IHS Economics Series

Working Paper 16
October 1995

Estimating the Number of Unit
Roots: A Multiple Decision
Approach

Robert M. Kunst

I RI HS INSTITUTIONAL REPOSITORY AT IHS

nnnnnn

INSTITUT FUR HOHERE STUDIEN
' INSTITUTE FOR ADVANCED STUDIES
F




INSTITUT FUR HOHERE STUDIEN
' INSTITUTE FOR ADVANCED STUDIES
Vienna

Impressum

Author(s):
Robert M. Kunst

Title:
Estimating the Number of Unit Roots: A Multiple Decision Approach

ISSN: Unspecified

1995 Institut fiir Hohere Studien - Institute for Advanced Studies
(IHS)

Josefstadter Stralle 39, A-1080 Wien

E-Mail: office@ihs.ac.at

Web: www.ihs.ac.at

All IHS Working Papers are available online:
http://irihs.ihs.ac.at/view/ihs_series/

This paper is available for download without charge at:
https://irihs.ihs.ac.at/id/eprint/862/



mailto:o%EF%AC%83ce@ihs.ac.at
mailto:o%EF%AC%83ce@ihs.ac.at
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
mailto:o%EF%AC%83ce@ihs.ac.at

Institut fur Hohere Studien (IHS), Wien
Institute for Advanced Studies, Vienna

Reihe Okonomie / Economics Series

ESTIMATING THE NUMBER OF UNIT ROOTS
A MULTIPLE DECISION APPROACH

Robert M. Kunst







Estimating the Number of Unit Roots
A Multiple Decision Approach

Robert M. Kunst
Reihe Okonomie / Economics Series No. 16

October 1995

Robert M. Kunst

Institut fir Héhere Studien
Stumpergasse 56, A-1060 Wien
Phone: +43/1/599 91-255

Fax: +43/1/599 91-163

g-mail: kunst@ihssv.wsr.ac.at

Institut fir Héhere Studien (IHS), Wien
Institute for Advanced Studies, Vienna




Abstract

The problem of detecting unit roots in univariate and multivariate time series data is treated
as a problem of multiple decisions instead of a testing problem, as is otherwise common in
the econometric and statistical literature. Four examples for such multiple decision designs
are considered: first- and second-order integrated univariate processes; cointegration in a
bivariate model; seasonal integration for semester data; seasonal integration for quarterly
data. In all cases, restrictedly optimum decision rules are found for finite samples based on
Monte Carlo simulation.

Zusammenfassung

Das Problem, Einheitswurzeln in univariaten und multivariaten Zeitreihen aufzufinden, wird
als Problem muiltipler Entscheidungen behandelt anstatt als Testproblem, wie es sonst in der
O6konometrischen und statistischen Literatur Ublich ist. Vier Beispiele solcher multipler
Entscheidungsproblem werden beriicksichtigt: univariate Prozesse mit Integration erster und
zweijter Ordnung; Kointegration in einem bivariaten Modell; saisonale Integration fiir
Semesterdaten; saisonale Integration flir Quartalsdaten. In allen Féllen werden beschrankt
optimale Entscheidungsregeln fiir endliche Stichproben durch Monte-Carlo-Simulationen
ermittelt.

Keywords
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1. Introduction

Much of the recent literature on the analysis of macroeconomic time series
focuses on the problem of making decisions on their degree of non-stationarity (for a
good survey of the literature, see Banerjee et al., 1993). Within this framework,
researchers are particularly interested in whether the time series at hand has to be
differenced once or twice or probably not at all to satisfy the usual assumption of
covariance stationarity for the filtered series. Series requiring differencing once are
usually called difference-stationary or first-order integrated. Additionally, in the joint
analysis of two or more time series, researchers are interested in whether linear
combinations of difference-stationary series may already be stationary. In this case, the
linearly combined series are called cointegrated (for details, see the seminal paper by
Engle and Granger, 1987). Interest in cointegration has been instigated by technical
problems as well as by economic theory. With regard to technical matters, it can be
shown easily that differencing of cointegrated series leads to extremely inefficient
estimation due to loss of information on low frequencies, even though individual series
are difference-stationary. With regard to economic theory, evidence on long-run
features is often taken as reflecting theoretical considerations on long-run equilibrium
relations. Frequently quoted economic examples of this type are the long-run income
elasticity of consumption, purchasing power parity, and the joint movement of interest
rates with different terms to maturity.

Until the later 1980s, decisions on whether data sets suggest differencing,
double differencing, or cointegrating relations were mainly based on the univariate
testing procedure developed by Fuller (1976) and elaborated by Dickey and Fuller
(1979). Also in multivariate problems, these decisions tended to be based on a primary
"cointegrating" regression and secondary residual analysis (see, e.g., Engle and
Granger, 1987, and Phillips and Ouliaris, 1990). Johansen (1988) presented an efficient
alternative framework for making such decisions. He suggested to determine the
number of cointegrating relations by testing sequences and to proceed by conducting
conditionally efficient estimation. Pantula (1989) took up the idea of sequential testing
for deciding upon the number of unit roots in univariate series.

In consequence, current integration/cointegration analysis is dominated by two
main strands of statistical techniques. The first class of methods is characterized by
easy handling and inefficiency caused by univariate residual analysis under limited
information. The second class of methods relies on full system estimation but is faced
with the usual problems of making decisions by sequential hypothesis testing.
Alternatively, some researchers have used Bayesian methods, currently still with less
impact on economic users. In the tradition of objectivist Bayesian statistics, most of




them relied on continuous prior distributions designed to capture the researcher's lack
of information before conducting the experiment. For a survey, see Uhlig (1994).

Here, a comprehensive framework for the problem of estimating the number of
unit roots in univariate and multivariate situations is presented. In contrast to the bulk
of the literature, this is not seen as a testing but as an estimation problem in the
tradition of multiple decisions. In contrast to the Bayesian contributions to the
literature, a uniform prior is assumed on the decision parameters leading to mixtures of
discrete and continuous distributions on the primary model parameters. Section 2
outlines the formal background. Section 3 presents examples and some evidence on
corresponding decision bounds generated by Monte Carlo simulations. Section 4

concludes.

