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Abstract

This paper develops an approach to equilibrium selection in game theory based on studying
the equilibriating process through which equilibrium is achieved. The differential equations
derived from models of interactive learning typically have stationary states that are not
isolated. Instead, Nash equilibria that specify the same behavior on the equilibrium path, but
different out-of-equilibrium behavior, appear in connected components of stationary states.
The stability properties of these components often depend critically on the perturbations to
which the system is subjected. We argue that it is then important to incorporate such drift
into the model. A sufficient condition is provided for drift to create stationary states with
strong stability properties near a component of equilibria. This result is used to derive
comparative static predictions concerning common questions raised in the literature on
refinements of Nash equlibrium.
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Abstract

This paper develops an approach to equilibrium selection in game theory
based on studying the equilibriating process through which equilibrium is
achieved. The differential equations derived from models of interactive learn-
ing typically have stationary states that are not isolated. Instead, Nash equi-
libria that specify the same behavior on the equilibrium path, but different
out-of-equilibrium behavior, appear in connected components of stationary
states. The stability properties of these components often depend critically
on the perturbations to which the system is subjected. We argue that it
is then important to incorporate such drift into the model. A sufficient
condition is provided for drift to create stationary states with strong stabil-
ity properties near a component of equilibria. This result is used to derive
comparative static predictions concerning common questions raised in the
literature on refinements of Nash equilibrium
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EVOLUTIONARY DRIFT AND EQUILIBRIUM
SELECTION

by Ken Binmore and Larry Samuelson

1 Introduction

Game theory is a popular success as a theory, its methods having become
a standard tool for economists. But its empirical success is more doubtful,
with some of its simplest and clearest predictions having been consistently
falsified in laboratory experiments.

One of the more striking empirical difficulties for game theory is posed by
the problem of dominated strategies. It is generally held to be a fundamen-
tal principle of game theory that players should never use weakly dominated
strategies.! Many canonical examples, such as the Ultimatum Game [21],
the Dalek Game [29], and the Money-Burning Game [54], involve iterating
the elimination of weakly dominated strategies to generate a unique predic-
tion. But the experimental evidence is now strong that one cannot rely on
predictions that depend on deleting weakly dominated strategies.?

Some critics take this experimental failure to imply that game theory is
without predictive power. It is argued that people simply do not optimize,
or that their utility functions incorporate exotic factors whose nature cannot
easily be controlled in the laboratory (Bolton [11], Thaler [51], and Ochs and
Roth [38]). We agree that players who face complicated games or who are
poorly motivated are unlikely to optimize in the laboratory. Even in simple
games played for significant stakes, it will take time for players to learn how
to optimize. In the initial stages of the learning process, we must therefore
expect their behavior to be driven by whatever social norm may have been
triggered by the manner in which the game is framed. We also agree that
players may be motivated by considerations other than the money payoffs
offered to them by the experimenter.

!Game theory texts sometimes open by advocating this principle. The iterated elim-
ination of weakly dominated strategies is identified by Kohlberg and Mertens [29] as a
sine qua non for any satisfactory equilibrium concept. Dekel and Fudenberg {186, p.245]
argue that the iterated elimination of weakly dominated strategies “clearly incorporates
certain intuitive rationality postulates.” Nalebuff and Dixit [37, p.86] offer the avoidance
of weakly dominated strategies as one of their four basic rules for playing games.

?See Giith, Schmittberger and Schwarze [21], Giith and Tietze [22], and Roth [41] for
experimental studies of the Ultimatum Game. Balkenborg [1] studies the Dalek Game.




But none of these considerations justify the claims made by some critics
that the optimization postulate of game theory is without value in the lab-
oratory, or that the preferences of laboratory subjects have so little to do
with monetary payoffs as to render the latter uninformative. Instead, we be-
lieve that laboratory behavior is often consistent with both the optimization
paradigm and a naive interpretation of the players’ preferences—provided
that we recognize that people must learn to optimize, and must do so in an
tmperfect world.

In Binmore and Samuelson [6] and Binmore, Gale and Samuelson [4],
for example, we showed that simple models of learning can direct players to
Nash equilibria in the Ultimatum Game in which player II plays a weakly
dominated strategy and receives a significant share of the surplus. But per-
haps such outcomes are unstable? The world is rife with imperfections that
we idealize away when formulating a game, but which must surely be present
in the form of perturbations to any equilibriating process used to model how
interactive learning leads subjects to an equilibrium of a game. Won’t such
perturbations inexorably eliminate weakly dominated strategies, and hence
push the system to the subgame-perfect outcome of the Ultimatum Game,
for the same reason that perfect equilibria emerge from Selten’s [48] world
of trembles? In [4] and [6] we show to the contrary that perturbations can
play a key role in stabilizing Nash equilibria in weakly dominated strategies.

In this paper, we broaden the scope of our study of perturbed equilib-
riating processes. By analogy with the biologist Kimura [28], who stresses
the importance of genetic drift between behaviors of equal fitness, we use
the term drift to summarize all the imperfections that may perturb an equi-
libriating process. We then ask: when does drift matter? What can we say
about equilibrium selection when drift does matter?

The key to our analysis lies in modeling the drift phenomena directly,
rather than attempting to embody its results in the abstractly formulated
equilibrium concepts of the refinements literature. As documented in Bin-
more and Samuelson [8], such a program for modelling drift has already been
pursued implicitly by those who approach equilibrium selection by souping-
up the definition of an evolutionarily stable strategy (ESS). However, we
remain skeptical of the rewards to be gained from refining the ESS concept
for much the same reasons that many game theorists have become skeptical
of the literature on refining Nash equilibrium. " As in the work of Kandori,
Mailath and Rob [26] and Young [56], and in our previous work ([4, 7, 9]),
we think it safer to operate with models in which the adjustment dynamics
are specified explicitly. In this paper, we follow the lead of Nachbar [36],




Samuelson [43] and Samuelson and Zhang [44] in working with models based
on deterministic differential equations.

We find that drift plays an important role whenever the problem of refin-
ing a Nash equilibrium is at issue. The alternative best replies that give rise
to questions of equilibrium selection lead to components of stationary states
of the adjustment dynamics. The learning dynamics typically lead toward
some parts of such a component and away from other parts. As a result, the
stability properties of the component depend crucially on the small shocks
that cause the system to drift between equilibria within the component, If
this drift pushes the system toward unstable equilibria, then the component
as a whole will not be stable. If the drift pushes the system toward stable
equilibria, then the component will have robust stability properties and de-
serves our attention as a long-run prediction of how the game will be played.
Even arbitrarily small amounts of drift can be relevant in this context.

The finding that drift can be important might appear to be a death
knell for empirical applications of game theory. How can we hope to make
use of a theory whose implications depend upon the details of an arbitrarily
small drift process? To answer this question, we investigate the implications
of holding fixed the process by which players learn and the specification of
drift, while manipulating the payoffs of the game. This leads to comparative-
statics predictions concerning how the long-run outcome of play varies as
the payoffs of the game vary. We view such predictions as a foundation for
experimental work. Far from being the end of empirical applications, we
think that an understanding of drift may provide the key to such work.

Section 2 introduces the model. Section 3 investigates conditions un-
der which equilibrium selection results do not depend upon drift, which can
therefore be ignored. Section 4 provides drift-driven, equilibrium-selection
results for cases those cases in which outcomes depend upon drift. Section 5
applies these results to the Chain-Store Game, the Dalek Game, the Money-
Burning Game, and a cheap talk game. Our aim in analyzing these examples
is to demonstrate that Nash equilibria that are rejected by traditional equi-
librium selection criteria may nevertheless be relevant to long-run predic-
tion. Section 6 derives some comparative statics results to demonstrate that
our conclusions are experimentally refutable in spite of their dependence on
unobservably small levels of drift.




2 Drift

The Model. We consider an n-player game GG, which we think of as being
played by n populations of agents. We will speak of “players” when referring
to the game G, and “agents” when referring to the members of the popula-
tions in the evolutionary model. However, we will find it convenient to use
phrases like “player I plays B with probability 3” and “2 of the agents in
population I play B” interchangeably.

A state z for population £ is an |Sp|—1 dimensional vector of nonnegative
numbers whose sum does not exceed one, where S; is the strategy set of
player £. We interpret such a vector as listing the fraction of agents in
population £ playing each of the first |Sg| — 1 pure strategies in Sy (with the
residual probability attached to the |Sg|th strategy). A state z of the entire
system is a vector (2, 22,..., 2,) identifying the state of each population.

