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Abstract

in his work on market signaling, Spence proposed a dynamic mode! of a signaling market in
which a buyer revises prices in light of experience and sellers choose utility-maximizing
signals given these prices. Spence also suggested that subjecting the dynamic process to
rare perturbations might allow one to choose between multiple equilibria. This paper
examines the effect of introducing such perturbations into Spence’s dynamic model. We find
that refinement results arise naturally from the dynamic analysis. In a broad class of
markets, our model selects a separating equilibrium outcome if and only if the equilibrium
outcome satisfies a version of the undefeated equilibrium concept, whereas a pooling
equilibrium outcome is selected if and only if the equilibrium outcome is both undefeated
and satisfies D1.
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1 Introduction

Signaling models often have many equilibrium outcomes, some of which seem more “plau-
sible” than others.! The equilibrium refinements literature attempts to formalize this
plausibility criterion by placing restrictions on out-of-equilibrium-beliefs which are in turn
motivated by considering the incentives for the various types of the informed player to
deviate from equilibrium.

Spence [11, 12] suggested an alternative approach to equilibria in signaling models. He
proposed a dynamic model in which agents adjust their beliefs and actions in response to
past market outcomes.? This dynamic model has many equilibrium (stationary) outcomes
and may also reach a cycle. Spence focussed his attention on the characterization of
equilibria, but suggested that the multiplicity of equilibrium outcomes and the possibility
of cycles might be addressed by considering a perturbed version of the dynamic process. In
particular, Spence [12, Appendix H] suggested eliminating equilibrium outcomes or cycles
that are not robust against arbitrarily small perturbations.

Kandori, Mailath and Rob [4] and Young [14], have recently shown that a dynamic
model incorporating both learning from past outcomes and the possibility of perturbations
Young examine (primarily) two-player 2 X 2 normal-form games with two strict Nash
equilibria. In this paper, we use related techniques to investigate whether models of
perturbed dynamics can produce equilibrium selection results for signaling models.

The basic dynamic we investigate, presented in Section 2, is Spence’s. Section 3
adds the perturbations and introduces the notion of a recurrent set, the tool we use
to describe the outcomes which emerge when considering arbitrarily small perturbations.
Our perturbations differ from those suggested by Spence, with these differences and their
implications discussed in Section 5.

Section 4 contains our main results. We find that there can exist at most two recurrent
sets of our dynamic process. One of these must contain all states corresponding to Riley
equilibria (the separating equilibria giving the sellers the highest possible payoffs among
separating equilibria). The other recurrent set must contain either the pooling equilibria
in which sellers use the signal that maximizes the high-quality sellers’ utility, given that a
pooling price is received, or must contain a cycle using this signal if such an equilibrium
does not exist. If such equilibria exist, we call them Hellwig equilibria.3 In a broad class
of markets, there is a unique recurrent set of the dynamic process. For example, this is
the case if the Riley and Hellwig equilibria use different signals. It is also the case in the

See Kreps and Sobel [5] for a recent survey of signaling models.
?Stiglitz and Weiss [13] also advocate a dynamic approach to signaling and screening models.
SHellwig [3] presents a game-theoretic analysis focusing on these equilibria.




commonly-studied variant of Spence’s model in which signals do not affect productivity
and a single-crossing property holds.

Our approach is based on following a dynamic model to its conclusions. However,
we find many refinement ideas reappearing in our results. A necessary and sufficient
condition for there to exist a recurrent set consisting entirely of separating equilibria
yielding the same equilibrium outcome is that they satisfy a version of Mailath, Okuno-
Fujiwara and Postlewaite’s [6] undefeated equilibrium concept, suitably adapted to our
framework. A sufficient condition for the existence of a recurrent set consisting entirely of
pooling equilibria yielding the same outcome is that the latter be undefeated and satisfy
Cho and Sobel’s [2] D1 concept, and these conditions are also necessary in a broad class
of markets.

For markets in which the undefeated equilibrium concept selects a separating equilib-
rium outcome (which is then the outcome generated by the Riley equilibria and commonly
also satisfies D1), our analysis thus supports the selection of this particular outcome. The
undefeated equilibrium and D1 concepts often conflict, generally because D1 selects a Ri-
ley equilibrium whereas the undefeated equilibrium concept selects a Hellwig equilibrium.
Neither the set of Hellwig equilibria nor the set of Riley equilibria will constitute a recur-
rent set of our model in such a case. Our approach accordingly does not select a unique
equilibrium outcome, though we can show that a unique recurrent set exists, which must
contain the set of Hellwig equilibria (as well as other equilibria or cycles).

The refinements literature has concentrated on choosing a single refinement to be
applied to all equilibria. In contrast, we find that different refinement criteria are relevant
for assessing separating and pooling equilibria, with the undefeated concept alone sufficing
to evaluate separating equilibria while both undefeated and D1 are relevant for pooling
equilibria. The applicability of these criteria arises out of the differing dynamics that
swrround separating and pooling equilibria. The informal intuition offered to motivate
equilibrium refinements is often dynamic, though the refinements are simply criteria for -
evaluating outcomes of a static model. One contribution of our work is to replace such
intuition with a model in which refinement ideas can appear directly as a result of the
underlying adjustment process.

Section 5 examines extensions of our model. Section 6 concludes. Proofs are gathered
in the Appendix.

2 The Spence Model

Despite the common identification of Spence with signaling, his is a,sc;‘eep_i_;;g,mbdel.“ A
single buyer first posts a price for each of a number of signals, where this price equals the
buyer’s expected value of purchasing from a seller who sends such a signal. A number
of sellers, some of low quality and some of high quality, then enter the market, observe
these prices, and choose the signals which maximize their payoffs. The buyer purchases
. from each seller at the price posted for the appropriate signal. The buyer then revises her

*Spence used the label “signaling” to describe equilibria of his screening model in which different types
of seller send different signals.




expected values to match the quality of the sellers at each signal that was sent by some
seller. The process is repeated in the next period with a new collection of sellers who come
in the same proportions of low-quality and high-quality as in the previous period.

Spence assumes that there is a single buyer who sets prices equal to expected values.
Why does the buyer set such “competitive” prices, and why is it reasonable to assume
that the buyer purchases from every seller? For Spence, these issues are unimportant, as
his interest lies in the question of how, given competitive prices, sellers may be able to
signal their types. We view Spence’s buyer as a convenient representation of a market
process in which there may be many buyers subject to forces that induce them to price
competitively. Modelling the process by which buyers are led to price competitively is an
important issue, but it is not the issue we want to pursue here. We accordingly follow
Spence in simply assuming that there is a single buyer who sets prices equal to expected
values. We then concentrate on the sellers’ choices of signals, leaving competitive behavior
for future work. ‘

2.1 The Market

—

We consider a market in which trading occurs in each of the time periods t € {1,2,...}.
There is a single buyer. At the beginning of a period, the buyer posts a price schedule
p: X — R that attaches a price p(z) to each of the signals in a finite set X = {z1,--+,z,}.
A finite number of sellers then enter the market, H of whom are endowed with one high-
quality unit of a commodity and L of whom are endowed with one low-quality unit of a
commodity. We use the subscripts £ and h to identify low-quality sellers and high-quality
sellers and let ¢° = H/(H + L) denote the fraction of high quality-sellers. Sellers know
the quality of the commodity with which they are endowed. Each seller observes the price
schedule, chooses a signal z, and sells his commodity to the buyer at price p(z). The sellers
then exit the market, with H new high-quality and L new low-quality sellers entering next
period.

The buyer purchases from all of the sellers. The payoff to the buyer from each unit
purchased at price p from a seller who is of type ¢ € {¢, 1} and who has sent signal z € X
is given by:

'Uq(x) - D,

where v,(z) denotes the value of a unit purchased from a g-quality seller who has sent
signal z. The expected value of a unit which is high-quality with probability ¢ is then
v(z, ¢) = vn(z) + (1 - ¢)ve(z). The payoff to a seller from choosing signal z and receiving
price p is given by

p- Cq(m)a

where ¢g : X — R is a function identifying the cost of sending signal z for a seller of type
q € {{,h}.

The buyer begins each period with a belief ®(z) that associates, with every signal z,
the proportion of sellers sending signal z who are high quality (or the probability that a
single such seller is high quality). Given her belief, the buyer prices competitively, meaning
that the buyer sets the price p(z) equal to her expected value of buying from a seller who




sends signal z, or:
p(z) = v(z, ®(z)). (1)

In order to work with a finite Markov process, we follow Spence {12, Appendix H] in
assuming that the buyer’s beliefs are contained in T, a finite subset of [0, 1] that includes

{0,¢°,1}.%
Let ug : X X T — R be defined by

ug(z,¢) = v(z,¢) — ¢o(2).

Then uq(z, ®(z)) gives the utility to a seller of type ¢ sending signal = given that the buyer
has belief ®(z) and hence sets p(z) = v(z, ®(z)). We assume:

Assumption 1
(1.1) For allz € X,
vn(z) > ve(z).

(1.2) For all (z,¢) # (z',¢') and q € {{, R},
uq(%‘ﬁ) :?é uq($17¢,)'

Assumption 1.1 indicates that a high-quality seller is always more valuable to the buyer
than a low-quality seller. This in turn implies that ug(z, ) is strictly increasing in ¢.
Assumption 1.2 is a genericity assumption, ensuring that for any belief ®(z), each type of
seller has a uniquely determined utility-maximizing signal, given by

T, = arg mf.xuq(x,é(a:)), g€ 4L h. (2)

All low-quality sellers choose the signal z, and all high-quality sellers choose the signal
Zh.

A tuple 0(t) = (®(t), ze(t), zn(t)), where z4(t) satisfies (2) for ¢ € {£, h}, specifies a
state of the market at time t. We use © to denote the set of possible states. Because
(2) uniquely fixes sellers’ actions given ® we will often speak of (®(t), z¢(t), z4(t)) as the
state induced by &(t).

2.2 Dynamics

After transactions at time t are completed, the buyer’s belief ®(z) is adjusted to match
the buyer’s experience. For any state § = (®,zy, 1), we let v(z;) and v(zp) (where we
suppress the dependence of v(-) on §) be given by:

v(ze) =0, v(zp) =1 if ¢ # zh
v(ze) = ¢° = v(zp) if o= xp,.

*T may be very large. The important points are that Y is finite and T contains those beliefs that
can be generated by the buyer s experience. Throughout the main part of our analysis these beliefs are
{0,¢°,1}. Other beliefs can appear-in“some of the extensions of the model considered in Section 5, and
will then be assumed to be in T.