2. Estimating discrete parameters

Wherever possible, we would like to enhance the formal correspondence
between the estimation of continuous and of discrete parameters. The reluctance by
many researchers to call discrete parameter estimation problems by that name has
probably lead to occasional confusion. Often, discrete problems are called "model
selection" or "sequential testing". In concordance with, e.g., the work of Hannan and
Deistler (1988), we will view all these problems as problems of estimation. In contrast,
testing problems appear whenever one out of two hypotheses is given the preferred
position of a "null hypothesis" and the researcher's loss is asymmetric because of
subject matter considerations or of any reasons that permit a formal equivalence to
quality control problems.

2.1 The nested problem

We consider the situation that observations are being generated from an
unknown element from a collection of distributions characterized by a parameter 0
taken from a parameter space ®. The parameter 6 will also be called the primary
parameter. The observer would like to make decisions on whether 6 € ©,,i=0,...p.
Having made this decision, the user could also be interested in estimating © within ©;.
This problem, however, will be set aside within this study.

Although the problem may be considered under more general assumptions, we
will focus on two specific situations. In the first case, the model classes (or parameter
sets) are ordered by an inclusion sequence

@OC—@I,GIC.@Z,...,(*DP_]c@p:—-@ 2.1




(2.1) implies that ®; is contained in the topological boundary of ©;41, which is
occasionally denoted as ®;c0®;,. Hence, any set ©; is "small" relative to all ®; with
J>1. (2.1) will be referred to as the nested problem. In all applications considered in
Section 3, ® will be a convex subset of the multidimensional Euclidean space and the
closure operator is therefore clearly defined. Note that closure refers to the topology
within ® and not within the Euclidean space and, typically, neither ® nor any @; will
be closed within the Euclidean space. Anyway, there is a natural metric d such that
(®,d) is a metric space.

In many applications, ©® =®1)x®(,y such that any parameter vector will
consist of two parts © = (81,8,) such that 6, is restricted to a bounded convex set and
0, is not restricted within a multidimensional Euclidean subspace. Cross restrictions
are conceivable but the separation is important as a uniform distribution on the
subspace @y will be constructed. Sometimes, the partition can be attained by a
continuous transformation of the parameter space, starting from a given primary
parameterization. Then, we consider the transformed parameterization as the "natural"
one, assuming that classification of any © into the ®; is independent of 8,. This
convention does not define the parameterization uniquely. Selection of a coordinate
system is determined by the practitioner's concern rather than by formal properties. For
example, autoregressive models of fixed order have a convenient and natural
parameterization if ©; consists of the coefficients and 8, of a possible mean. Decisions
on the number of unit roots can be made based on 81, and @) is bounded and convex.
We could adopt the re-parameterization due to Dickey and Fuller (1979) and thus
minimize the dimension of ®(1) but this coordinate space is probably less natural. In
contrast, the coefficient coordinates of vector autoregressions are not bounded within
the Euclidean space, hence for decisions on cointegration a re-parameterization, as e.g.
suggested by Johansen (1988), is inevitable.

The choice function defined by

®—10,...

= {e > K{(é) i’fpe} 0,4 @2
provides us with a discrete parameter k() that summarizes all interesting information
and will be called the secondary parameter. All other information is viewed as
nuisance information. The metric generated by (®,d) and the function k(.) is not useful
for the set {0,...,p} as it would be trivial due to (2.1). Alternatively, we adopt the
logical position of viewing e.g. 3 to be "closer” to 2 than to 1 and we will expressly use
the squared distance measure

d(i,)) = ()2 23)
corresponding to the square of a metric on {0,...,p}. The researcher is interested in
minimizing the distance dy between his/her estimate of k() and the true value.




Maybe unfortunately, the observer typically estimates the discrete secondary
parameter only indirectly by first estimating the usually continuous primary parameter
0. The estimate for 6 is a random variable

N {f (Q4P) > ®
e =y x,) o B,

as the observations x,, are realizations of a random variable on the indicated probability

(2.4)

space. The sample size is n. We assume that the estimator (2.4) is consistent. A good
estimator of the primary parameter is certainly crucial for what follows. In most
applications, the estimator is some approximation to the maximum likelihood estimator
under the information that ©e®. After making the decision on the secondary
parameter, the observer may return to this problem and replace (2.4) by a more
efficient estimator under the information that 6 ®,; for fixed i.

A naive suggestion for constructing an estimator for the secondary parameter
would be

2y =x(6) 2.5)
This is, however, unattractive because of (2.1). In finite samples, ) usually has a
continuous probability density, hence the topological smallness of ®\®p is reflected by
the probability measure and P(é €@ p) =1. Thus, the estimator (2.5) is p with
probability 1. This property holds for every finite », and the estimator is inconsistent.

The inclusion sequence (2.1) has incited many researchers to solve the
estimation problem via hypothesis testing. Hypothesis tests are constructed with the
null hypothesis Hy:6€®; and the alternative ®;,; or ®\®;. An estimate for the
secondary parameter is obtained by a certain stopping rule in such a testing sequence.
There are four methods of this type in current usage: .
(1) Test ®,u..L0 =0, against ©,; if rejected stop and k=p; test ®,, against
®,.1; if rejected stop and &=p-1; ... ; if no rejection x=0.
(i) As in (i) but always test ©, against @\ ©,.
(iii) Test © against @; if accepted stop and k=0, test @, against ®,; if accepted stop
and x=1; ... ; if everything rejected x=p.
(iv) As in (iii) but always test ®, against @\ ©,.
The testing sequences (i) and (ii) correspond to the currently favored general-to-
specific tests (see, e.g., Yap and Reinsel, 1995). (iii) and (iv) are specific-to-general.
(111) only works if rejection of ©; against ©;,; is guaranteed if ©; . holds with £>2.
Asymptotically these properties are guaranteed by (2.1) and therefore all four testing
sequences are consistent in the sense of test consistency. Viewed as estimators for «,
they define inconsistent procedures unless x=p, provided the significance level for
testing is kept fixed. Reducing the significance level to zero asymptotically, one can




define consistent estimators of x. ! In samples of typical economic size, (i) and (ii)
yield a tendency toward small-sample upward biases and (iii) and (iv) toward
downward biases. These tendencies can be triggered by modifying significance levels.
All of these popular estimators will be summarily called testing estimators.

