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Abstract

In most of the empirical research on capital markets, stock market indexes are used as
proxies for the aggregate market development. In previous work we found that a particular
market segment might be less efficient than the whole market and hence easier to forecast.
In this paper we extend the focus of this investigation by taking a comprehensive look at the
Vienna Stock Exchange. We use feedforward networks and linear models to forecast the all
share index WBI as well as various subindexes covering the highly liquid, semi-liquid, and
initial public offering (IPO) market segment. In order to shed some light on network
construction principles, we compare different models as selected by hold-out crossvalidation
(HCV), Akaike's information criterion (AIC), and Schwartz' information criterion (SIC). The
forecasts are subsequently evaluated on the basis of hypothetical trading in the out-of-

sample period.

Zusammenfassung

In der empirischen Kapitalmarktforschung werden Aktienindizes oft als MaR fur die
aggregierte Marktentwicklung herangezogen. Frihere Arbeiten ergaben, daR spezifische
Marktsegfnente nicht so effizient wie der Gesamtmarkt und daher leichter zu prognostizieren
sind. Hier wenden wir diesen Ansatz auf Wiener Aktienkursdaten an. Wir verwenden lineare
und feedforward Netzwerke Modelle, um den Gesamtmarktindex WBI sowie verschiedene
Subindizes fur das hochliquide, semi-liquide und Erstemissionsmarktsegment zu
prognostizieren. Um die Transparenz bei der Architekturselektion fir neuronale Netzwerke
zu erhéhen, vergleichen wir Modelle auf der Basis von' Hold-out Kreuzvalidierung (HCV),
Akaike Informationskriterium (AIC) und Schwartz Informationskriterium (SIC). Die Gute der

Prognosen wird anhand einer Tradingsimulation fur die out-of-sample Periode bestimmt.
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1 Introduction

Profit-seeking institutions and individuals find it increasingly interesting to ex-
plore investment opportunities off-side mainstream attention. In response to the
ensuing demand for instruments that document the performance of particular
markets and market segments, chiefly financial intermediaries have introduced
specific indexes to meet their own and their customers’ information needs. In
compensation for its industry in index creation, the index industry now wit-
nesses a boom in the development of financial indicators. To illustrate, a di-
versity of new benchmarks such as emerging market indexes, small cap indexes,
and warrant indexes supplements the analyst’s toolbox.

However, despite the intensive activity in the financial sector to create and
implement a multitude of new instruments, the scholarly domain has largely
stood aloof so far. While dramatic events on emerging capital markets have
had an impact on the frequency of occasional country studies, investigations
concerning specific market segments remained an exceptional undertaking.

In the present paper we conjecture that the exposition of a market segment
to analysts’ coverage is negatively correlated with the probability to detect
profitable trading strategies. If so, it may be rewarding to develop indicators
that focus on largely neglected market segments. Specifically, we consider a set
of interrelated subindexes that document the performance of various segments
of the Austrian stock market.

We color — at least partially — the black box that neural networks often
represent by empirically comparing three criteria commonly applied to the de-
termination of an optimal neural network architecture with respect to its out-
of-sample performance. Recently Swanson and White (1995) argued that “the
in-sample SIC does not appear to be a reliable guide to out-of-sample perform-
ance, so it fails to offer a convenient shortcut to true out-of-sample perform-
ance measures for selecting models and for configuring nonlinear ANN mod-
els.” We will provide a thorough comparison between hold-out crossvalidation,
Akaike’s information criterion, and the Schwartz information criterion which is
also known as the Bayesian information criterion. By combining this undertak-
ing with stock market index forecasting, we can simulate trading and calculate
hypothetical trading profits. Thus, we arrive at a well defined loss function on
which the assessment of the different estimates for prediction risk can be based.

In section 2 we provide a brief overview of the development of feedforward
neural networks, and section 3 discusses the concept of prediction risk. Section
4 presents the data as well as the index sampling and construction principles,
and section 5 discusses the empirical results on the basis of which we conclude
in section 6.




2 Artificial Neural Networks

In the recent literature a class of flexible nonlinear functions called artificial
neural networks (ANNs) has been proposed. White (1988) uses them to test
the efficient market hypothesis, Swanson and White (1995) investigate whether
the forward interest rate contains information on the spot rate, Natter, Haefke,
Soni and Otruba (1994) forecast GNP, and Hutchinson, Lo and Poggio (1994)
apply a special class of neural networks to option pricing. All this work is
based on McCulloch and Pitts (1943) who constructed models to mimic brain
functionality. Widrow and Hoff (1960) called the neurons that McCulloch and
Pitts used, adaptive linear elements (ADALINEs) and described the output of
one such ADALINE as:

f(&,0) =G (&), 1

with Z; being an input vector z; augmented by a constant and o a set of
weights. We see that for G(u) = u we arrive at the simple linear model which is
a standard paradigm in economic and econometric modelling. Kuan and White
(1994) point out that for G (u) = 1"-Fe>]cp_-w we arrive at the binary logit model,
and for G(u) being any normal cumulative distribution function, we obtain a
binary probit. Hence even at the outset of neural network modelling, standard
econometric models could easily be included as special cases. Later Werbos
(1974) and Rumelhart, Hinton and Williams (1986) combined such neurons
into one function and called them multilayer perceptron. This function can be

represented as:
f(zi)ﬁ7 = (ZG 'LL’Y(I ) <2)

g=1

B= (81,828 s v=(",... ,'y,’]) . Lee, White and Granger (1993) adopted
this approach to conduct tests for neglected nonlinearity. In a first step they
estimate a linear regression. Subsequently @) is set to 1, thus introducing an
additional regressor for the residuals of the linear model. This is represented by

Q
f(&,0)=5'a+ ZG (&474) By (3)

g=1

with § = (o', B, v, B8 = (B1, B2, .-, By) s and v = (7{,...,7('1)'. Under the
null 87 = 0 the test will have power whenever Zqul G (m}’ fy,,) By is capable of
extracting structure from the residuals (y; — 4;'ct). Q represents the number of
hidden units where each unit represents an additional regressor.