Then define state s(6) = (', z}, z},), the successor of state 8, as

®(z) = &(z) if =& {z¢4,zh} (3)
&'(z) = v(z) if z € {zg,zn}. (4)
Ty = argmaxuy(s,®(z)), gq€ {4, A} (5)

Hence, s(f) is the state obtained from 6 if the buyer’s belief remains unchanged at those
signals that are not used in §, and is updated to reflect the buyer’s experience at those
signals, namely z4, that are sent in 6.

A deterministic dynamic process is then obtained by specifying that each state is
followed by its successor. More formally, letting 6(t) be the state at time ¢, the dynamics
are specified by an initial state §(0) and the adjustment rule that for all ¢ > 0, () =
s(0(t — 1)). We refer to this deterministic process as the Spencian dynamic.

For any state 8 € © let

SO)={0)3T>20:6¢ =s7(8)},

where s9(6) = 6 and sT(8) = s(s7~1(8)). Then S(6) is the set of states which arise if the
Spencian dynamic is started from the initial state §. A set C C © is closed under the
Spencian dynamic if V8 € C : S(f) C C. A non-singleton set C is a cycle if ¥ € C :
S(6) = C. A state € © is a stationary state of the Spencian dynamic if S(§) = s(6) = 6.
Since the state space of the Spencian dynamic is finite, the dynamic must lead, in finite
time, either to a stationary state or a finite cycle.

It follows immediately from the definition of the dynamics that:

Lemma 1 A state (2"(z),z},z}) is a stationary state of the Spencian dynamic if and
only if
®(zy) = v(zy) g€ {Lh}).

A stationary state of the Spencian dynamic is thus a state induced by a belief for the
buyer that correctly identifies the proportion of high-quality sellers at each signal that
is sent by any seller, given that the buyer sets prices equal to expected values (from 1))
and given that sellers choose utility-maximizing signals given prices (from (2)). These
conditions correspond precisely to the ones Spence used to define an equilibrium and are
also the conditions which characterize pure strategy sequential equilibria in the signaling
game Cho and Kreps [1] proposed as a model of market signaling. We will accordingly often
refer to stationary states as equilibria. If z] = z}, then we have a pooling equilibrium
while z; # z} gives a separating equilibrium.

Let

z = arg max u(z, 0). (6)

Then z is the signal low-quality sellers would prefer to send if, at whatever signal they send,
they receive the price that the buyer sets when she expects sellers to be all low-quality.
In every separating equilibrium, all low-quality sellers use g.

Spence notes that his dynamic process will lead either to an equilibrium or to a cycle,
but he does not characterize cycles. We can obtain a precise and useful characterization




of such cycles. The proof of the following (and the proofs of all subsequent Lemmas and
Propositions, unless otherwise noted) is contained in the Appendix:

Lemma 2

(2.1) Every cycle of the Spencian dynamic contains two states. For every such cycle
there exists a signal =° such that one of these states, say 8 = (D,zy,z1), satisfies x4 =
zp = z¢ and $(z°) = 1 whereas the other state, ¢’ = (', 2}, z}), satisfies ) = z°, 2}, =z,
and &' (z¢) = ¢°.

(2.2) A two-cycle of the Spencian dynamic in which z, = =), = z° ezists if and only if

uh(zcaqbo) > mgx{u;,(a:,O)} (7)
ug(z,1) > ue(z,0) > up(z%,¢4%). (8)

Lemma 2.1 indicates that high-quality sellers always send the same signal in every state
of a cycle. Letting z° denote this signal, we then have that low-quality sellers alternate
between sending z¢ and sending z. The buyer always expects sellers at z to be low-quality,
while beliefs at z° alternate between high-quality and the pooling belief ¢°. In particular,
we can think of low-quality sellers first sending z and high-quality sellers sending z°.
Upon revising her beliefs accordingly, the buyer then offers price v(z 1) at signal z°.
Low-quality sellers then find it optimal to switch to z°. This causes the buyer to reduce
the price at z° to v(z° ¢°), inducing the low-quality seller to return to signal z, and
beginning the cycle anew. The existence conditions in (7)—(8) state that it must always be
optimal for the high-quality seller to send z° (condition (7)) while the low-quality seller
prefers the high-quality price v(z¢, 1) at z° to the low-quality price v(z,0) at z, which he
prefers to the pooling price v(z¢, ¢°) at z°.

If a cycle exists in which high-quality sellers are always using signal z°¢, we call it a
cycle at z°. We call ¢ the pooling state and 6’ the separating state of the cycle.

It is immediate that a two-cycle involving signals z and z° exists only if there exists
a mixed-strategy equilibrium of the corresponding Cho-Kreps [1] signaling game in which
high-quality sellers send z¢ and low-quality sellers mix between g and z°. Two-cycles thus
correspond to mixed equilibria of the Cho-Kreps signaling game in the sense that the set
of signals sent in the former by each type of seller is the support of the distribution of
signals sent by that seller in the latter.6

Section 5 describes how the model could be altered to eliminate cycles. We do not do
so because the resulting analysis is more tedious and because we encounter no difficulties
in analyzing the model with cycles. However, we find it easiest to interpret the results if
one thinks of the cycles as corresponding to mixed equilibria.

3 Perturbations

The Spencian dynamic reaches either an equilibrium or a two-cycle. But there may be
many equilibria and two-cycles. Which ones are worthy of our attention?

*The average frequencies with which the signals are used across the states in the cycle need not match
the probabilities in the mixed equilibrium. The Cho-Kreps signaling game may have other mixed strategy
equilibria which do not correspond to any of the limits of the Spenciar dynamic.




To answer this question, we associate with each state § = (¢, 2y, z4) a non-empty set
of perturbed states P(#) with the following property:

Assumption 2 For all states § € O:
(2.1) s(9) € P(9)
(2.2) P(6) C {¢|¢/(zq) = v(zq),q € {¢, h}}

(2.3) {0’13z & {z¢, 71} : ¥'(2) # 2(2), ¢'(zq) = v(zg),q € {£,h}} C P(6).

Assumption 2.1 states that perturbations may have no effect on the state, leaving us
simply with the successor $(#) produced by the Spencian dynamic in the absence of a
perturbation. This ensures that P(f) is always non-empty. Assumption 2.2 places an
upper bound on the states that can arise through perturbations. In particular, perturbed
states that differ from s(#) must satisfy (4)-(5), though they need not satisfy (3). Hence, a
perturbation can be interpreted as arising from an alteration in the buyer’s beliefs, where
this alteration affects only beliefs at signals that were not sent in the previous period.
Finally, Assumption 2.3 requires that all those states in which the seller’s belief at one
(and only one) unused signal is changed in an arbitrary way are feasible perturbations.

We then define the perturbed Spencian dynamic as follows: Let § be the state of the
dynamic at time t. With probability 1 — A, the period ¢ + 1 state is unperturbed and
hence 6(t + 1) is given by s(f). With probability A, however, a perturbation occurs, in
which case (¢ + 1) is drawn from a probability measure that depends only on 8 and has
full support on the set of possible perturbations P(8).

For every perturbation rate A € (0,1) (fixing all other probabilities), the perturbed
dynamics constitute a Markov process, which we refer to as I'()). Let A4;,..., A, be the
absorbing sets of the process I'(1), where an absorbing set is a minimal set of states that
is closed under I'(A). Notice that there may be multiple absorbing sets, and that the
identity of these sets is independent of A. For each absorbing set A;, there is a unique
stationary distribution with support A;. We are interested in the behavior of our perturbed
dynamics as the probability of a perturbation becomes small. We accordingly focus on
limit distributions:

Definition 1 A4 limit distribution is given by ¢; = limyxg j(}), where ((X) is the
unique stationary distribution of I'(A) with support on absorbing set A;.

Our basic tool for characterizing limit distributions is the concept of a recurrent set:

Definition 2 A nonempty set of states R is recurrent if R is a minimal set of states
such that

(2.1) R is closed under the Spencian dynamic;

(2.2) If 8 € R and §' € P(6), then S(6') N R # 0, that is, the (unperturbed) Spencian
dynamic reaches a state in R starting from any perturbed state §' in P(8).




Lemma 3 7 A recurrent set erists. Every recurrent set R is the union of equilibria and
cycles of the Spencian dynamic and hence UgcgS(0) = R. Recurrent sets are disjoint.

A recurrent set is stable against single perturbations in the following sense. From any state
in a recurrent set that can be reached via a single perturbation, the Spencian dynamic
must ultimately reach an equilibrium or a cycle of the Spencian dynamic contained in the
recurrent set. Hence, once the unperturbed dynamic has reached a state in a recurrent
set, single perturbations cannot cause the dynamic to converge to an equilibrium state or
two-cycle not contained in the recurrent set.

The minimality requirement in the definition of a recurrent set ensures that a recurrent
set does not contain a subset of states from which it is impossible to reach the other states
in the set with a single perturbation. This in turn implies that, through a sequence of
perturbations followed by adjustment to an equilibrium or two-cycle, it is possible to reach
any state in a recurrent set from any other state in the recurrent set.

Rabin and Sobel [8] also examine recurrent sets, though they restrict attention to
recurrent sets consisting of equilibrium states and do not investigate the possibility or
recurrent sets consisting of cycles. For Rabin and Sobel, the concept of a recurrent set
is their basic solution concept, and [8] contains an intuitive justification for using such a
concept.? We are interested in recurrent sets because:

Lemma 4

(4.1) If there is a unique recurrent set R then there is a unique limit distribution (*
and the support of ¢* is R.

(4.2) If there are multiple recurrent sets, then the support of any limit distribution is
a unton of recurrent sets. '

In all but one of the cases we encounter, we shall find that for every specification
of perturbations satisfying Assumption 2, a unique recurrent set exists. From Lemma
4.1, there is then a unique limit distribution whose support coincides with the unique
recurrent set. In addition, we will establish conditions under which all of the states in the
unique recurrent set give the same outcome, obviating the need to characterize the limit
distribution beyond its support.

4 Recurrent Sets and Equilibrium Selection

For every signal z, define E(z) to be the set of states that are equilibria in which the
high-quality seller sends signal z or are members of two-cycles in which the high-quality
seller sends . We refer to the sets F(z) as components. Note that if a component E(zx)

"Lemmas 3 and 4 holds for any specification of perturbations P(§).

8Rabin and Sobel [8] differs from our work in two other important respects. Their work with a different
dynamic based on iterating the best response correspondence of a Cho-Kreps signaling game. They also
start with a given equilibrium refinement, use this refinement to derive a set of feasible perturbations,
and then ask whether the recurrent sets of equilibria which emerge from such perturbations coincide with
the predictions made by the given refinement concept. If given a different refinement, they will derive a
different set of perturbations and a different collection of recurrent sets to be checked.




contains a pooling equilibrium, then it contains only pooling equilibria. The same is true
of separating equilibria or two cycles.

