this concept is that although the variables employed are individually non-
stationary I(1) processes, linear combinations of the variables may nevertheless be sta-
tionary, i.e. I(0) processes. If this is the case, the variables are said to be “cointegrated”.

Formally, an n x 1 vector x; of variables is cointegrated if a linear function z; = f'z;
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exists that is I(0) for some non-zero n x 1 vector 3.

In sum, therefore, the proper way to estimate time series data in the sense of cointeg-
ration analysis is the following: First, the time series properties in terms of integration
and cointegration of all the variables involved in the model or system, respectively, have
to be evaluated (for a discussion see Banerjee and Hendry [2]). Secondly, provided the
variables are indeed non-stationary but cointegrated, long-run elasticities may be es-
timated by cointegration methods and short-run elasticities may be derived by employ-
ing a (parsimonious) vector error—correction model (VECM) in which the cointegration
relations are explicitly included.? In addition, if any variables turn out to be weakly exo-
genous, then conditioning on these variables is possible, leading to a conditional VECM
model.

The Johansen maximum likelihood procedure followed in this study (Johansen [23]
[24], modified in Johansen and Juselius [27] to allow for dummy variables and in Jo-
hansen [25] for partial systems), enables the empirical determination of the reduced rank
p of the system (i.e. the dimension of the cointegrating space), provided that the systems
in Eq. (1) and Eq. (2), respectively, are well specified and, in particular, have constant

coefficients and homoskedastic innovation errors.

3 The Data and Some Data Analysis

3.1 Description and Sources

Austrian annual data for the four variables log of energy consumption ¢, log of real
energy price p, log of real disposable income ¥, and log of heating degree days h, are
employed for the time period 1970 to 1993.

The consumption variable used is that of final energy consumption of the private
household sector, which in 1992, for instance, accounted for remarkable 41.5% of the
total final energy consumption in Austria. The figures used are published annually by
the Austrian central statistical office OSTAT in Statistische Nachrichten under the title

“Energieaufkommen und -verwendung in der osterreichischen Volkswirtschaft 19xx” and

2As Engle and Granger [12] have shown, a cointegrated system can always be represented by a valid

dynamic ECM and vice versa.
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comprise energy consumption for all major end uses (i.e. also private automobile fuel
consumption).

The price variable used is an aggregate real energy price index (deflated by the
consumer price index) for the private household sector, calculated by the Austrian energy
agency “Energieverwertungsagentur” (EVA) from the official OSTAT consumer energy
expenditure statistics (i.e. price indices and weight factors). This index is essentially
unpublished but can be obtained upon request either from the author or directly from
EVA (EVA, c/o Mr Fickl, Linke Wienzeile 18, A-1060 Vienna, Austria).

The income variable used is real disposable income of the private households, taken
from the Economics Database of the Austrian Institute of Economic Research WIFO
(WIFO, P.O. Box 91, A-1103 Vienna, Austria) and indexed at constant 1976 prices.

Finally, the variable heating degree days is the sum of annual heating degree days,
defined as HDD = Y (BT - Ty), and published annually by OSTAT in Energicver-
sorgung Osterreichs — Jahresheft 19zz. BT denotes a constant ambient temperature of
20 °C and T, the average outdoor air temperature of the day. Days are only counted as
heating degree days (by means of the counting index n) if the outdoor air temperature
of that day is below or equal to an assumed marginal heating temperature of 12 °C
(cf. Austrian standard ONORM B8135). The heating degree days reported are average
values, calculated as a weighted arithmetic mean of the sums of heating degree days in

the nine Austrian provinces, and the weights employed being 1991 census data.?

3.2 Visual Inspection of the Time Series

Visual inspection of the graphs in Figure 1 indicates that both ¢ and y have strong
upward trends of a similar magnitude. Hence they might be modelled as stationary
deviations from a linear deterministic trend or, alternatively, as variables with stochastic

trends within a cointegrated system.

3Note that due to a change in calculation in the mid-1970s and also the measurement technique, a
mark-up of 51.9% was applied to the pre-1977 values in order to align them with the post-1977 values
(according to the old method, BT was set equal to 18 °C and T, to 15 °C.




8 Madlener / On the Use of Multivariate Cointegration Analysis — I H S

Figure 1: Data plots, 1970-93 (in logs)
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q reflects the dramatic impact of the two oil crises of 1973/74 and 1979/80 very well. y
exhibits two interesting kinks, which could result from some structural change or regime
shifts and will probably have to be modelled by one or more dummy variables. Moreover,
the curve flattens out remarkably at the end of the time period studied. p shows mainly,
as expected and in accordance with the developments of the residential energy demand
curve, the dramatic effects induced by the two oil price shocks of the 1970s, as well
as the energy price slump after 1985 back to the price level of the early 1970s (in real
terms). Lastly and as expected, h obviously does not seem to follow any identifiable
pattern, but depicts a distinctive trough in the year 1979, which is likely to play a role

in the modelling and estimation outcomes, respectively.