In this paper we use the same functional form as specified in equation 3
with a transfer function G (u) = TI;E?TT‘ 1, mapping u into the ]—1;+1]
interval. Estimation of the parameters is performed using the Polak Ribiere
Conjugated Gradient algorithm. As this is a local optimization method, every




set of parameters € is estimated five times, and the parameters of the run with
the minimal in-sample cost-function are chosen. The next section discusses how
to obtain non-arbitrary criteria for the determination of the hidden units.

3 Prediction Risk

Hornik, Stinchcombe and White (1989, 1990) showed, amongst others, that
feedforward neural networks can approximate any Borel-measurable function
arbitrarily well provided that the number of @ is sufficiently large. Therefore
numerous early applications in the field of finance and economics are far off from
being parsimoniously constructed. The number of elements in the parameter
vector 8 for a model is:? W = Q (2 + 2) + 1 where Z is the number of columns
in the set of regressors &. The multiplicative relationship between Z and Q
lets the number of weights shoot into dimensions beyond those econometricians
are used to deal with when designing their models. A regression with just
three explaining variables, one independent variable, and a @ of 3 results in 16
parameters as opposed to just 3 with OLS.

In financial applications that involve forecasting, the main focus of interest
is not the in-sample performance of any forecasting model but rather how well
the model deals with previously unseen data. We denote this prediction risk
with R which can either be determined through one of the various kinds of
crossvalidation and bootstrapping or through criteria that are based on the in-
sample error of the respective model. If we take into account that the estimation
of a moderately sized feedforward neural network can take a quarter of an hour
or more, criteria based on in-sample information lure like sirenes in a model
builder’s quest for the right neural net architecture. The appeal of such criteria
is that they represent the tradeoff between good fit and parsimony, and they do
s0 in various ways and with different emphasis.

3.1 Hold-out Crossvalidation

Hold-out crossvalidation (HCV) constitutes a very simple method of estimating
R. For the computation of the prediction risk estimate a set of observations
is set aside that is neither used for estimating the parameters nor for the final
out-of-sample evaluation. Amari, Murata, Miiller, Finke and Yang (1995) sug-

gest to take a fraction (1 - ————-——%) of total observations for this set, which

in this paper amounts to 65 observations. However, sometimes it might be very
unfavourable to have to exclude even one single observation from training, and
then in-sample estimates for prediction risk have to be used. Based on simu-
lation and theoretical analyses, Amari et al. (1995) recommend this approach
whenever the number of observations, n, is less than 30W.

lHenceforth we will call the parameters “weights” or “connections”, and W the total
number of weights.




3.2 Akaike’s Information Criterion

The Information Criterion A (AIC) as it was called by Akaike (1974) is computed
as
AIC (W) =nlogMSE 4 2W (4)

for a Gaussian process. It represents an explicit formulation of the principle
of parsimony where the first term penalizes a bad forecast quality while the
second term unfavourably increases with the number of parameters. The AIC
was derived as an approximately unbiased estimate for the Kullback-Leibler In-
formation Criterion which measures the minimum possible distance between the
model and the true distribution. However, agsymptotically the AIC selects too
large models even for AR processes, and hence the search for more appropriate
criteria continues.

3.3 Schwartz Information Criterion

Sawa (1978) and Schwartz (1978) suggested a criterion which is now called
Schwartz information criterion (SIC). SIC puts more emphasis on the parsi-
mony of the models than the AIC. The AIC assumes for a given class of nested
alternative models that for each model the estimate of the variance is nearly
true in the sense that the difference to the true variance tends to zero as n tends
to infinity. Unlike the A7C, the SIC for each model is evaluated assuming that
the most complex model within the class would be nearly true but the others
not necessarily so. Taking this difference in the underlying assumptions into
account, Sawa (1978) arrives at the SIC

SIC (W) =nlog MSE + Wlogn (5)

which can also be derived from a Bayesian framework. Rissanen (1987) intro-
duced another criterion that can be used with nonlinear and ARCH models but
which again leads to the same criterion as in equation 5.

4 Data

In the context of stock market index construction, the selection of the index
stocks and the determination of the index formula are two aspects which refer
to conceptually distinct issues. We start with considering the latter subject,
and subsequently we will also comment on the former.