Dynamics. Let z(¢) be the population state at time ¢t. The evolution of
the state is described by a deterministic differential equation:

dz ‘
Z 1)+ (o) (1)

This differential equation is defined on the J];_;(|S¢| — 1)-dimensional set
given by the product of the n simplexes Sy. We typically denote this state
space by Z (but occasionally also denote it by W). We assume that f and g
are continuously differentiable (and hence Lipschitz continuous) on an open
set containing the state space Z. This ensures that there exists a unique,
continuously differentiable solution z = z(t, 2(0)), specifying the state at
time ¢ given initial condition 2(0), that satisfies (1) (Hale [23, chapter 1],
Hirsch and Smale [24, chapter 9]). We assume that the state space Z is
forward invariant under this solution, so that once the solution is an element
of Z, it never leaves Z. Coupled with differentiability and the compactness
of Z, this ensures that we encounter no boundary problems when working
with the dynamic. Similarly, there exists a unique solution to the equation
dz/dt = f(z), which we again assume renders the state space Z forward
invariant.

To interpret (1), we think of f as capturing the important forces that
govern agents’ strategy revisions. We refer to f as the “selection process.”
In a biological context, f models a process of natural selection driven by

3Common examples such as the replicator dynamics satisfy these assumptions.




differences in fitness. In the models of Young [56] and Kandori, Mailath and
Rob [26], f models a best-response learning process driven by differences in
payoffs. Like any model, however, the selection process is an approxima-
tion, designed to capture the essential features of a problem while excluding
a host of supposedly insignificant considerations. These latter forces are de-
scribed by g. In a biological model, g models mutations, which are random
alterations in the genetic structure of an individual. In the models of Young
[56] and Kandori, Mailath and Rob [26], ¢ models random alterations in
agents’ strategies. We refer to g as drift.

If our model is well constructed, meaning that the payoffs are a good
representation of preferences and f captures the important forces behind
strategy revisions, then we expect f to be closely linked to payoffs. The drift
term g, however, may well have little or nothing to do with the payofls of the
game. Instead, considerations excluded from the model when specifying the
game and its payoffs may play a major role in shaping g. In some cases, drift
may be completely unrelated to payoffs. This is the case in many biological
models of mutation as well as in the models of Young [56] and Kandori,
Mailath and Rob [26].

The relative importance of drift is measured by )\, which we refer to as
the “drift level.” We will think of A as being small, reflecting the belief
that important considerations have been captured by the selection process
f. Again, we follow in the footsteps of biological models and especially the
models of Young and Kandori, Mailath and Rob.

Selection. How can we talk of mutations, or random alterations to strate-
gies, while working with the deterministic model of (1)? We answer this
question by briefly sketching the foundations of (1).

We begin with a stochastic model of the process by which agents choose
strategies. Agents drawn from finite populations are repeatedly matched
to play the game. In light of their experience, they adjust their strategies.
These changes in strategy are governed by a Markov process. The state in
which the system will next be found is a random variable that depends only
upon the current state. Strategy adjustments are noisy, in the sense that
knowing the state at time ¢ allows us to identify only a probability measure
describing the likely identity of the next state.

Let the ezpected state at time ¢+ given that z(t) = z be E{z(t+1)|z} =
F(z,7)+AG(z,7), where F represents the selection process and G represents
mutations or other noise that may perturb the system. A Taylor expansion




of this expression gives:

E{z(t +7),2} = z 4+ 7[f(2) + Ag(2)] + O(7?) (2)

or

AT =2 | () 4 2g(2) + 0. (3)
Strategy adjustment processes satisfying (2) are derived directly from ex-
plicit models of behavior in Binmore, Samuelson and Vaughan [9] in a bio-
logical context and by Binmore and Samuelson [7] in a learning context.*

The step from (3) to (1) now apparently involves nothing more than
taking the limit as 7 — 0 and removing the expectation on the left side
of (3) so that the result can be interpreted as dz/dt. Such a step is often
justified informally, with a statement that the expectation can be removed
because interest is directed to the case of a large population, so that a law
of large numbers argument applies.’

When can the link between (3) and (1) be established formally? This
depends on the span of time in which we are interested. Binmore and
Samuelson [6] introduce a distinction between the medium run, the long
run and the ultralong run. The medium run is a period of time long enough
for selection to occur but too short for this selection to yield convergence to
an equilibrium. The long run is a period of time long enough for selection to
lead the system to the vicinity of an equilibrium of the game G.% However,
this equilibrium need not be the final resting point of the system, as the noise
in the model may occasionally produce a sufficiently large shock to bounce
the system away from one equilibrium and into the basin of attraction of
another. The ultralong run is a period of time long enough that sufficiently

#Notice that we write the original stochastic process as F + AG and hence we do not
interpret the drift term g as the remainder from a Taylor expansion of the underlying
selection process F. In particular, we do not think that F is an exact model of the
underlying stochastic selection process, with errors arising omnly from our use of local
approximations. Instead, we view the underlying model selection model F itself as an
approximation.

®See, for example, van Damme [52, ch. 9.4] and Hofbauer and Sigmund [25, ch. 16.1].
An alternative approach, based on stochastic differential equations, is pursued by Cabrales
[15], Foster and Young {18, 57} and Fudenberg and Harris [19].

$There is an implicit convergence assumption here. We work only with simple games
to avoid running afoul of convergence problems. Like the short and long runs of the
conventional theory of the firm, our medium, long and ultralong runs are economic rather
than calendar concepts of time and will be applicable in some but not all cases.




many such shocks will have occurred as to produce a stationary distribution
over states of the model.”

Our concern in this paper is with the long run. Binmore, Samuelson and
Vaughan [9, Theorem 1], using techniques introduced by Bérgers and Sarin
(12] and Boylan [14, 13], show that the deterministic differential equation
(1) provides an arbitrarily good long-run approximation of the behavior of
the stochastic process by which strategies are adjusted, so long as we are
interested in large populations.®

‘T'wo assumptions are crucial in the development of this model. First, the
underlying stochastic selection process is a Markov process, with strategy
revisions depending on only the current state. This is a strong assumption,
as it may require players to forsake a long history of experience in order to
react to an idiosyncratic experience in their most recent play. At this point
we follow much of the learning literature in focussing on Markov models be-
cause of their tractability, but consider the relaxation of this assumption an
important topic for future work. Second, the resulting differential equation
(1) must be smooth (continuously differentiable). Hence, pure best-response
behavior, where even an arbitrarily small difference in payoffs suffices to
switch all agents to the high-payoff strategy, is excluded. We consider this a
realistic assumption. We do not think that dramatic changes in behavior are
prompted by arbitrarily small differences in payoffs. Instead, we expect peo-
ple to be more likely to switch strategies as the payoff differences from doing
so increase, and expect this relationship to be reasonably approximated by
a smooth learning process.

Drift. We reserve the term “noise” for the random elements modeled by
G in the underlying stochastic process, and speak of “drift” when discussing
the deterministic term g that this noise contributes to (1). Given that we
are interested in the case in which drift is very small, two basic questions

"The equilibrium selection theories of Young [56] and Kandori, Mailath and Rob [26]
are ultralong-run theories according to this definition.

®Binmore and Samuelson [7] study the ultralong run. Binmore, Samuelson and
Vaughan’s [9] long-run approximation result is established for the special case of a one-
dimensional state space, but their argument is easily adapted to our more general case.
The result is that for any time T and any ¢, we can choose sufficiently large N and suffi-
ciently small 7 (in particular, small enough that 7N? is small enough) that the behavior
of the stochastic strategy adjustment model over the interval [0, T] is within € of the ex-
pected value given by (1) with probability at least 1 —¢. In [9], we show that (1) does not
suffice for an ultralong-run analysis.




arise. When we can simply ignore the drift and replace (1) with

Ok Q

What can be said when drift cannot be ignored?

In understanding the answers we offer to these questions, it is important
to understand that our interest lies in the long-run behavior of the system
rather than its medium-run or ultralong-run behavior. To study the medium
run, it is enough to fix a value of T > 0 and to study the behavior of (1) for
0 <t < T. Over such a restricted range, the solutions to (1) and (4) can be
made arbitrarily close by taking A small enough. Sénchez [45, Theorem 6.3.1]
proves the following well-known continuity property of differential equations:

Lemma 1 Let 2(t,2(0), ) solve (1) given initial condition z(0) and drift
level X, and let z(t, z(0),0) solve (4) given initial condition z(0). Then for
any T > 0 and € > 0, there exists A(T,€) such that for if A < A(T,¢€) and
t < T, then ||z(t, 2(0),0) — 2(t, 2(0), A)]| < e.