Figure 2 allows an inspection of the correlograms, the densities, and the histograms
of the four variables. The first order serial correlation coefficients are very high for g,
p, and y, declining only very slowly with the higher order coefficients in the case of ¢

and y, and declining, changing sign, and rising again in the case of p. As expected, the
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correlation coefficients are comparatively very low for h. These indications are consistent
with the idea that each of the series ¢, p, and y is indeed non-stationary and probably
integrated of order one, I(1), i.e. that differencing is necessary to remove their stochastic
non-stationarity properties and make them I(0), whereas h seems to be stationary.

It should be kept in mind, however, that visual inspection only allows a first rough
guess with respect to the data properties. We will (hopefully) gain more insights about

the series’ properties as the investigation proceeds.

Figure 2: Residual correlograms, residual densities, and histograms, variables in levels
(and logs), 1970-98

1 lg Correlogram 1 lp Corxelogram 1 ly Correlogram
L5 L5 l Bed3 gl
sk ) Loy | l .5k
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%} > -4 L . 2
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3.3 Unit Root Testing

At this point we continue the analysis by using some univariate test statistics to test for

unit roots in order to be able to determine the order of integration of the variables and
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to find some further evidence with respect to the stationarity properties of the data. The
unit root tests have been pursued by using the econometrics computer package PcGive
8.0, developed by Doornik and Hendry [11].

The principle behind unit root testing is that the time series properties of each single
variable may be determined by employing, for example, Dickey-Fuller (DF), Augmented
Dickey—Fuller (ADF), or Phillips’s Z-statistics (see Dickey and Fuller [8] [9] and Phil-
lips and Perron [37], respectively). Note, however, that such univariate test results can
provide no more than some coarse evidence with regard to the order of integratedness
of the series, as they all suffer from some sort of size and/or power problem (very often
there is a strong trade-off between the two). The main reason is that the associated
tests are conditional on untested — and usually unlikely — auxiliary hypotheses concern-
ing parameter constancy in the scalar representations. Furthermore, it should be pointed
to the fact that the order of integration is being determined for a certain period in time
and in this sense is not an “inherent property” of a time series (for example could one
change the time period considered and well get a different result with respect to the
integratedness of the series). .

The analysis done here is restricted to the ADF test, at present probably the most
popular and still widely regarded as being the most efficient test among the simple tests
for integration. Table 1 depicts the values of the ADF test statistics, which take the form

of the ¢-statistic for the hypothesis “¢ = 0" in the regression model

k
Azy = dze—1 + Z ¢ Az + p+ &, (4)

j=1
for any of the four variables, z;, where A denotes first differences, p is drift, and &
an error term. Note that when ¢ = 0, Eq.(4) is a regression in the differences Az,
corresponding to z being well modelled as an I(1) process and thus having a unit
root in its autoregressive representation. Tables of critical values for the non-standard
distribution for testing of the null hypothesis “¢ = 0” can be found, for instance, in

Dickey and Fuller [9].
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Table 1: Augmented Dickey-Fuller test statistics

Variable t (ADF) lag length Variable t (ADF) lag length
q -1.1187 3 Ag -4.5751%** 4
p -1.3929 1 Ay -2.7015* 1
y -1.2062 3 AV -2.0404 3
h -2.8186* 2 Ap -4.4972%** 2

(Notes: **’ denotes statistics significant at the 10 % level, The critical values used are those derived
from the response surface in MacKinnon (1991); for variables in levels they are —2.66", —3.03"",
and —3.83"**, respectively, for variables in first differences —2.66, —3.04"", and —3.86""".)

Choosing the appropriate lag length is a discussion on its own. In the study presented
here, I followed essentially the strategy suggested by Hendry and Doornik [18], i.e. to
select the longest significant lag within the maximum lag length. Thus the reported
values are for the t-statistic corresponding to the longest significant lag (at significance
level o = 10%). In cases of no significant t-value amongst the lags, I have chosen the
lag length with the highest (absolute) ¢-value or lowest ¢-probability, respectively. The
maximum lag length for the calculation of these statistics was four.

On the basis of the ADF-test statistics, all variables apart from A seem to be non—
stationary. y even appears to be I(2), which is rather implausible on economic grounds
(and even more taking the visual inspection of the y-series into account). Although not
reported in Table 1, an ADF-test on the second differences of y (i.e. testir;g for 1(2))
yielded a result significant at the 1% level of —6.587 for  (critical value at 1% is —3.888,
derived from the response surfaces in MacKinnon [30]). Hence unit-root testing provides
some evidence that y could be 1(2). Moreover, the additional inclusion of a linear trend
in Eq. (4) showed some indication of trend-stationary attributes in both the sample of
q (at the 10% significance level) and y (at the 1% level).

