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Abstract

In this paper we apply cointegration and Granger-causality analyses to construct linear and
neural network error-correction models for an Austrian Initial Public Offerings IndeX
(IPOX,1x). We use the significant relationship between the /POX,n and the Austrian Stock
Market Index ATX to forecast the /POX,x. For prediction purposes we apply augmented
feedforward neural networks whose architecture is determined by Sequential Network
Construction with the Schwartz Information Criterion as an estimator for the prediction risk.
Trading based on the forecasts yields results superior to Buy and Hold or Moving Average
trading strategies in terms of mean-variance considerations.

Zusammenfassung

In dieser Arbeit verwenden wir Kointegrations- und Granger-Kausalitatsanalysen, um lineare
und konnexionistische Fehlerkorrekturmodelle fiir den Osterreichischen Erstemissionsindex
(IPOXarx) zu spezifizieren. Wir verwenden die signifikanten Abh&ngigkeiten zwischen
IPOXyrx und dem reprasentativen ATX (Austrian Traded Index), um den /POX,p zu
prognostizieren. Wir ermittein die optimale Architektur des feedforward Netzwerkes durch
sequentielle Netzwerkkonstruktion wobei das [nformationskriterium von Schwartz als
Schatzer fur das Prognoserisiko herangezogen wird. Eine Handelsstrategie auf Basis der
Prognosen wirft unter Risiko-Varianz Gesichtspunkten héhere Renditen ab als eine Buy and
Hold oder eine auf gleitenden Durchschnitten basierende Strategie.
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1 Introduction

Four anomalies in the pricing of Initial Public Offerings (IPOs) have so far
been established in the literature. These are the underpricing phenomenon, the
“hot issue” market notion, the superior performance of governmental IPOs to
non-governmental IPOs, and the long-run underperformance of IPOs.

The anomaly of long-run underperformance was revealed in Ritter (1991),
who demonstrated that during the 1975-1984 period IPOs substantially under-
performed a sample of matching firms from the closing price on the first day
of public trading to the market price on their three-year anniversaries. The
approach suggested in the present paper differs from earlier work with respect
to both methodology and focus of attention. Ritter uses time-series data on
individual stocks to investigate the long-run performance of IPOs. Contrary to
his seminal paper, we construct an Initial Public Offerings IndeX (IPOX) to
document the aggregate price dynamics of the market segment of Austrian IPOs
in comparison with the blue chip market segment as measured by the Austrian
Traded Index (ATX). The main subject of this paper consists of an inquiry
into the statistical properties of these two market segments and their mutual re-
lationship. In particular, we investigate the time series properties of the I/POX
in terms of its (auto)correlation, volatility, and causality patterns. Based on the
findings of this analysis, we forecast the returns of Austrian IPOs using both
linear and multilayer feedforward neural network error-correction models. As
suggested by Leitch and Tanner (1991), we examine the profitability of various
trading strategies in order to assess the economic value of our forecasts.

Before we turn to the construction of the IPOX, we briefly review the other
three anomalies. In contrast to the long-run aftermarket performance of IPOs,
short-run phenomena in the IPO market segment, such as the underpricing of
initial public offerings, are well documented in the literature, including Ruud
(1993), Carter and Manaster (1990), and Tini¢ (1988). Building on the premise
that any underpricing of IPOs can be expected to be eliminated after the first
day of public trading due to an (almost) instantaneous price adjustment, Ibbot-
son, Sindelar and Ritter (1988) investigate a sample of 8,668 IPOs going public
between 1960 and 1987." These authors find an average return of 16.4 % from
the offering price to the market price at the end of the first day of trading., The
“hot issue market” phenomenon refers to the observation that during certain
periods particular stock issues rise from their offering prices to higher than av-
erage premia in the aftermarket. In particular, statistical tests indicate serial
correlation during the early months of aftermarket trading (Ibbotson, Sindelar
and Ritter, 1988, Ibbotson and Jaffe, 1975). In an examination related to the
market for Austrian IPOs, Helmenstein (1995) documents the excess perform-

!This argument is valid a fortiori in view of the observation that the shares of initial public
offerings are usually subject to interbank trading (with prices available on request) before the
first official listing on a stock exchange. Hence there is no necessity for investors to wait at
least one trading session to gain an orientation about the market value of the IPO.




ance of governmental IPOs versus non-governmental IPOs. Drawing upon a set
of IPOX-subindexes, the analysis reveals that the cumulative return of govern-
mental IPOs exceeds that of the blue chip market segment by 65.8 % during
a period of about two and a half years ending in May 1995. The opportunity
costs of holding a portfolio of non-governmental IPOs, by contrast, cumulate to
foregone earnings of 26.5 % relative to the AT X portfolio.