However, Lemma. 1 does not tell us that the long-run behavior of (1) and
(4) are similar when A is small. As the example of the Chain-Store Game
studied shortly demonstrates, the asymptotic behavior of the solution to
(4) need not approximate the asymptotic behavior of a solution to (1) even
when A is small. In brief, the limits £ — oo and A — 0 do not commute. A

Just as it is important not to confuse medium-run and long-run consider-
ations, so it is important not to confuse long-run and ultralong-run consider-
ations. To study what happens in the ultralong run, one must examine the
asymptotic behavior of the original Markov process directly—rather than
studying the deterministic approximation (1) obtained by taking expecta-
tions. It is well known that the stationary distribution of a Markov process
can be radically changed by minute changes in one of its transition proba-
bilities, especially if this makes a zero probability positive. Young [56] and
Kandori, Mailath and Rob [26] exploit precisely this dependence to obtain
their strong, ultralong-run, equilibrium-selection results. But these results
are obtained at the expense of expected waiting times that may be very long
indeed (Ellison [17], Binmore and Samuelson [7], Binmore, Samuelson and
Vaughan [9]). For many purposes, the equilibrium selected in the long run
may therefore be of only limited interest. For this reason, this paper focuses
on the equilibrium that first captures the process—the equilibrium selected
in the long run. If the population size is sufficiently large, this equilibrium
is predicted with high probability by the asymptotics of the deterministic
process (1).
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Figure 1: Chain-Store Game

The Chain-Store Game. Selten’s [47] Chain-Store Game provides an
example in which the asymptotic behavior of solution of (4) need not ap-
proximate that of (1) as A — 0. The extensive form of this game is shown
in Figure 1.1. Player I moves first, choosing to enter (E) a market or not
(). If I enters, player II can acquiesce (A) or resist entry (R). The payoffs
satisfy the inequalities a > e > ¢, so that the entrant prefers to enter if the
chain store acquiesces but prefers to stay out if the chain store resists, and
b > d, so that the chain store prefers acquiescing to resisting. Figure 1.2
shows the normal form of this game.

We assume that the dynamics z = f(z) are regular and monotonic in
the sense of Samuelson and Zhang [44] so that we have some idea of how to
draw the phase diagram.® Figure 1.3 shows a phase diagram. The horizontal

%f is monotonic if, for strategies i and j for player £, 1i(z) > wi(z) <> fi(z)/z: >
fi(2)/z;, where ®i(2) is the average payoff to strategy i in state z and z; is the proportion




axis measures the proportion of agents in population IT playing R while the
vertical axis measures the proportion of population I agents playing N. We
can see two types of equilibria in Figure 1.3. There is a subgame perfect
equilibrium (denoted by S) in which player I enters and I I acquiesces. There
is also a component of Nash equilibria (denoted by A) that are not subgame
perfect, in which player I does not enter and player I resists entry with
probability at least (a —e)/(a — ¢).

Figure 1.3 shows that, depending upon the initial state, the dynamics
will converge either to the subgame-perfect equilibrium or to the Nash equi-
librium component N. The subgame-perfect equilibrium is asymptotically
stable, the Nash equilibria are not.l19 The interpretation of the model, and
especially our assessment of the component N, then hinges on the stability
properties of the component N'. We address this question in two stages.

First, how does N fare when faced with perturbations caused by factors
excluded from the model that led to the selection dynamics? In the long
run, these perturbations appear in the form of drift. Figure 1 shows two
specifications of drift and the corresponding phase diagrams for the Chain
Store Game. In Figure 1.5, the addition of drift yields a system that has a
unique, asymptotically stable state that attracts the entire space: namely,
the subgame-perfect equilibrium. In Figure 1.7, two asymptotically stable
states exist, with one (denoted by &) being a Nash equilibrium that is not
subgame perfect. Drift can thus make a difference in the long-run behavior
of the system.

Second, given that we are interested in the long run and not the ultralong
run, why are these potentially different implications of drift relevant? Under
the unperturbed dynamics, the long-run behavior is that trajectories from
some initial conditions converge to N and some do not. When the drift is as
in Figure 1.6, we again have this conclusion. In Figure 1.5, some trajectories
converge to S without coming near N. Other trajectories do not converge
to NV, but do come very close to /. In addition, the rate of movement
of the dynamic system is very slow near the component N, because payoff

of the population playing strategy i. f is regular if the lim,_..- f;(2)/z; exists and is finite
when z] = 0. This in turn requires f;(z*) = 0, or, equivalently, that faces of the state
space are forward invariant.

1°Pollowing Hofbauer and Sigmund [25, p. 51], a stationary state z of a dynamic process
is stable if, for any open set V with z € V, the there is an open set U with z € U C V such
that any orbit beginning in U is contained in V. A stationary state z is asympiotically
stable if it is stable and there is an open set W with z € W such that any orbit beginning
in W converges to z.
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differences are small and hence learning forces are weak near a component of
equilibria, and because drift is also small. As a result, the trajectories that
come close to A will spend a very long time near A'. Thus A is interesting
in the medium run, even when the equilibrium that will be selected in the
long run is S. Since the medium run can be very long, why must we go
further to a long-run analysis?!!

The difference between the cases shown in Figures 1.5 and 1.7, and the
relevance of drift, hinges on what is meant by small and by long run. In
Figure 1.5, an argument for the relevance of A over a long period of time
must be driven by a belief that drift is sufficiently small and the initial
condition is sufficiently close to state (1,1), since otherwise the system will
leave the neighborhood of A too quickly. The longer is the time period
of interest, the more stringent are these requirements. In contrast, the
conditions for the applicability of A are much less demanding in Figure
1.7, requiring only that the initial condition lie in the basin of attraction of
¢, at which point we can be confident that the system will not stray from
the vicinity of M over any arbitrarily long time period.12 Studying drift is
important because drift can make an outcome such as A a good prediction
of long-run behavior under a much wider range of circumstances.

Do we have any reason to expect drift to look like Figure 1.6? The heart
of Binmore, Gale and Samuelson’s [4] analysis of the Ultimatum Game is
an argument that drift may take an analogous form. This argument in turn
depends upon the presumption that players or populations are likely to be
less susceptible to drift when the payoff consequences of their actions are
larger. McKelvey and Palfrey [33] similarly suggest modelling players as
being more likely to make mistakes or experiment with new choices if the
payoff implications are small. The idea goes back to Myerson’s [35] proper
equilibrium.

!The analysis of Roth and Erev [42] is based on speed-of-adjustment arguments of this
type.

12The qualitative features of these phase diagrams, including the characteristics of the
stationary states, are preserved no matter how small is the drift level A. In particular,
Proposition 2 below shows that the basin of attraction of § does not shrink as drift rates
get small.
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3 When can Drift be Ignored?

The Chain-Store Game shows that there are cases in which drift matters.
We accordingly turn to the question of when it matters. We require no
assumptions on the learning process in this section other than that the
resulting differential equations be continuously differentiable and that the
state space be forward invariant, though we also assume that the dynamics
are monotonic and regular when drawing the phase diagrams in Figures 2-3.

Hyperbolic stationary states. Our first observation is that we can ig-
nore drift and work with z = f(z) rather than z = f(2)+Ag(2) when dealing
with hyperbolic stationary states of f. A stationary state of a differential
equation is hyperbolic if the Jacobian matrix of the differential equation,
evaluated at the stationary state, has no eigenvalues with zero real parts.
Hyperbolic stationary states are isolated and are either sources, saddles or
sinks (Hirsch and Smale [24, ch. 9]).13

The first statement in the following Proposition is immediate from the
continuity of f and g on the compact set Z, while the second statement
follows from Hirsch and Smale [24, Theorems 1-2, p. 305]:14

Proposition 1

(1.1) For any € > 0, there exists A(€) such that for any A < A(¢), every
stationary state of f + Ag lies within € of a stationary state of f.

(1.2) Let z be a hyperbolic stationary state of f. Then f -+ Ag has a
hyperbolic stationary state z(\) that converges to z as A — 0 through an
appropriate sequence of values, with each z(A) being a sink (saddle) [source]
if and only if z is a sink (saddle) [source].

Proposition (1) indicates that, if we are working with hyperbolic station-
ary states of f, then we can ignore drift. The stationary states of f provide
approximate information concerning stationary states of f + Ag that lie
nearby and are of the same type. The approximation becomes arbitrarily
sharp as A gets small. Nonhyperbolic stationary states, however, do not
have this “structural stability.” An arbitrarily small change in the dynamic

13Nonhyperbolic stationary states need not be isolated and isolated stationary states
need not be hyperbolic.

MFor convenience, we will often write simply f and f + Ag for # = f(z) and 7 =

f(2) + Ag(2).
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system, or equivalently an arbitrarily small amount of drift, can completely
change the nature of a nonhyperbolic stationary state.

This observation may appear to resolve the question, since it is often said
that almost all dynamic systems have only hyperbolic stationary states.l®
However, the economics of the applications to which learning models are
applied often force us to confront nonhyperbolic stationary states. The
equilibria in the component A of the Chain-Store Game are not hyperbolic
stationary states. This is not exceptional. Every Nash equilibrium that does
not reach every information set (excluding some games featuring fortuitous
payoff ties) fails to be isolated under all of the familiar selection dynamics,
and hence fails to be a hyperbolic stationary state. Drift matters in such
cases, no matter how small it is.

Unreached information sets are notorious as the breeding ground for
equilibrium refinements, the heart of a refinement concept lying in the re-
strictions imposed on what players do or believe at such information sets.
Thus, when equilibrium refinements are at issue, drift matters.

Asymptotically Stable Components. If we are forced to deal with
components of stationary states, we might hope that the component as a
whole satisfies some stability property.