Based on the results of the visual inspection, the ADF-test statistics, and the know-
ledge that the ADF-test has a general tendency to under-(over-)reject the null when it is
false (true) (i.e. its poor size and power properties), we will assume for the further ana-
lysis that h is stationary, and that — despite some ambiguity — that the three variables

q, p, and y are all non-stationary I(1) variables. This seems to be reasonable, given the
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questionable robustness of the unit root test procedure used in providing a substantial
method to discriminate between stationary and non-stationary processes.

As a consequence of the non-stationarity assumption for ¢, p, and y, it will be import-
ant in the modelling procedure to choose models that can represent the non-stationarity
of these variables. In other words, we look for the possibility that these variables form

‘a cointegrating relationship, i.e. that there is some linear combination that is I(0), i.e.
stationary. In actual fact and based on the economic reasoning that the temperature
variable h should be included for establishing a sensible long-run relationship between
the three non-stationary variables, I have allowed it to enter the cointegrating space
(see Subsection 4.1 below). Note that a mix of I(1) and I(0) variables does not prevent
cointegration from being present. However, what would be expected is that the number
of cointegration relations increases by one (as each I(0) variable is stationary “in itself”
and consequently should form a cointegration relation “in itself”).

Finally, yet another characteristic of the variables energy consumption, energy price,
disposable income, and heating degree days is worth mentioning, viz. that they are, in
fact, non-negative. Consequently, the use of linear models in their logarithmic trans-
formations is certainly data—admissible in the sense that they cannot produce negative

fitted or predicted values.

4 Empirical Results

4.1 Testing the Initial General System

The analysis that follows may be seen as one of studying the demand for energy in
the private household sector by commencing from the joint data density and testing
the reductions required to eventually validate single-equation modelling. For the em-
pirical investigation, I have employed the econometrics computer package FcFiml 8.0,
as described in Doornik and Hendry [10]. In principle, the modelling sequence aspired
to is the following: (i) VECM in I(1) space; (ii)) VECM in I(0) space; (iii) parsimoni-
ous VECM; (iv) structural model; (v) conditional structural model in case of weakly
exogenous variables.

We begin our analysis with the estimation of a VECM like the one introduced in
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Eq. (3), re~written in an equivalent form as

k=1
Axg =) UjAR—j + afx1 + PDi + . (5)
i=1

If we furthermore allow h;—; to enter the cointegration relations (i.e. 8'x;_1), we
may reformulate Eq. (5) as
k-1

Axy = Z A% + B x* o1 + O* Dy + ¢, (6)
i=1

serving as the benchmark model. Note that 8* becomes an (n+1) X p matrix and x*;_;
an (n + 1) x 1 vector of variables. As the lack of observations narrows the choice of a
common lag length k& to be included, I have decided to moderately overparameterize the
benchmark model with two lags on ¢, p, and y (i.e. kK = 2). This seems to be a suitable
compromise between whitening the residuals and allowing the short-run behaviour to
be modelled by the Ax;_; on the one hand, and saving on degrees of freedom on the
other hand.

D, contains an unrestricted constant, the temperature variable in first differences,
Ah;, assumed to be stationary, exogenous, and having a short-run influence only, as
well as the two impulse dummy variables imprg and impgs (which take on the value of
one for 1979 and 1986, respectively, zero otherwise). Preliminary analyses showed that
including these two dummy variables leads to an improvement of the overall statistical
properties of the system, whereas the inclusion of a deterministic trend did not. In
particular, émprg has been included to both proxy the apparent regime shift in the y—
equation and to take care of the 1979 outlier in the h-variable, while impgs seems to
help modelling the enormous price slump after 1985 and the related consequences to the
other variables. Note that both dummies have been entered unrestrictedly, since we can
anticipate that they do not have any long-run effects on the modelled variables. The
estimation period is 1972 to 1993.

The various test results displayed in Table 2 indicate that the benchmark system
is indeed congruent. The hypothesis that the equations exhibit no serially correlated,
heteroskedastic, or non-normal residuals are not being rejected. Moreover, no ARCH

effects could be detected.
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Table 2: System diagnostic statistics

Test statistic Ag, Apy Ay
Portmanteau (3 lags) 2.4896 5.3267 0.8840

AR 1-1 F( 1,10) 1.4562 [0.26]  0.0892 [0.77]  0.9757 [0.35)
Normality X2 (2) 1.6515 [0.44]  1.1524 [0.56]  2.9570 [0.23]
ARCH 1 F(1,9) 0.1490 [0.71)  0.4600 [0.51]  0.0121 [0.91]
Vector Portmanteau (3 lags) = 15.694

Vector AR 1-2 F(9,14) = 0.8467 [0.59]

Vector Normality x2(6) = 5.1890 [0.52]

(Notes: p-values in [ ] where applicable; In PcFiml, diagnostic testing is performed both at the
individual equations’ and at the (multivariate) system level. Individual equation diagnostics
take the residuals of each equation of the system in turn, and treat them as if they were from
a single equation. The “Portmanteau statistic” is a degree of freedom~corrected version of the

Box and Pierce (1970) statistic (sometimes also referred to as “Ljung-Box” or “Q

* 3

statistic),

designed as a goodness-of-fit test in stationary ARMA models. For a detailed description of the

employed test statistics see Hendry and Doornik (1994).)

