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Abstract

In this paper we design a simple trading strategy to exploit the hypothesized distinct
informational content of the arithmetic and geometric mean. The rejection of cointegration
between the two stock market indicators supports this conjecture. The profits generated by
this cheaply replicable trading scheme cannot be expected to persist. Therefore we forecast
the averages using autoregressive linear and neural network models to gain a competitive
advantage relative to other investors, Refining the trading scheme using the forecasts further
increases the mean return as compared to a buy and hold strategy.

Zusammenfassung

In der vorliegenden Arbeit formulieren wir ein einfaches Trading System, um den unter-
schiedlichen Informationsgehalt des arithmetischen und geometrischen Mittels auszu-
schopfen. Kointegrationstests verwerfen die Existenz einer langfristigen Gleichgewichts-
beziehung zwischen den beiden Aktienindizes. Da dieses Handelssystem leicht replizierbar
ist, kann eine Persistenz dieser Profite nicht erwartet werden. Aus diesem Grunde pro-
gnostizieren wir beide Kursdurchschnitte mit autoregressiven linearen und neuronalen Netz-
werk Modellen, um gegenuber anderen Investoren einen kompetitiven Vorteil zu erlangen. Im
Vergleich zu einer Buy and Hold Strategie erhoht diese Verbesserung des Handelssystems
den durchschnittlichen Ertrag.
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Remark
A previous version of this paper was presented at:

‘3rd International Workshop on Neural Networks in the Capital Markets”, London Business School,
October 12-13, 1995,



1 Introduction

One of the most prominent mysteries of present day finance is the ample usage
of such simple and dated concepts as the arithmetic and the geometric means as
proxies for the aggregate price dynamics of leading international stock markets.
While such undertakings may find their explanation, though not justification, in
the inertia of the finance community to adopt more modern index concepts, it is
even more astounding that during the last decade of the twentieth century some
newly implemented stock market indexes are still constructed in the tradition
of these principles.

It is known from theoretical analyses (Helmenstein and Haefke, 1995) that
the arithmetic mean differs from the geometric mean in reflecting absolute and
relative price changes of the index stocks. The two indexes may therefore offer
distinct information to the investor. Building on this premise, we investigate
whether the investor may profitably exploit trading signals which are solely due
to different index construction principles whereas the underlying sample of index
stocks is identical. If so, the choice of an index construction principle is by no
means an insensitive issue, and our results have a substantial bearing for the
validity of the efficient market hypothesis even in its weak form. According to a
common criticism regarding the persistence of excess returns, it is a cheap and
easy task to find promising trading rules and to exploit the buy and sell signals.
Thus, it seems reasonable to expect that the profits will not be sustained and
market efficiency in its weak form will be restored.

The set of alternatives how to exploit the information contained in the re-
lationship between the two averages is richer, however. The efficienct mar-
ket hypothesis, which has been the leading paradigm for at least two decades,
finds itself on ever shakier grounds as the development of nonlinear forecasting
techniques proceeds. Since White’s (1988) paper numerous empirical econom-
ists have tried to find counterexamples to the efficient market hypothesis. The
NNCM workshop series (Refenes, 1993, Abu-Mostafa, 1994, Refenes, 1995), and
the CIFEr conference {1995) provide a plethora of papers which in one way or
another refute the efficient market hypothesis. Using a neural network forecast
of the arithmetic and the geometric average, in the present paper we demon-
strate that simulated trading of the underlying stocks yields higher cumulated
returns over the out-of-sample evaluation period than a simple buy-and-hold
strategy.

The paper is organized as follows. Section 2 exposes the theoretical prop-
erties of the arithmetic and the geometric means. In section 3 we investigate
the time trend properties of the averages and construct the models used for
forecasting. Section 4 presents the results, and section 5 contains concluding
remarks.




2 Properties of the Arithmetic and
the Geometric Mean

Subsequently we discuss the question whether different index construction prin-
ciples for the same set of underlying assets provide different information.

Table 1: Properties of the arithmetic and the geometric average
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p; — price of stock 4, I — number of stocks in the index
sample, 1 — price elasticity of the respective average and ¢
- constant scaling factor in order to obtain equal starting
values for ARI and GEO, ¢ > 1.

Table 1 demonstrates that in the case of the arithmetic average (ARI) a
given absolute change by € in the price of a low-priced stock has the same effect
on the index value as a change by ¢ in the price of a high-priced stock. By
contrast, a given relative change by 1 % in the price of a high-priced stock
entails a larger percentage change of the index value than a change by 1 % in
the price of a low-priced stock.