The distance measure (2.3) can be used to generate a different type of
estimators. In analogy to e.g. least-squares estimation, let us assume that the
investigator endeavors to minimize the loss function

“ - 2 -

I(K,x) = (K(x(G,m))—K(O)) =d (%,x) (2.6)
The arguments are random variables and the right-hand side in (2.6) is unobserved.
However, one could try to minimize expected loss given fixed 0:

~ ~ 2
Eyl(i,x) = [ (£(x(6,0))-x(6)) dBy o) 2.7)
Q

In statistical decision theory, this function is called the risk function (see, e.g.,
Ferguson, 1967). (2.7) is definitely not constant in k and usually not constant in 6 for
given k. Unlike in some classical problems, it is also not possible in general to solve the
minimization problem analytically as this would require some knowledge about the
small sample distribution of the primary parameter estimate. This turns out to be
intractable in most applications. In order to make (2.7) operable in principle, one could
try to finally define an estimator

k minimizes EEJ(k,x)= J. j (f((x( 6,w)) - Q)ZdPg(a))dQ( 6) (2.8)

However, (2.8) requires a definition of a probability measure Q on the parameter space
~® to define a weighting scheme. This will be done here.

Though (2.8) may look like a Bayesian problem, Q is not to be interpreted as a
prior distribution reflecting prior beliefs about the parameter 0. It is simply used as a
weighting for a decision problem. For such a decision problem among the discrete
secondary parameters, it appears logical to attribute the same weight to each of these
parameters. In the Bayesian interpretation, this amounts to a non-informative prior
over the secondary parameters. In contrast to formal Bayesian analysis, we will not
focus on posterior distributions but rather stick to the classical and probably more
user-relevant problem of making discrete point decisions.

The uniform distribution across the secondary parameters does not completely
specify the distribution over the primary parameters. As was stated before, typically the
expected loss depends on © not only on k. It remains to define a probability

! Many researchers are aware of this problem but deem it to be unimportant for the practitioner (see
e.g. Johansen (1995)). Some Bayesians point out the complete consistency of their tests (see Phillips
and Ploberger (1994)) achieved by asymptotic reduction of significance levels but rarely view them in
a unified framework with their estimation procedures.




distribution or weighting on each ®,=x~1({i}). In concordance with the uniform
weighting for the secondary parameters, one may consider to define Q as uniform on
®;. This seems to be reasonable if ®; is bounded and convex 2. In other cases, the
uniform law is not properly defined on ®;. Bayesians sometimes use diffuse improperly
defined priors but in most practical applications the extreme weight given to unusual
"far-away" parameters is unacceptable.

Now consider the case that Q is uniform on ®;(; where 0;=0;(1)x0;(y which
is bounded and convex. Sometimes a continuous one-to-one transformation is required
to achieve such parameterization. This is a good chance to separate © into the
interesting part 07 and the uninteresting nuisance remainder 6, 3. If 6, is defined on
some higher-dimensional product of the real line and does not influence the decision on
the secondary parameters in population once 0 is known and does not influence the
decision in large samples, one could e.g. impose standard normal distributions as
weighting schemes for these nuisance parameters. In many applications, we may permit
a certain degree of dependence of the expected loss in (2.7) on 6, in finite samples.

It is worth while to compare a thus constructed distribution on ® with prior
distributions used in the literature. Firstly, uniform priors are widely avoided as they
may produce strange results in some cases and are not invariant to transformations of
the coordinates in ®. This is less of a problem if a "natural" parameterization exists.
Secondly, mixed priors are rarely used. In the examples that will constitute our main
focus of interest, i.e. autoregressive processes, previous research has given positive
weight to parts of the parameter space that are non-admissible a priori, such as
explosive processes. The intention of this positive weighting of the non-admissible
parameter set may be to draw attention to the admissible boundary a posteriori. In this
interpretation, though the zero weighting of an interesting hypothesis and mixing of
continuous and discrete distributions is avoided, it may be difficult to see the
equivalence between the assumed "prior" and the researcher's true prior if such a one is
hypothesized to exist and to be reasonable.

In the following examples, evaluation of optimum decision bounds will be
based entirely on Monte Carlo simulation. The complicated metric imposed on the
primary parameter space prevents analytical derivations, excepting the simplest case of
just two secondary parameters.

Without further restrictions, (2.8) can hardly be solved directly for all possible
estimators k. However, by restricting the considered class of decision rules,
conditionally optimal solutions can be found numerically. Under some regularity

2 Generalizations of the property of convexity are conceivable but will not be needed in our practical
applications. Usually, local convexity suffices.

3 Formally, if there is a continuous one-to-one transformation 7 on ® such that 7(0) = 9*=(91,62),
. . * " " o
we will consider © as the "natural” parameterization 6 of our problem.




conditions - e.g. monotonous likelihood ratios - it can be shown by statistical theory
that decision rules based on sufficient statistics and likelihood ratios are optimal in
some sense. Not in all of our problems the corresponding criterion statistics are
sufficient but it will always be assumed that the practitioner is primarily interested in
keeping the decision rules simple. The loss of our optima relative to the unrestricted
optima is probably small. However, note that in the following, - in the notation of the
nested problem - natural restrictions such as ®, X' (i) for 0<i<p and ¥ defined by
R =Koved are in general violated. This is the price paid for keeping decision rules
simple and well corresponds to classical analysis in the framework of the testing

estimator.

2.2 The multiple binary problem

In the nested problem, the set of secondary parameters appears to be naturally
ordered. This corresponds well to cases where, for example, the number of non-zero
or unit eigenvalues in a matrix are estimated. The set of secondary parameters will
always be equivalent to a finite sequence of natural numbers, such as {0,1,2,....k}, or
possibly the whole of Ny. In the multiple binary problem, the secondary parameters
are k-tuples of binary numbers, such as (0,1,0,1). Formally, the space of secondary
parameters is some {0,1}%. This corresponds well to problems where % interesting and
mutually (logically) independent features are either absent or present in the data. We
note that the space of secondary parameters is the whole of {0,1}% and all A-tuples will
be given the same weight. In other words, the prior weighting will be uniform over all
k-tuples. The set of decisions or secondary parameters is also reminiscent of the power
set over {0,...,k} - note that this is not the o-field used to construct a probability space
here but the set of elementary events - or of a Boolean algebra of order k. Therefore,
we could also call it the lattice problem.