We begin our study of recurrent sets with the observation that recurrent sets select
components rather than states. This follows from the fact that states which yield the same
outcome and hence differ only in the prices offered at unused signals can be connected
through a sequence of perturbations:

Lemma 5 Let R be a recurrent set. For all z, either E(z) C R or E(z)N R =§.

Lemma 5 tells us that recurrent sets are unions of components, but does not tell
us which components will appear in a recurrent set. To address this question we need
to investigate whether perturbations allow the system to move from one component to
another. Towards this end, define

r(z) = {Z|30 € E(z),0 € E(%),6' € P(6) : 6 € S(6)}. (9)

We say that the component E(Z) can be reached from the component E(z) if # € r(z).
In such a case, there exists a state § in E(z) from which a perturbation yields a state
¢’ from which the Spencian dynamic in turn leads to a state 6 in E(Z). Note that from
Assumption 2.1, we have z € r(z) for all non-empty sets E(z). The following result is
then an immediate consequence of the definition of a recurrent set and Lemma 5 (and
hence its proof is omitted):

Lemma 6 ’

(6.1) Let =’ € r(z). If E(z) is contained in a recurrent set then E(z') is contained in
the same recurrent set.

(6.2) Let E(z) be non-empty. Then E(z) is a recurrent set if and only if r(z) = {z}.

4.1 Uniqueness of Recurrent Sets

We now establish conditions under which there is a unique recurrent set. We first show
that there exist signals z* and Z such that the component E(z*) can be reached from
all components of pooling equilibria or two-cycles, whereas the component E(Z) can be
reached from all components of separating equilibria. It then follows from Lemma 6.1 that
there can be at most two recurrent sets. The first signal is

T = argmgxuh(m,gﬁo). (10)

The signal z* is the signal high-quality sellers would choose if the buyer were to believe
that signals convey no information. In particular, if a pooling equilibrium at z* exists,
then such an equilibrium gives the high-quality sellers the highest utility achievable in a
pooling equilibrium. Note that if a pooling equilibrium fails to exist at z*, then there
must exist either a separating equilibrium in which z, = z* or a two cycle with z¢ = z*,
so we always have E(z*) # 0.9

’To verify this, let $(z) = 0 for all z # z* and ®(z*) = ¢°. Then the definition of z* ensures that
high-quality sellers send signal z*. If low-quality sellers also send 2°, we have a pooling equilibrium. If
not, then low-quality sellers send z. If ue(z,0) < ue(z®,1), then conditions (7)-(8) hold and we have a
two-cycle with z° = 2*. If ue(g,0) > us(z*, 1), then setting $(z*) = 1 yields a separating equilibrium with
zh=z".




For our next signal, let

X = {z|ue(z,1) < ue(z,0), up(z,1) > rr;z;.xuh(x',O)}. (11)

The set X is the set of signals = such that there exists a separating equilibrium in which
type h chooses z. Then let

== arg max, .z uh(z, 1) ?fz%@
z* ifX=0

Hence, if the set X is nonempty, meaning that at least one separating equilibrium exists,
then % is the signal sent by the high-quality seller in a separating equilibrium that gives
high-quality sellers the highest utility level achievable in a separating equilibrium. It
may happen, however, that there is no separating equilibrium. In this case, we find it
convenient to set T = z* in order to ensure that the signal Z is still well-defined and the
set E(Z) is non-empty.

If E(z*) is a set of pooling equilibria and F(Z) is a set of separating equilibria, then
these sets are familiar from the refinement literature:

Definition 3 A separating equilibrium 6 with z) =T is a Riley equilibrium. A pooling
equilibrium 0 with x4 = z, = z* 1s a Hellwig equilibrium. We call the set of all Riley
equilibria the Riley set and the set of all Hellwig equilibria the Hellwig set.

These terms are motivated by Riley [9], who offers Riley equilibria as the preferred solution
in a screening model, and Hellwig [3], who uses the concept of a stable equilibrium to
select a Hellwig equilibrium in a variant of a screening model with many buyers who
simultaneously set price schedules and can refuse to trade with some sellers after sellers
have chosen their signals.

Proposition 1 Let R be a recurrent set. If R contains a separating equilibrium then it
contains E(Z). If R contains e pooling equilibrium or a cycle then it contains E(z*).
Hence, every recurrent set contains either E(Z) or E(z*) and there are at most two recur-
rent sets.

The intuition for Proposition 1 is straightforward. Consider, for example, a separating
equilibrium which is not in the Riley set. Given such an equilibrium a single perturbation
(resulting in the price offer v(Z,1) at signal Z) will induce high-quality sellers (but not
low-quality sellers) to switch from their equilibrium signal to . The resulting state is a
Riley equilibrium and it then follows from Lemma 6.1 that any recurrent set containing
the original separating equilibrium must also contain all Riley equilibria. The argument
for pooling equilibria or two-cycles is similar, the idea again being that a perturbation
which yields the price v(z*, ¢%) at signal z* will suffice to induce high-quality sellers to
switch to z*.

We can give a simple example of a market with two recurrent sets.

Example 1  Consider the market shown in Figure 1. There are two signals in this
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v(z,0) v(z, 4% wv(z,1) v(Z,0) »(Z,¢%) v(Z,1)
Uy 2 5 8 -6 -3 0
Uup 2 5 8 -2 1 4
z=2z" z

Figure 1: A market with two recurrent sets

market, z (which is also z*) and Z. The set T contains three beliefs, 0, ¢° or 1. Hence, for
each signal, there are three possible prices, given by v(,0), v(:, ¢?), and v(-,1). The first
row gives the payoffs of an L seller from each signal and price combination. The second
row gives the payoffs of an H seller from each signal and price combination.

The Hellwig set E(z") consists of pooling equilibria in which both sellers send signal
z*. The Riley set E(Z) consists of the unique separating equilibrium in which z; = z and
zp = Z. Both the Hellwig and Riley sets are recurrent. Because u,(z*,¢%) = 5 > ug(Z, P)
for all ¢ € {0,¢°,1} and ¢ € {£, h}, the Hellwig set E(z*) contains all states 6 satisfying
z¢ = zp = z* = z and ®(z*) = 47, Since perturbations only affect beliefs at unused
signals, it follows that every perturbation of any state in E{(z*) results in another state in
E(z*). Hence, the Hellwig set is recurrent. Since there are no unused signals in the Riley
equilibrium, the set of feasible perturbations consists of the Riley equilibrium itself and
the Riley set is thus recurrent.1? O

The market in Figure 1 is rather special in that the Hellwig equilibrium uses the same
signal as low-quality sellers use in the Riley equilibrium (z = z*). The two recurrent sets
also coincide with the Riley and Hellwig sets (rather than simply containing the latter, as
is ensured by Proposition 1). We can show that this is not an artifact of this example. All
markets with two recurrent sets have these properties:

Proposition 2 If z* % z then there ezists a unique recurrent set. If z* = z then either
there exists a unique recurrent set or both the Hellwig set and the Riley set are recurrent
sets.

In some cases the existence of a unique recurrent set is immediate from Proposition
1. If the market has no separating equilibrium, then every recurrent set must contain
E(z*) and uniqueness then follows from Lemma 3. At the other extreme, if E(z*) is a
set of separating equilibria then every recurrent set containing F(z*) must also contain
the Riley set and there is again a unique recurrent set.!! Hence, suppose that the Riley
set is non-empty and E(z*) is either a component of pooling equilibria or two-cycles. If
z* # gz, then the proof of Proposition 2 proceeds by showing that either the Hellwig set
can be reached from the Riley set, so that z* € r(T), or the Riley set can be reached

1®More complicated versions of this example, with more signals, can be constructed in which the sepa-
rating equilibrium does not use all of the signals.

111t follows from Step 1 in the proof of Proposition 2 that in this case the unique recurrent set is exactly
the Riley set.
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from the Hellwig set, giving T € r(z*). In either case uniqueness of the recurrent set is
assured from Lemma 6.1. If £ = z* the uniqueness argument is more complicated. It is
shown that unless both the Riley set and the Hellwig set are recurrent, there must exist
a component E(Z) such that either it is the case that £ € r(Z) and z* € r(Z) or it is the
case that Z € r(z*) and T € r(Z), so that it is either possible to reach the Riley set from
the Hellwig set with an intermediate step through F(Z) or the other way round.

Note that z* = z is only a necessary and not a sufficient condition for the existence
of two recurrent sets. The following sections show that the additional condition requiring
both the Riley set and the Hellwig set to be recurrent is very stringent. There will thus
often be a unique recurrent set, and hence a unique limit distribution with this support,
even though z* = z.12

4.2 Equilibrium Selection

Proposition 1 and Lemma 6.2 tell us that the Riley set and the Hellwig set are our only
candidates for recurrent sets whose members all produce a single equilibrium outcome.
This section establishes conditions under which these sets are recurrent.

Identifying such conditions is an exercise analogous to that of the equilibrium re-
finements literature, which attempts to identify those equilibrium outcomes which are
impervious against further deviations once they are reached. It is generally taken for
granted when studying a favorite refinement that only equilibria satisfying the refinement
deserve further study, presumably because other equilibria are susceptible to deviations.
This ignores the issue of whether there are larger sets of equilibria which deserve attention
because the set as a whole is stable against deviations, even if its individual members are
not. As Rabin and Sobel [8] note, the members of such a set would be stable not because
it is impossible for deviations to lead away from them but because it is easy for deviations
from other equilibria to lead to them. In our framework, Proposition 2 implies there can
be no such set if either the Riley set or the Hellwig set meets our “refinement condition”
of being recurrent. Hence, if just one of the Riley or Hellwig sets is recurrent, then our
model selects that component.