The correlation matrix of the residuals is reported in Table 3. As can be seen, there

is one moderately large positive correlation between y; and ¢; residuals (4+0.28) and one

negative correlation of about the same size between y; and p; residuals (—0.29).

Table 3: Residual correlations

at Di Y
q 1.0000
Dt -0.1137 1.0000
Yt 0.2759 -0.2946 1.0000

Figure 3 shows the three sets of actual and fitted values, their cross plots, and the

scaled residuals for each equation. It may be regarded as something like a “condensed

view” of the descriptive power of the system. Despite the lack of fine detail in the plots,

the differences in goodness—-of-fit between the three equations are nonetheless quite

obvious.
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Figure 3: System actual and fitted values, crossplots, and scaled residuals, unrestricted
VAR system in I(1) space, 1972-93

L= Fitted lg
Fitted= .. €la=

: ot —1F
S.1 . L -2 L s
5.4 5.7 6 1988 1996
Fitted 1y
€lp=
5 2

aof o /\ A ooan

r + a LAY
el L VAR
fo + 3
4.4 L L 4.4 ’ : -2 : :
1980 1998 4.6 4.8 5 1980 1998
lys Fitted 1y
Fitteds ... €ly=
6.6 2
6.6 3

I 6.af o ik
°2r - o.2| + W AN VA
g - T

5.7 N ! ' 5.8 1 s L -2 1 ! it
' 1980 1990 6 6.2 6.4 6.6 19808 1998

1
®

The correlations between the actual outcomes and the fitted values in each equation
are given below. The very high values reflect the non-stationarity in the data and hence
do not by themselves ensure a sensible model. Note that in a multivariate context, the

squares of these correlations are the nearest equivalent to R? (cf. Hendry and Doornik
[18]).

q p Yy
0.9942 0.9692 0.9969

The residual correlograms, density, histogram, and distribution plots of the indi-
vidual equations are presented in Figure 4 and provide further indications for the ap-
proximate congruence of the system. Note that despite the fact that none of the spe-
cification tests could be rejected, there is some evidence of residual serial correlation in

all three equations.
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Figure 4: Graphical diagnostics for the individual equations: redsidual correlograms,

density, histogram, and distribution plots
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Next, the F-tests for the various variables in the system are considered. In Table
4, these are shown for the overall significance of each regressor in the system first, i.e.
its contribution to all three equations taken together. Secondly, the result of the F-test
against the four unrestricted regressors (i.e. the constant, Ah, and the two impulse

dummies imprg and impsgg) is reported.

Table 4: F-tests on the retained and the unresiricted regressors

F-tests on retained regressors, F( 3, 9):

9 3.2397 (0.07) Gra 1.4505 [0.29]
Pl 10,2382 [0.0031*** Pra 1.5902 {0.26)
Vel 3.9585 [0.047]** Y2 0.4746 [0.71}

h, 2.5286 10.12]

F-test against unrestricted regressors, F(12,37) = 60.214 [0.00]***

(Notes: p-values in brackets. ‘***’ denotes significance at the 1% level, ***’ at
the 5% level. Variables entered unrestricted: (i) constant; (if) impqo, (iiiy impge, (iv)
AR) ,
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As can be seen from the test outcomes (and as expected), the restricted regressors
with lag one matter much more than those lagged two periods, although only p;—; and
yi—1 turn out to be significant at the 1% and 5% level, respectively. ¢;—; and h;—; only
matter at the 15% significance level. However, as has already been noted, all regressors
with lag two will be retained in the system in order to be able to model the short-run
behaviour of the system. Finally, the hypothesis that the parameters of all unrestricted
regressors are jointly equal to zero is clearly being rejected at the 1% level of significance
(F(21,26) = 31.659 (0.00)).

Before turning to cointegration analysis, the introductory investigation into the gen-
eral VECM in I(1) space is rounded up by reporting some dynamics features, viz. the
long-run matrix II = #(1)—I, the long-run covariance matrix, the eigenvalues of I1, and

lastly the eigenvalues of the companion matrix (see Table 5).