To handle the problem in a similar way to the nested problem, we have to
convene a distance measure. Two extensions of the quadratic distance measure are
conceivable. Firstly, one may use

d,((al,...,ak),(b,,....,bk))=g(ai—-b,.)z 2.9)

H
All the entries a; and b; are either O or 1, hence d; weights the maximum distance just
by k. This corresponds to a linear weighting of large distances and does not appear to

penalize large errors sufficiently. We will therefore use
k

dx((al,...,&k),(bl,....,bk)) = [Z(czi -b,{)ZJ2 (2.10)

i=1




Note that these distance measures are not metrics on the parameter spaces as triangle
inequalities fail to hold. Simple transforms would be metrics but would be
uninteresting for our purposes. However, after forming expectations, metrics on
probability spaces can be defined by taking e.g. square roots of the expectation of (2.3)
or (2.9) or quartic roots of the expectation of (2.10).

Most observations can be transferred directly from our handling the nested
problem to the multiple binary problem. Interestingly, even the classical treatment in
the literature has been equivalent. Typically, one of the two cases - the "feature" being
present or being absent - is reflected in a "generic" set of primary parameters. The non-
generic feature is then used as "null hypothesis" and is "tested" against the generic
alternative. Obviously, the main problem is now what should be assumed about the
remaining features at different entries of the A-tuple. Classical testing usually chooses
the convenient way of testing the non-generic feature at entry / under the (maintained)
assumption that the non-generic feature also holds at all entries j=/ 4 This design
expresses a strong a priori belief in the non-generic features at all entries and can run
into severe problems when more than one feature turns out to be generic.

As a viable alternative, we view the multiple binary problem as an estimation
problem, where the secondary parameter i is estimated such that the expected double
squared loss expressed by the distance function di is minimized. Again, uniform
weighting is assumed in the classes of primary parameters defined by x~1(i), or, in the
common presence of unbounded nuisance parameters, uniform weighting on 0;0).

A further generalization to "multiple nested problems" is straightforward. In
this case, each feature can appear with the frequency /e{1,...,p;} or not at all. In some
applications, p; will be constant over all / and the set of secondary parameters will be
equivalent to {0,...,p}*. Unsurprisingly, even this complicated discrete estimation
problem has been handled by sequences of binary tests in the classical literature leading
to inconsistent secondary parameter estimates.

3. The examples

3.1 Order of integration in second-order autoregressions
We consider the second-order autoregressive model

X=X, +0, X, +¢ (3.1)
with n.i.d. (0,062) errors g, It is well known that all sensible combinations of the
parameters ((¢1,(,) are situated in and on a triangle flanked by the three lines

4 F-type restriction tests offer an example for an exception where the maintained hypothesis for j=i is
the generic feature. This thoroughly analyzed problem is not treated within this paper's framework.




¢1+9y=1 ~Q1+02=1 =1 (3.2)
See our Figure 1 for a geometric interpretation. In the following, we will refer to this
triangle as the SODE triangle for "second-order difference equations" whose stability
conditions are reflected in it. (see, e.g., Hamilton, 1994). All parameter combinations
outside the triangle define anticipative or explosive processes and will therefore be
excluded from the investigation. The set of sensible parameters consists of the inner
part

0, = {(¢1:(92) emzkax to, <L-o +¢,<lg,> ‘1}
and the boundary of the triangle. All parameters in ®, define stationary AR(2)
processes. The boundary of the triangle defines homogeneous non-stationary processes

that are also called integrated processes. The maybe best known example
(¢1,92)=(1,0) is the random walk. All parameters on the north-east boundary

0, = {(¢1 a¢z)l¢1 +¢,=10<g < 2}
define first-order integrated processes. These are characterized by exactly one root of
+1 in their characteristic polynomial and equivalently by the fact that they become
stationary after one first-differencing transformation. The south-east corner point

0, = {(2: ‘1)}
defines a second-order integrated process. It is a convolution of a random walk and is
the only process of its kind among the AR(2) processes. The other parts of the triangle
boundary will be excluded for the moment. They are related to processes with very
dominant periodicity, including the "mirror image" of the random walk X=X, +e;.
These will be examined more closely in example 3.

Obviously, the design of this problem fulfills our assumptions for a nested
problem. The set of secondary parameters is {0,1,2}. In the literature, most authors
have used the testing estimator based on approximate or exact ML estimators of the
coefficients @; and ¢,. 5% test boundaries were fixed by simulation or numerical
integration as the asymptotic distribution of the LR statistic is a known transformation
of Brownian motion integrals. As was already outlined, the testing estimator with fixed
significance level is inconsistent (see Johansen, 1995, and Pantula, 1989).

To evaluate the asymptotic risk of the testing estimator, one may build on the
following good approximation. The exact asymptotic bias can be calculated from the
formula given by Johansen (1995). If k=2, then the estimator is consistent and the
asymptotic loss is 0. If k=1, there is a 5% chance of selecting k=2 and a 95% chance of
uncovering the true value. Asymptotic loss is 0.05/3 because of the uniform prior
weights assigned to the three secondary parameters. If k=0, there is a probability of
0.05 of incorrect asymptotic "rejections", i.e., selections of different values of «.
Assuming the two "testing" steps to be approximately independent, given k=0, the
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asymptotic loss becomes (0.05-0.95+4.0.052)/3, as the sequence of two incorrect
"rejections” yields a loss of 4. The total asymptotic risk of the testing estimator is
0.03583... More efficient estimators have to be gauged against this number.

A consistent estimator with an asymptotic risk of O is the Bayes-rule estimator.
In our case, its form would be:

K= arg max J. jfe(x)dde

O, R"

This is a very simple case for applying the Bayes rule as each @,=x~1({k}), #=0,1,2, is
completely expressed in the two parameters ¢ and ¢, and the assumed prior is
uniform on ®;. The Bayes-rule estimator is consistent and minimizes the risk defined
by the more trivial distance function

dy (i .J ) =0 I

J

To attain a minimum to our more complicated quadratic distance measure d,.,
we took refuge to some Monte Carlo simulation. This may also help to compare the
best decision bound with the optimum achieved by the Bayes-rule estimator 5 and the
testing estimator. The idea is that a random walk is "closer" to a stationary process
than the double unit root process X; = 2.X; 1—X, 5+, This view naturally extends our
idea that 1 is closer to 0 than 2 is. This "intensity of incorrect decision-making" should
be reflected by the distance and the risk function.