The choice of the specific index formula is a sensitive issue. Haefke and
Helmenstein (1996) find that due to different index formulae, two indexes which
draw upon an identical sample of historical stock market data may not be coin-
tegrated, that is there may not exist a long-run equilibrium relationship between
the two. The results of econometric analyses may therefore crucially depend on




the particular index formulae chosen. In order to prevent a systematic devi-
ation of the indexes from each other, all indexes discussed in this study obey
three identical construction principles. First, the decision-making process on
the index formulae requires considerations regarding the selection of appropri-
ate weighting schemes. If a weighted index is preferred, a decision about the kind
of weigths has to be taken. Frequently used indexes are either price-weighted,
capitalization-weighted, or turnover-weighted. The indexes employed in this
paper consistently use the market capitalization of the index stocks as weights.
Second, all indexes correspond to a capitalization-weighted price index. Third,
a stock market index should not be influenced by stock price changes which are
solely due to technical measures, for example the addition (deletion) of a stock
to (from) the index sample or rights issues. In order to compensate for the
impact of such measures on the index, all indexes are adjusted using identical
procedures.

The choice of these specific index construction principles, however, does not
imply that the determination of the sample of index stocks needs to follow the
criterion of market capitalization as well. On the contrary, for the composition
of the sample of index stocks a large set of selection criteria is at hand, such
as a certain minimum market capitalization and/or turnover in either absolute
or relative terms or the membership in a particular market segment (Helmen-
stein and Haefke, 1995). It is the distinctive property of the indexes presented
subsequently that the respective index samples are constituted according to
index-specific selection criteria. While the Austrian Traded Index (AT X) and
the Semi-Liquid Market Index (SEMIX) employ the market capitalization and
the turnover of stocks, respectively, to determine the upper and lower limits for
inclusion, the Initial Public Offerings IndeX (/POX) draws upon the criterion
of membership in the market segment of initial public offerings. Recall, however,
that all three indexes follow common index construction principles and differ
only with respect to the sample of index stocks chosen.

4.1 The ATX

The leading international stock market indexes currently in use are based on a
small sample of stocks which generally represents a considerable fraction of total
stock market capitalization and/or turnover. A typical representative of these
aggregate measures is the AT X which represents the blue chip market segment
of the Vienna Stock Exchange. The AT X comprises about 50 % of total market
capitalization. At present the index sample consists of 18 consecutively traded
stocks. The AT X started with a base value of 1,000.00 on January 1°¢, 1991.
Since the AT X is calculated real-time, a new index value is available after every
single trading operation. For the purpose of this study we have opted for using
AT X closing values.?

2The index formula is provided in the IPOX section.




4.2 The SEMIX

We now turn to the concept of a Semi Liquid Market Index (SEMIX). Other
indexes such as small cap and mid cap indexes, which focus on a market segment
similar to the one represented by the SEMIX, use a certain market capitaliz-
ation as upper limit and a certain minimum turnover as lower limit for a stock
to qualify for inclusion in the index. In contrast to this approach, we prefer to
use the same criterion for both the upper and the lower bounds. By reducing
the number of variables relevant for qualification, our approach facilitates the
interpretation of changes in the index sample.

It is a well-known observation that the turnover on relatively small stock
markets is usually strongly skewed towards a few high turnover stocks. The up-
per limit for the SEMIX was therefore fixed to the average turnover registered
during a period of three months prior to the quarterly revision of the index
sample. With 20 % of this value the lower limit is still sufficiently restrictive to
ensure (almost) daily trading of the index stocks. The index is calculated using
mid-day price settlement data.?

4.3 The IPOX

The IPOX covers all IPOs in the official market segment of the Vienna Stock
Exchange. Newly issued stock of companies whose stock other than the new
category has been listed earlier is also included in the sample of index stocks.
IPOs in the regulated and in the unregulated market segments are, by contrast,
excluded from consideration. In order to prevent the short run underpricing
phenomenon from distorting the aftermarket performance analysis, each IPO
enters the IPOX with the first price in public trading and not with the offering
price. The ATX, IPOX, and SEMIX are computed according to

K
P i
ATX, = ATX,_; Z}(A::z et Qb t—1 ’ ©)
pom1 Dheyt=1 Qe t~1

I
IPOX, = IPOX;, { Z,"”’“P”Q“H , (7)
Yim1 Pit—1Qi—1

SEMIX,

(&)

Il

J
/P Qi
SEMIX,,_l[ Lim PreQiems }

=1 Dit=1Q,t—1

with IPOX,; (SEMIX,, ATX,) as the IPOX (SEMIX, ATX) value at time
t, Pit (Pyi, Pryt) the price of share i (4, k) at time ¢, Q;4—1, (Qj,t—1 Qr,e—1) the
number of shares of stock ¢ (j,k) issued at time ¢ — 1, and I (J, K') the number
of stocks in the IPOX (SEMIX, ATX).

The projections of expected future profits by the issuing company are a dis-
tinctive feature of IJPOs. As the underwriting bank(s) can, beside others, be



held liable for wrong or misleading statements, the prospectus contains more
comprehensive and reliable information than any other information source avail-
able to the outside investor. Considering the additional information as being a
typical attribute of a stock to be defined as an IPO, we have reason to expect
that this status will vanish at the end of the forecasting horizon which is 18
months on average. For this reason one and a half years after the first listing on
the stock exchange a stock does no longer qualify as an IPO and is thus with-
drawn from the index. The legal framework affects the time trend properties
of the TPOX returns® in terms of lower volatility relative to the stock market
average since the discounted value of future profits is less uncertain (Table 1).