Table 5: Dynamic analysis of the VECM in I(1) space

long-run matrix 11 = 7(1) = I

9y Py b
q, -0.8277 -0.0237 0.8836
Py 0.4758 -0.0361 ~0.5966
Y —0.0941 0.0146 0.0578
long-run covariance:
9, Py i

q, 0.1003
P -0.0407 0.5390
¥ 0.0887 -0.0269 0.0795
eigenvalues of T1 = () -1:

real complex modulus
-0.6923 0.0000 0.6923
- 0.0568 0.0337 0.0661
—0.0568 -0.0337 0.0661
eigenvalues of the companion matrix:

real complex modulus

0.9208 0.0401 0.9217

0.9208 -0.0401 0.9217
-0.0326 0.0000 0.0326

0.3074 0.2701 0.4092

0.3074 -0.2701 0.4092

0.3285 0.0000 0.3285
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As indicated by the two small eigenvalues of II = #(1)—I, the rank of the long-
run matrix seems to be less than three, which is consistent with the apparent non-
stationarity of the data used. Note, however, that they are also greater than zero,
suggesting some cointegration between the variables. The companion matrix exhibits
no roots outside the unit circle, which is consistent with the idea of a non-explosive
system. Also, the number of roots close to unity is not larger than the dimension of
the long-run matrix, which is consistent with the idea of an I(1) system. Note that
the fact of two moduli being close to unity suggests that there could possibly be two

cointegrating relations.

4.2 Cointegration Analysis

In what follows, we will pursue a thorough cointegration analysis of our system of equa-
tions, using the maximum likelihood method of cointegration analysis developed by
Johansen [23] [24].

First, in order to investigate the order of integration among the n variables, recall

the reformulated VAR system introduced in Eq. (6):

k-1
Ax; = Z UiAx; + aﬁ*'x*t._l + &*Df + €. (7)
=1

Note that although the error term ¢; ~ IN(0,%) and thus stationarb;, the (n + 1)
variables comprised in x*;—; need not be so. The rank p of II = af’ determines the
number of stationary linear combinations of variables. In particular, the following three
cases may be distinguished: (i) if p = (n + 1), (i.e., IT has full rank) then all variables in
x; have to be stationary for a "balanced” relation; (ii) if p = 0 (i.e., I is the null matrix)
, the model is expressed entirely in differences and there are no cointegrating relations;
(iii) if 0 < p < (n + 1), then there are p cointegrated (stationary) combinations of x;.
In other words, only case (iii) is really interesting with respect to cointegration.

Table 6 summarizes the results of the unrestricted cointegration analysis. It re-

P

ports the eigenvalugs ui, the log-likelihood values | = ——% =1 log(1l — p;), the as-

sociated maximum eigenvalues Maz = —Tlog(l — p,), and the trace statistics Trace =
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=T3P log(l — u;). Also reported are the test statistics adjusted for degrees of free-
dom, i.e. by using (7' —mk) instead of T', following Reimers [38] (critical values are those
from Osterwald-Lenum [35]; T denotes the sample size, m the number of variables in

the model, and k the lag length used in estimating Eq. (6)).

Table 6: Cointegration statistics

7 f; rank p
241.111 0
0.7295 255.493 1
0.3246 259.810 2
0.0349 260.201 3
H,: "rank=p"  Max Max@-mk) 95% Trace Tracem-mky  95%
p=0 28.76%** 20.92 21.0 38.18¥%* 2777 29.7
psl 8.63 6.28 14.1 9.42 6.85 15.4
ps2 0.78 0.57 3.8 0.78 0.57 3.8
standardized estimated eigenvectors B AN
q; 2y Y hy
i=1 1000 0.019 -1.117 -0.713
(i=2) 11.05 1.000 5.462 58.92
(i=3) -0.999 ~2.800 1.000 5.132
standardized estimated adjustment coefficients &'
i=1 i=2) (i=3)
q, -0.8001 -0.0023 0.0022
12 0.5303 0.0035 0.0152
Y -0.0709 -0.0027 -0.0066

(Note: “***’ denotes significance at the 1% level.)

Note that, in general, the estimated as and (s are identified only up to linear trans-
formations, i.e. any non-singular matrix of full rank may be employed in order to get
new as and Os that together give the same matrix II (in our case, the Js are standard-
ized such that the dependent variable in each equation of the VECM is unity; the as
have been rescaled accordingly).