In the case of the geometric average (GEQ) relative price changes of in-
dividual stocks have the same influence on the index value regardless of the
absolute level of the respective stock price. A 1% stock price change of any
stock results in a 1/I% change of the index value. Contrary to before, a given
absolute change in the price of a low-priced stock has an over-proportional ef-
fect on the index value whereas an identical absolute change in the price of a
high-priced stock has an under-proportional effect. ]

In preparation of the trading scheme we investigate which condition has to
be fulfilled for the slope of the geometric average to exceed the slope of the
arithmetic average,
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The p; has to lie between the geometric and the arithmetic average for the
equality to hold. As for the elasticities, we find that p; has to be less than the
arithmetic mean if the price elasticity of the geometric average (ngro) is to be
greater than that of the arithmetic mean (n4ps).

How can this knowledge be exploited? It might be rewarding to develop a
trading strategy based on the above properties of the two indexes. We formulate
the conservative rule as follows. Do not invest at all in a downward trending
market. If the market is bullish and the slope of the geometric average intersects
the slope of the arithmetic average from below, we know that the price of the
low-priced stocks is growing faster than the price of the high-priced stocks.
Hence buy low-priced stocks. If the slope of the arithmetic mean intersects
the slope of the geometric mean from below, buy the high-priced stocks and
sell the low-priced ones. The aggressive rule resembles the conservative rule
for positively sloping averages. In a bearish market we go short in low-priced
stocks if the slope of the arithmetic average intersects the slope of the geometric
average from below while we take a short position in high-priced stocks if the
slope of the geometric average intersects the slope of the arithmetic average
from below. Low-priced stocks are defined as stocks with a price lying below
the geometric mean while high-priced stocks are those whose price is greater
than the arithmetic average. By assumption, we buy an equal number of shares
if we receive a buy signal.

3 Data and Models

A stock market index should not be influenced by stock price changes which are
due to technical measures, e.g. the addition (deletion) of a stock to (from) the
index sample and rights issues. In order to compensate for the impact of such
measures, ARI and GEO are adjusted using identical procedures. The stocks
of the representative Austrian stock market index (ATX) constitute the index
sample of both ARI and GEQ. The number of stocks in the index increases
from 16 to 19 during the period under consideration.

The data is of length 487, starts on November 27¢,1992, and ends on October
14t"1994. For estimating the parameters of our models we draw upon the first
387 observations. The remaining 100 observations are used to calculate the
out-of-sample error measures and the out-of-sample trading profits.

After taking logarithms of ARI and GEQO, we compute a set of descriptive
statistics for their first differences (table 2). The sample autocorrelations as
shown in table 3 are taken as a guideline towards the specification of the linear
and the neural network model.

When forecasting two stock market indexes that are based on the same
underlying assets, we may expect a certain comovement between them. In
order to account for this possibility, we perform a cointegration analysis.




Table 2: Descriptive statistics of GEQO and ARI returns
AARI AGEO
Sample mean (0.00048 0.00060
Standard deviation s 0.0094  0.0092
Standard error of
sample mean ﬁ 0.00048 0.00047

# of observations n 387 387

Table 3: Autocorrelations for observations 1 to 387

Variable Lagl Lag2 Lag3 Lagd4 Lagb Lag6 Lag 7
A ARI  0.234* 0.033 -0.064 0.063 0.138* 0.054 -0.025
A GEO 0.252* 0.060 -0.057 0.058 0.109* 0.049 -0.011
* Statistically significantly different from zero at the 0.05 significance level, here:
1.96/v/387 = 0.0996.

** Statistically significantly different from zero at the 0.01 significance level.

3.1 Integration and Cointegration Properties

The usual asymptotic properties in time series analysis cannot be expected to
apply if any of the variables in a regression model is generated by a nonstationary
process. Using unit root tests, we explore the time trend properties of ARJ and
GEOQO. If a series contains a stochastic trend, it is said to be integrated of order
d, I{d). Differencing d times then yields a stationary series.

Table 4 reports the results of Dickey-Fuller tests (DF) (Dickey and Fuller,
1979), Augmented Dickey-Fuller tests (ADF), and Phillips-Perron tests (PP)
(Phillips and Perron, 1988) that ARI and GEO might have up to two unit roots.
In no case is there significant evidence against the single unit root hypothesis.
Thus the null hypothesis that both series are not stationary in levels cannot
be rejected. All test statistics for a second unit root, that is a unit root in
the first differences of the series, are highly significant. We therefore adopt the
alternative hypothesis that the series are stationary in first differences.!

Since both series contain a stochastic trend we proceed with investigating
whether they share a common stochastic trend. This refers to testing for cointeg-
ration which is a way of testing for a long-run equilibrium relationship between
the arithmetic and the geometric average. Two variables are said to be cointeg-
rated of order one, CI(1,1), if they are individually I(1) and yet some linear

! Critical values for 500 observations at the 1% and 5% significance level, respectively, are
-3.44 and -2.87.