Table 1: Descriptive statistics of the index returns
AATX AIPOX ASEMIX AWBI
Sample mean 0.00103  0.00063 0.00042 0.00074
Standard deviation s 0.00998  0.00753 0.00581 0.00695
Standard error of
sample mean ﬁ 0.00051  0.00038 0.00029 0.00035

# of observations n 390 390 390 390

For the purpose of comparison we conduct the same analysis for the Vienna
Stock Exchange Share Index (W BI). The W BI differs from the indexes intro-
duced before in terms of both the index construction principle and the criteria
for the selection of the index stocks. In contrast to the other indexes, the WBI
is a capitalization-weighted price index of type Paasche. The index sample does
not refer to a specific market segment but comprises all domestic shares listed
in the official market segment. The index was scaled to a base value of 100.00
on December 30", 1967,

The data is of length 663, starts on December 15,1993, and ends on August
31%%,1995. For estimating the parameters of our models we draw upon the first
390 to 395 observations, depending on the number of lags used for estimation.
63 observations are set aside for hold-out crossvalidation, and the remaining
200 observations are used to calculate the out-of-sample error measures and the
out-of-sample trading profits.

5 Results and Out-of-Sample Error Measures

The selected error measures are chosen in such a way that they focus on different
dimensions of goodness of fit. Mathews and Diamantopoulos (1994) analyse the
most widely used error measures and identify four factors that together provide

3Returns are defined as log changes.




a more comprehensive assessment of a forecast than any of them on its own.
The first and most important factor in their analysis is a ratio-type accuracy
measure such as the adjusted mean absolute percentage error, AMAPE. The
second factor can be described by volume-based accuracy measures, such as
mean absolute error, M AE, and mean squared error, M SE. Factor three as
measured by the mean error, M E, accounts for the bias in a forecast, whereas
factor four, R?, constitutes a measure of fit. Hence the information it provides
can be interpreted as a pattern-matching indicator rather than a pure distance
metric.

In addition to the error measures suggested by Mathews and Diamantopoulos
we also compute Theil’s measure of inequality (Theil, 1966) and a confusion
matrix. Furthermore we conduct hypothetical trading, thereby obtaining a well
defined loss function for the comparison of our models. In detail the error
measures are:

¢ Adjusted mean absolute percentage error

M .
1 Ym — Ym
AMAPE = — —_— 9
M mZ:l Ym + Um ( )
e Mean absolute error
1M
MAE = ]\_/I Z Iym - gm'? (10)
me=]1
¢ Mean error
1M
ME = ﬁ Z Ym ~ Gm; (11)
m==1
o Coefficient of determination
M . N2
R‘Z — 1 - Zn};{:i (ym yinl : (12)
Zm:l (ym - y)
¢ Normalized mean squared error
M . N2
NMSE = Zm=1 Um = ) (13)

M 2
Zm,:l (ym. - y)

NMSE was used by Weigend and Gershenfeld (1994) to evaluate entries
into the Santa Fe Time Series Competition and normalizes the MSE by
dividing it through the variance of the respective series;




e Theil’s coefficient of inequality

> e =9’ (14)
S (e = ye1)?

This measure constitutes a simple sanity check of our forecasts against a
no-change forecast which performs better for Theil > 1;

Theil =

¢ Confusion matrix

The up and down signals of the forecasts are used to compute a confusion
matrix. We find the number of correct classifications in the main diagonal
and the errors off the diagonal. The columns contain the actual ups and
downs, while the rows contain the forecasts. As Swanson and White (1995)
note, this is simply a 222 contingency table, and the hypothesis that a
given model is of no value in forecasting the sign of the price movement
can be expressed as the hypothesis of independence between the actual
and predicted directions. A binomial test is performed to check if the
confusion rate — this is the sum of the off diagonal elements over the total
number of elements — differs significantly from 50 %;

¢ Trading scheme

We apply a very simple and conservative trading scheme with transaction
costs. We start out on the first day of the evaluation period. If the forecast
for the following day indicates a rise in prices and we do not yet hold the
index portfolio, we buy. If we already hold, we do not buy again. In the
case of falling prices we sell if we hold but never go short. Returns are
annualized and compared to a Buy and Hold strategy. Transaction costs
are assumed to be 1% of each transaction which is the amount usually
faced by private investors at the Vienna Stock Exchange.

For each series we compute all error measures for the forecasting models from
1 to 5 lags with 1 to 3 hidden units. Generally we find only little predictability
when we consider the Theil measure or any other of the statistical error meas-
ures. With just one lag as input the net tends to forecast a constant rather than
a volatile price series. For all indexes except the W BI, however, this constant
provides higher returns than the other — linear as well as nonlinear —~ forecasts.
The best W BI forecast draws upon two lags with ¢ = 1 where the cumulated
loss is significantly lower than with any other configuration. The negative re-
turns, which are by far better than the buy-and-hold trading strategy, though,
are to some extent due to the relatively high transaction costs. If we had incor-
porated the transaction costs into the buy/sell decision, even positive returns
would have been possible.

The comparison of the estimates for the prediction risk reveals that both
HCV and AIC constantly opt for overly large models. The SIC, by contrast,
selects the return-best model in the case of the IPOX, an unduly large model




in the case of the SEMIX, and too small models in the case of both the ATX
and the WBI. A correlation analysis of cumulated returns (table 2) and values
of the SIC indicates a negative relationship between the two variables while
the AIC unexpectedly exhibits a positive correlation. For HCV we obtain
ambiguous results.