As can be seen from Table 6, the results from the unrestricted cointegration analysis
formally support the hypothesis that, on the basis of the maximum eigenvalue (M az)
and trace (T'race) test statistics, there is only one eigenvalue significantly different from
zero (at the 1% level). Adjusted for degrees of freedom, i.e. including Reimers’s small

sample correction, no cointegrating vector can be detected (although it can be seen
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that the test outcome is indeed very close to the 5% level of significance). As it is still
unclear, however, whether Reimers’s correction should be the preferred solution or not
(in particular, Kostial [28] has reported a tendency of Reimers’ values to underestim-
ate the dimension of the cointegrating space even when unadjusted), it appears to be
justified to assume that the outcome determines the rank of II to be equal to one. In
other words, a single significant eigenvector reports the estimated cointegration vector
as being representative for the cointegration space, which implies that the system is
already identified. From Table 6 we can also see that the estimated cointegrating vector

takes the form
B x*, = g, + 0.019p; — 1.117y, — 0.713h;. (8)

In fact Eq. (8) may be read off directly as the lon-run energy demand relationship

of the private households sector (i.e. E(,Bﬁ:c, ) =0):

q = —0.0lgpt -+ 1.117’% + 0713ht (9)

The estimated elasticities all have the expected signs and are of a quite reasonable
magnitude (although the price elasticity estimate turns out to be unexpectedly low).
Figure 5 provides another check for the adequacy of the model. It gives the plot of the
time series of the cointegrating vectors B*'x*t, the normalized variable z;; against the
sum of the non-normalized coefficients (—) 3 1 ,6;*; z}; (i.e. the long-run actual against
the fitted) for x4’ = (q¢, pt, ¥t), and finally the recursively calculated eigenvalues (having

partialled out both the full sample short-run dynamics and the unrestricted variables).
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Figure 5: Time series of the cointegrating vectors and recursive eigenvalues
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Only the first of the cointegrating vectors looks fairly stationary. Similarly, the actual
and fitted values are close to each other for the first only, whereas the first and the third
of the eigenvalues are reasonably constant at a non-zero value (in the case of 1;) and at
almost zero (in the case of u3). But again these judgements are basically no more than
“visual guesses” (especially the estimation of the recursive eigenvalues should be called
into question with regard to the lack of observations).

The single cointegrating vector ensures unique identification of every element such
that the resulting characterization of the long run matches that of the DGP. Nonetheless,
in order to learn more about the underlying DGP and also to test for weak exogeneity,
I have imposed some overidentifying restrictions on the ;s and the cointegrating vector
B{'X*L as a next step in the analysis. Before testing for weak exogeneity, note that theory
suggests that ¢, depends on py, y¢, and hy; y¢ probably depends on p;.

The adjustment parameters o;; determine the impact on the Ax;s in Eq.(7) when

the cointegrating relationship is in disequilibrium. Thus a zero coefficient in any single
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a—-vector indicates weak exogeneity of the corresponding variable for the estimation
of the long-run parameters in question. For example, if we reconsider the first -
vector reported in Table 6, corresponding to the first cointegrating vector, i.e. o =
(-0.8001, 0.5303, —0.0709)', then we may conclude from the inspection of this vector
that Ag; responds to the disequilibrium changes represented by the long-run cointegrat-
ing relationship at a speed of 80%. Put differently, four fifths of the adjustment towards
equilibrium is made within the same year. Note that the adjustment coefficients in the
remaining two equations are very small, which clearly supports the weak exogeneity
assumption (cf. Table 6).

Both the overidentification restrictions imposed and the test outcomes are reported
in Table 7. Since the hypotheses are linear on an I(0) parameterization of the system
(i.e. in the case of cointegration, if x; ~ I(1) then both Ax; and 'x; (and consequently
B*'x,;) are I(0)), the test statistics are conventional likelihood ratio (LR) statistics with
limiting x?-distributions and the degrees of freedom equal to the number of independent
restrictions to be tested. In particular, I have tested whether a1, a1, or a3y are equal
to zero, a necessary condition for g, pt, and y;, respectively, to be weakly exogenous for
the parameters of the long-run energy demand equation (for detailed discussions on the

_issue of weak exogeneity see, inter alia, Boswijk [5], Hendry and Mizon [19], Mizon [33],
Johansen [25] [26], and Urbain [40]). Moreover, I have tested for a unitary long-run

income elasticity (which is equivalent to testing the hypothesis that 13 = —1.0).

Table 7: Testing for identification and weak exogeneity

H, statistic p-value
By =-1.0 Z0)= 1.86e-007  [1.00]
o, =0 () =17.941 [0.00]%%%
ay, =0 )= 7.788 [0.005 ]
2y =0 2= 0624 (0.43]
a3 =0; f;=-1.0 7Q)= 0624 (0.43]

(Note: “**** denotes significance at the 1% level.)
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As can be seen from Table 7, the hypothesis that the long-run income elasticity
is equal to unity cannot be rejected. Furthermore, the null hypotheses that income is
weakly exogenous for the long run energy demand equation is not rejected (i.e. ag; = 0).
By contrast, testing for weak exogeneity of the price variable is clearly rejected. Note
that this outcome provides evidence that — despite the outcome of a single cointegrating
vector — single—equation modelling cannot be considered as being equivalent to system
analysis. Finally, and as expected, the hypothesis that the energy demand variable is
weakly exogenous in the long-run demand equation is rejected clearly as well (at the

1% level of significance).