We consider Riley equilibria first. The Riley set is recurrent if and only if it is im-
possible to lure high-quality sellers away from the Riley equilibria with the promise of a
pooling price at another, unused signal:

Proposition 3 Suppose the Riley set is non-empty. Then the Riley set is a recurrent set
if and only if
Ve#z,  un(z,¢°) <up(z,1). (12)

To see the intuition behind this result, consider a Riley equilibrium. While a perturba-
tion can produce a state that induces sellers to leave their equilibrium signals, subsequent
adjustments can never cause the buyer to alter the price at these equilibrium signals.
Each type of seller will prefer to return to his own equilibrium signal instead of sending

3If two recurrent sets exist, then Proposition 2 and Lemma 4.2 imply that the support of any limit
distribution contains only Riley equilibria or Hellwig equilibria.
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the equilibrium signal of the other type, so the buyer never has cause to revise beliefs at
the original equilibrium signals. Hence, just as is presumed in most refinement concepts,
the original equilibrium payoff always remains “available” for sellers after a deviation from
a separating equilibrium has occurred. The Spencian dynamic then cannot converge to
an equilibrium (or cycle) in which some type of the seller receives a lower payoff than in
the original equilibrium. If the Riley set fails to be recurrent, it must accordingly be that
a perturbation allows the Spencian dynamic to reach an equilibrium or cycle in which
sellers earn higher payoffs than in the Riley equilibrium. From the definition of the Riley
equilibrium, no other separating equilibrium provides such payoffs. A sufficient condition
for recurrence is then that no pooling equilibrium or cycle provides such a payoff, which is
just what (12) ensures. The remainder of the proof consists of showing that condition (12)
is also necessary, meaning that if there is a signal z with the property that high-quality
sellers prefer signal z and price v(z, ¢°) to the Riley equilibrium, then we can can find a
perturbation such that the Spencian dynamic converges to a pooling equilibrium or cycle
in which the high-quality sellers receive a higher payoff than in a Riley equilibrium and
low-quality sellers receive at least as high a payoff.

While it is easy to find sufficient conditions for the recurrence of a Hellwig set, necessary
conditions are a bit more subtle:!3

Proposition 4 Suppose the Hellwig set is non-empty. Then:
(4.1) The Hellwig set is recurrent if for all x # z*,

Vo:  up(z,d) > un(z®, ¢%) = ulz, ) > ug(a*, ¢°). (13)

(4.2) If there ezists a signal x # z* violating (13) and either (a) E(z) # 8, or (b) the
Riley set is non-empty, or (c) z* # arg max, up(z,0), then the Hellwig set is not recurrent.

If condition (13) holds for all signals, then it is impossible to find a perturbation such
that only high-quality sellers, but not low-quality sellers, are induced to leave z*. This
implies that the buyer will never revise her belief downward at z*. As a result, starting
with a perturbation of a Hellwig equilibrium, throughout the ensuing Spencian dynamic
both types can ensure at least their equilibrium payoff from the Hellwig equilibrium by
using z* (just as in the case of the Riley equilibrium). In addition, since there is no
equilibrium or pooling state of a cycle giving both types a higher utility level than the one
from a Hellwig equilibrium, it follows that the Spencian dynamic must converge back to
a Hellwig equilibrium, ensuring that the Hellwig set is recurrent.

12 Because we think of cycles as approximations to mixed strategy equilibria, it is interesting to note that
necessary and sufficient conditions for E(z") to be a recurrent set when E(z") is a set of two-cycles are quite
similar to the ones obtained in Proposition 4 for Hellwig sets. (It is obvious from Proposition 1 that no other
set of two-cycles can be recurrent.) The main difference is that one needs to consider two cases, namely
perturbations of pooling states and perturbations of separating states. First, a necessary and sufficient con-
dition which ensures the Spencian dynamic must return to a cycle in E(z*) starting from any perturbation
of a pooling state in this set is that there does not exist a Riley equilibrium satisfying us (Z,1) > ux(z", ¢°).
Replacing condition (13) by the condition that V¢ : ua(z,4) > ua(2®,1) = ue(z,¢) > ue(z,0) through-
out the statement of Proposition 4 (and requiring this condition for all z ¢ {z*,z}) gives necessary and
sufficient conditions for stability against perturbations which affect the separating state of a cycle in E(z*).
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v(2*,0) v(z”,¢%) wv(z*1) v(z,0) v(z,¢°) v(z,1) v(2,0) v(z,4%) v(&1)

Uy 0 10 20 2 15 25 —40 -30 5
Up 0 10 20 -8 5 15 —20 —~10 25
z* z z

Figure 2: A recurrent Hellwig set that fails condition (13)

Turning to the necessary conditions, note that if condition (13) fails for some signal,
then there exists a perturbation causing only high-quality sellers to leave signal z* while
low-quality sellers remain. The price offered at z* will then drop to v(z*,0), implying that
the payoff from the original Hellwig equilibrium is no longer available. The additional
conditions appearing in Proposition 4.2 ensure that, starting from such a perturbation,
the Spencian dynamic will converge to an equilibrium or cycle not contained in the Hellwig
set. Without such additional conditions it is possible that the Spencian dynamic must
converge back to an Hellwig equilibrium. For example, it may be that condition (13) fails
but all limits of the Spencian dynamic are Hellwig equilibria.

The following example demonstrates that the conditions in Proposition 4.2 cannot be
weakened to simply require the existence of some component different from the Hellwig set.
The Hellwig set fails (13) in this market, but any perturbation of a Hellwig equilibrium
yields a state from which the the Spencian dynamic converges to a Hellwig equilibrium.

Example 2 Consider the market shown in Figure 2. By simply considering all of the
possibilities, one can verify that this market has no separating equilibria or two-cycles.
As a result, there is only one recurrent set. The only equilibria are pooling equilibria at
z* (the Hellwig set) and z. The Hellwig set E(z*) fails condition (13) in Proposition 4
(the signal-belief pair (£,1) violates (13)). Nevertheless the Hellwig set is recurrent. To
see this, note that every state in E(z) must satisfy ®(z*) = 0 and &(%) < ¢°. Since both
types are using z” in a Hellwig equilibrium and perturbations only affect unused signals,
making the transition from a Hellwig equilibrium to an equilibrium in E(z) thus requires
the Spencian dynamic to reach a state in which low-quality sellers are using z* (to achieve
®(z*) = 0) and high-quality sellers are using z (to ensure ®(%) < ¢%) . But there are no
such states: whenever z* is a best response for low-quality sellers, either z* or  is the best
response for high-quality sellers. Hence, perturbations of states in the Hellwig set lead to
dynamics that cannot converge to F(g) and accordingly must converge to E(z*), making
the Hellwig set recurrent and hence making it the unique recurrent set of this market. O

4.3 Interpretation

The results of Propositions 3 and 4 resemble those that have emerged from the equilibrium
refinements literature. First, consider the Riley equilibrium. Mailath, Okuno-Fujiwara
and Postlewaite [6] have recently introduced the notion of undefeated equilibrium. In our
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model, their definition becomes!*
Definition 4 Let 6 be an equilibrium. Then an equilibrium ¢’ defeats 6 if there ezists a
signal o’ with &’ ¢ {4,214} and 2’ € {z},z}}, such that, for g € {£,h},

g’ = 2 = ug(z', ¥'(2)) > ug(z, ¥(x)). (14)

A two-cycle defeats 8 if its separating state 0’ satisfies (14). An equilibrium 6 is unde-
feated is there is no equilibrium or cycle defeating it.

It follows immediately from (14) and (12) that the Riley set is recurrent if and only
if the Riley equilibria are undefeated. Since all separating equilibria which are not in the
Riley set are defeated by a Riley equilibrium, Proposition 3 is thus equivalent to:

Corollary 1 A component of separating equilibria is a recurrent set if and only if the
equilibria are undefeated.

Hence, our results do not match the recommendations of the Intuitive Criterion of Cho
and Kreps [1] (and the refinements of this concept), which shows a proclivity to select
separating equilibria even when they are defeated by pooling equilibria.

Now consider pooling equilibria. The criterion (13) in Proposition 4.1 is the statement
that Hellwig equilibria satisfy the counterpart of the D1 criterion in our model.1® An
undefeated pooling equilibrium must be the Hellwig equilibrium, since any other pooling
equilibrium is defeated by the members of E(z*), whether these members are Hellwig
equilibria or cycles. We thus have that being undefeated and satisfying D1 suffices for a
component of pooling equilibria to be recurrent. Proposition 4 provides conditions under
which undefeated and D1 are necessary, giving:16

Corollary 2 Let E(x) # @ for allz or let (b) or (c) of Proposition 4.2 hold. A compoﬁent
of pooling equilibria is recurrent if and only if the equilibria are undefeated and satisfy D1.

One interesting aspect of these results is that we obtain different refinement criteria
for assessing separating and pooling equilibria. For an equilibrium to be recurrent in

1 We make two modifications to Mailath, Okuno-Fujiwara and Postlewaite’s definition. First, Assump-
tion 1.2 allows us simplify their definition by avoiding issues connected with payoff ties. Second, we allow
cycles as well as equilibria to defeat an equilibrium. We view this as the counterpart of allowing mixed
strategy equilibria to defeat other equilibria in Mailath, Okuno-Fujiwara and Postlewaite's model. If we
allowed only equilibria to defeat other equilibria in our model, then being undefeated would be necessary
but not sufficient in the following results.

*In particular, the D1 criterion, as defined by Cho and Sobel [2], formalizes the requirement that it
be possible to support an equilibrium outcome with beliefs whose support contains only sellers with the
strongest incentive to deviate. Under our assumptions, this requirement implies only that if (z, ¢) violates
the condition that for all ¢, ua(z,¢) > ur(za, ®(2a)) = ue(z, $) > ue(ze, ®(x¢)) with z & {z¢,z4}, then
%(z) = 1. But then z, is not a best reply for high-quality sellers and the equilibrium cannot be supported
by beliefs with $(z) = 1. A Hellwig equilibrium accordingly satisfies D1 in our model if and only if (13)
holds for all z # z°.

18To see that being undefeated is necessary, notice that if a Hellwig equilibrium is defeated, then it is
defeated by a separating equilibrium, in which case ¥ violates (13).
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our market, it must be impossible for a perturbation to prompt learning dynamics that
lead to an alternative component. If we replace “perturbation” with “deviation” and
replace “learning dynamics” with “inferences drawn from the deviation”, this appears
very similar to the heuristic justification underlying the undefeated equilibrium concept.
In particular, we share with the undefeated concept, the stress on the existence of an
alternative equilibrium. It is then no surprise that our results come close to that of the
undefeated equilibrium concept. Differences arise because the undefeated concept shares
with the rest of the equilibrium refinements literature the assumption that the original
equilibrium always remains available while agents contemplate the effects of a deviation. In
contrast, our model allows the possibility that in the course of the adjustments prompted
by a perturbation, the original equilibrium prices are affected and sellers are accordingly
induced to choose signals they would not have chosen had the original equilibrium prices
remained available. This possibility does not arise in the case of a separating equilibria
and being undefeated is accordingly necessary and sufficient for a separating equilibrium
to be recurrent. However, it is to preclude this possibility that the conditions for the
recurrence of a component of pooling equilibria include D1.