The paper is organized as follows. The next section is dedicated to the
construction of the JPOX and the econometric analysis of the data. In section
3 we present the linear JPOX and AT X models and in section 4 we introduce
the neural network model. Section § provides a discussion of the error measures
which are used for out-of-sample evaluation. A final section concludes the paper.

2 Data

We now introduce the concept of an Initial Public Offerings IndeX which is
essential to the empirical analysis that follows.?

The TPOX covers all IPOs in the official market segment of the Vienna
Stock Exchange. Newly issued stock of companies whose stock other than the
new category has been listed earlier is also included in the sample of index
stocks. IPOs in the regulated and in the unregulated market segments are, by
contrast, excluded from consideration.® In order to prevent the underpricing
phenomenon from distorting the aftermarket performance analysis, each IPO
enters the JPOX with the first price in public trading and not with the offering
price. As an aggregate measure to represent the blue chip market segment of
the Vienna Stock Exchange we employ the AT'X, which comprises about 70
% of total market capitalization. In order to render the ATX and the IPOX
comparable to each other, that is, to exclude a systematic deviation of the
IPOX from the ATX, the IPOX is constructed isomorphically to the AT X,

Y PiaQia
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(1)
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with IPOX; (AT X;) as the IPOX (ATX) value at day t, P;; (P;.) the price
of share i (j) at day ¢, Q-1 (Qj,:—1) the number of shares of stock i (j) issued
at day £ — 1, and I (J) the number of stocks in the JPOX (AT X). Both the
ATX and the TPOX srx correspond to a capitalization-weighted stock price
index. A stock market index should not be influenced by stock price changes

IPOXL - IPOXt__l [ :] N ATXt = ATXL...l {

2For the composition of IPOX orx see appendix A.

3 Bank Austria AG and Investitionskredit AG have been removed from the index sample
for the sake of analytical clarity. Due to numerous affiliates, the stock of Bank Austria AG
represents a particular portfolio of Austrian companies itself, whereas for institutional reasons
the risk structure of Investitionskredit AG shares is unlikely to be reproducible for any other
Austrian company.




which are solely due to technical measures, e.g. the addition (deletion) of a
stock to (from) the index sample, and rights issues. In order to compensate
for the impact of these measures on the index, both indexes are adjusted using
identical procedures.

A distinctive feature of IPOs are projections of future corporate earnings in
the prospectus. As the underwriting bank(s) can, besides others, be held liable
for wrong or misleading statements, the prospectus contains more comprehens-
ive and reliable information than any other information source available to the
outside investor. Considering the additional information as being a typical at-
tribute of a stock to be defined as an IPO, we have reason to expect that this
status will vanish at the end of the forecasting horizon, which is 18 months on
average. For this reason, one and a half years after the first listing on the stock
exchange, a stock no longer qualifies as an IPO and is thus withdrawn from the
index. Table 1 shows that the legal framework affects the statistical properties
of the IPOX 47x returns? in terms of lower volatility relative to the AT X since
the discounted value of future profits is less uncertain,

Table 1: Descriptive statistics of IPOX 4rx and AT X returns
AIPOX arx AATX

Sample mean 0.00042 0.00065
Standard deviation s 0.0072 0.0098
Standard error of
sample mean 757-—{ 0.00032 0.00044
# of observations n 500 500

The data is of length 610, starts on December 15,1992, and ends on May
315¢,1995. For estimating the parameters of our models we draw upon the first
500 observations ending on December 19**, 1994, The remaining 110 observa-
tions are used to calculate the out-of-sample error measures.

2.1 Autocorrelation and Cross-correlation Properties

We now turn to the time series properties of the indexes. Our analysis (table 2)
reveals significant positive sample autocorrelation of order 1 for both the ATX
and the ITPOX 4rx returns. Furthermore, for the AT X we also find significant
negative autocorrelation for lag 3.