4.3 Mapping into I(0) Space

For a system that incorporates non—-modelled I(1) variables to be well defined in terms of
1(0) modelled variables, all non-stationarity stemming from the non-modelled variables
has to be mapped into cointegrating vectors. In cases where the locations of the unit
roots and the cointegrating vectors are known, the system as a whole may be mapped
into I(0). Thereafter, conventional asymptotics can be applied. On the contrary, in cases
where the locations of the unit roots are unknown but the conditional distribution of
the modelled variables given the non-modelled is stationary, the analysis proceeds as in
Johansen [25] (cf. also Hendry and Mizon [19]).

In particular, we can map the reduced rank system adopted (i.e. with r = 1 and

k = 2) from I(1) into I(0) space by employing the following re-parameterization:

Axy = W1 Axy 1 +yeemy—y + DY + ¢, (10)

where ¥; is equal to ¥; in Egs. (6) and (7) for j = (k= 1) = 1, and ecmy =
q; — 0.0214p; + 1.1310y; + 0.7677h; is the restricted cointegrating vector. v measures the
impact on Ax; of being away from the long-run equilibrium or, put differently, to what
extent households correct the errors of past decisions. ¥, characterizes the short-run
dynamics of the system.

Estimation and evaluation of this VECM in I(0) space (i.e. Eq. (10)) revealed that

the original system’s congruence is maintained. Next, both Ag;—; and Ay (which
g y g Yy
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turned out to be insignificant to the system) have been deleted, leading to a much
stiffer competitor for any model developed thereof. Visual inspection of the graphs of
actual and fitted values of Agq;, Apy, and Ay, the residual correlograms, and the density

and histogram plots depicted in Figure 6 confirms that the original system’s congruency

could still be maintained.

Figure 6: Actual and fitted values, residual correlograms, and frequence plots,
parsimonious VAR system in I(1) space
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Note that the imposition of a rank 7 = 1 on the cointegrating space (as indicated
by the statistics reported in Table 6) and the deletion of both Ag;—; and Ay, already
led to a reduction by 20 parameters, as compared to the original system. I will refer to
this model as the parsimonious VECM (PVECM) system in I(0) space, despite the fact

that there is still some remaining margin for further simplification (viz. Ap;_; is only

significant at the 15% level and could also be deleted if desired).
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4.4 Empirical Simplifications of the PVAR

The first simplified model to be considered (referred to as SM I) is one in which all
insignificant parameters have successively been eliminated. Altogether, another nine(!)
restrictions have been imposed relative to the PVECM. Table 8 presents the FIML-

estimates of this model.

Table 8: FIML estimates, SM I

Ag, = —6.0009 — 0.7805ecm, ; + 0.5630Ah, + .1238impsy

(SE) (0.98) (0.13) 0.07)
(0.03)

Ap, = 33083 + 0.4280ecm,; + 0.3606Ap,; — 0.131limpes

(SE) (1.44) (0.19) (0.15)
(0.04)

Ay, = ~0.0036ecm,
(SE) (0.00)

ecm,=q, + 0.0214p, ~ 1.1310y, — 0.7677h,

The specification test results reported in Table 9 do, apart from some problem indic-
ated by the univariate normality test for Ay, not exhibit any misspecification problems,
so that we can conclude that SM I essentially performs as well as the PVECM. Note
that in SM I short-run changes in energy consumption are being explained by the error—
correction term, temperature changes, and the impulse dummy imp7g, while energy price
changes are explained by the error-correction term, lagged price changes, and the im-
pulse dummy 7mpgg. Finally, income changes are solely explained by adjustments due

to disequilibria from the long-run steady-state solution.
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Table 9: Model diagnostic statistics, SM I

Ag, Ap, Ay,
portmanteau (11 lags) 14.967 39.771 31.031
AR 1-2 F(2,14) 2.7774 [0.10] 2.8409 [0.09] 2.8596 [0.09)
Normality 2 (2) 1.9918 {0.37) 2.9474 [0.23] 6.2363 [0.04]*
ARCH 1 F( 1,14) 0.6280 [0.44] 0.1256 [0.73) 0.0375 [0.85]
Xi? F(8 7) 0.1988 {0.98) 1.2910 [0.37} 0.2511 [0.96]
Vector portmanteau (11 lags)= 95.868 v
Vector AR 1-2 F(18,31)= 1.1085 [0.39]
Vector normality ¥ (6) = 7.7788 {0.25]
Vector Xi’ F(48,28)= 0.8636 [0.68]

{(Note: “**’ denotes significance at the 5% level.)

The nine additional restrictions imposed are not rejected, as the outcome of the
likelihood ratio test clearly indicates (x2(9) = 7.9625(0.54)). Hence we may conclude
that SM I parsimoniously encompasses the PVECM.