4.4 Recurrent Sets with Multiple Outcomes

Propositions 3 and 4 provide conditions under which the Riley and Hellwig sets are recur-
rent. If one of these sets is recurrent, then we know from Propositions 1 and 2 that either
it is the unique recurrent set or both the Riley and Hellwig sets are recurrent. What if
neither the Riley nor Hellwig sets is recurrent?

The proof of Proposition 2 shows that if the Riley set fails to be recurrent but is
nonempty, then there exists a component of pooling equilibria or two-cycles which can be
reached from the Riley set. In conjunction with Propositions 1 and 2, this immediately
gives the following (which is accordingly stated without proof):

Proposition 5 If neither the Riley nor Hellwig sets is recurrent, then there is a unique
recurrent set containing E(z*).

We thus have a unique recurrent set containing either the Hellwig set or a set of cycles
at z*.17 Because the Hellwig set is not recurrent, however, the unique recurrent set
must contain other outcomes in addition to the Hellwig equilibria whenever the latter is
nonemp‘cy.l8

We have an algorithm for calculating this unique recurrent set: Begin with F(z*) and
iteratively apply the operation r. We know that E(z*) is contained in the recurrent set
(from Proposition 5), and hence so are all components E(z) with z € r(z*) (from Lemma
6.2), and hence so are all components which can be reached from some E(z) which can
be reached from F(z*), and so on until a fixed point is obtained. This calculation is
often quite tedious, however, preventing the achievement of general results. The following

17 Examples are easily constructed in which a Riley equilibrium exists but is not contained in this unique
recurrent set,

1%Footnote 13 provides conditions under which the recurrent set consists precisely of the set of cycles
E(z*).
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example illustrates the calculation for the commonly-studied version of the Spence model
in which values do not depend on signals and the single-crossing property holds.

Example 3 We assume there exists a function v(¢) : T — R such that forall z € X,

v(z, ¢) = v(¢), (15)

and that for all z; € {z1,...,2n} with ¢ < n, there exists a ¢ € T such that

0 < culzip1) — cnlzy)
< () —v(¢%
< colzin) — celzi)

< (1) = v(¢?). (16)

Condition (15) states that signals do not affect values. To interpret (16), think of z;4;
as being a “higher” signal than z;. Then (16) implies that higher signals are more costly
for sellers to send. In addition, the single-crossing property holds, in that the marginal
cost of sending a higher signal is higher for low-quality sellers than it is for high-quality
sellers. Finally, signals are sufficiently close together that the single crossing property has
some effect. In particular, given any signal z; with i < n, the difference between receiving
some price v($) and price v(¢) is sufficient to compensate high-quality but not low-quality
sellers for the extra cost of sending signal z;+; and the difference between v(1) and v(¢?)
is sufficient to compensate both sellers for the extra cost of sending z;4.1°

Conditions (15)-(16) immediately give z* = z; = z. Hence, the market has a Hellwig
set at the signal with the lowest cost, x;, which is also the signal send by low-quality
sellers in any separating equilibrium. The Hellwig set is recurrent only if it is the unique
component of equilibrium outcomes or cycles in the market. To see this, first note that from
(16) the signal 9 will violate (13). If E(z2) is non-empty or a separating equilibrium exists,
then it follows from Proposition 4.2 that the Hellwig set is not recurrent. The Hellwig set
can accordingly be recurrent only if E(z2) is empty and no separating equilibrium exists,
in which case it is easy to check from condition (16) that the Hellwig set is the unique
component of equilibria or cycles.

We thus have a unique recurrent set. In particular, if an undefeated Riley equilibrium
exists, then the Riley set is recurrent (Proposition 3) and the Hellwig set is not, so the
Riley set is the unique recurrent set (Proposition 2). If an undefeated Riley equilibrium
does not exist, so that the Riley set is not recurrent, then there is again a unique recurrent
set (Proposition 5). In this last case the unique recurrent set contains not only E(z*)
but also every pooling equilibrium of the market. This follows from the observations that
(a) if E(zx) is a component of pooling equilibria then E(z;) is a component of pooling
equilibria for all ¢ < k and (b) if E(z;) and E(z;4;) are components of pooling equilibria,
then x4 € r(z;).20

1®The market in Figure 1 satisfies (15)~(16) (with z, = g and z; = z. = Z) except for these final two
conditions. In particular, no price can induce either seller to prefer sending z; instead of receiving price
v(¢°) at signal z;.

3To verify this, let § be the pooling equilibrium at z; induced by ®(z;) = ¢° and ¥(z) = 0 for z # z;.
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Suppose now that there is a component of pooling equilibria at the highest-cost signal
z, (which will occur if vy(zn, ¢%) > ve(21,0)), in which case no separating equilibria or
cycles exist and there must be a pooling equilibrium at every signal. The unique recurrent
set will then contain all equilibria. In contrast, the only undefeated equilibria are the
Hellwig equilibria and the only equilibria satisfying D1 are the pooling equilibrium at z,,.

This last case makes two points. First, we again see that neither satisfying D1 nor
being undefeated suffices by itself for a component of pooling equilibria to be recurrent.
Instead, both conditions must hold. Second, being undefeated and satisfying the Intuitive
Criterion of Cho and Kreps [1] does not suffice for a pooling equilibrium to be recurrent.
In particular, suppose the previous market also satisfies us(zy,,1) > ug(z*,0). Then the
Hellwig equilibrium passes the Intuitive Criterion but continues to fail D1 and hence is
not recurrent.?! O

5 Extensions

We have worked with a very special model. In this section, we examine the role played by
various features of the model in driving the results.

Genericity. Assumption 1.2 imposes a strong genericity assumption. Inspection of our
proofs, however, indicates that a weaker assumption would suffice. In particular, what
is required is that sellers have unique best replies in the Riley and Hellwig equilibria. If
this condition is met, then we can reformulate the dynamic to cope with nongenericities
elsewhere by assuming that sellers randomly choose a best reply when indifferent among
best replies, at which point our propositions continue to hold.

Inertia. The Spencian dynamic assumes that all agents adjust immediately to the ob-
servation of the current market conditions. What if the updating of the buyer’s beliefs
and sellers’ signal choices were subject to inertia? We model this inertia by assuming
either that the same set of sellers trade in every period or each new seller is matched with
a (unique) seller of the same quality from the previous generation whose signal can be
observed and mimicked. Then suppose that in each period, each seller chooses a signal
optimally with probability 4 and simply repeats his previous signal with probability 1 — p.
The buyer similarly updates beliefs with probability 4 and retains her previous beliefs
with probability 1 — 4. This now makes the learning dynamics a stochastic rather than
deterministic process.

From (16), P(6) then contains the state §' induced by ®'(z) = ®(z) for z # zi4; and & (zip1) = ¢
such that ua(Zi41,¢) > ur(zi,¢°) and ue(2ip1,8) < ue(zi,¢°). Then 2} = z;4; and z} = z;. Hence,
§* = s(0) is induced by $?(zi41) = 1 and &(z) = O for z # 241, giving 23 = z? = z;4; and ensuring
that s(6%) is a pooling equilibrium at ;4. This gives zi4; € r(z;).

#To verify the Intuitive Criterion, we note that any signal 2 must satisfy ui(z,1) > ue(z",0) (because
u¢(zw,1) > ue(z*,0)). The Intuitive Criterion then allows the buyer to believe that z is sent by the pool of
low-quality and high-quality buyers and to set price v(¢°) at signal z. But this suffices to make z* a best
response for all sellers, given price v(¢°) at z*, which in turn suffices to preserve the Hellwig equilibrium
outcome.
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The addition of inertia does not change the equilibrium states of the learning dynamics.
However, cycles will now have many more than two states, with the additional states
reached in instances when some but not all agents learn.?? It remains a possibility that
every agent learns in a given period, however, and we can use this to show that every
cycle contains two states that are a two-cycle under the Spencian dynamic without inertia.
Hence, every cycle still contains the support of a mixed-strategy equilibrium.

Proposition 1 and 2 and the necessary conditions for recurrence established in Propo-
sitions 3 and 4 continue to hold. These proofs relied on the ability to construct paths
from one equilibrium or cycle to another that involved a single perturbation followed by
learning dynamics. It suffices for the results to hold that the stochastic dynamics with
inertia might follow these paths.

The proofs of sufficiency in Propositions 3 and 4 rely on the fact that once a perturba-
tion has arisen, subsequent adjustments cannot affect the prices offered at the equilibrium
signals. In the case of the Riley equilibrium, this continues to hold in the presence of
inertia because high-quality (low-quality) sellers will never choose z (%) as long as the
prices v(Z, 1) and v(z, 0) are offered at T and z, and the buyer’s experience will never lead
her to alter these prices given that signals have this property.

In the case of the Hellwig equilibrium, inertia introduces the possibility that (13) may
be satisfied but a perturbation may cause some but not all sellers to switch away from z*,
an impossibility without inertia, with the change in the proportion of high-quality sellers
at z* then prompting a change in the price at z*. The conditions for recurrence of the
Hellwig equilibrium thus become more stringent. In particular, it must be impossible to
induce high-quality sellers to leave z*, since only then can we ensure that the price at =*
will not fall following a perturbation. We can accordingly obtain a sufficient condition
for the recurrence of Hellwig equilibria in the face of inertia by replacing (13) with the
stronger condition that there is no signal = such that us(z*, ¢%) < up(z,1). The effect of
introducing inertia into the model is thus to make the conditions under which the Hellwig
equilibrium is recurrent more demanding.

Mixed Equilibria. Three things would be required in order to eliminate cycles from our
model and allow convergence to a state that exactly matches a mixed-strategy equilibrium
of the Cho-Kreps model. First, we would have to either abandon our assumption that
beliefs are contained in the finite set T or assume that YT contains the belief needed to
support the sellers’ mixture, so that sellers of a given type can optimally choose different
actions. Either option sacrifices our genericity assumption. This would have to be coupled
with an assumption concerning how agents who are indifferent choose between strategies,
so that the correct mixture over signals could be retained once it has appeared.?® Second,

# Notice that by “cycle” we now mean an absorbing set of the stochastic learning dynamics that is not
a singleton. The path of the learning dynamics through this set will be random, so that any given state in
the set will recur at irregular intervals.

3 For example, we might assume that sellers persist in the market or can observe their predecessors’
choices, as in our discussion of inertia, and that agents randomly choose among best replies over which
they are indifferent when they (or their predecessor) are not currently playing a best reply, and simply
retain their strategy when playing a best reply (even if alternative best replies exist).

19




we would require inertia in the process by which sellers choose their actions to avoid cases
in which the dynamic gets stuck in a two-cycle. Third, we would need low-quality and
high-quality sellers to occur in our population in just the right proportions, so that the
required mixture can be exactly achieved as a population polymorphism.