Table 2: Correlation between information criteria and trading returns

Information ATX IPOX SEMIX WBI
Criteria
HCV 0.136 -0.320  -0.754*  -0.406
(F-value) (0.338) (2.182) (23.663) (3.550)
AIC 0.411 0.297  0.813**  0.778**
(F-value) (3.667) (1.745) (35.166) (27.629)
SIC -0.593**  -0.442* -0.467* -0.327
(F-value) (9.752) (4.372) (5.016) (2.162)

Critical value for 20 d.f., 95%: F=4.3513;
critical value for 20 d.f., 99%: F=8.0960.

6 Conclusion

The object of this paper is twofold. First, we investigated the predictability
of Viennese submarket indexes and concluded that such a predictability exists
for the univariate case. Further improvements of the forecasts may be accom-
plished in a multivariate setting by exploiting relationships that are likely to
exist between the indexes.

Second, the suitability of two different information criteria as computational
shortcut towards neural net architecture selection was compared to hold-out
crossvalidation. Whereas HCV and AIC selected models that were larger than
the one yielding the highest profit, SIC once found the profit maximizing model
but generally favoured undersized models.

The latter results are in line with previous findings. It remains to be in-
vestigated how SIC compares to criteria tailor-made for neural networks, such
as Generalized Prediction Error (GPE) or the Network Information Criterion
(NIC), and for datasets with higher degrees of nonlinearity. These projects will
be left for future work.

10




7 Acknowledgements

Partial financial support by the Austrian National Bank, Grant AEPC 7, is
gratefully acknowledged. We thank Silvia Aigner for excellent macro program-
ing and Michaela Ringauf from the Vienna Stock Exchange for providing stock
market data. All neural network estimation was performed using GaussANN.

References

Akaike, H., “A New Look at Statistical Model Identification,” IEEE Transac-
tions on Automated Circuits, 1974, 19, 716-723.

Amari, S., N. Murata, K.R. Miiller, M. Finke, and H. Yang, “Asymp-
totic Statistical Theory of Overtraining and Cross-Validation,” Technical
Report METR95-06, Department of Mathematical Engineering and In-
formation. Physics University of Tokyo, Hongo 7-3-1, Bonkyo-ku, Tokyo
113 August 1995.

Haefke, C. and C. Helmenstein, “Predicting Stock Market Averages to
Enhance Profitable Trading Strategies,” in A.N. Refenes, ed., Neural Net-
works in the Capital Markets 1995, London: World Scientific Publishers,
1996. Forthcoming.

Helmenstein, C. and C. Haefke, “A Comparative Analysis of Stock Market
Indexes,” 1995. mimeo, Institute for Advanced Studies; Vienna.

Hornik, K., M. Stinchcombe, and H. White, “Multi-Layer Feedforward
Networks Are Universal Approximators,” Neural Networks, 1989, 2, 359-
366.

ey — yand __, “Universal Approximation of an Unknown Mapping and
Its Derivatives,” Neural Networks, 1990, 8, 551-560.

Hutchinson, J., A. Lo, and T. Poggio, “A Nonparametric Approach to
Pricing and Hedging Derivative Securities via Learning Networks,” Journal
of Finance, 1994, 49, 851-889.

Kuan, C.M. and H. White, “Artificial Neural Networks: An Econometric
Perspective,” Econometric Reviews, 1994, 13, 1-91.

Lee, T., H. White, and C.W.J. Granger, “Testing for Neglected Nonlin-
earity in Time Series Models: A Comparison of Neural Network Methods
and Alternative Tests,” Journal of Econometrics, 1993, §6, 269-290.

Mathews, B.P. and A. Diamantopoulos, “Towards a Taxonomy of Forecast
Error Measures,” Journal of Forecasting, 1994, 13, 409-416.

11




McCulloch, W.S. and W. Pitts, “A Logical Calculus of the Ideas Immanent
in Nervous Activity,” Bulletin of Mathematical Biophysics, 1943, §, 115~
133.

Natter, M., C. Haefke, T. Soni, and H. Otruba, “Macroeconomic Fore-
casting Using Neural Networks,” in Y. Abu-Mostafa, ed., Neural Networks
in the Capital Markets 1994, 1994.

Rissanen, J., “Stochastic Complexity and the MDL Principle,” Econometric
Reviews, 1987, 6, 85-102.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning Internal
Representations by Error Propagation, Vol. 1, Cambridge, MA: MIT Press,
1986.

Sawa, T., “Information Criteria for Discriminating Among Alternative Regres-
sion Models,” Econometrica, 1978, 46, 1273-1291.

Schwartz, G., “Estimating the Dimension of a Model,” Annals of Statistics,
1978, 6, 461-464.

Swanson, N. and H. White, “A Model Selection Approach to Assessing
the Information in the Term Structure Using Linear Models and Artificial
Neural Network Models,” Journal of Business and Economic Statistics,
1995, 18, 265-275.

Theil, H., Applied Economic Forecasting, Amsterdam: North Holland Publish-
ing Company, 1966.

Werbos, P., “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences.” PhD dissertation, Harvard University, Department of
Applied Mathematics, 1974.

White, H., “Economic Prediction Using Neural Networks: The Case of IBM
Daily Stock Returns,” in “Proceedings of the Second Annual IEEE Con-
ference in Neural Networks,” New York: IEEE Press, 1988, pp. 451-458.