The second model considered for parsimonious encompassing within the PVECM
framework is a VECM for the first differences of ¢;, ps, and y; (i.e. Ag, Aps, and Ayy).
This model corresponds to Eq.(10), but ignores the ecm~term (i.e. v = 0). As a system,
a VECM in first differences looks basically like Eq. (2) with II = 0, thereby ignoring
the long-run information contained in the data. In fact, this class of model has his-
torically been very popular in time series analysis of non-stationary data, especially
since the publishing of the seminal paper by Box and Jenkins [6]. Note that the re-
quirement 7 = 0 implies three restrictions, as compared to the PVECM. I will refer to
this second simplified model as SM II. A likelihood ratio test pursued at the 1% level
of significance shows clearly, however, that SM II does not parsimoniously encompass
the PVAR (x?(3) = 26.58(0.00)). As a consequence, we may conclude that the zero
frequency or long-run information contained in the cointegrating vector ecm; indeed
plays an important role in the modelling of ¢; (and p;) and once more demonstrates the
superiority of the VECM approach chosen.

A next important step in the analysis would be to test for the parameter constancy
of the various models introduced so far (see, for instance, Hansen [15] on this issue).
However, due to the existing lack of observations, I have refrained from taking this step

and have restricted myself to check the within—sample forecasting ability of SM I.
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Figure 7: Within-sample forecasting ability, SM I
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As can be seen from Figure 7, the forecasting performance of SM I is quite satisfact-
ory. The actual and forecast values seem to diverge concertedly, and the 1-step ex—post
forecasts are well within the 95% confidence intervals (error-bars denote & 2SE and
are based on the 1-step ahead forecast error variances, shown in relation to the realized

values).

5 Summary and Conclusions

The aim of the underlying study was to demonstrate how system analysis and general-
to—specific modélling of the Hendry—-type may be applied to residential energy demand
in order to avoid the problem of either nonsense regression outcomes or the loss of long—
run information. It could be shown that for the application given some adaptations are
necessary in order to align the desired economic model properties with those of the

standard statistical model used this context.
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In the analysis done I found some evidence for a single cointegrating vector which
appeared to be fairly stationary. The long-run energy demand elasticities derived from
the unrestricted general system were —0.02 for price, +1.13 for income, and -+-0.77 for
temperature. The long-run system of energy demand makes sense from an economist’s
point of view, in that the long-run income elasticity is close to unity, temperature
matters greatly, and price of energy obviously matters very little under a continued
declining or low price regime.

Several overidentifying restrictions on the as and (s have been tested in order to
check for weak exogeneity and a unitary long-run income elasticity. The hypotheses of

“weak exogeneity for both price and income in the long-run demand equation was not
rejected only for the lattér, and the hypothesis of a long-run income elasticity of unity
could — neither jointly with nor separately from the weak exogeneity hypothesis for
income — be rejected, providing some evidence that a single-equation model is indeed
not as appropriate as an analysis within a system.

The outcome of the investigation thereby confirms the justness of a system approach,
in which the starting point of the modelling process is the joint density function of the
variables, thereby taking more information about the underlying DGP into account than
could be done within a single-equation framework.

Two simplified models have been derived from the parsimonious VAR model as
short-run models rivalling each other, viz. SM I and SM II. While the former performed
just as well as the congruent system and appeared to fit the data well, .the latter ~ a
VECM in first differences — did not parsimoniously encompass the PVECM. Lastly, we
found that the error-correction term turned out to play an important role in the mod-
elling of the short-run behaviour of ¢; and p; (and much less for y;). In particular, after
conditioning on y;, it turned out that 80% of a disequilibrium in energy consumption
from its long-run value are eliminated in the first year, whereas in case of a price shock
53% of the total effect are absorbed in the same year. The FIML estimates for the SM
I showed that, apart from the error—correction term, only temperature changes and,
surprisingly, the dummy variable imp79 seem to have a significant impact on changes in

energy demand.
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In sum, it has been demonstrated how to employ a VAR system and multivariate
cointegration analysis for the modelling of residential energy demand, leading to a more
useful treatment of the non—stationarity inherent in the data than commonly done within
the framework of single-equation modelling.

Future research, however, will yet have to show whether the estimated low long-run
price elasticity is attributable to the approach chosen, the particular case studied, sub-
stitutional price-demand effects amongst fuels not reflected in the aggregate data, etc.
— or whether it is merely a result of including more recent data of the “low-price era”
in the data sample than earlier studies in this field of research did. Personally, I have got
the impression that the dramatic energy price developments over the past twenty-five
years limit the feasibility of simple log-linear functional forms in this context, mainly
due to the rather restrictive assumption of constant elasticities. In this respect, asym-
metric models of energy demand that are capable of discriminating between price rises
and falls, seem to be a promising tool for future studies (cf. Madlener [32] for a recent

discussion, references, and an empirical application in a single-equation context).
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