As AT X covers the most liquid shares traded on the Vienna Stock Exchange,
it can be expected to reflect price changes due to new information most quickly.
It may therefore qualify as an explaining variable for ITPOX 41x. Support for
this hypothesis comes from the computation of cross-correlations between AT X

4Returns are defined as log changes.
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Figure 1: IPOX srx vs. ATX

1300 1300

1200 1200
1100 1100
1000 - - 1000
900 - - 900
800 - 800
700 - 700
600 - - - C e - e e . - bt et e ¢ b e NP - PR N 600
§ 8858583838388 3%33%3353533353333538823838 3
S5 58838858828 588838¢85¢88¢=-58383%8
TeefrdrdggIgsgssde8ELEIRTEEee g
Date
Table 2: Sample autocorrelation for observations 1 to 500
Variable Lagl Lag2 Lag3 Lagd Lagb Lag6 Lag7
A TPOX rx  0.239**  0.075 0.034 0.071 0.014 -0.029 0.006
A ATX 0.226** 0.027 -0.097* -0.013 0.044 0.014 -0.041

* Statistically significantly different from zero at the 0.05 significance level, here:
1.96//500 = 0.0877.
** Statistically significantly different from zero at the 0.01 significance level.




and TPOX arx. Table 3 displays a statistically significant cross-correlation

Table 3: Cross-correlations between the TPOX; and AT X—1qq returns

Lags lag=-4 lag=-3 lag=-2 lag=-1 lag=0
X - correlation 0.039 -0.049 0.049  0.070 0.492*
lags lag=1 lag=2 lag=3 lag=4 lag=>5
X - correlation  0.235** 0.087  0.020  0.069 0.069

" Statistically significantly different from zero at the 0.05 significance level, here:
1.96/+/500 = 0.0877.
** Statistically significantly different from zero at the 0.01 significance level,

between the current TPOX 47y return and the previous AT X return. These
findings should subsequently be confirmed by an econometric model.

2.2 Integration and Cointegration Properties

The usual asymptotic properties cannot be expected to apply if any of the
variables in a regression model is generated by a nonstationary process. Using
unit root tests, we explore the properties of the AT X and the JPOX 47y series.
If a series contains a stochastic trend, it is said to be integrated of order d, I(d).
Differencing d times then yields a stationary series.

Table 4 reports the results of Dickey-Fuller tests (DF) (Dickey and Fuller,
1979), Augmented Dickey-Fuller tests (ADF), and Phillips-Perron tests (PP)
(Phillips and Perron, 1988) that the ATX and the IPOX  7x series might
have up to two unit roots. In no case is there significant evidence against
the single unit root hypothesis. Thus the null hypothesis that both series are
nonstationary in levels cannot be rejected. All test statistics for a second unit
root, that is a unit root in the first differences of the series, are highly significant.
We therefore adopt the alternative hypothesis that the series are stationary in
first differences.’

Since both series contain a stochastic trend, we proceed with investigat-
ing whether they share a common stochastic trend. This refers to testing for
cointegration which is a way of testing for a long-run equilibrium relationship
between ATX and JPOX grx. Two variables are said to be cointegrated of or-
der one, CI(1,1), if they are individually I(1) and yet some linear combination
of the two is 7(0) (Engle and Granger, 1987). Under the assumption that a first
order model is correct, we test whether the estimated residual of the cointeg-
rating regression is stationary. Specifically, we perform ADF tests in order to
test the null hypothesis that the residual series of the cointegrating regression

5Critical values for 500 observations at the 1% and 5% significance level, respectively, are
-3.44 and -2.87.




Table 4: Tests for integration

Single Unit Root Second Unit Root
Series DF ADF PP DF ADF PP
IPOXsrx -1.25 -1.41 -1.26 | -17.53* -13.46** ~17.56*
ATX -1.84 -1.78 -1.81 | -17.70* -14.23** -17.75**

** Statistically significantly different from zero at the 0.01 significance level.

is nonstationary. Reporting a value of -3.70, an ADF test with one lag and
with ITPOX arx as the independent variable rejects the null of no cointegration
at the 2.5% level. Since the cointegrating vector establishes an equilibrium
relationship, the ADF test should not lead to a different conclusion if the coin-
tegrating equation is estimated with AT X as the independent variable. With a
value of -3.76 the result confirms this requirement.