Signaling vs. Screening. Like Spence’s, our model is a screening model. To construct
a signaling version of this model, let sellers first choose their signals in each period. Let
the buyer respond by offering the price v(z,®(z)) at every signal that is sent by some
seller. The new feature here is that sellers must choose their signals before seeing the
buyer’s prices. We can model this choice by assuming that sellers have beliefs about the
prices offered by the buyer at the various signals and choose optimally given their beliefs.
A dynamic on this enlarged state space can then be defined by assuming that sellers (just
as the buyer) update their beliefs after every period to match observed behavior.?4 A
result analogous to Lemma 2 no longer holds with such a dynamic, raising the possibility
that new types of cycles exist. For example, we can construct a two-cycle in which the
low-quality seller always sends a signal z; and the buyer always offers price v(zp,1) at
some signal z5, and with states §! and 62 characterized by:

zp=z¢ zh=2xp OUz)=¢" 2i=zl=2, & (z,)=0.

Hence, the agents alternate between state !, in which high-quality sellers choose zj
thinking the wage at z; will be v(zs,0) while this wage is actually v(=z¢, ¢°), and state
62, in which high-quality sellers choose z; expecting wage v(z¢, ¢°) but receiving v(z¢, 0).
In contrast to the two-cycles of the Spencian dynamic, these cycles—in which seller’s are
continually mistaken about the prices offered by the buyer—disappear once one introduces
inertia into the learning process. We accordingly think that an investigation of signaling
is most fruitfully coupled with inertia in learning.

Once we have a signaling model with inertia in learning, attention turns to perturba-
tions. If we make no other changes, then perturbations of equilibrium states that affect
the buyer’s beliefs about the types of sellers who send unused signals will have no effect
because sellers will not observe the prices induced by these beliefs. As a result, station-
ary points of the dynamic process will be self-confirming equilibria but need not be Nash
equilibria, and every pure-strategy self-confirming equilibrium outcome corresponds to a
recurrent set.

Consequently, obtaining refinement results in a signaling model requires a different
specification of perturbations. For example, one could add perturbations in the beliefs of
sellers concerning the prices that buyers would offer at currently unused signals. Such per-
turbations will potentially induce sellers to send different signals and hence observe pertur-
bations in the buyer’s price offers at unused signals. This creates possibilities for reaching
one component of (self-confirming) equilibria from another component, where these pos-

*4This again requires that sellers are either long-lived or inherit their beliefs. An alternative approach
would be to follow Young [14] and assume that there is a historical record of prices offered at the various
signals which sellers can consult before making their choices.
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sibilities include all of the possibilities generated in a screening model with inertia.?® As
a result, Proposition 1 and the necessary conditions in Propositions 3 and 4, all of which
hinge upon the ability to reach one component from another one, will continue to hold in
such a model. The sufficient condition in Proposition 3 also continues to hold. As was the
case with inertia in a screening model, however, the sufficient conditions for the Hellwig
set to be recurrent become more stringent, requiring that there be no signal and price pair
offering high-quality sellers a higher utility than earned in the Hellwig equilibrium.

Perturbations. The perturbations in our model can make any change that affects the
buyer’s beliefs about any single unused signal. What if we allowed perturbations more
scope for changing the state?

If we allow perturbations to affect not only the buyer’s actions but also the signals
sent by sellers, and impose no further restrictions, then our selection results no longer
hold (whereas Propositions 1 and 2 are unaffected). Consider, for example, an undefeated
Riley equilibrium. A perturbation causing a low-quality seller to send signal T will induce
the buyer to reduce the price at Z, causing it to no longer be the case that the equilibrium
prices at z and T remain available after a perturbation and hence disrupting our proof
that an undefeated Riley equilibrium is recurrent. A sufficient condition for our selection
results to hold in the presence of perturbations in sellers’ choices is that the deviation of
a single seller from his equilibrium choice in a Hellwig or Riley equilibrium does not cause
a price adjustment at equilibrium signals which either upsets any of the strict inequalities
appearing in Proposition 3 and Proposition 4 or induces the remaining sellers to abandon
their equilibrium choices.26

Spence [12] suggested modeling perturbations as mistakes made by sellers when choos-
ing their signals, thus allowing perturbations to affect the actions of sellers but not the
actions of buyers. Coupled with the assumptions described in the preceding paragraph,
the result is much like that of a model in which perturbations affect the buyer’s beliefs
at unused signals but can change these beliefs to only zero or one, since these are the
beliefs that could be created by a single seller switching to the unused signal. Lemma 5
will no longer hold if the set of feasible perturbations is restricted this way. It will then no
longer be the case that recurrent sets must consist of unions of components of equilibria
or two-cycles, invalidating Propositions 1 and 2. However, every recurrent set containing
separating equilibria must still contain some element of E(Z), whereas every recurrent
set containing pooling equilibria or cycles must contain some element of E(z*), so that
every recurrent set must contain either a Riley or a Hellwig equilibrium if such equilibria
exist. Condition (12) in Proposition 3 will be necessary and sufficient for the existence of
a recurrent set which contains only Riley equilibria. Necessary and sufficient conditions

5 Perturbations can never cause sellers to choose signals which are not best responses against some belief
about prices at unused signals, and hence can never lead to the revelation of the buyer’s choices at these
signals, but such signals play no role in allowing transitions from one component to another.

3 The precise conditions are as follows. Let z* satisfy uy(z*, £ > u,(x,0), Vz,q € {¢,h}). Then
Proposition 4 continues to hold if ¢° is replaced by ff;} in the statement of the proposition. Let Z satisfy
ur(Z, ;,%) > up(z,0) and ux(z, 2-_‘,_—1-) < ua(%,1). Then Proposition 3 continues to hold if ux(Z, 1) is
replaced by ux(z, -,ﬂ_—l) in the statement of the proposition.
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for the existence of a recurrent set which contains only Hellwig equilibria are less stringent
than in our model. Condition (13) only needs to hold for ¢ = 1, instead of for all ¢, since
¢ =1 is the only belief for the buyer which could arise through a perturbation and could
also cause some type of seller to leave z*.

6 Conclusion

We have pursued an approach to equilibrium selection in signaling models based on exam-
ining the limiting outcome of a dynamic process subjected to arbitrarily rare perturbations.
On the one hand, we view this is as simply following through Spence’s suggestion that
dynamic models can be used to choose between equilibria. On the other hand, the mo-
tivation offered for many equilibrium refinements is implicitly dynamic, even though the
equilibria and the models are static, and we view a dynamic model as the natural setting
for investigating such refinements. Despite the differences between the adaptive agents of
our model and the rational agents of most refinements, we find refinement ideas emerging
from the dynamic analysis.

In a previous version of this paper ([7]) we worked with a model in which sellers sent
signals before observing buyers’ prices and which included an explicit model of price-
setting behavior by multiple buyers, inertia in learning, and a much weaker genericity
assumption. The most important difference is that the more complicated model in [7]
comes at the cost of fewer results. As we have noted, the presence of inertia in [7] also
leads to stronger necessary conditions for the recurrence of pooling equilibria than those
in the current paper.

Our analysis leaves a great deal of work to be done. Our learning model is quite crude
and it is important to ascertain how its results will be affected by moving to more so-
phisticated models. Perhaps the most important innovation here would be to relax the
memoryless nature of the learning process. A single observation of the market outcome
currently suffices for buyers to abandon their previous beliefs, whereas belief rules that
make greater use of past information may be more realistic. We also allow perturbations
to make large changes in beliefs, and hence prices, at unused signals, just as conventional
equilibrium refinements allow deviations to produce drastic belief revisions. A more real-
istic model might allow beliefs at unused signals to drift slowly, so that only small changes
in belief could occur in a single period. Finally, there remains the issue of how to model
competitive behavior on the part of buyers. We have chosen not to attempt a model of
competition here in order to focus attention on signaling issues, but modeling competition
remains an important topic for future work.
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7 Appendix: Proofs

Proof of Lemma 2. Let C be a cycle.
STeEP 1: This step shows that

Jz°eX st.VIEC: zp=2" (17
To verify (17), we first show that for any state § = (&, &, &),
&(24) < ¢° = = = &4, VO € S(6). - (18)
To verify (18), fix § with $(24) < ¢° and consider any state § satisfying

B(zn) > $(n) (19)
B(z) < B(z) z#dn (20)

Then zj = &5, (because &), = arg maxuy(z, &(z)) = %) = argmaxup(z, ®(z))) and hence
(from (3) and (4)), for 6’ = s(8),

®'(25) > ¢¥ > (dn)
P(z) < B(z)<B(2) z#4n

and z} = Z,. Hence, if a state 0 satisfies (19)—(20), then x; = 43 and the successor of ¢
also satisfies (19)—(20). Since 6 satisfies (19)-(20), we have established (18).
Next, let ¢ = s(6). Then we show

Th # T => T) = T, (21)

To verify (21), notice that if z # z¢, then ®'(z3) > ®(zx) and &'(z;) < ®(z¢). Hence
up(zh, ®'(zh)) > un(zh, B(zh)) > un(z, ®(z)) > un(z, ®'(z)), where the last two inequali-
ties hold for all = # =z, implying (21).

Now let C be a cycle containing states 6 and § with &5, # . Without loss of generality,
we can take § = s(§). From (21), we then have ¢ = £4. From (18), we have &(2y) = 1.
Because § = s(§), we have &() = ¢°. Consider S(6). Either S(6) does not contain a
state 8 such that z), = &, a contradiction because then § & S(6), or there exists §' € S (6)
such that ¢'(2)) < ¢° and 7} = & (where ¢ is the first state following § in which high-
quality sellers send £). But then 6 & S(8') (from (18)), a contradiction. Hence, C cannot
contain states § and § with &, 5 Z3, establishing (17).

STEP 2: We show that

V8eC, z€{z,z°}. (22)

Let 6 € C satisfy &, # z¢. If we can show that
&(2¢) =0, (23)

then it follows that %, = gz (because uy(%,0) > uy(z, d(z)) for z # =, implies z; =
arg max uy(z,0) = z), yielding (22). To show (23) note that, from (4), ¢’ = s(6) satisfies
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®'(24) = 0 (since 2, # z°) and that (from (3)-(4)) for all § € S(¢') = C, we have
&(&,) = 0. Since § € C, (23) follows.