Clearly, the requirement of asymptotic zero risk cannot define a decision rule
uniquely. On the other hand, the theoretical optimum decision rules for a given finite
sample size can be uncomfortably complex. In accordance with practitioners' needs,

here simple and immediately operable decision rules will be preferred. A class of such
simple decision rules is defined by the following design

(1) select k=01if @, >2-4,
(2) select k=11if ¢, + @, >1-b, and k=0 is not selected

(3) select k=2 if neither k=0 nor k=1 is selected
The bounds b; and b, naturally vary with the sample size and converge to 0 for large

samples. It is easily seen that the thus defined estimator x is consistent if the
coefficient estimators are. This means that the estimator of the secondary parameters is
consistent if the estimator of the primary parameters is consistent. It is well known that
exact maximum likelihood, least squares, and the method-of-moments Yule-Walker
rule all define consistent estimators of the primary parameters. In this Monte Carlo
study, the least squares estimator is used as it is simple to calculate and therefore much

> All simulations were redone with the 0-1 loss function but the differences in optimum solutions were
rather small so they are not reported.
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in general use. The Yule-Walker estimate is unattractive in nearly non-stationary
situations.

Our choice of bounds corresponds closely to the classical solution of the
testing estimator. In fact, Fuller (1976) and also some later authors used the estimated
coefficients proper, rather than using likelihood-ratio test statistics, for making
decisions on whether unit roots are present. Of course, the binary decision problem
between ®, and @, is uninteresting as the Bayes rule defines an easy-to-use estimator
that, in this case, also minimizes dy risk.

TABLE 1: Monte Carlo bounds for estimating the number of unit roots in a univariate
AR(2) model. 10000 replications were conducted

n by by risk
100 0.15 0.12 0.0564
200 0.08 0.08 0.0343
500 0.04 0.04 0.0145

Table 1 reports the results from this Monte Carlo simulation. For the smallest sample
size n=100, the simulated bounds coincide well with the 5% bounds given in the
literature. For larger sample sizes, their slower convergence toward O relative to the
testing bounds becomes palpable. The bounds correspond to hypothesis tests with
different size but nevertheless the achieved minimum risk may serve as a guideline in
roughly suggesting that, in the absence of tables such as our Table 1, for #»=500,
decisions should be based on 2.5% rather than on 5% significance bounds.

3.2 Rank of cointegrating matrix
The first example can also be seen as estimating the rank of a certain matrix in
the state-space transition form

[Xf }[% %}[XH}F,}
X, |1 olx_,||o
)?: = T‘}?t—l +(81 0)'
If the state-space transition matrix T has all its eigenvalues smaller than 1, the
autoregressive process is stationary. If it has exactly one eigenvalue equal to 1, the
process is first-order integrated. The process is second-order integrated if both
eigenvalues of T are equal to unity. One could also think of considering the form
AX,=(T-DX,_ +(s, O) |
Here, ®;, corresponds to the matrix T-I having rank k. The estimation problem of the
secondary parameter becomes equivalent to estimating the rank of a stochastic matrix.
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A similar problem evolves in truly multivariate time series analysis. Consider the so-
called error-correcting representation of a bivariate first-order vector autoregression
(see Engle and Granger, 1987)

el
AL, Lol Léx

Here, the rank of the matrix ®-1 is particularly interesting. If it is 0, the processes X,
and Y; are dynamically unrelated random walks. If it is 2, the bivariate process is
stationary, provided all roots £ of det(I-®z) with [£|<1 or [€]=1 but =1 are excluded.
If it is 1, the individual processes are first-order integrated but there is a stationary
linear combination. Economists frequently interpret this stationary cointegrating vector
as expressing a long-run equilibrium relationship in the system. Obviously, this is again
a nested problem in the sense of our definition.

In order to elicit a weighting measure on a parameter space ®, the notion of a
generic event is needed. Very informally, we define a generic event by being true on a
subset of ® that is so large as compared to ® that any reasonable mass distribution is
likely to assign a probability mass of one to the subset. We deliberately do not give the
definition based on continuous mass distributions, as we would like to allow for
discontinuities where they are logically sensible. In our sense, a generic event is defined
partly by its mathematical and partly by its inherent logical properties. The opposite
case, which is logically assigned a mass of zero, will be called a non-generic event.

In this problem, primary parameters are the elements of ® or ®-I or some
other parameterization enhancing the eigenvalues of ®-I Note that admissible
eigenvalues of @ lie in (-1,1), hence admissible eigenvalues of @I are in (-2,0), with
the borderline case 0 corresponding to unit roots. In this example, it is not so "natural"
to choose a certain parameterization and therefore it is not so easy to find the correct
weighting scheme with respect to ®. Here, the following idea was selected. The matrix
®-1 can be expressed via its Jordan canonical form:

®-1= LP‘ 0 }L“

0 A,

For "most" matrices, the element & is 0. 8=1 for some matrices with A;=A,. For the
design of the following simulation study, we assume that this case plays little role. It is
probably not very costly to exclude an event such as A;=A, anyway as it is non-
generic. A further difficulty is much more important. The Jordan canonical form is only
valid in general if complex eigenvalues are admitted. For real matrices, these must be
complex conjugates. The Jordan matrix can be represented in an all-real form but we
chose to exclude complex eigenvalues altogether. In examples 3 and 4, this problem
will be taken up again. Some cursory simulations allowing for complex conjugate
eigenvalues proved that the results are not sensitive to our all-real design.
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In this bivariate model, note that complex conjugates appear to imply |A;|=|A),
1.e., another non-generic event. However, this kind of argument is probably faulty. The
SODE triangle (Figure 1) shows a bottom area bordered by a dashed parabola
corresponding to conjugate complex eigenvalues. This lower part covers two thirds of
the entire area. Note, however, that it touches upon ®; only close to the corner point
®y. The discrimination of complex-rooted stationary processes from unit-root
processes is probably a minor problem as compared to "average" real-rooted cases. In
higher-dimensional models, this restriction may be more critical.

The matrix L in the Jordan decomposition can be any matrix provided it is non-
singular. It is not uniquely determined. To reduce the effect of the non-uniqueness with
respect to scaling, the innocuous normalization /; = 1, /=1,2, is imposed. The off-
diagonal elements are allowed to take on any real value as long as these values do not
succeed in making L singular, which again is a non-generic event but was not excluded
a priori. The primary parameters /;;, i#j, are treated as unbounded nuisance of the type
0, and are weighted according to a standard normal distribution. In later experiments,
it may be interesting to vary this weighting on 0, and evaluate the sensitivity. We
presume that the 6, weighting is unimportant.