Johansen (1988) proposed an alternative method of estimating and testing
cointegrating relationships. Based on maximum likelihood, the idea is to analyze
the canonical correlations between levels and first differences corrected for lagged
differences and deterministic components (Kunst and Neusser, 1990). Under the
assumption that no deterministic trend is present in the data, Johansen’s test
rejects the hypothesis of no cointegration at the 5 % significance level (table
5). The null hypothesis that at most one cointegrating relationship is present in
the data against the alternative hypothesis that both TPOX 4rx and AT X are
stationary can, by contrast, not be rejected. We thus set the dimension of the
cointegration space to 1, that is the two variables are considered to be CI(1,1),
which corroborates the results obtained before.

Table 5: Johansen cointegration tests

Hypothesized number Likelihood 5 % critical 1 % critical
of cointegrating relationships ratio value value
No cointegrating relationship 21.46 19.96 24.60
One cointegrating relationship 5.70 9.24 12.97

SCritical values for the ADF test are -3.59 and -3.34 at the 2.5% and 5% significance
levels, respectively. These values differ from those used above as the asymptotic distributions
of residual-based cointegration test statistics are not the same as those of ordinary unit root
test statistics (cf. Davidson and MacKinnon (1993), p. 720).




3 Linear /POX yrx and ATX Models

Implementing the above findings, we base the JPOX 47 x forecasts on a dynamic
specification of a linear regression model with error-correction term

(R0 )= )+(mE wmE ) (IR )+(4 ) arox—warme( Iy
{2}
The term (JPOX — vATX), represents the stationary long-run equilibrium
relationship between the series. The adjustment coefficients y; describe the
process of adjustment of the particular series to the long-run equilibrium while
the lag polynomial ;;(L) represents additional short-run dynamics. As v;;(L)

contains no unit roots, it does not affect the long-run behavior of the series.

The regression results (table 6, second column) provide evidence that the cur-
rent value of JPOX 4rx is positively related to the previous values of IPOX 47x
and AT X. The highly significant value for the error-correction term (IPOX —
vAT X)), with a lag of 1 reveals that deviations of IPOX arx from ATX cause
a strong pull back tendency towards AT X while the opposite does not hold. To
check this finding, we use the same explaining variables as before to model AT X
in first differences. Due to the insignificant values for the error-correction term

Table 6: AT X as explaining variable for IPOX a7x

Independent variable AIPOX, AAT X,
Intercept 0.0003 0.0005
(1.057) (1.187)
AITPOX arx.t-1 0.1609* -0.0740
(3.304) (-1.079)
AAT X 0.0889* 0.2537*
(2.458) (4.976)
(IPOXarx —vATX), , -0.00005*~ 0.0000
where v = (.849 (-3.873) {0.084)
t-values in parentheses
R? 0.098 0.048
DW 1.995 1.973
LM (Breusch-Godfrey, p-value) 0.6504 0.2926
Ljung-Box Q (36) 36.383 34.633
p-value of Q (36) 0.451 0.534

* Statistically significantly different from zero at the 0.05 significance level.
** Statistically significantly different from zero at the 0.01 significance level.

and the IPOX orx term (table 6, third column), the result confirms the strong
exogeneity of ATX.
In order to analyze the time-related interaction between AT X and IPOX srx,




we perform Granger causality tests (Granger, 1969). Granger causality from
AAT X, to AIPOX,; means that the conditional forecast for ATPOX, can be
improved by adding lagged AAT X, to the information set. Table 7 presents the
results of three F-tests for mutual Granger causality constructed according to
the sequential method of Toda and Philips (1993). The first test (Hg : x; = 0)
examines the significance of the error-correction term while the second test
(Ho : 5 (L) = 0) tests for the significance of the lag polynomial. The test
for Granger causality (Hp : x; = 15 (L) = 0) examines whether both the lag
polynomial and the adjustment coefficient of the error-correction term are equal
to zero.

Table 7: Granger causality tests (F-statistics)

Error-correction term | Short-run dynamics Both
Ho:xi=0 Hp :i5(L) =0 Ho:xi=vy(L)=0
Results for Granger-causality from AT X to TPOX s1x
14.77** ‘ 12.01** | 12.43**
Results for Granger causality from IPOX g7y to ATX
0.002 | 1.086 | 0.584

** Statistically significantly different from zero at the 0.01 significance level.

The tests reveal that AT X Granger causes ITPOX 47rx while the opposite
does not hold. When IPOX 47x is the dependent variable, Granger causality is
due to the high significance level of both the lag polynomial and the adjustment
coeficient of the error-correction term.