We begin with an example constructed by making two modifications
to the payoffs of the Chain-Store Game. In the first modification, let the
incumbent be one of Milgrom and Roberts’ [34] or Kreps and Wilson’s [30]
“tough guys,” who gets a higher payoff from fighting than from not fighting.
Second, let the entrant be unprofitable, in the sense that the entrant prefers
to stay out of the market even if the incumbent acquiesces. Then we obtain
the version of the Chain-Store Game shown in Figure 2. Figure 2.3 shows
the corresponding phase diagram for a regular, monotonic f. There is a
component N of Nash equilibria that are nonhyperbolic stationary states.
As long as L is played with positive probability in the initial state, the
system will converge to a point in A, In the presence of drift, the system
will converge to a point close to A, and this point will be arbitrarily close
for arbitrarily small drift levels. The component A satisfies a set version
of asymptotic stability, in that it attracts the trajectories from all nearby

The Peoxito theorem (Hirsch and Smale [24, p. 314]) shows that for two-dimensional
systems, there is a precise sense in which “almost all” dynamic systems have only hyper-
bolic stationary states. A similar result holds in higher dimensions for certain classes of
dynamic systems, such as linear and gradient systems [24, pp. 313-315].
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Figure 2: Chain-Store Game: unprofitable entrant and tough chain store

states.
The following definition is from Bhatia and Szegd [3, Def. 1.5, p. 58].18

Definition 1 Let z(t,2(0)) be the solution of a differential equation defined
on Z. A closed set C C Z 1is asymptotically stable if, for every open set
V C Z containing C, there ts an open set U with C C U C V such that if
2(0) € U, then z(t,2(0)) € V fort > 0 and lim;—. 2(¢,2(0)) € C.

One’s intuition is that drift should be irrelevant for the study of asymptoti-
cally stable sets in the same sense that drift can be neglected when studying
hyperbolic stationary states. This intuition can be made precise by applying
Proposition 2 below.

Guckenheimer and Holmes [20, pp. 258-259] advocate an approach to
nonhyperbolic stationary states analogous to the recommendation that one

*$The set C is restricted to be closed in this definition to ensure that C les strictly
inside the open set U, so that an arbitrarily small perturbation cannot take the system
from C to outside the set U. Ritzberger and Weibull [40], Schlag [46] and Swinkels [50]
examine components that satisfy a set version of asymptotic stability. A similar motivation
but different techniques appear in Ritzberger (39], who introduces the idea of an essential
component, where {very roughly) a component is essential if all nearby games have nearby
equilibria.

14




direct attention to asymptotically stable sets. They suggest that if station-
ary states fail to be hyperbolic, then one should not necessarily abandon
or embellish the model in a desperate attempt to achieve hyperbolicity. In-
stead, the existing model may well be the best description of the physical
system to be studied, and the failure of hyperbolicity should serve only as
a caution to place confidence only in those features of the model which are
robust to all perturbations.

The asymptotic stability of A in the Chain-Store Game of Figure 2
is a statement about equilibrium outcomes, namely that the entrant will
not enter, rather than a statement about strategies. Nothing has been said
about out-of-equilibrium behavior, or what the chain-store would do if entry
occurred. In many cases, we will be unconcerned with out-of-equilibrium
behavior because it is unobserved and has no economic consequences. In
other cases, we may encounter asymptotically stable components with the
property that the payoffs of at least some players vary across states in the
component. We must then be concerned about which element in the com-
ponent appears, for which there is no alternative to delving into the details
of the drift process.

Relatively Asymptotically Stable Components. Asymptotic stabil-
ity may be stronger than necessary for a component of equilibria to be
deemed worthy of attention. Figure 3 shows a second modification of the
Chain-Store Game. The chain store is again tough, but entry is profitable
if the chain store acquiesces. There is a unique component NV of Nash equi-
libria in which the entrant does not enter and the chain store fights entry
with probability at least . This component is not asymptotically stable.
Instead, any state in which no entry occurs is a stationary state, so that
there exist stationary states arbitrarily close to A that are not contained
in N. However, every initial condition that lies in the interior of the state
space yields a trajectory that converges to A (and that does not stray too
far away if it starts nearby).

The following is a slight modification of Definition 5.1 of Bhatia and
Szegd [3, p. 99)].

Definition 2 Let 2(t,2(0)) be the solution of a differential equation on state
space Z given initial condition z(0). A closed set C C Z is asymptotically
stable relative to W C Z if, for every open set V containing C, there is an
open set U with C C U C V such that if 2(0) € UNW, then z(t,2(0)) € V
fori 2> 0 and lim; ., 2(t, 2(0)) € C.
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Figure 3: Chain-Store Game: tough chain store

In the case of the Chain-Store Game of Figure 3, the set W can be taken
to be the interior of the state space, in which case we say that N is asymp-
totically stable relative to the interior. Given the common presumption that
drift points into the interior of the state space, this is an especially inter-
esting case. Proposition 2 below can again be applied to make precise the
sense in which the system with drift directs attention to components that
are asymptotically stable relative to the interior under the original system.!”

4 When Drift Matters

Unfortunately, as demonstrated by the Chain-Store Game of Figure 1, we
often encounter components of nonhyperbolic stationary states that are not
asymptotically stable or asymptotically stable relative to the interior. In
these cases, drift matters. Forces that have been excluded from the model

'"One might suspect that if a component of Nash equilibria is asymptotically stable
with respect to the interior, then the specification of drift, and hence Proposition 2, is
irrelevant as long as drift is small and inward pointing. However, it is easy to construct
an example of a component N that is asymptotically stable with respect to the interior
and a specification of (arbitrarily small) drift such that trajectories starting from points
arbitrarily close to /' converge to points far away.
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= f(2), on the grounds that they can be safely neglected, are then not
negligible for the purposes of long-run prediction.!® One then cannot evade
studying the model z = f(z) + Ag(2).

We restrict our attention to the case when f and g are continuously
differentiable and the stationary points of 2 = f(2) + Ag(2) are hyperbolic
for sufficiently small A. If this were false, one would argue that yet more
unmodeled sources of drift need to be incorporated into the model. We
simplify further by assuming that the basin of attraction of the set of all
stationary points is the whole space Z. Periodic orbits and other complicated
trajectories are thereby excluded.!®

Since drift matters, the unperturbed dynamic z = f(z) has a component
C of stationary states that are not hyperbolic. We assume that C is closed
and ask the question: when can we guarantee finding stationary states of
z = f(z)+ Ag(z) close to C for all sufficiently small A > 0, and when do
they have sufficiently strong stability properties to make them interesting
long-run predictions? For a positive answer to the second question, we will
require the stationary states to approach C as A — 0 and to lie in the interior
of a basin of attraction that does not shrink as A — 0. Figures 1.4 and 1.5
demonstrate that we cannot always ensure the existence of such stationary
states.

We begin with a simple example that is generalized in Proposition 2.

Example 1  For the purposes of this example, let the state space be
denoted by W and a state by w. Let the continuously differentiable dynamics
f(w) and §(w) on W have the property that there exists a component I' of
stationary states of f that is also a face of W. Let Bs(I') be the set of all
points in W whose distance from I' in the max norm is & or less.2 Then
By=T and By = W. Let Ds = 8Bs N (W \ B;). Suppose further that for
all sufficiently small § > 0,21

(a) For all w € B, f(w) points into Bs \ Ds at w.

18We will rarely have the level of confidence suggested by Guckenheimer and Holmes
[20, pp. 258-259], believing that we have literally captured the system of interest and that
there is no drift to be added to the model.

*Complicated behavior of this sort is undoubtedly important in some cases. However,
we think it is important to begin by understanding cases in which the dynamics are rela-
tively well-behaved. We find that such simple cases have much to tell us about equilibrium
selection.

**The max norm is defined by | w |= max; | w; |.

#1The sets S° and 8S are respectively the interior and boundary of S. To say that y
points into 5 at = means that 2 4 ey € S for all small enough ¢ > 0.
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Figure 4: Illustration for Example 1

(b) For all w € T', g(w) points into Bg at w.

We illustrate conditions (a) and (b) in Figure 4.1. Since g is continuous, we
deduce from (b) that

(c) There exists §* > 0 such that g(w) points into B for all w € Bs \ Ds
and points into W° for all w € Bs, provided 0 < § < 6%,

Condition (c) is illustrated in Figure 4.2.

Conditions (a) and (b) are sufficient to demonstrate that there exists
A(6) such that stationary points of 2z = f(w) + Ag(w) can be found in Bg
whenever 0 < 6 < 6* and 0 < A < A(6). This result is proved by showing
that f(w) + Ag(w) points into Bg for all w € Bs and then appealing to
Brouwer’s theorem. We illustrate this situation in Figure 4.3. As A — 0,
these stationary states approach C. Since all trajectories through points of
Bs~ do not leave Bg. and exotic behavior is excluded by hypothesis, the basin
of attraction of the set of all stationary states of the perturbed dynamics
inside Bs+ contains Bg», no matter how small is A\. The stationary states
accordingly satisfy our criteria for being interesting long-run predictions.