To check on the rank of ®-I, a decision criterion could rely on the eigenvalues
AL A, [MISA,l, of (@-I)(®-I), as the number of non-zero eigenvalues of this
symmetric matrix corresponds to the rank of ®-I. We preferred to use squared
canonical correlations between (X,¥) and (AX,AY), p;<p,, instead, as suggested by
Johansen (1988). These are related to the likelihood ratio and can be extended easily to
account for conditional influences in higher-order models or for correlation among g,
gy It is shown easily that p,;=0 if and only if the rank of ®-I is less than i. Also, p,=0 if
and only if ,=0, provided that ®-I is diagonalizable. However, note that the prior
weighting distribution was uniform on (-2,0) for A,A, but not on (0,1) for py,p,.

Results from this bivariate cointegration experiment are summarized in Table 2.
Actual decisions on the secondary parameters were based on sample estimates of the
squared canonical correlations, in concordance with the likelihood-ratio analysis by
Johansen (1988). Our decision rule was defined in the following way:

Calculate the squared canonical roots and order them 0<p, <p, <1.

Choose the stationary model if p, > ,.

Otherwise, choose the cointegrated model if B, > 5,.

Otherwise, choose the fully integrated model.

This decision rule is similar in spirit to the classical eigenvalue test suggested by
Johansen (1988) as an alternative to the trace test whose fractiles are tabulated there.
One may envisage the difference between the two decision rules - firstly, ours and
Johansen's eigenvalue test and, secondly, Johansen's trace test - by plotting p; and p,
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in a plane where the permitted area is bounded by a triangle as the eigenvalues have
been ordered by p;<p,. The b, rule corresponds to a horizontal line whereas the trace
test rule corresponds to a 45° negatively sloped line. Both "cut off" the area around the
origin that indicates fully integrated processes. In all cases, the rule on the smaller
eigenvalue corresponds to a vertical line. Table 2 allows a comparison between our
procedure and the classical one under the caveat that the decision rules are slightly
different with respect to p,.

TABLE 2. Monte Carlo bounds for estimating the cointegrating rank in a bivariate
AR(1) model. 10000 replications were conducted. Approximate classical bounds and
the risk of the overall rule are given in square brackets.

n b by risk

100 045 [.041] 127 [.075] 0778 [.0914]
200 026 [.021] 070  [.038] .0447  [.0665]
300 .022 [.014] .053 [.026] 0329 [.0564]
500 015 [.008] .038 [.015] 0207  [.0523]

It is not surprising that the risk of the classical decision rule substantially exceeds the
optimum risk, as the classical test operates on an entirely different concept of risk that
it tries to minimize. It is also not surprising that the classical test appears to settle
down at risk values slightly above 5% at #=500. Its decision rule is not consistent. In
contrast, our procedure attains 2% at #=500. If #=100, the usual 5% critical values
roughly match those evolving from the multiple decision problem. However, one can
easily calculate that, for »=500, the significance level of the classical tests would have
to be lowered to 1% to establish this equivalence. In consequence, for »=100, 5,
corresponds roughly to Johansen's trace value whereas, for n=500, b7 is 1.8 times as
large as the classical decision bound. On the other hand, 4, is always much larger than
the classical bound, which indicates that the classical procedure tends to avoid the fully
integrated model even in small samples. In summary, substantially more fully integrated
and (insubstantially) more co-integrated processes will be found by the multiple
decision procedure, these cases both gaining at the cost of stationary solutions. To put
it conversely, the classical procedure appears to find uncomfortably many covariance-
stationary processes when the true model is integrated. ¢

Note that the shape of the decision rule per se does not change much between
the classical and our multiple decision framework and that the main difference is in the
significance levels not in the decision criterion.

6 Note that also Phillips and Ploberger (1994) find more integrated models than previously used
classical tests.
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3.3 Multiple binary problems: seasonal unit roots

Let us take up the SODE triangle again. In example 1, we had excluded the
triangle boundary except for the north-east line segment, closed in the south-east by
®¢ and open at the north corner. In particular since the publication of the article by
Hylleberg et al. (1990, HEGY), econometricians have focused on cyclical and seasonal
non-stationarity possibly explicable by unit roots at -1 rather than at +1 or jointly at
both locations. This model with "integration", i.e., spectral singularities, at the long-run
and at the Nyqvist frequency seems particularly interesting for semester (half-yearly)
data, whereas additional roots at the conjugate complex pair +/ may be considered for
quarterly data (see example 4). In example 3, we shall concentrate on the semester
case and on the root at -1.

Second-order autoregressive processes with exactly one unit root at -1 are
found on the open north-west boundary line segment. The south-west corner point has
second-order integration at -1. This case appears to be of mere academic interest and
is unlikely to be found in economic reality. Similar to explosive cases, the south-west
corner point will be weighted with zero weight. The north pole corresponds to
integration both at +1 and at -1. This is the autoregressive process

Xy = Xpote
Hylleberg et al. (1990) and other authors have found that such processes provide
reasonable descriptions of trending economic variables with substantial changes in their
seasonal pattern. Hence, we do want to consider this case. In summary, we now have
four subsets of the overall SODE triangle parameter space:

®.={(0,1)} ... integrated at long run and at Nyqvist frequency

0, = {(91,0)]01<(0,2),9;+¢p,=1} ... integrated at long run only

O_ = {(01,02)|01€(-2,0),0;-0p=-1} ... integrated at Nyqvist frequency only

O, = {(q),,gpz) eiRz]qa, +0,<l,-p, +p, <0, > —1} ... stationary
In the notation used in section 2.2, the four events can also be denoted in binary form
as (1,1), (1,0), (0,1), (0,0), in this order, with the first entry corresponding to the unit
root at 1 and the second entry to the unit root at -1. Note that, for simplicity, the
south-east corner point was excluded. It could be rather easily be re-inserted into the
multiple decision problem later on.