While we choose an error-correction specification for the IPOX 4px forecast,
we predict the one-day-ahead AT X by an autoregressive process of order 3,
AR[3], that is

3
AATX, = o+ »_ $AAT X, +e, (3)

J=1

Table 8 presents the coefficient estimates.




Table 8: Estimated coefficients for the linear AT X model

Explaining variables AATX
Intercept 0.0007

(1.510)
AAT X, 0.2221*

(4.979)
AAT X, 5 0.0013

(0.028)
AATX; 3 -0.1036*

(-2.331)
R? 0.054
DW 1.992
LM (Breusch Godfrey, p-value) 0.561
Ljung-Box Q (36) 32.824
p-value of Q (36) 0.620

* Statistically significantly different from zero
at the 0.05 significance level.
** Statistically significantly different from zero
at the 0.01 significance level.

4 Neural Network Models

In the recent literature a class of flexible nonlinear functions called artificial
neural networks (ANNs) has been proposed. White (1988) uses them to test
the efficient market hypothesis, Swanson and White (1995) investigate whether
the forward interest rate contains information on the spot rate, Natter, Haefke,
Soni and Otruba (1994) forecast industrial production, and Hutchinson, Lo and
Poggio (1994) apply a special class of neural networks to option pricing. All
this work is based on McCulloch and Pitts (1943), who constructed models to
mimic brain functionality. Widrow and Hoff ((1960)) called the neurons that
McCulloch and Pitts used, adaptive linear elements (ADALINES) and described
the output of one such ADALINE as:

f (&, a) =G (&), (4)

with &; being an input vector z; augmented by a constant and « representing
a set of weights. For G(u) = u we arrive at the simple linear model which
is a standard paradigm in economic and econometric modelling. Kuan and
White ((1994)) point out that for G (u) = ﬁgi—ﬁﬁ, we obtain the binary logit
model and for G(u) being any normal cumulative distribution function, we get a
binary probit. Hence even at the outset of neural network modelling, standard
econometric models could easily be included as special cases. Later Werbos




(1974) and Rumelhart, Hinton and Williams (1986) combined the neurons into
one function and called this a multilayer perceptron. This function can be

represented as:
f(’l:t,ﬁ, = (ZG $t7q ) (5)

with 8= (B1,82,...,8,) and v = (7},...,7)".
In this paper we specify the functional form of the neural net as follows:

Q
F@.0) =3 a+ ) G(&v)b, (6)
g=1

where G (u) = —land 8= (a/,',7") . Increasing @ is sensible, as long

as Z;Q: G (:Et"yq) By is capable of extracting important structure. @ is called
the number of hidden units and equation 6 describes an augmented feedforward
network.

In a first step we estimate a linear regression and fix . In order to model the
structure that is left in the residuals, @ is set to 1, thus introducing an additional
regressor. This process is repeated until a maximum value for @ is reached
which can be determined either heuristically or through formal testing. Such
an iterative procedure of estimating the network has been termed Sequential
Network Construction (SNC) by Moody and Utans (1994). Unlike Lee, White
and Granger we do not test the signifcance of the single parameters using LM
tests but take the Schwartz Information Criterion (SIC) (Sawa, 1978, Schwartz,
1978) as a measure of the out-of-sample performance of a model with a given
Q.

The importance of parsimonious models becomes clear when we recall that
Hornik, Stinchcombe and White (1989, 1990) showed, among others, that feed-
forward neural networks can approximate any Borel-measurable function arbit-
rarily well provided that @ is sufficiently large. The necessity for parsimony .
becomes even more obvious when we explicitly write down the number of ele-
ments in the parameter vector 8:7 W = Q (2 + 2) + 1, where Z is the number
of columns in the set of regressors Z. The multiplicative relationship between
Z and @ lets the number of weights shoot into dimensions beyond those which
econometricians are used to deal with when designing their models. A regression
with three explaining variables, one independent variable, and 3 hidden units
results in 16 parameters as opposed to just 3 in the case of OLS.