To verify that such a A(6) exists, observe that f is continuous on W
and, for sufficiently small 6*, has zeros in B; only on I'. By (a)-(b), we can
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therefore find A(8) such that f(w) + A(6)§(w) points into Bs for w € Ds.
Elsewhere in Bj, it is enough to observe that (a) and (c) imply that f(w)
and §(w) both point into Bs.

It remains to apply Brouwer’s theorem to the function ¥ : Bs; — Bj
defined, for small enough €, by ®(w) = w+e(f(w)+Aj(w)), where 0 < 6§ < §*
and 0 < A < A(6).22 A fixed point w* of ¥(w) is a stationary state of
W = f(w) + Ag(w). m

We now generalize the argument of this example to more complex situ-
ations. Our technique is to look for cases that are structurally equivalent to
the example. As before, we let 2 = f(z) + Ag(z) be continuously differen-
tiable on the state space Z. Let C' C Z be a closed component of stationary
states of 2 = f(z). Let W and T be as in Example 1.

Proposition 2 Suppose there ezists a differentiable injection ¢ : W — Z
with differentiable inverse ® such that C = ¢(I') and such that f(w) =
o($(w))f(p(w)) and §(w) = &'($(w))g($(w)) satisfy (a)-(b). Then there
ezists 6* > 0 and A(6) > 0 for all 0 < 6§ < &§* such that stationary states of
f(z)+ Ag(z) can be found in $(B§) whenever 0 < § < & and 0 < X < A(6).
The basin of attraction of the set of such stationary points contains ¢(Bss).

Proof By Example 1, there exist §* > 0 and A(6) such that f + A\ has
a stationary state w* in B for 0 < § < 6* and 0 < A < A(6). But then
z* = ¢(w*) is a stationary state of f + Ag because ¢ is differentiable and
hence @' is nonsingular. O

In our applications, the mapping ¢ will be chosen so that the set ¢(Bj),
which we will simply call Bs, will be the set of points in the basin of attrac-
tion of C that lie with distance § of C. The mapping ¢ is a diffeomorphism
(i.e., a differentiable bijection with differentiable inverse) between the state
space and a set containing C. To say that ¢ causes conditions (a) to hold is
then to say that near the component C, the basin of attraction of C is nicely
behaved in the sense that the basin locally looks like the state space Z and
the trajectories in this basin approach C sufficiently directly, meaning that
on the boundary of Bs(C), the learning dynamics lead into Bs(C). These
are counterparts of the characteristics of a hyperbolic sink that are used to
show that a perturbed dynamic must have a nearby sink. Condition (b) is
straightforward, indicating that drift can push the system off the component

*?¢ must be chosen sufficiently small here to ensure that ¥(w) € Bs for all w € Bs.
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C, but in so doing must must push the system into the basin of attraction
of C.

The conditions of Proposition 2 are sufficient but not necessary, and
we have refrained from seeking the weakest possible sufficient conditions in
order to obtain conditions that are easily interpreted. In the examples of the
next section a partial converse of this theorem holds, in that the selection
dynamic f satisfies (a) in each case and the conclusions of Proposition 2
hold if and only if g satisfies (b). ;

In the examples that follow, we will speak simply of “condition (a)”
holding and “condition (b)” holding, by which we mean that there exists
a mapping ¢ with the desired properties that causes these conditions to
hold. We will illustrate these conditions for the dynamics f and g near
the component C' in state space Z, meaning again that we will illustrate
dynamics for which an appropriate ¢ exists. Figure 5 illustrates conditions
(a)—(b) in the case of the component N of Nash equilibria in the Chain Store
Game of Figure 1. Figure 5.2 corresponds to the drift shown in Figure 1.6,
in which case (a)-(b) hold. Figure 5.1 corresponds to the drift shown in
Figure 1.4. In this case one easily finds sets C satisfying (a), but there is no
set C for which (b) is satisfied.

It is important to note that in Figure 5.2, we have chosen C to be a
subset of the Nash equilibrium component. It will typically be the case
that conditions (a)-(b) are satisfied not by an entire component of Nash
equilibria but by a subset of that component. But how can a subset C of
a component N have robust stability properties, since there must be other
stationary points in A\ C that are arbitrarily close? The component C
has robust stability properties in the perturbed dynamic because the drift
operates on C' to push the system back into the basin of attraction of C and
away from points in A"\ C. This is where drift plays its essential role.

What reason does this proposition give us for being interested in the set
C7? If (a)~(b) hold, then for any small § and sufficiently small ), the system
f + Ag has stationary states that lie within distance § of C. In addition,
these stationary states have a basin of attraction which contains Bss(C)
and hence does not shrink as A shrinks. Some subset of C' thus provides a
good approximation of the local limiting behavior of the dynamic f + Ag for
small A. In the examples of the next section, if (a)—(b) hold, then there is
a unique stationary state near the component C' and this stationary state is
asymptotically stable.

If conditions (a)—(b) hold, then the conclusion of Proposition 2 holds no
matter how small A becomes, i.e., no matter how insignificant is drift. Why
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Figure 5: Conditions of Proposition 2

do we expect even very small amounts of drift to have a significant effect
on the behavior of the dynamic system near C? The answer is that the
selection dynamics approach zero as we near C, because C is a component
of stationary states. Even small amounts of drift can then overwhelm the
selection process. The question is whether this drift tends to push the system
toward or away from C. If (b) holds, then the drift pushes the system toward
C and we have stationary states of the process with drift near C.

5 Examples

In this section, we illustrate the effect of drift with some examples. We as-
sume that the selection process is monotonic and regular. Some assumption
of this nature is required if there is to be any relationship between outcomes
of the learning process and conventional equilibrium notions. We find this
assumption appealing, though much work remains to be done before the
links between such behavior and the underlying learning processes are clear.
We also assume that g is completely mixed, or equivalently that it points in-
ward on the boundary of the state space. We find this assumption especially
natural, as the unmodeled forces captured by drift are likely to contain some
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factors that have nothing to do with payoffs in the game and are capable of
introducing any strategy.

5.1 Backward Induction

We first return to the Chain-Store Game of Figure 1. Let (r,n) denote a
point in the unit square, where n is then the proportion of population I
playing N (not enter) and r is the proportion of population IT playing R
(or resisting entry). For a point z € Z, the selection process then specifies
a pair (7(2),7(2)) = (fr(2), fa(2)).

To investigate the possibility of stationary states near the component C,
we examine the components of the vector f at states z € C. We will be
particularly interested in the ratio f,(z)/f-(2), and its relationship to the
analogous ratio for ¢.23

Proposition 3 Let g be completely mized and let f be the monotonic.
(8.1) Suppose there exists > 1/3 such that

fn(g’ 1) Gn (93 1)
76,0 < g6, <" ()

Then there exists ¢ satisfying the conditions of Proposition 2 such that (a)-
(b) are satisfied with C = {(r,1) : 7 > 8} = Cp.

(8.2). Suppose there is no 8 > 1/3 such

Fal60,1) _ ga(01)

f-(6,1) = g-(6,1)

Then for sufficiently small A, f + Ag has a unique stationary state that
converges to (0,0) as A converges to zero.

<0. (6)

Proof (3.1) Let § > L. Let B(Cy) be the basin of attraction of Cp and let
Bs be {(r,n) € B(Cp) : n > 1 — §}. Such a set is illustrated in Figure 5.2.
For sufficiently small §, there is a function ¢ : (1 —§,1) — (6,1) such that
(¢(n),n) is in the basin of attraction of (§,1). This function then describes
the left side of the boundary of B;s (again, see Figure 5.2). Then the function

Because z € C is a stationary state of f, we must define fn(2)/fr(z) =
lim;, —: fu(z)/fr(z:) for some sequence along which f.(zx) # 0. Similarly, let
9n(2)/9-(2) = lim,, .z gn(2&)/gr(2x). The montonicity of f and the inward-pointingness
of g, along with the differentiability of f and g, ensures that this is well defined for z € C,
in the sense that the limits are independent of the sequences {z;}.
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&((r,n)) = ((n = ¢(n)) /(1 — ¢(n)), (n — (1 — §))/3) is a diffeomorphism for
which (a) holds for any monotonic dynamic. The assumption that (5) holds
then supplies condition (b), giving the result.

(3.2) Suppose the consequent of the statement fails. Then there must
exist a sequence of values of A, approaching zero and a sequence of stationary
points 2 converging to an element of C. Hence, there must be a sequence
2 such that f(zx) + Axg(2t) = 0 with z converging to C. Because f(z;) +
Ag(zk) = 0 = gn(2k)/9r(21) = fn(z)/fr(2), this contradicts the inability
to satisfy (6). a

Condition (3.1) is the statement that we can find a subset Cp of Nash
equilibria in which the entrant stays out, which has the property that, on
this set, the drift dynamics g point into the basin of attraction of Cp under
the selection process f. The set Cjp is an interval connecting (6,1) and (1, 1),
and the key to verifying that drift points into the basin of attraction under
the selection process is verifying this property at the endpoint (6,1). The
existence of such a set then hinges upon finding a value of ¢ for which (5)
holds. Figure 5.2 illustrates a case in which such a 8 exists. Condition (3.2)
is the statement that such a # cannot be found and corresponds to Figure
5.1. Here, it is impossible to find a subset of A" on which drift points into the
basin of attraction under the selection process, and there is no stationary
point near A in the presence of drift.