Table 4: Tests for integration

Single Unit Root Second Unit Root
Series DF ADF PP DF ADF PP
ARI  -0.72 -0.85 -0.79 | -15.41* -12.24* -15.46**
GEO -0.54 -0.70 -0.61 | -15.11** -11.95** -15.16**

** Statistically significantly different from zero at the 0.01 significance level.

combination of the two is 7(0) (Engle and Granger, 1987). Under the assump-
tion that a first order model is correct, we test whether the estimated residual
of the cointegrating regression is stationary. Specifically, we perform ADF tests
in order to test the null hypothesis that the residual series of the cointegrating
regression is nonstationary. Reporting a value of -1.34, an ADF test with one
lag and with GEOQO as the independent variable does not reject the null of no
cointegration at the 10% level.? Since the cointegrating vector establishes an
equilibrium relationship, the ADF test should not lead to a different conclusion
if the cointegrating equation is estimated invertedly, that is with the AR as the
independent variable. With a value of -1.26 the result confirms this requirement.

3.2 Linear Models

Based on the above findings we specify the linear models for both ARI and
GEQ as AR(1) processes. The coefficient estimates are presented in table 5.

3.3 Neural Network Model

Many different classes of neural network models are successfully applied to time
series data with the simple single hidden layer network being one of them
(White, 1988, Natter, Haefke, Soni and Otruba, 1994). However, it has fre-
quently been noted that performance sometimes degrades after adding a hidden
layer as compared to a simple perceptron. To avoid this shortcoming, we use
an augmented single hidden layer feedforward neural network which combines
a simple perceptron with a single hidden layer network. Therefore the output
is calculated as follows:

Q
F(3,60) = Za+ > G (E7) B (3)

g=1

2Critical values for the ADF test are -3.34 and -3.04 at the 5% and 10% significance levels,
respectively. These values differ from those used above as the asymptotic distributions of
residual-based cointegration test statistics are not the same as those of ordinary unit root test
statistics (cf. Davidson and MacKinnon (1993), p. 720).

o




Table 5: Linear models

Independent variable AGEO;, AARIL

Intercept 0.00042  0.00033
(0.924)  (0.714)
AGEQO, 4 0.252** -
(5.100) -
AARIL - 0.235**
- (4.734)
R? 0.061 0.053
DW 1.979 1.984
Ljung-Box Q (36) 37.97  41.682
p-value of Q (36) 0.380 0.237

with £; denoting the input vector x; augmented by a constant and 0 representing
a weight vector containing the weights «, 8,7, that is § = (¢/, B, ¥'Y, 8 =
(Brs B2y, Ba) s v = (7, ... ,’y’Q)'. Q is the number of hidden units and G is
a nonlinear function, in this case G (z) = W 1. This architecture not
only captures the nonlinearity in the data but a,f)so incorporates the well known
linear regression approach and therefore ensures that the network will in sample
perform at least as good as a linear model. If the input-output connections were
dropped, this outcome could not be guaranteed.

Currently, the dominant approach in estimating neural networks involves
early stopping or some variation of it. This means that it is not intended to
approximate the unknown parameter vector § as closely as possible but to some
predefined level of accuracy. It is argued that longer training would result in
fitting the noise. In our paper no early stopping is applied. We minimize
the complexity of the network to avoid overfitting. Estimation takes place in
two steps. First, the direct input-output connections « are estimated through
OLS and fixed. In a second step the matrices 8 and v are estimated to model
the residuals of the linear regression. This approach generally improves the
performance over OLS. We solve for

L I
mu Z f(€:,8))° (4)

1=l

with « fixed. The programme used to estimate the feedforward networks is
designed to find the optimal number of hidden units using the Schwartz inform-
ation criterion (SIC) (Sawa, 1978, Schwartz, 1978). A number of networks are
estimated, starting off with zero hidden units. Then a hidden unit is added and
the weights are reestimated. This approach has been called Sequential Network
Construction by Moody and Utans (1994). The in-sample errors generated from




these nets are then used to determine SIC, which adds a penalty term to the
number of parameters. SIC is calculated according to:

SIC =1In MSE + %lnT (5)
where w denotes the number of parameters and T the number of available
observations. Applying this procedure we receive an estimate for the out-of-
sample performance which can be applied to linear as well as nonlinear and
ARCH models (Granger, King and White, 1995).