In financial applications that involve forecasting, the main focus of interest
is not the in-sample performance of any forecasting model but rather how well
the model deals with previously unseen data. We denote this prediction risk

"Henceforth we will call the parameters “weights” or “connections”, and W the total
number of weights.
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R, which can either be determined through one of the various kinds of cross-
validation and bootstrapping techniques or through criteria that are based on
the in-sample error. Information criteria such as the AIC (Akaike, 1974) or
SIC represent an explicit formulation of the principle of parsimony. Both were
derived as an approximately unbiased estimate for the Kullback-Leibler Inform-
ation Criterion, which measures the minimum possible distance between a model
and the true distribution. However, asymptotically the AIC selects too large a
model even for AR processes, and hence we will rely on the SIC, which puts
more emphasis on the parsimony of the models. Whereas the AIC assumes, for
a given class of nested alternative models, that for each model the estimate of
the variance is nearly true in the sense that the difference from the true vari-
ance tends to zero as the number of observations n tends to infinity, the SIC
for each model is evaluated assuming that the most complex model within the
class would nearly be true but the rest not necessarily so. Taking this difference
in the underlying assumptions into account, Sawa (1978) arrives at the SIC

SIC (W) =nlogMSE + W logn. (M)

Rissanen (1987) introduced another criterion that can be used with nonlinear
and ARCH models (Granger, King and White, 1995) but which again leads to
the same criterion as in equation 7.

In order to select the appropriate neural network architecture, we first de-
termine o and then increase () until the SIC of the model under consideration
rises again. The SIC-minimum model is used to generate the out-of-sample
forecasts. By construction, this approach not only captures the nonlinearity in
the data but also uses linear regression and hence guarantees that the ANN will
in sample perform at least as well as a linear model. White (1990) showed that
ANNs can be used to perform nonparametric regression, consistently estimating
any unknown square integrable function.

For the estimation we apply an autoregressive ANN model to forecast ATX,
where we allow up to three lags for the sake of comparability with the linear
model. Subsequently we use an ANN to estimate the error correction model for
IPOX arx, again only permitting the same inputs as in the linear approach.

5 Out-of-Sample Error Measures and Model Eval-
uation

The selected error measures are chosen in such a way that they focus on different
dimensions of goodness of fit. Mathews and Diamantopoulos (1994) analyze the
most widely used error measures and identify four factors that together provide
a more comprehensive assessment of a forecast than any of them on its own.
The first and most important factor in their analysis is a ratio-type accuracy
measure such as the adjusted mean absolute percentage error, AMAPE. The

11




second factor can be described by the mean absolute error, M AE, and the
mean squared error, M SE. Factor three, as measured through the mean error,
ME, accounts for the bias in a forecast, whereas factor four, R?, constitutes
a measure of fit. Hence the information it provides can be interpreted as a
pattern-matching indicator rather than a pure distance metric.

In addition to the error measures suggested by Mathews and Diamanto-
poulos, we also calculate Theil’s measure of inequality and a confusion matrix.
Furthermore, we compute results for hypothetical trading and thus obtain a
well defined loss function for the comparison of our models. In detail the error
measures are:

* Adjusted mean absolute percentage error

M R
1 Ym = Ym
AMAPE = — el 8
M 1;:1 Ym + Um ( )
» Mean absolute error
1 M
MAE = M Z 'ym - @mi? (9)
m=1
¢ Mean error
Ly,
ME=— Ym — Um; (10)
A/[ m=1
o Coefficient of determination
R2 — 1 - 22/),["—“] (yﬂl - gm)z . (11)
= M 3
Zm=1 (ym -7
e Theil’s coefficient of inequality
.2
Theil = M (12)

2
Zt (ye — Yi—1)

This measure constitutes a simple “sanity” check of our forecasts against
a no-change forecast which performs better for Theil > 1 (Theil, 1966);

¢ Confusion matrix
The up and down signals of the forecasts are used to compute a confusion
matrix. We find the number of correct classifications on the main diagonal
and the errors off the diagonal. The columns contain the actual ups and
downs while the rows contain the forecasts. As Swanson and White (1995)
note, this is simply a 2x2 contingency table, and the hypothesis that a
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given model is of no value in forecasting the sign of the price movement
can be expressed as the hypothesis of independence between the actual
and predicted directions. A binomial test is performed to check if the
confusion rate — this is the sum of the off diagonal elements over the total
number of elements — differs significantly from 50 %;

e Trading scheme

We apply a very simple and conservative trading scheme with transaction
costs. We start out on the first day of the evaluation period. If the forecast
for the following day indicates a rise in prices, and we do not yet hold the
index portfolio, then we buy. If we already hold it, we do not buy again.
In the case of falling prices, we sell if we hold but never go short. Returns
are annualized and compared to a Buy and Hold strategy. Transaction
costs are assumed to be 0.1% of each transaction which is the amount
usually faced by large scale investors on the Vienna Stock Exchange.