STEP 3: Let 6,62 € C with 62 = s(8'). Then z? # z} since otherwise both z7 = z}
and :x:,21 = g} = z°, which implies that 62 is an equilibrium state, a contradiction. We can
let 2} = z° and 27 = z. Then

B(a) iz ¢ {z,2)
®%(z)={ ¢° ifz=z°
0 fz=z

Let 6% = 5(62). Then

®%(z) = d'(z) ifz ¢ {z,2°}
(z)={ 1 if £ = z¢
0 fz=za

Then z§ = z° (otherwise 8% is an equilibrium, a contradiction). Hence 8* = s(8°) satisfies
Pt = @2 and hence ®® = ®!, yielding a two state cycle in which high-quality sellers send
z€ in every period and low-quality sellers alternate between z°¢ and z.

STEP 4: Conditions (7)-(8) are clearly necessary for the optimality of the sellers’
actions in the two-cycle. To see sufficiency, notice that if (7)—(8) hold, then states § = s(8')
and ¢’ = s(f) are a two cycle, where z), = z} = z°, 2y = z°, z, = z, ®(z) = 9'(z) =0 for
z # z¢ ®(z°) = 1, and &' (z°) = ¢°. O
Proof of Lemma 5. Let 6,6 both be elements of the same component. Then zp = &
and we can also suppose without loss of generality that z; = & (If this equality does not
hold then the component is a component of two-cycles and § can be replaced with s(6)
in the following arguments without affecting the conclusion). Recall that the signals in X
are ordered {z1,...,2,}. Let 80 = 6 and let 6*, i = 1,...n, be induced by

Fi(z) = { *(z) o #

&(z) ifrx ==

In the case in which both 6 and § are equilibria, then for all 7, ' is also an equilibrium
state with :z:('l = z4. Furthermore, from Assumptions 2.1 and 2.3, §' € P(6*~1) (because
Ty =z, for all i € {1,...,n} and &' differs from &'~ only if ; & {z¢,z4}). Similarly, in
the case of two-state cycles, either 8 = 6*~1 or §' € P(s(6*~1)). In either case, if Ris a
recurrent set, 6'~! € R thus implies ' € R. Hence, 8° = § € R implies " = 6eR. 0

Proof of Proposition 1.

Since recurrent sets are disjoint (cf. Lemma 3) the result follows from Lemma 6.1 if
we can show £ € r(£) for every component of separating equilibria E(¢) and can show
z* € r(&) for every component of pooling equilibria or two-cycles E(%).

CASE 1: Let E(£) be a component of separating equilibria and let §! = (®!,z, %) be
any state in E(z). Then consider the state §2 € P(#!) satisfying

¢2(2)={ dl(z) ifz#7%

1 fz=7%
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Then z7 = z because uy(z,0) > ug(z, ®!(z)) for = # T (because §' is an equilibrium) and
ug(z,0) > uy(Z,1) (by definition of z). Similarly, z2 = T because ux(Z,1) > un(z, ®!(z))
for z # T (from the definition of T and the fact that 8! is an equilibrium). Hence 62 € E(Z)
and thus % € r(£).

CASE 2: Let E(£) be a component of pooling equilibria and let 8! € E(&) be the

state induced by
0 fz#¢
3(z) = { i ifx:%

Then consider state §2 € P(8!) with

_ | ®Yz) ifz#
@2(3’)’“{ 0 if 2 = 2*

Then z? = z* because up(z*, ¢°) > un(z, ¢°) > ux(z,0), Ve # z* (by definition of z*). If
z? = z*, then 62 is a pooling equilibrium in E(z*) and thus z* € r(2).
If z7 5 z*, then 7 = & (because 7, = # in the pooling equilibrium ;). Then §® = s(§2)

satisfies
0 ifz#z"
3 —
@ (:1:)—{ 1 ifz=2z"

Then either z3 = z (in which case 82 is a separating equilibrium in E(z*)) or z} = z*. In
the latter case 8° is either the pooling state of a two cycle in E(z*) or s(6%) is a pooling
equilibrium in E(z*). In either case z* € r(%).

CASE 3: Let E(£) be a component of two-cycles and let §! € E(&) be the state

induced by
0 fz#2
1 —
‘I’(x)‘{ 1 ifz=4%

Let 82 € P(6') be the state induced by

| ¢ if z € {&,2"}
() “{ dl(z) ifz ¢ {3 2"}

Then z} = z* (from the definition of z*) and either z7 = z* or z§ = z. In the first case
62 is a pooling equilibrium contained in E(z*). In the second case 6% = s(62) is either a
separating equilibrium contained in E(z*) or the pooling state of a two-cycle contained in
E(z*). In each case z* € r(&). m]

Proof of Proposition 2.

If no separating equilibria exist, Proposition 1 implies that there is a unique recurrent
set containing F(z*). If F(z*) is a component of separating equilibria, then Proposition
1 implies that every recurrent set containing F(z*) also contains E(%) and there is thus a
unique recurrent set containing F(Z). It thus remains to consider the case in which E(z*)
is a component of pooling equilibria or two-cycles and E(Z) is the Riley set. Our first
three steps establish three preliminary results.
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STEP 1: Let 8! € E(Z) and 6% € P(#'). Then V8 € S(6?):

¢(z) =0, ¢(@) =1 (24)
In particular, if E(%) is a component of separating equilibria with & % T then
£ ¢ r(7), (25)

since (from the Definition of ) E(&) contains no state 6 satisfying ®(Z) = 1.

To verify (24), note that §! satisfies (24) because it is a Riley equilibrium. 62 then
satisfies (24) from Assumption 2.2. It then suffices to show that if (24) holds for some
state, then (24) also holds for § = s(#). But if (24) holds for some state 6, then z # z and
z¢ # T (because up(Z,1) > up(z,0) and ue(z,0) > ue(F,1)), implying &(z) = ®(z) =0
and &(%) = &(F) = 1.

STEP 2: Let & # z satisfy

un(&,¢%) > ua(Z, 1). (26)
Then
E(£) is a component of pooling equilibria or two-cycles satisfying € r(T). (27)
To show (27), let 8! € E(Z) be the state induced by

@1(3:):{ 0 ifz#%

1 fe=7
Consider 42 € P(8') induced by
l . a
@g(m)={@(m) ifz#¢g

#° ifz =4

Then z2 = & (because, from (26), up(&,d%) > up(%,1) > un(z, ®(z)) for = # ). If
z} = &, then 62 is a pooling equilibrium in E(#), implying & € r(%). Otherwise, =z
(because #! is an equilibrium). Then 6% = 3(62) satisfies:

_ ) 0 ifz¢{z,7}
q’s("’:)‘{ 1 ifz € {7}

Then :c‘?k = £. In addition, z§ = % (because otherwise #° would be a separating equilibrium
with up(z3,1) > us(z}, ¢°) > up(Z, 1), contradicting the definition of T). But then {62,6%}
is a two-cycle contained in F(%), implying Z € r(%).
STEP 3: Suppose E(£) is a component of pooling equilibria or two-cycles and let £
satisfy
un(2,4°) < un(%,1). (28)

Then
Z € r(%). (29)
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To show (29), suppose first that E(%) is a set of pooling equilibria. Let §* € E(z) be

induced by
0 ifz#¢
' (2) = { & ifz=32

If E(£) is a set of two-cycles, let 8! be induced by

<I>1(:c)={ 0 ifz#2

1 fz=1¢

Iﬁ either case 82, induced by

0 ifz¢{t,F}
P¥z)={ ¢ ifr=32
1 ifz=%

is in P(6') and, from (28), satisfies z# = Z. Furthermore, from the definition of z and the
fact that E(Z) is the Riley set, z7 € {z,£}. If 27 = z then 6% € E(Z), implying (29). If
¢} = & then 6% = 5(6?) is induced by

@3(33):{ 0 ifz#%

1 fe=%

and thus 6% € E(Z), implying (29).
Now consider the two cases in the statement of Proposition 2.
CASE 1: Suppose z* # z. Either

un(, 1) > up(z", ¢°) (30)

or
‘Uh(x*, ¢'0) > uh(fv 1) (31)

must be satisfied. If (30) holds, then T € r(z*) (from Step 3) and it then follows from
Lemma 6.1 that every recurrent set containing F(z*) must also contain the Riley set.
Hence, from Proposition 1, there is a unique recurrent set containing the Riley set. If
(31) holds, then z* € r(Z) (from Step 2) and it then follows from Lemma 6.1 that every
recurrent set containing the Riley set must also contain E(z*). Hence, from Proposition
1, there is a unique recurrent set containing E(z*).

CASE 2: Suppose z* = z. If the Riley set is not recurrent, it follows from (25) in Step 1
and Lemma 6.2 that there must exist a component of pooling equilibria or two-cycles E(%)
such that £ € r(Z). It then follows from Lemma 6.1 that every recurrent set containing the
Riley set must contain F(£). Hence (from Proposition 1), there is a unique recurrent set
containing F(z*). Suppose then that the Riley set is recurrent. If E(z*) is not recurrent,
it follows from Lemma 6.2 that there exists & # z € r(z*). If E(£) is a component of
separating equilibria it follows from Lemma 6.2 and Proposition 1 that every recurrent
set containing F(z*) must also contain the Riley set. Since the Riley set is recurrent it is
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thus the unique recurrent set. If E(£) is a component of pooling equilibria or two-cycles,
condition (28) must be satisfied (otherwise (26) holds, contradicting the recurrence of the
Riley set). Hence, T € r(£) and it follows from Lemma 6.1 and Proposition 1 that the
Riley set is the unique recurrent set.

Since z* = gz implies that F(z*) is a component of pooling equilibria it thus follows
that two recurrent sets exist if and only if both the Riley set and the Hellwig set are
recurrent. O

Proof of Proposition 3.

Ir: Let 6! be a Riley equilibrium and let 2 € P(!). Then, from Step 1 in the
proof of Proposition 2, every state in S(62) satisfies (24). From condition (12) every
pooling equilibrium or two-cycle state § = (®(z), z¢, z5) must satisfy (T) < 1 (otherwise
z; ¢ arg max up(z, ®(z)), contradicting the definition of an equilibrium state) and S(62)
thus does not contain any pooling equilibria or two-cycle states. It then follows from (25)
in Step 1 of the proof of Proposition 2 that the only equilibrium states contained S(62)
are Riley equilibria. Hence r(%) = {Z}. From Lemma 6.2 the Riley set thus is a recurrent
set.