Proposition 3 thus indicates that when examining the Chain Store Game,
we can simply check the relative slopes of the learning and drift processes
on the component of Nash equilibria A/. The component A is worthy of
our attention if and only if the slope of the drift process is flatter, in the
sense that the drift process points into the basin of attraction of a subset of
the component of Nash equilibria, where “worthy of attention” means that
there are nearby stationary states of the process with drift whose basin of
attraction does not shrink as the drift level shrinks. For the case of the
replicator dynamics, Binmore, Gale and Samuelson [4] show that if (3.1)
holds then there is a unique stationary point close to Cp, which is a sink.

5.2 Outside Options

Consider the game shown in Figure 6. The shape of the extensive form of
this game prompts us to refer to it as the “Dalek Game.”

The Dalek Game has two components of Nash equilibria, including a
strict Nash equilibrium given by (M, L) with payoffs (9, 3) and a component
N of equilibria with payoffs (7,4) in which player I takes the outside option
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Figure 6: Dalek Game

(plays T') and player II plays R with probability at least 7/9. The former is
a (hyperbolic) sink under regular, monotonic dynamics while the stationary
states in the latter component are not hyperbolic.

It is common to argue that forward induction restricts attention to the
equilibrium (M, L) in this game.?* How does this forward induction argu-
ment fare in our terms? First, it is straightforward to verify that condition
(a) is satisfied in this case and hence it follows immediately from Proposition
2 that:

Proposition 4 If there is a state z* € N such that g(z*) points into the
interior of the basin of attraction of the set C = {z € N : zp > z}}, then
there exists a ¢ satisfying (a)-(b).

In the presence of drift, we thus have good reason to be interested in

*For example, we might appeal to the iterated elimination of weakly dominated strate-
gies (cf. Kohlberg and Mertens [29]). B is strictly dominated for player I. Removing B
causes R to be weakly dominated for player I, the removal of which causes T to be weakly
dominated for player I, leaving (M, L). Alternatively, we could appeal to the never-weak-
best-response criterion (Kohlberg and Mertens [29]) or to the forward induction reasoning
of van Damme [53, 54] (in an equivalent but different extensive form in which player I
first chooses between T’ and {M, B} and then chooses between M and B) or to the normal
form variant of this reasoning given in Mailath, Samuelson and Swinkels {31].
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Nash equilibria that fail conventional forward induction arguments. How-
ever, we would like a condition that is easier to use than the requirement
that “g(2*) points into the interior of the basin of attraction of the set
C ={z € N :2g > 25}.” The key to finding such a condition is the
observation that strategy B is strictly dominated by T for player I in
Dalek. As a result, any monotonic dynamic will eliminate B. Hence, ev-
ery orbit of the dynamics must approach the boundary face spanned by
{T,M} x {L,R} = Z_p. But on this face, as shown in Figure 7, the phase
diagram is identical to that of the Chain-Store Game. Can we use what
we know about the Chain-Store Game to identify sufficient conditions for
stationary points near the component AV in the Dalek Game? In particular,
suppose that condition (3.1) holds when the dynamics of the Dalek game
are restricted to the face Z_p. Can this fact be used to conclude that the
Dalek Game has a stationary point close to N'? The answer is yes, as long
as drift does not create too powerful force toward strategy B.

If z is a point in the state space of this game, we let zr, zp, and zp
denote the probabilities with which strategies T, B and R are played at 2,
with the residual probabilities being attached to M and L. Similarly, we let
fr(z) be the element of the vector f corresponding to T, and so on. Then
N ={z:2r =1,2p > 2/9} C Z_p is the set of states corresponding to the
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component of Nash equilibria that are not subgame perfect.

Let f, §, and f + A§ be the dynamics f, g and f + Ag on Z_p defined
by letting f = f (this is possible because Z_p is forward invariant under
f) and letting gr(2) = gr(z) (and hence gup(2) = —gr(2), making Z_p
forward invariant). We refer to f + Ag and the state space Z_p as the
restricted dynamics.

Proposition 5 Suppose that for all § > 0, there is a sufficiently small A
such that the restricted dynamics have a sink (saddle) [source] within § of
N. Then for all § > 0, there is a function k(A\)R — R and a sufficiently
small X such that if sup,ez|gp(2)| < k(X), then the unrestricted dynamics
f + Mg have a sink (saddle) [saddle] within § of N in the Dalek Game.

To interpret this result, note that Proposition 3 provides sufficient conditions
for the restricted dynamics to have stationary points close to the component
of Nash equilibria N in the state space Z_p, as well as sufficient conditions
for no such stationary point to exist. Proposition 5 indicates that if the
former sufficient conditions are met, then we need lock no further. As long
as drift does not introduce the strategy B into the game with too much
force, the unrestricted dynamics in the Dalek game also have a stationary
point near .

Proof Let it be the case that for any é > 0, there is A such that the
restricted dynamics have a hyperbolic stationary state z(§) within § of V.
Then z(6) is also a stationary point of the dynamic f + Ag defined on Z by
letting gr(2) = gr(z) and gp(z) = 0. In addition, the Jacobian matrix of
f+ Ag at 2(6) is given by:

(fr+rgr)  O(frt+igr) O(frtigr)
dzp 2 8z
O(frtogr) O(fntdar) O(fr-trgr)

i & &

dzr Jzp dzp

Notice that, deleting the last row and column yields the Jacobian matrix of
the restricted dynamics at 2(6). Because dfp(z)/dzr = dfp(z)/zr = 0 when
zp = 0 for a regular dynamic, the characteristic polynomial for the process
f+ Ag is given by (8fp(2(8))/8zp — n)A, where 7 is an eigenvalue and A is
the characteristic polynomial of the restricted dynamics. Because z(§)p = 0,
we have 8fp(2(6))/0zp < 0, where the inequality follows from monotonicity
and the fact that 27 can be taken arbitrarily close to unity. The eigenvalues
of the Jacobian of f + A§ thus consist of one negative eigenvalue and the
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eigenvalues of the restricted dynamic at 2(8). If z(6) is a sink (saddle)
[source] of the restricted process, then z(§) is a sink (saddle) [saddle] of the
process f+Ag. The proof is now completed by noting that if sup,¢z g5(2) <
k() for some sufficiently small k()), then f+ g has a stationary point close
to z(6) and of the same type as z(6) under the dynamic f + A (Hirsch and
Smale {24, Theorems 1-2, p. 305]). O

5.3 Burning Money

We consider another common forward-induction example, the general form
of which is due to van Damme [53, 54] and Ben Porath and Dekel [2]. The
Battle of the Sexes game has two pure-strategy Nash equilibria and one
mixed-strategy equilibrium. It is common to dismiss the mixed-strategy
equilibrium. How do we choose between the two pure-strategy equilibria,
given that the players have opposing preferences over these equilibria? No-
tice that all of these equilibria are hyperbolic stationary states, so that
appealing to drift is no help in this game.

Suppose that before the game is played, player I has the option of burn-
ing two dollars, and let the payoffs in the Battle of the Sexes be such that
the resulting game is shown in Figure 8. A strategy for player II in the
Burning-Money Game identifies what player II will do if player I does and
does not burn the two dollars. A strategy for player I indicates whether
the money is burned and the subsequent choice of T or B. If the money
is burned, then 2 must be subtracted from player I's payoffs. The iterated
elimination of weakly dominated strategies leads to a unique outcome for
this game of (Not,T; LL) (the order of eliminations is shown in Figure 8),
giving player I her preferred payoff.