¢ Moving Average Trading Rule
In addition, we compare our returns to the returns generated by a 2-50
MA-Trading Rule. If the short MA(2) intersects the long MA(50) from
below, we receive a buy signal and keep the portfolio until the two moving
averages intersect again, and vice versa.

Table 9 presents the results of the AT X forecast. We see that the nonlinear

Table 9: Out-of-sample AAT X forecasts

Error measures Linear model ANN
AMAPE 2.523 2.607
MAE 0.006 0.006
ME -0.001 -0.003
R? -0.269 -0.229
Theil 1.281 1.240

. . 23 27 25 29
Confusion Matrix 97 33 95 31
t-values (0.191) (0.191)

model with 3 lags and 1 hidden unit performs as well as the AR[3] with regard
to statistical criteria. By looking at the Theil measure, however, we still detect
a considerable potential for improving the forecast.

We compare the findings of the linear model (table 10) to the results ob-
tained through forecasting JPOX 4px with an artificial neural network with
@ =1 (table 11). It turns out that for the five statistical error measures, the
linear /POX s4rx models rank better than their neural network counterparts.
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Table 10: Out-of-sample AIPOX 47y forecasts with a linear model

Error measures Linear ATX model ANN ATX Observed ATX
AMAPE 2.075 7.890 2.265
MAE 0.004 0.005 0.004
ME -0.001 -0.001 -0.000
R? 0.016 0.017 0.043
Theil 0.988 0.986 0.961

. . 32 24 30 24 32 23
Confusion Matrix 2% 28 28 928 26 29
t-values (0.957) (0.573) (1.151)

Table 11: Qut-of-sample ATPOX s7x forecasts with an ANN model

Error measures Linear AT X model ANN ATX Observed ATX
AMAPE 1.922 5.410 2.385
MAE 0.005 0.005 0.005
ME -0.001 -0.001 -0.002
R? -0.002 0.008 -0.095
Theil 1.005 0.996 1.099

. . 28 17 26 17 29 18
Confusion Matrix 30 35 39 35 29 34
t-values (1.542) (1.151) (1.542)
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Annualized Cumulated Returns

Figure 2: Annualized Cumulated Returns for the Linear IPOX s7x
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Concerning the forecasting of the ATX, we conclude from tables 9-11 that the
neural net forecast does slightly better than the linear model while an inspection
of the confusion matrices suggests an advantage for the linear models. However,
for both the statistical measures and the confusion matrix we have to bear in
mind that they need not be good indicators of the performance of a trading
scheme; while the MSE does not consider the sign, the confusion matrix neg-
lects the magnitude of the price change. A good performance in both of these
measures is highly desirable for trading.

Furthermore, note that all reported TPOX 41y forecasts are based on true
two-step ahead forecasts, and therefore our trading strategy can indeed be im-
plemented. An analysis of the trading schemes yields the results presented
in table 12. As benchmarks we use Buy and Hold and the 2-50 Moving Av-
erage. The results are very close to each other. All return series generated
by the forecasting models fall short of the results for both the Buy and Hold
strategy and the Moving Average strategy at the end of the 110 day period.
From figure 2 and columns three and four of table 10, however, we may obtain
a different picture. All linear TPOX 47x forecasts yield more efficient results in
a risk-return setting than the Buy and Hold strategy. As compared to the 2-50
MA, the return is lower but so is the risk.

The outcome for the neural net error correction model is even more appealing




Annualized Cumulated Returns

Figure 3: Annualized Cumulated Returns for the ANN IPOX arx
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to an investor. All models y-o dominate both the Buy and Hold and the 2-
50 Moving Average (table 12). Figure 3 plots the annualized cumulated return
series generated by the ANN forecasts, which are characterized by a considerably
lower draw-down than in the linear case. A comparison between the models
shows an advantage for the ANN AT X forecast compared to the linear ATX
as the mean return is slightly higher at a lower risk. Through trading on the
basis of the forecasted time series we arrive at a well defined loss function. If we
accept this approach, the neural net models outperform the linear models for
this application, which is in line with previous findings for the Austrian stock
market (Haefke and Helmenstein, 1996).
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Table 12: Summary statistics for returns of various forecasts