Widrow, B. and M.E. Hoff, “Adaptive Switching Circuits,” Institute of
Radio Engineers WESCON Convention Record, 1960, 4, 96-104.

12




Table 3: Statistical error measures for the AATX

Lags @ NMSE Theil AMAPE MAE ME R Confusion Matrix  t-value
1 0 0098 0990 2828 0005 -0.001 0014 l gg 2‘2’ J 0.708
11 2133 2143 4137  0.008 -0.007 -1.133 903 187 -0.992

e
1 2 8912 8953 1451 0.019 -0.019  -7.912 303 187 -0.992
1 3 64722 65.018  1.037  0.053 -0.053  -63.722 903 187 -0.992
2 0 0995 0099 2573  0.005 -0.001  0.005 gg 2‘15 0.708
. ) [ 62 63 ]
o 1 0998  1.002  3.981 0005 -0.001  0.002 o2 o 0.850
2 2 1.020  1.025 2032  0.005 -0.001  -0.020 gf. if 0.992
2 3 1124 1129  2.637  0.006 -0.001  -0.124 ig gg 0.850
[ 69 66 ]
3 0 1.001  1.005 3169 0005 -0.001  -0.001 od a 1.421
3 1 6491  6.521 4249 0014 -0.006  -5.491 gj gi 0.424
3 2 21325 21423 2222 0026 -0.014  -20.325 gé gg -0.283
3 3 153.818 154522  1.294  0.070 -0.004 -152.818 g: gf -0.141
4 0 1016 1021 3324 0005 -0.001  -0.016 gi 2(7) 1.135
[ 46 45 ] e
4 1 2780 2793 6.090 0009 0 -1.780 1.135
| 47 62 |
[ 52 59 ]
4 2 118.047 118587  1.007  0.070 -0.010 -117.047 o 0
4 3 858.868 © 862797  1.247  0.160 -0.148 -857.868 gg gg 0.424
. . " 67 69 ]
5 0 1012 1.017 5380  0.005 -0.001  -0.012 on o 0.708
; " 43 41 ]
5 1 1.323  1.320 3742 0.006 0 -0.323 i34 1.278
] 50 66 |
5 2 15922 15995  1.660  0.023 0002  -14.922 3)(4) ig -0.850
5 3 42110 42302 1169 0.038  0.007  -41.110 gé é; 0.141
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Table 4: Statistical error measures for the AIPOX

Lags Q NMSE Theil AMAPE MAE ME R? Confusion Matrix t-value
1 0 0961  0.965 3.006  0.004 0 0.039 8L 62 2.292
L 22 35 J
0 0
1 1 6927  6.953 1.486  0.017 0.016  -5.927 [ 103 97 } -0.424
1 2 4168  4.184 3.317  0.012 -0 -3.168 gg gf 2.146
1 3 57.854 58.072  1.112  0.051 -0.051 -56.854 { 183 907 0.424
2 0 0961 0965 6072 0004 -0 0.039 gf gg 2.440
2 1 0941  0.945 2059  0.004 0 0.059 ;Z Z; 2.588
[ 54 36 ]
2 2 0976 0.980 3.340  0.004 -0 0.024 10 6l 2.146
i " 53 40 ] ,
2 3 1.023  1.027 5.449  0.005 -0 -0.023 0 57 1.421
3 0 0.957  0.961 2.958  0.004 -0 0.043 g; gg 1 0.588
3 1 16.914 16.978  1.532 0024 -0.002 -15.914 Zg 512 0.992
3 2 1797 1.804 3.954  0.007 -0.002  -0.797 515 ig 0.992
3 3 30.200 30.314  1.223  0.033 0 -29.200 Z? gg 1.565
F 82 59 ]
4 0 0.969  0.973 2.439  0.004 -0 0.031 ol 38 2.887
) " 59 60 ] _
4 1 5400  5.420 7.856  0.013  -0.003  -4.400 1 a7 -0.566
4 2 1051  1.085 2208  0.005 -0  -0.051 7149 ] 2,737
, 1. ) ) . ey 7
4 3 79.204 79.593  1.026  0.052  0.023  -78.204 ’ég ig 0,850
B} " 82 56 ]
5 0 0962  0.966 2.668  0.004 -0 0.038 ol 41 3.342
5 1 4149  4.165 2.304  0.011 0 -3.149 ig gg 2.440
5 2 50911 51.103  1.458  0.043 -0.003 -49.911 2; 22 -0.283
y 46 57 ]
5 3 50214 50.403  1.815  0.041 -0.003 -49.214 57 40 -2
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Table 5: Statistical error measures for the ASEMIX

Lags ¢ NMSE Theil AMAPE MAE ME R? Confusion Matrix  t-value
1 0 098 0984 1480  0.006 -0.001  0.020 l S J 0.283
1 1 1353 1357 5430  0.008 -0.005  -0.353 % 1 ] -0.566

‘ 0 0

1 2 1623 1628 2666 0009 0007  -0.623 95 104 ] 0.566

1 3 4244 4258 3717 0.015 0005  -3.244 o % 2.440

2 0 1008 1011 2211 0006 -0.001  -0.008 o -0.424

2 1 1014 1017 2088 0006 -0.001  -0.014 e -0.283

2 2 1004 1007 2153  0.006 -0.001  -0.004 s -0.992

2 3 1056  1.060 1794  0.006 -0.001  -0.056 e 0.850

3 0 1011 1014 1857  0.006 -0.001  -0.011 (S 0.283
[ 45 42 ]