Except among game theorists, this argument is typically regarded as pre-
posterous. Its trivial first step is the observation that (Burn, B) is strictly
dominated for player I, and will not be played. The remaining four steps are
illustrated in Figure 9. We group these steps into two pairs, each of which
corresponds to an argument about how the dynamics behave on a face of
the state space where the phase diagram looks like that of the Chain-Store
Game. The first two of these steps eliminate RR and LR for player I and
(Not, B) for player I, and consists of the argument that (Burn, T; RL) will
appear in game the game shown in Figure 9a. The second substantive part
of the argument consists of the next two steps, which eliminate RL and
(Burn, T). These amount to the statement that (Not, T; LL) will be played
in Figure 9b.
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2,0 | -1,4 0,0 | 1,4

Action if Not Burn
& r, Action if Burn

LR LL RL RR

Burn,B| -1,4 | -2,0 2,0 | -4 |G

NotB | 00 | 00 | 1,4 | 1,4 [Gil)

Burn, T| -2,0 2,1 2,1 | -2,0 |«
Not, T | 4,1 | 4,1 0,0 | 0,0
(i) av) G

Figure 8: Burning-Money Game

With drift, the arguments that restrict attention to (Burn,T; RL) and
(Not,T; LL) might fail. For each face, we can mimic the construction of
the previous example to obtain a restricted dynamic f + Ag. Proposition 7
again supplies sufficient conditions for the restricted dynamics in each case
to have a stationary state near the component A of Nash equilibria in the
restricted state space that are not subgame perfect. A proof analogous to
that of Proposition § gives:

Proposition 6 Suppose that for all § > 0, there ts a sufficiently small
A such that the restricted dynamics in the game of Figure 9a (9b) have
a sink (saddle) [source] within & of N. Then for all § > 0, there is a
function k(X) and a sufficiently small X such that if sup,ez|gi(2)] < k(}N),
t € {Not,T; Burn,B; LL; LR} (i € {Not, B; Burn,B; LR; RR}), then the
unrestricted dynamics f + Ag have a sink (saddle) [saddle] in the Burning-
Money Game within § of the component N .
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Not, B

“ RL RR
\ Not, B 1,4 1,4
Burn T /\ P
} Burn, T Burn, T 2,1 -2,0
9a
Qa
NotT/ L
LL RL
LL
94 RL Burn, T| 2,1 2,1
Not, T 4,1 0,0
4h

Figure 9: Strategy Eliminations

Hence, the dynamics f + Ag can yield an outcome in the Burning-Money
Game in which player I does not burn the money and the outcome (B, R)
appears in the Battle of the Sexes subgame, for payoffs (1, 4), or an outcome
in which player I does burn the money and (T, L) appears in the subgame
for payoffs of (2,1). But this is precisely the intuition with which non-game-
theorists greet this game—if, for whatever reason, an equilibrium (B, R) for
payoffs (1,4) has become established in the Battle of the Sexes, player I's
ability or threats to burn money are likely to be met with befuddlement or
amusement by player I, and to have no effect on the outcome.

5.4 Cheap Talk

One of the apparent successes of evolutionary game theory has been to use
refinements of the evolutionarily stable strategy concept to examine issues
of cheap talk (for example, Blume, Kim and Sobel [10], Kim and Sobel
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I 415504
B |4,0]3,3

Figure 10: Stag Hunt Game

[27], Matsui [32], Sobel [49], and Warneryd [55]). Each paper establishes
conditions under which the evolutionary process, operating on the cheap talk
game, selects efficient equilibria of the underlying game. To see why such
a result might be expected, consider an outcome in which everyone plays
an inefficient equilibrium. Let a strategy appear in which some agents send
the currently unused message « and in which all agents play the efficient
equilibrium whenever at least one agent sends message «. The resulting
dynamics will lead to an outcome with only the efficient equilibrium being
played. Two steps are important in making this argument. The first is to
establish that an unused message exists. The second is to ensure that agents
react to this message by playing the efficient equilibrium. Both of these are
essentially questions of drift.

To consider cheap talk, we begin with the Stag Hunt Game shown in
Figure 10. This game has two Nash equilibria, (4, A) and (B, B), with the
former being-payoff dominant and the latter risk-dominant.

Now suppose that before playing the game, each player has an opportu-
nity to announce either “A” or “B,” with the announcements being made
simultaneously. We will interpret these as announcements of strategies that
the agents claim they will play, but the announcements are “cheap talk” in
the sense that they impose no restriction on the action that the player actu-
ally takes. A strategy is now an announcement and a specification of what
the player will do for each possible announcement configuration. Hence, the
strategy “ABA” is interpreted as “announce A, play B if the opponent an-
nounces A and play 4 if the opponent announces B.” The game with cheap
talk is then given in Figure 11. We again think of this as a game played by
a single population of players who are randomly chosen to be row or column
players when matched.

The pure-strategy Nash equilibrium outcomes of the game are shown in
boldface. These equilibria occur in two components of Nash equilibria, one
yielding payoffs of (5,5) (denoted by C5) and one yielding payoffs of (3, 3)
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AAA AAB BAA BBA ABA BAB ABB BBB
AAA [ 5,5 | 55 ] 55 | 0,4 | 0,4 | 55 | 0,4 | 0.4
AAB |55 | 55 | 40 | 3,3 | 0,4 | 40 | 0,4 | 3,3
BAA [ 55 | 0,4 | 5,5 | 5,5 | 5,5 | 0,4 | 0,4 | 0,4
BBA[ 40 | 3,3 | 5,5 | 55 | 40 | 0,4 | 3,3 | 0,4
ABA [ 40 | 40 | 5,5 | 0,4 | 3,3 | 5,5 | 3,3 | 0,4
BAB [ 55 | 0,4 | 40 | 40 | 5,5 | 3,3 | 0,4 | 3,3
ABB [ 40 | 4,0 | 4,0 | 3,3 | 3,3 | 4,0 | 3,3 | 3,3
BBB | 4,0 | 3,3 | 40 | 4,0 | 40 | 3,3 | 3,3 | 3,3

Figure 11: Cheap Talk Game

(denoted by C3). The component Cs is asymptotically stable. This is a
reflection of the fact that 5 is the largest payoff available in the game.

The component Cj3 is not asymptotically stable and is not asymptotically
stable with respect to the interior. For example, this component contains a
state in which all agents play BBB, which we will refer to as “state BBB,”
as well as a state in which all agents play ABB, which we refer to as “state
ABB.” If the system is in state BBB, with payoff (3,3), then a slight
perturbation that introduces strategy AAB leads to an outcome in which
all agents play AAB, for a payoff of (5,5). Notice that this transition reflects
the cheap-talk intuition described above. We begin with a state in which
all agents send message B and play B. The perturbation introduces agents
who send message A and play A in any match in which both agents send A.
This strategy earns a strictly higher payoff than BBB, since it always earns
a payoff of at least 3 and sometimes earns 5.

Alternatively, if the system is in state ABB, then a slight perturbation
that introduces strategy BBA yields a state in which all agents play BBA
for a payoff of 5. In this case, agents are initially announcing an intention
to play A, but always play B. The perturbation introduces a strategy in
which players announce B, but play A whenever both players make such
an announcement. The result is an outcome in which all players announce
B but play A, for a payoff of 5. We see here that the evolutionary process
attaches no importance to the nominal content of signals. Any signal can
be used to prompt coordination on the good equilibrium. This is to be

expected, as we could just as well have named our two messages “1” and
((2'”
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AAB

Figure 12: Partial phase diagram for Burning-Money Game

However, suppose that the current state divides agents in equal pro-
portions between the strategies ABB and BBB. There is now no unused
signal, and no small perturbation of the state can initiate learning dynamics
that lead away from this state. We illustrate these considerations in Figure
12, which shows the phase diagram for four faces of the state space. The
stability of component C3 thus hinges upon drift. If drift tends to push the
system toward equal proportions of ABB and BBB whenever both strate-
gies are in use, then the dynamics f 4+ Ag may have a stationary state near
the component C3, and we cannot rule out inefficient payoffs.2® This will be

*3The second role for drift in cheap talk models is to ensure that if there is an unused
signal that is seized upon by some agents as a device to coordinate on the good equilibrium,
then other agents do not react to the signal by choosing some particularly disastrous action.
In our Cheap Talk Game this is not a difficulty, because either of the actions an agent can
take is part of some equilibrium.
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the case if agents are indifferent about the signal they send, as long as they
are going to play B. This is the dreaded “babbling equilibrium” of cheap
talk games, and any efficiency result must have some way of excluding this
equilibrium.

Suppose instead that drift introduces a tendency to play strategy BBB
rather than ABB,?0 so that drift pushes the system toward a state in which
most agents play BBB. Suppose also that drift tends to introduce the
strategy AAB in relatively large proportions. Because AAB is the strategy
by which agents will be led from the Stag-Hunt equilibrium of (B, B) to
(A, A), these are the conditions most favorable to eliminating stationary
points near C3. If the composition of drift is such that these forces are
sufficiently strong, then there may be no stationary point yielding payoff
(8, 3), no matter how small the level of the drift (i.e., no matter how small
A). How strong must the bias toward BBB and AAB be in order to eliminate
stationary states near C37 We have computed numerical solutions for the
replicator dynamics with drift which suggest that the bias toward BBB
and AAB must be very strong before a stationary point with payoffs near
(3,3) ceases to exist. In particular, a specification of drift that attaches
probability % to strategies BBB and AAB and % to each of the remaining
strategies does not suffice.

In light of this, we consider it premature to conclude that evolution-
ary processes select efficient outcomes in cheap talk games. This contrasts
with much of the literature on evolutionary processes in cheap talk games,
which has concentrated on efficiency results. Sobel [49], for example, de-
rives conditions under which efficient equilibria are selected. To see where
the differences arise, notice that Sobel rejects a component if there is any
realization of the underlying stochastic drift process G that leads away from
the component. This may be an appropriate notion for an ultralong-run
analysis, since the ultralong-run is a period of time long enough that any
realization of the process that can happen will happen. For a long-run anal-
ysis, however, there is no alternative to modelling the process of drift.