Estimation Cumulated Number of Mean Std.  Dev.
method returns transactions return p of returns ¢
Linear IPOX g7y, linear ATX -0.013 58 -0.018 0.025
Linear IPOX a7x, ANN ATX -0.014 62 -0.016 0.029
Linear IPOX srx, orig. ATX 0.006 57 -0.007 0.026
ANN IPOX srx, linear ATX 0.081 48 0.031 0.027
ANN IPOX srx, ANN ATX 0.074 46 0.033 0.023
ANN IPOX spryx, orig. ATX 0.087 52 0.038 0.028
MA 2-50 0.124 6 0.006 0.041
Buy & Hold 0.102 2 -0.027 0.067

6 Conclusions

In the case of Austria the market segment of initial public offerings provides
opportunities to generate trading profits on the basis of two day ahead neural
net forecasts. The cointegrating relationship between the Initial Public Offerings
IndeX {IPOX srx) and the representative market index (AT'X) can thus be
successfully exploited.

A simple trading scheme yields higher mean returns than a Buy and Hold
strategy irrespective of the underlying IPOX 47x model. The use of artificial
neural networks further boosts the performance of the trading scheme in terms of
mean-variance considerations. The associated cumulated returns series are less
volatile and have a higher mean than profits from a 2-50 Moving Average even
if transaction costs are taken into account. With regard to profitability, neural
network models outperform linear models in this application. Caution has to
prevail, however, since an overproportional number of illiquid stocks and thin
trading are largely characteristic of the Austrian stock market. These specific
phenomena, in our view, aid the predictability of the index returns. It needs to
be investigated whether this conjecture holds for different market segments as
well as other thin markets.

From the methodological point of view, open questions remain. The role
of the SIC as a reliable guide towards the out-of-sample trading performance
of a neural network model has to be studied more closely. So far no general
inferences are possible.

An interesting extension of this paper would be the determination of the
cointegrating relationship v by means of a neural network which we leave for
further work.
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Appendix A

Table 13: The historical index sample of the JTPONX 47y

Company

Agrana Pref.

Austria Mikro Systeme Com.
Bank fiir Tirol & Vorarlberg Pref.
Bau Holding Com.

Billareal Com.

Binder Com.

BKS Pref.

Bohler-Uddeholm Com.

BWT Com.

Constantia ISO Holding Com.
Constantia Verpackungen Com.

Erste Osterreichische Sparkasse Pref.

Flughafen Wien Com.

Kapital & Wert Com.
Kies-Union Com. res.
Mayr-Melnhof Com.

Oberbank Pref.

OMAG Com.

Ottakringer Com.

Pengg Kabel Com.

Rosenbauer Com.

UBM Pref.

VA Eisenbahnsysteme Com.
VA Technologie Com,

Viso Data Com.

Vogel & Noot Wirmetechnik Corm.
Wiener Stidtische Pref.
Wienerberger Immobilien Com,
Wolford Com.

Date of inclusion in

the index
Dec. 15, 1992
Jul. 12, 1993
Nov. 29, 1993
QOct. 18, 1993
Jun. 10, 1994
Dec. 15, 1992
Dec. 15, 1992
Apr. 10, 1995
Dec. 15, 1992
May 22, 1995
May 22, 1995
Nov. 22, 1993
Dec. 15, 1992
Dec. 15, 1992
Dec. 15, 1992
Apr. 22,1994
Dec. 15, 1992
Dec. 15,1992 =~
Nov. 10, 1994
Dec. 21, 1992
Sep. 27, 1994
Dec. 15, 1992
Dec. 15, 1992
May 23, 1994
Dec. 15, 1992
Jul. 13, 1995
Oct. 17, 1994
Dec. 15, 1992 =
Feb. 14, 1995

Weight at the day
of the first listing
1.53 %
9.68 %
0.33 %
32.78 %
20.24 %
1.43 %
0.17 %
11.79 %
411 %
3.44 %
3.24 %
17.12 %
8.79 %
3.90 %
4.88 %
55.64 % *
0.48 %
1.9 %
1.49 %
213 %
2.84 %
0.57 %
3.82 %
34.85 %
5.07 %
243 %
2.76 %
60.36 %
2.26 %

* Weight on July 22, 1994: 28.62 %.

** Date of withdrawal from the sample: February 03, 1993.

Source: Institute for Advanced Studies, 1995.
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