3 1 3449 3460  3.285 0015 0 -2.449 o 0.992
‘ 44 42 ]

3 2 2863 2873 4347 0013 0001  -1.863 cy or 0.850

3 3 1706 1712 3214 0009 0001  -0.706 g 0.708

4 0 1.009 1013 1.990  0.006 -0.001  -0.009 S 0

) [ 45 59

4 1 1916 1923 3133 0010 -0.001  -0.916 i 1421
. . \ , [ 32 54 ]

4 2 4172 4185 6314 0016 0002  -3.172 2 -2.588
. . . [ 56 72 ]

4 3 104.032 104373 1141 0085 -0.024 -103.032 oo -1.709
‘ 74 77 ]

5 0 1011 1015 2255  0.006 -0.001  -0.011 To o 0.141
. ) P48 52 ]

5 1 15989 16041  3.004  0.033 0001  -14.989 . o 0
5 2 249799 250617  1.384  0.118 -0.016 -248.799 05 -0.283
5 3 13367 13410 1323 0029 -0.004 -12.367 oo 0.566
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Table 6: Statistical error measures for the AW BT

Lags  NMSE Theil AMAPE MAE ME R? Confusion Matrix  t-value
1 0 0930 0933 9452  0.004 -0.001  0.070 [ gé gf J 1.709
11 1513 1517 15062  0.005 -0.004  -0.513 %1 ”1)8 ] -1.135
1 2 18325 18382 1175  0.020 -0.019 -17.325 910 189 -1.421

) 91 109

13 20935 30020  1.083  0.027 -0.027 -28.935 A -1.278

2 0 0920 0932 3747  0.004 -0.001  0.071 6158 1.709
ERN

2 1 0920 0932 1712 0.004 -0.001  0.071 gz g; 2.146
[ 56 49 ]

2 2 0977 0980  3.832 0004 -0 0.023 S 2,292
56 49 ]

2 3 0981 0984  3.034 0004 -0 0.019 2.292
| 35 60 |
[ 62 59

3 0 0943  0.946 4125  0.004 -0.001  0.057 o 1.709
[ 40 51 ]

3 1 20944 30038 1118  0.026 0001 -28.944 oo -0.283

3 2 78583  78.820  1.694  0.037 0027  -77.583 ,2((1) éz 1.709

3 3 85585  85.853  1.232  0.040 -0.002  -84.585 g(l) ‘ég 0.424

40 0962  0.965 1.682  0.004 -0.001  0.038 [ 65 517 3.342
| 26 58 | :

4 1 1.333  1.337 10495  0.005 -0.002  -0.333 [ 883 126 } -2
50 71 ]

4 2 16364 16415 1704 0.018 -0.006 -15.364 o -1.709
-3 ( =

4 3 583961 585791 0981  0.114 0021  -582.961 j; 33 2.737

5 0 0962  0.965 1817 0.004 -0.001  0.038 g‘; gg 2.440

5 1 4710 4.725 3.005  0.009 0002  -3.710 g? gé 0.850

5 2 100.608 100.923  2.319  0.044  0.010  -99.608 22 38 1.135
C 54 66 ]

5 3 730.214 732502 1101  0.111 -0.027 -729.214 o -0.424
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Table 7: Information Criteria and Trading Results for the AT X

Lags @ HCV AIC SIC Cumulated Mean Std.  dev. Number of
returns return of return transactions
1 0 0.756 -18.750 -2.824 -0.656 -0.394 0.037 103
1 1 0759 -19.782 -3.856 -0.656 -0.394 0.037 103
1 2 0.722 -20.220  7.650 -0.655 -0.404 0.037 103
1 3 0.735 -15.516 24.298 -0.491 -0.279 0.037 69
2 0 0775 -19.192  0.703 -0.663 -0.396 0.037 105
2 1 0779 -19.321 0.574 -0.663 -0.396 0.037 105
2 2 0.743 -19.160 16.650 -0.684 -0.410 0.037 109
2 3 0809 -22.368 29.358 -0.667 -0.406 0.037 105
3 0 0769 -19.977 3.881 -0.658 -0.398 0.037 103
3 1 0.766 -21.338  2.520 -0.744 -0.443 0.037 114
3 2 0.714 -25.324 18416 -0.774 -0.453 0.037 152
3 3 0.692 -43.965 19.656 -0.757 -0.450 0.037 123
4 0 0776 -19.443 8.374 -0.642 -0.388 0.037 99
4 1 0.765 -22.569  5.248 -0.695 -0.411 0.037 109
4 2 0.742 -25.218  26.442 -0.776 -0.460 0.037 139
4 3 0711 -43.437  32.065 -0.770 -0.452 0.037 124
5 0 0.787 -19.013 12.757 -0.674 -0.408 0.037 101
5 1 0786 -19.205 12.565 -0.642 -0.389 0.037 101
5 2 0.929 -38.437 21.132 -0.746 -0.434 0.037 141
5 3  1.039 -60.974 26.394 -0.693 -0.411 0.037 129
Table 8: Information Criteria and Trading Results for the TPOX
Lags @ HCV AIC SIC Cumulated Mean Std. dev. Number of
returns return of return transactions
1 0 0.735 -17.741 -1.826 -0.576 -0.354 0.039 95
1 1 0.732 -23.322  -7.407 -0.576 -0.354 0.039 95
1 2 0.679 -33.186 -5.334 -0.660 -0.406 0.039 107
1 3 0.682 -32.547  7.242 -0.658 -0.394 0.039 109
2 0 0.734 -15.684  4.198 -0.583 -0.357 0.039 95
2 1 0672 -27.145 -7.263 -0.583 -0.357 0.039 95
2 2 0.670 -30.608  5.179 -0.581 -0.348 0.039 97
2 3 0.737 -36.233  15.459 -0.636 -0.380 0.039 109
3 0 0.734 -13.711 10.132 -0.588 -0.361 0.039 97
3 1 0719 -20.839  3.003 -0.794 ~0.471 0.039 119
3 2 0.657 -27.344 16.368 -0.644 -0.390 0.039 117
3 3  0.749 -35.469 28.112 -0.803 -0.472 0.039 121
4 0 0.742 -13.933 13.865 -0.586 -0.358 0.039 99
4 10728 -21.330  6.469 -0.764 -0.451 0.039 127
4 2 0.703 -26.829 24.797 -0.623 -0.377 0.039 101
4 3 0.684 -40.218 35.236 -0.700 -0.414 0.039 138
5 0 0.749 -12.363 19.386 -0.606 -0.373 0.039 101
5 1 0.768 -18.396 13.353 ~0.775 -0.468 0.039 119
5 2 0.840 -34.095 25.436 -0.705 -0.430 0.039 139
5 3 0.799 -27.286 60.026 -0.749 -0.432 0.039 142
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Table 9: Information Criteria and Trading Results for the SEMIX