Clearly, the decision situation corresponds to the multiple binary or lattice case
introduced in section 2.2. Note that there are two nested paths

0,c0,0,cO, and 0,cO_0_cO,
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In concordance with the distance function introduced in section 2.2, we will define it
for this multiple binary problem in the following way:

dy 0 0, 0_ O
0 0 ] 1 4
e, 1 0 4 ]
0. 1 4 0 1
® S 4 1 1 0

This table gives a cyclical definition of distance. A unit-root process of the long-run
integrated type is supposed to be "closer" to a process integrated at both frequencies
than to a process integrated at -1 only. This solution to the distance definition is
probably debatable. In other multiple decision problems of similar type, this distance
between the case of "exactly one object A" and "exactly one object B" obviously
depends on the difference between objects A and B. When estimating the number of
persons in a certain room or space, in most practical situations the distinction between
men/women or black/white persons matters little and would not justify our cyclical
design. On the other hand, the qualification of a good econometrician - who knows
about economics and statistics as well - is probably closer to that of a statistician or of
an economist than the two specialists' qualifications usually are among them. In our
example, the properties of processes with roots at -1 and +1 are so strikingly different
that the cyclical distance measure seems justified.

Monte Carlo simulations were conducted and decisions among secondary
parameters {(0,0),(0,1),(1,0),(1,1)} - now, e.g. in the ordering (0,0)-(0,1)-(1,1)~(1,0)-
(0,0), algebraically reminiscent of remainder classes "modulo 4" in number theory -
were based on parallels to the north-east and north-west line segment and a horizontal
beneath the north pole point. As the scheme appears to be perfectly symmetric
between @1 and -¢y, there will be only two decision thresholds, 4; describing the
position of the horizontal and 4, fixing the position of the skew parallels.

A technical problem derives from the fact tﬁat, as long as b1<b,, the areas
pointing to ¥=(0,1) and x=(1,0) may overlap. To decide among x=(0,1) and k=(1,0) in
this case, we convened to select k=(1,0) whenever @, >0 and x=(0,1) otherwise. The
results of some Monte Carlo simulations based on 50,000 replications are displayed as
Table 3.

Since there are now four competing decisions, the risk is slightly higher than in
Table 1, at corresponding sample sizes. Strikingly at odds with classical hypothesis test
decisions, the optimum values for &) and &, are almost identical. It is interesting to
have a closer look at these classical tests. The current recommendation seems to be to
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start by choosing among the secondary parameters k=(0,1) or (1,1) and among x=(1,0)
or (1,1) separately. These tests with identical large-sample distributions correspond to
our &) decision. If k=(1,1) and x=(1,0) are selected by the two separate tests, k=(0,1)
and x=(1,1) are discarded and x=(1,0) vs. ¥=(0,0) are subjected to a third binary
decision "due to the low power of the HEGY tests relative to the more specific DF test
when no seasonal unit root is present”. The main conclusion to be drawn from
suggesting this very complicated and hardly efficient procedure is that a priori
confidence in the seasonal unit roots is lower than that in the more familiar cases
x=(0,1) and x=(0,0).

TABLE 3a. Monte Carlo bounds for deciding among long-run, seasonal, and jointly
long-run and seasonal non-stationarity in AR(2) models. 50000 replications were
conducted

n by b, risk
100 0.133 0.136 0.0842
200 0.084 0.088 0.0488
500 0.042 0.046 0.0228

TABLE 3b: Empirical frequencies of selecting the respective events of seasonal
integration at the optimum given in Table 3a.

true identified model
(0,0) (0,1) (1,0) (1,1)

n=100

(0,0) 12082 680 677 53

(0,1 186 11610 9 770

(1,0) 173 9 11587 763

(1,1) 58 216 230 10897
n=200

0,0) 12322 438 423 17

0,1 87 11954 3 506

(1,0) 73 11 11953 484

(1,1) 17 112 124 11476
n=500

(0,0) 12451 229 223 5

0,1 27 12246 2 274

(1,0) 19 0 12244 258

(LD 2 40 34 11946
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3.4 The so-called univariate HEGY model

The possibility of the joint presence of unit roots at different locations has been
shown to complicate the handling in our multiple decision framework slightly but these
difficulties can be overcome. In econometric practice, quarterly or monthly data are
more common than semi-annual observations. For quarterly data, it is tempting to
allow for the presence of homogeneous non-stationary influences deriving from the
main frequencies 0, m/2, m though other frequencies would be conceivable. In
econometrics, the main reference to this problem is again HEGY (1990). There,
fourth-order autoregressive structures were considered. These were transformed into
the form

A X, =aSB)X,_ +a,AB) X, +(a,a,)(A, X, A,X,_,) +¢,
with

S(B)=1+B+B*+B® A(B)=1-B+B*-B>
HEGY (1990) then suggest to conduct #- and F-type tests on the significance of the
coefficients in order to find out about the potential significance of rejecting unit roots
at 1 (the coefficient a;), at -1 (or @), and at &/ (a3 and a4 jointly). As was already
stated above, we want to develop alternatives to this classical framework which is,
moreover, based on the assumption of "just local tests", with the remaining unit roots
assumed as being present anyway. Only asymptotically, such cross-effects among
effects at different "seasonal" frequencies vanish.

To handle the HEGY problem in our framework, we have to define a distance
measure on the space of secondary parameters. Secondary parameters can be coded as
3-vectors of binary numbers (m1,m,,m3), convening that =1 stands for the presence
of a unit root at +1, my=1 for a unit root at -1, and ms=1 for the complex pair +i.
Then, e.g. (0,0,0) corresponding to the event of "no unit roots", and (0,1,1) to "no unit
root at 1 but one each at -1 and +i. Analogously to the last example, the distance

measure is defined by

m (n, ; 2
d||m, ||n,||= Zlmj—nj}
j=1
my ) \ 1

noting that all m; and n; elements are either O or 1 and that the maximum distance is 9
and is e.g. reached between (1,0,0) and (0,1,1), i.e., between a process of the random-
walk type and one that wholly consists of persistent seasonal cycles.

To conduct our simulation experiments, the weighting distributions over the
primary parameters within the classes have to be fixed. This is trivial for (1,1,1), since
there is only one fourth-order process with all three unit roots present:

(a) (1,1,1) is given the weight of 0.125 and simulated as A.X; =g,
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(b) For (0,1,1), the process must look like (1-pB)(1+B)(1+B2)X, = g, We
assume a uniform weighting prior on ¢ within the interval (-1,1). Similar rectangular
priors can be chosen for (1,0,1)

(c) (1,1,0) is given a weight of 0.125 and is simulated using a uniform
weighting prior over the SODE triangle to generate processes of type
(1-B*)(1-0,B-,B*) X, =¢,.