6 Comparative Statics and Testability

Our interest in drift was motivated by discrepancies between theoretical
predictions and observed play. How does Proposition 2 help in analyzing
how people play games? In particular, what are the potentially testable

*We could just as well assume that drift pushes agents toward ABB,
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predictions that we could extract from Proposition 27

Comparative Statics. We study predictions based on comparative stat-
ics exercises in which one or more observable parameters are varied while
the remaining observable parameters are held fixed. If these predictions are
violated in the laboratory, the theory on which they are based is refuted,
though only conditionally so, since the predictions inescapably depend on
maintained hypotheses about unobservables. It is therefore important that
such maintained hypotheses not be overly strong.

We take the payoff function 7 of a game as our observable. This is deter-
mined by the parameters a, b, ¢, d, e, and k of Figure 1. These parameters
will be subjected to the constraints

a>e>c b>d. )

The process z = F(z,7) + AG(z,n) will be treated as unobservable.?’” A
maintained hypothesis about the learning process f derived as an approxi-
mation of F(z,n) will be that it is not only regular and monotonic, but also
comparatively monotonic.?® By the latter, we mean the following. Denote
the ith strategy of player £ by sy; and let fy;(z,7) be the coordinate of f
corresponding to strategy i for player £. Let 7y;(2) be the average payoff
to strategy ¢ for player £ in state z. Now consider two payoff functions
m:8 — R"and 7’ : § — IR" and fix a state z. Suppose there exists a
strategy ¢ € Sy, for player h such that 7(sg;, s—¢) = 7'(sgj,5-¢) if j # ¢ or
£ # h and such that Tp; > 7}, If 25 > 0, then fri(z,7) > fri(z,7") and if
zp; > 0 for § 5 4, then fr;(z,7) < fe;(2,7"), while fy; for £ 7 h is unaffected.
This assumption ensures that if we fix a state z and then consider a change
in the payoffs to player £ of strategy z that increases the average payoff of
strategy ¢ in state 2, then the rate at which strategy ¢ grows increases, and
the rate at which other strategies grow for player 7 decreases.

We know even less about the drift process g, derived as an approximation
of G(z,7), than about f. We have suggested that we expect drift to depend
upon a host of factors in addition to the payoffs in the game, and will often
expect drift to have very little to do with payoffs. In most of what follows,

2TThis is not to say that data cannot be gathered that is relevant to how people learn.
The problem is that we do not know how to incorporate this data into the theory in a
reliable manner.

2We now replace F(z) by F(z,7) to capture the dependence of the selection process
on payoffs.
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our maintained hypothesis is that g is independent of the payoffs in the game.
However, we comment on cases where the predictions are less sensitive to
this hypothesis than others. We refer to this as the case of ezogenous drift.

It remains to discuss the initial condition z(0) = 2(0,#). Our com-
parative statics predictions are predicated on the assumption that z(0) is
independent of payoffs but that we do not know in which basin of attraction
of f + Ag the initial condition z(0) lies. Our predictions will therefore not
apply games for which z(0) turns out to vary significantly with .

The Chain-Store Game. These comparative-statics considerations sug-
gest that it would be useful to run experiments that compare versions of
the Chain-Store Game with varying payoffs. The first task is to determine
which payoff configurations are more likely to give stable stationary points
near the component N

Proposition 7 Fiz payoffs a, b, ¢, d, e and k satisfying (7) for the Chain-
Store Game of Figure 1. Let the selection dynamic f be monotonic, regular
and comparatively monotonic and let the drift g be ezogenous. If there exists
a subset of the component N of Nash equilibria satisfying conditions (a)-(b)
of Proposition 2, then such a subset also exists for any larger values of e
and d or smaller values a, b and c, that preserve (7). The converse can fail
in each case.

Proof First, we calculate 9 as the solution to a(l — 1) + ¢y = e, yielding
Y = (a—c)/(e—c). Then N = {(r,1) : ¢ < r < 1}. Furthermore, we can
calculate diy/da > 0, dyp/dc > 0 and dip/de > 0. Next, we notice that for
a fixed state (h,n), the average payoffs to strategies H, L, Y, and N are
given by

Ty = e
7T, = a(l—r)+rc
Ty = fn+(1-n)b

v = fn+(1-n)d

Now let a, b, or ¢ decrease or d or e increase. Then Ty and Ty increase while
71 and Ty decrease. By comparative monotonicity, f,(z)/f-(z) decreases
for each z € N. In addition, our analysis of 4 shows that A expands. For

fixed drift, this ensures that if (5) held originally, then it continues to hold.
0
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Chain-Store experiments can thus be conducted with varying values of
the payoffs @ and b. An outcome consistent with the theory would be the ob-
servation of the subgame-perfect equilibrium for large values of @ and b and
the Nash, nonsubgame-perfect equilibrium for small values of ¢ and b. Vio-
lations of this relationship would challenge the theory. Similar experiments
can be done with other combinations of payoffs.

We have held drift to be exogenously fixed throughout this exercise. In
many cases, this may be a suitable first approximation, as in biological ex-
amples. Binmore, Gale and Samuelson [4] argue that, in the Ultimatum
Game, the drift process may be related to payoffs in the sense that a pop-
ulation may have a higher drift rate as the payoff differences between its
strategies are smaller. The particular drift process examined in [4] rein-
forces the effects of movements in payoffs and Proposition 7 continues to
hold for this drift process. An analysis like that leading to Proposition 7
can be performed for any process of drift, though the analysis will be more
complicated, and the results will be clearer in some cases than in others,
depending upon what is assumed about drift.

The Dalek Game. Similar comparative-statics considerations arise in
connection with the Dalek Game. We could construct a general form of
the Dalek Game, the first two rows of which would match the Chain Store
Game of Figure 1 and the final row of which would correspond to a strictly
dominated strategy for Player I. This suggests experiments in which the
payoffs of the Dalek Game are manipulated. From Propositions 7 and 5, we
again have that the experimental results are consistent with our model if
we observe outcomes near the Nash equilibrium that is not subgame perfect
for small values or @, b, and ¢ and large values of d and e. Violations of
this pattern would again challenge the theory. One implication is that we
should observe Nash equilibria that are not subgame perfect when the value
to player II of taking the outside option is relatively large.

In light of this, it is interesting to note that Balkenborg [1], when con-
ducting experiments with the Dalek Game, finds the outside option is virtu-
ally always chosen. This provides the beginnings of a comparative statics ex-
ercise, but additional insight into the model requires additional experiments
with different payoffs. Toward this end, Binmore et al [5] examine a related
game in which player I can either take an outside option or play the Nash
Demand Game with player I. In the latter, the two players simultaneously
make demands, splitting the difference if the demands are compatible and
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receiving nothing otherwise. The implication of learning with drift is again
that the outside option should be chosen when player II’s outside option is
relatively lucrative. The experimental results of [5] show that the outside
option is often taken, and is taken more often when it is more lucrative.

The Burning-Money Game. Now consider the Burning-Money Game.
Once again, the theory suggests conducting experiments with varying pay-
offs. In this case, the obvious payoff to vary is the amount of money to
be burned. The forward induction argument leading to (Not,T; LL) holds
as long as the amount to be burned lies in the interval (1,3). If station-
ary states near the Nash (but not subgame-perfect) equilibrium outcome
(Burn,T; RL) exist, then they do so when the amount of money to be
burned is relatively low. Alternatively, stationary states near the Nash
equilibrium outcome (Not, B; RR) exist when the amount of money that
is potentially burned is relatively high. Our suspicion is that the latter is
the most likely possibility, a suspicion reinforced by the observation that
this is the largest component of Nash equilibria that are not subgame per-
fect. Experimental outcomes will then be consistent with the theory if the
money is not burned and player I has to settle for the outcome (B, R) in
the original game whenever the amount of money to be burned is relatively
high. Violations of this pattern once again pose a challenge to the theory.

7 Conclusion

The ideas behind this paper are simple: The criterion for a model to be suc-
cessful is that it include important factors and exclude unimportant ones.
But how do we know what is important and what is not? In the case of evolu-
tionary games, the model itself provides the answers. If the model produces
stationary states that are not hyperbolic and do not occur in components
that satisfy some variation of asymptotic stability, then important factors
have been excluded from the model and the latter should be expanded.
The factors to be added to the model are important, in the sense that
they can have a significant impact on the behavior of the dynamic system,
but they also may be arbitrarily small in magnitude. It is presumably be-
cause they are small that they are excluded from the model in the first
analysis. How can a model whose behavior is shaped by arbitrarily small
factors be of any use in applications? One conclusion of this paper is that,
while the factors themselves may be small, their existence can nevertheless
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be used to derive comparative-statics results that do not depend upon ob-
serving arbitrarily small magnitudes. We are hopeful that these comparative
static results can form the basis of an empirical analysis.
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