ONLy IF: If condition (12) fails, (27) in Step 2 of the proof of Proposition 2 implies
that 7(Z) # {Z}. Hence, the Riley set is not recurrent. i

Proof of Proposition 4.
Ir: Let (13) hold for all z # z*. Let 8! € E(z") and 2 € P(#'). Then it suffices to
show that
Vo € S(6?), ®(z*) > ¢°. (32)

In particular, S(6?) then cannot contain a pooling equilibrium (other than a Hellwig
equilibrium) or a two-cycle (because up(z*,¢%) > up(z,¢?) for all z % z*) and cannot
contain a separating equilibrium (because us(z,0) < ug(z*,¢°)). Hence, r(z*) = {z*},
ensuring that the Hellwig set is recurrent.

It remains to verify (32). First, ®2(z*) = #°. Next, if 6 satisfies ®(z*) = ¢° or
satisfies ®(z*) = 1 and zj, = z*, then §' = s(6) also satisfies one of these conditions. To
show this, we consider six cases. (1) &(z*) = ¢° and z; = z, = z*. Then &' (z*) = ¢°.
(2) ®(z*) = ¢° and z* ¢ {z4,24}. Again, ¥ (z*) = ¢°. (3) ®(z*) = ¢° and z = z*
and zp % z*. This contradicts the condition that there is no (z,¢) satisfying (13). (4)
®(z*) = ¢° and z4 = z* and =z # z*. Then &'(z*) =1 and z}, = z*. (5) ®(z*) =1 and
zp = z; = z*. Then &'(z*) = ¢°. (6) ®(z*) = 1, =4, = z* and z; # z*. Then &' (z*) =1
and zj, = z*.

ONLY IF: Assume (13) fails for some signal-belief pair (£, ¢).

CASE 1 (E(£) # 0): Let 8! be the state in E(z*) induced by

0 3 *
1y ) ¢ ifz==z
‘I’(‘”)‘{o if ¢ # 3

Consider the state §2 € P(8!) induced by
O(z) ifz s
2 = a
®%(z) = { ¢ fr=4%
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Then :c% = z* and x% = z. Consequently, % = s(6?) satisfies

q>3(m)={ 0 ifz#4

1 ifz=2¢

If E(%) is a set of separating equilibria then % € E(z). If E(%) is a set of two-cycles then
63 is the pooling state of a two-cycle contained in E(%). Finally, if E(%) is a set of pooling
equilibria then z = % and s(#%) is a pooling equilibrium contained in E(%). In any case
£ € r(z*) and the Hellwig set thus fails to be recurrent.

CASE 2: (The Riley set is non-empty): Suppose first that us(Z,1) > up(z*, ¢9).
Since ug(z*, %) > up(z,0) > uy(Z,1), it follows that (z,¢) = (F,1) satisfies the two
inequalities in (13) and the result then follows from the previous case. Hence, suppose
that up(Z,1) < up(z*, ¢°%). Then there exists (&, ) satisfying (13) with Z # T. The state
! induced by

# ifz=zx*
dz)={ 1 ifz=%
0 ifz ¢ {zZ,z*}

is an element of E(z*). Consider 82 € P(#!) induced by

| olz) fx#F
qﬁ(m)—{q; ifr=3

Then (from (13)) 27 = z* and 2} = . Hence 63 = 3(62) satisfies

_ )0 ifz¢g{%,7}
‘1’3(““)“{ 1 ifee (23]

Then for all § € S(63),

37T =1 ) =0. (33)
To verify (33), notice that 6° satisfies (33). But if § € S(63) satisfies (33), then so does
s(8) (because un(%,1) > ux(z*,0) and hence x5 # z*, and uy(z,0) > ue(%,1) and hence
Ty # ), yielding (33) for all states in S(8%). Since all states in S(83) satisfy ®(z*) = 0 it
follows that the set of Hellwig equilibria is not recurrent.
_ Case 3 (2" # argmax; up(z,0)): Let 6 be any state satisfying ®(z*) = 0. Then
6 = s(0) satisfies ®(z*) = 0 since up(z*,0) < maxup(z,0) < maxup(z, ®(z)) and thus
zp # z*. Now consider states §! and §2 € P(6') defined as in Case 1. Then 63 = s(62)
satisfies ®3(z*) = 0. Consequently:

9 € S(63) = %(z*) =0. (34)

and the set of Hellwig equilibria is thus not recurrent. a
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8 Appendix II: Potentially Omitted Proofs

Proof of Lemma 3 The existence of a recurrent set follows from the facts that the entire
state space satisfies (2.1)-(2.2) and there is a finite number of subsets of the state space,
so there must be a minimal set satisfying (2.1)-(2.2). Next, if R is any set satisfying (2.1)-
(2.2), then the set obtained by removing from R all states that are not part of equilibria
or cycles also satisfies (2.1)-(2.2), and hence minimality ensures that R contains only
equilibria and members of cycles. Finally, if two sets satisfying (2.1)-(2.2) intersect, then
their intersection also satisfies (2.1)-(2.2), and minimality then ensures that no recurrent
set can intersect another recurrent set other than itself. a

Proof of Lemma 4 It suffices to show that if § is contained in the support of a limit
distribution ¢*, then (a) 4 is contained in a recurrent set R, and (b) all ¢ € R are contained
in the support of the limit distribution ¢*.

STEP 1: We first collect the necessary tools. Let Aj,..., A, be the absorbing sets of
I'(A), A € (0,1). Fix A;. We consider the irreducible Markov process given by restricting
I'(X) to the state space 4;. This process has a unique stationary distribution with sup-
port contained in A; (Seneta [10, Theorem 4.1]). We let {(, A) denote this distribution
(suppressing the subscript “”).

For state 6§ € Aj, a f-tree is a directed graph with the properties that (1) there is one
node for each state in Aj;, (2) each state in A; \ {6} is the origin of a single edge, (3) 6 is
not the origin of an edge, (4) the graph contains no cycles. Hence, the graph contains a
path from ¢’ to 8 for all 6/ € A; \ {6}. We let (¢ — 6”) denote an edge (from 6 to §") in
a O-tree. We let t9 denote a f-tree and let Ty denote the set of §-trees.

For each edge (8’ — 6") in a 6-tree, let 1(6, 8", X) be the probability of a transition from
g’ to 6" in T'(A) and let (8, 6',0) be the probability of this transition in the unperturbed
dynamic. Let

‘I’(to,)\) = H 1/)(9”9”7)‘)
(6'—6")ety
be the product of these transition probabilities in a #-tree 9. Then Freidlin and Wentzell??
(Lemma 3.1, P. 177) show that

zfgeTo ‘I’(th A)
EO'GAJ ZtoIET‘l W(tel’ A)
We now investigate the limit distribution (*(6) = limy—.o ((6, A). If ¥(¢s, ) is nonzero,

let N(tp) be number of transitions (¢’ — 6”) in ¢4 for which %(#,6",0) = 0 and let
N*(6) = miny,et, N(t9). Then it follows from (35) that

¢(6,A) = (35)

¢*(6) > 0 = N*(6) = min N*(9). (36)

In particular, ¥(tg, A) is of the form AN(0)(1 — X)(I4il=1=N(te)) (K (25) + O(N)), where k(tg)
does not depend on A. (36) follows from (35) and the fact that ¢*(8) = limy_,q (6, A).

*M. 1. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New
York, 1984,
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STEP 2: We show that if 1 = s(), then N*(') < N*(8). This implies that if one
state of a two-cycle of the Spencian dynamic minimizes N*(6), then so does the other state
of the cycle. Hence, neither or both states of a two-cycle of the Spencian dynamic are in
the support of the limit distribution. To verify this, let ¢; be a §-tree with N (t5) = N*(6).
Note that #§ contains a transition (§' — 62). Now construct a §'-tree tn by deleting
(8* — 62) from t} and adding (§ — 6'). Since 8! = s(8), N(tg1) < N(¢5) = N*(6), giving
the result.

STEP 3: We now show that if each of Q! and Q" is a set containing a single equilibrium
or two-cycle, and if both are contained in a single recurrent set R, then the elements of
Q' appear in the limit distribution if and only if the elements of Q" also appear. From
Lemma 3, this implies that if one element in R appears in the limit distribution, then so
do all elements in R, yielding (b).

Let Q! and Q™ be as stated. Then there exist states 8! € Q!, #* € Q", and states
62,...,0" ! with 82 € P(¢') and ¢! = s(6), i = 2,...,n — 1. Let i be a 61-tree
with N(t},) = N*(6'). Then t}; must contain a transition (§ — 6”) for some §' € Q"
and " ¢ Q". Then construct a §"-tree by deleting from t, the transitions beginning
with 62,...,6" and ¢ while adding the transitions ' — 6"+l i = 1,...n — 1 and also
adding the transition 8’ — 8™ if ¢ # 6". The only one of the added transitions for which
¢(-,-,0) = 0 is (8 — 62). Since ¢(¢',8”,0) = 0, we then have N(tgn) < N(t};) = N*(8%).
This establishes that 8 appears in the limit distribution only if #* does, which suffices for
the result.

STEP 4: We now prove (a). For this, it suffices to show that if 6! is not contained
in a recurrent set and " is either an equilibrium or an element of a two-cycle with ™ €
S(P(6Y)) = {0)30' € P(8*) : 6 € S(8)}, then N*(8") < N*(8') and N*(6") < N*(8") if
6™ is contained in a recurrent set. The first inequality follows from Step 3. Hence, we
consider the second. Because §* € S(P(8!)), there exists 62,...,6" ! with §2 € P(6!) and
g+l = s(6%),i=12,...,n—1. Let Q" be the set consisting of #” if 8™ is an equilibrium and -
otherwise let Q" be the two-cycle containing 6. Let t}, be a §*-tree with N (t5:) = N*(8%).
Then t*(6') contains transitions (§"+,9"+*+1) for i = 0,...,k — 1 and (6"**, §!) with the
properties that there exist ¢',4" € {0, ...k} such that "+ € Q™ but §"+1 ¢ Q" (because
' ¢ Q™) and 6™ € S(P(Q™)) = Upegn S(P(6)) but 7+ +1 & §(P(Q™)) (because Q"
is contained in a recurrent set that does not include #!). We now construct a 6™-tree by
deleting from ¢}, every transition beginning with 62,...,6" or beginning with any element
of S(8™*y U S(8™*"). Then add the transitions:

¢ — ¢+ i=1,...,n-1

8 — s(6) V8e{SE)uSE™TTH}\ {6}
The result is a §"-tree. In addition, of the transitions added to t},, only (8! — 62)
satisfies ¢(-,,0) = 0, while of the deleted transitions ¢(6"+,9"++1 0) = 0 (because

"+ € Q" but 6"+ ¢ Q") and $(97+H",97+H"+1,0) = 0 (because 87" € S(P(Q™))
but §7+"'+1 ¢ S(P(Q™))). Then N(tgn) < N(tp) = N*(61), giving the result. o
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