4 Error Measures and Empirical Results

For the estimation we apply an autoregressive feedforward neural network model
to forecast ARI and GEQO, where we allow up to five lags and three hidden units.
The quality of our results is evaluated using the following out-of-sample error
measures:

¢ Normalized mean squared error

NMSE = 2=t W =90 Qt)j (6)
Zt, (?/t - ?7)~

NMSE was used by Weigend and Gershenfeld (1994) to evaluate entries
into the Santa Fe Time Series Competition and normalizes the MSE by
dividing it through the variance of the respective series;

s Theil’s coefficient of inequality

Theil = Z{ (yl - yﬁ)~2 (7)
Z, (= Y1)

This measure constitutes a simple sanity check of our forecasts against a
no-change forecast which performs better for Theil > 1 (Theil, 1966);

s Confusion matrix

The up and down signals of the forecasts are used to compute a confusion
matrix. We find the number of correct classifications in the main diagonal
and the errors off the diagonal. The columns contain the actual ups and
downs, while the rows contain the forecasts. As Swanson and White (1995)
note this is simply a 222 contingency table, and the hypothesis that a
given model is of no value in forecasting the sign of the price movement
can be expressed as the hypothesis of independence between the actual
and predicted directions. A binomial test is performed to check if the
confusion rate — this is the sum of the off diagonal elements over the total
number of elements — differs significantly from 50 %;




o Trading scheme
We apply the conservative trading scheme as described in section 2 without
transaction costs. We start trading on the first day of the evaluation
period;

o t-values for returns of the trading scheme
In order to test whether the returns generated through the trading scheme
are significantly different from the buy-and-hold strategy, t-values are com-
puted according to the following formula (Brock, Lakonishok and LeBaron,
1992)

¢ = e — [y )

o2 g2
VMt w

with u; and u; being the mean returns of the two series, o2 the estimated
variance for the entire sample, Ny the number of days a stock is held under
the trading scheme, and N, the number of observations.

Table 6: Results of out-of-sample AARI forecasts

Error measures Linear model ANN
NMSE 0.593 0.599
Theil 0.591 0.597
Confusion matrix 26 22 27 23

21 30 20 29
t-values (1.32) (1.32)

Table 7: Results of out-of-sample AGEQ forecasts

Error measures Linear model ANN
NMSE 0.571 0.362
Theil 0.568 0.361
Confusion matrix 26 23 27 23
22 28 21 28
t-values (0.91) (1.11)

Tables 6 and 7 report the results for the ARI and GEQ forecasts, respectively.
Whereas we find no distinct advantage of the ANN over the linear model for the
ARI, the ANN significantly boosts the forecast of the GEO. The SIC-best ANN
model chosen uses three lagged values of the respective series and one hidden




unit in both cases. In this application — unlike in Swanson and White (1995)
— the SIC could be used as a computational shortcut towards the out-of-sample
performance of the neural net models. The confusion matrices of all forecasts
provide additional insights into the quality of the forecasts but nowhere can we
reject the hypothesis that the up/down predictions are not correct in more than
50 % of the cases.

However, the quality of the forecasts becomes clear when we base the con-
servative trading rule of section 2 on them. The results are reported in table
8. The buy-and-hold strategy gives both the lowest cumulated as well as the
lowest mean return of all approaches under consideration. The application of
the trading scheme without the help of a forecasting model wins with regard
to the annualized cumulated returns. Refining this trading scheme by the use
of either linear or neural net forecasting models increases the mean return as
compared to the unrefined approach. Whereas the standard deviation of the
OLS forecast-based return series also increases, it remains virtually unchanged
for the ANN at the expense of a higher number of trading days.

Table 8: Summary statistics for annualized returns of the conservative trading
scheme

Estimation Cumulated Number of t-value (vs. Mean Std. dev.
method returns transactions buy&hold) return of return
Linear model 0.176 62 9.842 0.198 0.170
ANN model 0.151 79 12.182 0.212 0.156
No forecast 0.333 48 9.080 0.157 0.145
Buy and hold -0.938 2 n.a. -0.073 0.476

5 Conclusion

In this paper we introduce a trading strategy based on arithmetic and geometric
averages. We find empirical evidence that the additional information contained
in the relationship between these two indexes can be used to outperform a buy-
and-hold strategy on the stock market.

Any investor should be able to take advantage of the described trading rule.
In order to gain a competitive edge relative to the other market participants, we
base the trading system on linear and neural network forecasts of the underlying
indexes. The neural net forecast provides a higher mean return at the same
level of risk — as measured by the standard deviation of the returns — than
any other approach. Recall that the models — depending on the forecast —
generate between 48 and 79 trading signals in just 100 days. Hence it remains




to be inquired whether the profits can be sustained in an environment where
transaction costs are taken into account.
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