(d) For (0,0,1), we use the design (1- ¢,B— ¢,B)(1+ B*) X, = &, again over

the SODE triangle for (¢1,05).

For (1,0,0) and (0,1,0), a counterpart to the SODE triangle in the three-
dimensional space would be required. However, the structure of the stationarity area
for the third-order difference equation is already quite involved. It is convex but not a
simplex and does not have planes at all boundaries. We decided to use "brute force"
instead for any order larger than two. For three lags, noting that the coefficients in a
third-order stationary difference equation have maximum absolute values of (1,3,3,1),
single coefficients were drawn from uniform random variables of (-3,3), (-3,3), and
(-1,1), respectively.

(e) (1,0,0) and (0,1,0) are given weights of 0.125 each and are generated from
(1-B)(1-91B-0B2-03B3)X; = €; and (1+B)(1-01B-0,52-0383)X; = &, The primary
parameters (@1,0,,03) are generated by draws from three uniform distributions.
Stability of the difference equation is checked and (¢1,0,,93) are re-drawn if explosive
roots have been found.

(f) (0,0,0) is generated from the full fourth-order design (1-¢1B-0,B2-p3B3-
-4BHX; = €, Maxima for (|o1/,lool,03),l04]) are (4,6,4,1). Stability is checked and
independent re-drawing is performed if necessary.

Table 4 gives the results from a Monte Carlo experiment according to the
outlined design. For each of the sample sizes 100 and 200, 80,000 replications were
simulated. This gives approximately 10,000 replications for each specific model class.
Table 4 does not only show the simulated bounds but also gives the matrix of correct
and incorrect decisions in the experiment. Larger sample sizes probably are not
relevant in practice, due to the fact that quarterly data are rarely available for time
spans of more than 50 years, maybe excepting meteorological series.
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TABLE 4: Empirical frequencies of selecting the respective events of seasonal
integration if the loss function is double quadratic. Number of replications is 80,000.

(a) n=100.
true selected model

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)
(0,0,0) 6824 1284 1424 97 314 21 22 0
(1,0,0) 89 8951 38 752 2 165 0 1
(0,1,0) 91 33 8939 769 3 0 181 4
(1,1,0) 8 444 436 9064 1 3 5 49
(0,0,1) 15 1 8 1 8868 543 563 18
(1,0,1) 1 83 0 4 207 9430 23 236
(0,1,1) 2 0 71 4 239 18 9399 254
(1,1,1) 2 8 13 156 76 757 742 8244

Bounds: 5;=0.060 5,=0.062 53=0.126 Loss at minimum = 0.1444

(b) n=200.
true selected model

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)
(0,000 7661 1124 983 50 152 10 6 0
(1,0,0) 40 9321 14 540 1 79 0 3
(0,1,0) 47 18 9277 601 0 0 77 0
(1,1,0) 2 270 222 9499 0 1 0 16
(0,0,1) 5 0 0 0 9194 429 378 11
(1,0,1) 0 28 0 1 77 9688 5 185
(0,1,1) 0 0 20 1 111 7 9667 181
(1,1,1) 0 3 1 65 10 450 355 9114

Bounds: £;=0.045 5,=0.041 53=0.082 Loss at minimum = 0.0876

4. Summary and conclusion

Many problems of multiple decisions are usually handled by binary sequential
testing decisions. The testing framework may not correspond to the interest of the
practitioner who intends to classify the data at hand into one out of a small number of
categories. Two frequent cases of such problems have been treated, the nested and the
lattice problem.

In the nested problem, the researcher is interested in estimating a naturally
ordered discrete parameter. A related example of this type would be estimating the lag
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order of an autoregressive structure but this problem has been treated so satisfactorily
in the literature that it is not worth while to take it up again (see also Hannan and
Deistler, 1988, Ch.5). Information criteria have been shown to provide consistent
estimates of the lag order and have replaced the previous usage of less adequate
sequential tests that would lead to inconsistent estimates. For the problem of
estimating the order of integration in time series, a satisfactory treatment is still needed
and our examples 1 and 2 have contributed to that aim. ,

In the lattice problem, the researcher is interested in a number of features that
could be present in the data or not. A common example would be the
inclusion/exclusion decision on possible regressor variables in linear regressions that is
usually handled by t-tests and F-tests. However, in that case, many researchers may
find themselves in an actual testing situation and their decision may closely correspond
to rejecting or acoepﬁng a subject matter theory. In contrast, in estimating seasonal
unit root models, such testing situation is unlikely. The researcher rather attempts to
find the one model out of 4 (example 3) or 8 (example 4) structures that most closely
tracks the data at hand. We have provided a new and promising framework for making
such decisions.

Much work remains to be done in the future. Amalgams of the nested and
lattice models appear when a variety of features can be absent/present in varying
numbers and the number associated to each feature is interesting. Such a situation
evolves, e.g., in seasonal cointegration. Another situation obtains when the absence or
presence of deterministic features - such as constants, trends, fixed cycles - is
investigated jointly with the unit roots. Depending on the interest in the features per se,
the presence or absence of the features may define distinct decision classes or may be
treated as nuisance.

To find an optimum decision rule, we assumed squared loss for the secondary
parameters which are the only parameters of interest here. Squared loss is a common
concept in estimating continuous parameters and we feel that multiple decisions should
be treated in a joint framework. Risk typically depends on all primary parameters and
we adopted uniform weighting of all primary parameters over "natural”
parameterizations, conscious of the fact that uniform weighting is not invariant to re-
parameterizations. We also gave equal weights to each class (secondary parameter)
considered. We finally insisted on the typical researcher's goal to make binary (not
quantitative) decisions on the secondary parameters, leaving Bayesian grounds with the
latter viewpoint.

Viewed from a Bayesian perspective, we stressed the importance of mixed
(continuous-discrete) priors in typical situations of multiple decisions. In contrast, the
continuous priors used by most Bayesian researchers in unit root estimation entail two
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severe problems. Firstly, they only achieve posterior mass for the non-generic classes
by putting prior mass on non-admissible extensions of the parameter space, such as
explosive processes. Secondly, they put probably undue emphasis on the problem of
estimating primary parameters in a way that the typical researcher - at least in the

examples considered - is only marginally interested.
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