Lags @ HCV AIC SIC Cumulated Mean Std. dev. Number of
returns return of return transactions

1 0 2.786 4.105 20.020 -0.504 -0.295 0.079 83

1 1 2791 4.084 20 ~0.504 -0.295 0.079 83

1 2 2.806 9.666 37.518 -0.481 -0.283 0.079 80

1 3 2794 0.079 39.868 -0.695 -0.438 0.079 121
2 0 2.837 4.277 24.159 -0.523 -0.329 0.079 93

2 1 2.853 4,120 24.001 -0.533 -0.332 0.079 95

2 2 2,924 11.248 47.035 -0.523 -0.329 0.079 93

2 3 3.046 -2.686 49.007 -0.564 -0.357 0.079 99

3 0 2.883 5.231 29.074 -0.526 -0.332 0.079 93

3 1 298  -0.310 23.533 -0.610 -0.358 0.079 92

3 2 3.118 0.350 44.062 -0.641 -0.385 0.079 108
3 3 2974 -9.146  54.435 -0.626 -0.384 0.079 104
4 0 2.899 6.129 33.928 -0.482 -0.293 0.079 87

4 12927 1.583 29.382 -0.658 -0.410 0.079 110
4 2 2909 -3.254  48.373 -0.706 -0.436 0.079 112
4 3  2.804 -29.748 45.706 -0.794 -0.491 0.079 146
5 0 2.804 7.645 39.395 -0.485 -0.296 0.079 87

5 1 3.073 -2.522  29.228 -0.732 -0.463 0.079 106
5 2  3.105 -40.666 18.865 -0.745 -0.445 0.079 130
5 3 4.209 -18.415 68.896 -0.738 -0.451 0.079 128

Table 10: Information Criteria and Trading Results for the WBJ
Lags @ HCV AlIC SIC Cumulated Mean Std.  dev. Number of
returns return of return transactions

1 0 0.805 -30.513 -14.617 -0.616 -0.369 0.038 95
1 1 0.808 -30.595 -14.700 -0.616 -0.369 0.038 95
1 2 0.787 -32.773 -4.956 -0.636 -0.367 0.038 87
1 3 0.786 -27.040 12.698 -0.495 -0.266 0.038 61

2 0 0.800 -28.446 -8.589 -0.613 -0.366 0.038 95
2 1 0.764 -33.132 -13.276 -0.597 -0.358 0.038 91
2 2 0.806 -30.838 4.903 -0.616 -0.377 0.038 98
2 3 0.801  -23.290 28.337 -0.616 -0.377 0.038 98
3 0 0.802 -32.092 -8.279 -0.601 -0.362 0.038 93
3 1 0.778 -37.584 -13.771 -0.671 -0.394 0.038 111
3 2 0.887 -38.5T4 5.082 -0.717 -0.433 0.038 107
3 3 0.847 -51.373 12,127 -0.699 -0.447 0.038 107
4 0 0.832 -35.019 -7.256 -0.624 -0.363 0.038 97
4 1 0.831 -35.215 -7.452 -0.562 -0.319 0.038 84
4 2 0.849 -37.956  13.604 -0.693 -0.401 0.038 112
4 3 0.826 -40.993  34.363 -0.712 -0.427 0.038 125
5 0 0.824 -33.237  -1.528 -0.621 -0.361 0.038 97
5 1 0.818 -35774  -4.065 -0.652 -0.379 0.038 126
5 2 0.910  -49.277 10.177 -0.721 -0.461 0.038 101
5 3 0.964 -56.870 30.328 -0.786 -0.455 0.038 123
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