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Abstract

In the paper we consider the role of seasonal intercepts in seasonal cointegration analysis.
For the nonseasonal unit root, such intercepts can generate a stochastic trend with a drift
common to all observations. For the seasonal unit roots, however, we show that unrestricted
seasonal intercepts generate trends that are different across the seasons. Since such
seasonal trends may not appear in economic data, we propose a modified empirical method
to test for seasonal cointegration. This method is illustrated on German consumption and
income data.

Zusammenfassung

Im Papier erwdgen wir die Rolle saisonaler Regressionskonstanten in der Analyse
saisonaler Kointegration. Fir die nichtsaisonale Einheitswurzel kdnnen solche Konstanten
stochastische Trends mit gemeinsamer Drift generieren. Fir saisonale Einheitswurzeln
zeigen wir jedoch, dass unrestringierte Saisonkonstanten Trends erzeugen, die Uber die
Jahreszeiten unterschiedlich sind. Da solche wohl in 6konomischen Daten nicht auftreten,
schlagen wir eine verédnderte empirische Methode vor, um auf saisonale Kointegration zu
testen. Diese Methode wird anhand deutscher Konsum- und Investitionsdaten dargebracht.
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1. Introduction

Many quarterly economic time series display trending and seasonal patterns which do not
appear to be constant over time. A representation of time series that accounts for time-varying
trends and seasonals assumes the presence of stochastic trends at the zero and seasonal
frequencies. Formulated otherwise, for several economic time series one can assume the
presence of nonseasonal and seasonal unit roots. Hylleberg et al. (1990) propose formal test
statistics to investigate these roots in univariate time series. Given a set of economic time
series, it is of interest to study whether these have stochastic trends at certain frequencies in
common. Hence, a usual next step in analyzing a set of quarterly time series involves testing
for cointegration at the nonseasonal and seasonal frequencies. Engle ef al. (1993) propose so-
called residual-based tests for seasonal cointegration, while Lee (1992) proposes tests for
similar purposes based on a fully specified multivariate time series model.

Inference on cointegration and on common stochastic trends can be shown to depend
critically on the presumed empirical model and on the deterministic regressors included in the
auxiliary test regressions. See Johansen (1994) for a detailed treatment of the role of the
constant and linear terms in analyzing cointegration at the nonseasonal frequency. This role is
important since under the null and alternative hypotheses the constant and linear variables may
have different implications. For example, an unrestricted constant in a model with imposed
cointegration among two variables implies that the driving stochastic trend contains a drift. In
the present paper, we consider the role of four seasonal intercepts in the seasonal
cointegration model for quarterly data. Although the seasonal cointegration model with
seasonal dummies is analyzed in Lee and Siklos (1992), the role of the four intercepts is not
discussed. We show that the inclusion of unrestricted seasonal intercept parameters can lead to
an undesirable feature of the data, and hence, that one may obtain inappropriate empirical
results. This feature is that in case of cointegration at a seasonal frequency, the data are
assumed to have de’gerministic trends that vary with the season. To overcome this, we propose

a simple modification of the standard seasonal cointegration analysis.




The outline of this paper is as follows. In Section 2, we start with a discussion of the
representation of seasonal cointegration with the inclusion of seasonal intercepts. We examine
the role of these intercepts and summarize the main results in a proposition. In the second part
of Section 2, we propose an alternative empirical strategy to test for seasonal cointegration.
We also provide new tables with critical values for the relevant cases. In a sense, our strategy
simply amounts to a partial cointegration analysis per frequency, where the intercept (with a
specific form for each frequency) is restricted under the null hypothesis of cointegration. In
Section 3, we illustrate our approach for quarterly consumption and income data for Germany,
and we compare our results with those obtained using the Lee (1992) method. In Section 4,

we conclude our paper with some remarks.

2. Seasonal cointegration and seasonal intercepts

In this section we discuss the representation of a seasonal cointegration model. The key
results on the impact of unrestricted and restricted seasonal intercept terms are summarized in
a proposition. Our results clearly indicate a useful empirical modeling strategy for seasonal
cointegration. In Section 2.2, we propose this strategy and we provide the relevant tables with

critical values.
2.1 Representation

A general representation of an autoregressive process for an nx1 vector time series X,
(+=1,...,N), which allows for cointegration at seasonal and nonseasonal frequencies is:
4
AX,=o,B,"S(B)X, +0,B,' A(B) X, +a,B;' A X, , +Zdi6:_4[(g_1)/4} +€,, (1)
izl

i

where g, 1s an nx1 vector white noise process. The &' .. ..., in (1) concern the conventional
t t-4{(1-1)/4]

seasonal dummy variables. The Kronecker symbol expresses the structure of the deterministic

seasonal dummies that can be equated to £ mod 4. [.] is used to denote the largest integer or




entier function. The differencing filter A, 4=1,2,... is defined by Ay=(1-B*), where B is the
usual backward shift operator defined by BXX; = X, 4, k=1,2,... Model (1) is more special than
the most general form that should allow for non-synchronous seasonality at 7t/2 and it has the
form used by Lee (1992). For ease of exposition, a possible short-run autoregressive influence
has been excluded that would allow for VARs of any finite order p. An unrestricted vector
autoregression for X; that corresponds to (1) is of order 4. The matrices o; and B; are assumed
to have full column ranks 7; with 0<7;<n. The operators S(B) and A(B) are defined as follows:
S(B) = 1+B+B2+B3 A(B) = 1-B+B2-B3

S(B) can be interpreted as the seasonal moving average smoothing operator and A(B) as the
alternating signs summing operator, hence "S" and "4".

The matrix ojB;' corresponds to nonseasonal cointegration at the zero frequency. The
matrix oiyf3,' concerns seasonal cointegration at the bi-annual frequency, whereas the matrix
o3P relates to seasonal cointegration at the annual frequency. See Engle er al. (1993) and
Lee (1992) for additional discussions of model (1).

Given (1) and fixed starting values for the X, vector process, X; has a representation in
starting values, innovations €5, and deterministic contributions D for s<t. Formally, this
representation is achieved by inverting the seasonal operator A4 in (1). For the now classical
case of zero-frequency cointegration, the mathematical derivation of such a representation is
summarized in the Granger Representation Theorem (cf. Engle and Granger, 1987). In the
present case of a seasonal cointegration model as in (1), the influence of deterministics is
however more involved, and hence a representation theorem for seasonal cointegration
contains complex structures. To highlight this phenomenon, we decompose the deterministic
part D; of (1) into three components, i.e., D, = pt+astr, Averaging over the seasonal cycle
yields the time-constant drift = (d|+d,+d3+dy)/4. The sum of the remaining components is
then O over the four-quarter cycle. Similarly, a; is found by applying the alternating operator
A(B) to the sequence of seasonal constants. This results in a; = a cos n(#-1) with a = (d;-
dy+ds-dy)/4. The remainder 7, has a distinct pattern of alternating constants of type (b,¢,-b,-c,

b,c,...), with b = (d,-d3)/2 and ¢ = (dy-d4)/2. Then,




r, = bcos-;—t-(t— 1)+ccos§(t—2).

From the definition of D, = p+astr,, where u, a,, and r; are defined above, it is clear that
formal application of the inverse operator A; has different effects on the three deterministic
components. For example, A} 1 yields four parallel linear time trends that perpetuate the
original seasonal starting pattern. Such a pattern does not seem unusual for seasonal and
trending series observed in practice. In striking contrast, a, and 7, generatek divergent linear
trends. In the case of a; and, e.g., a>0, parallel positive trends appear for even ¢ and parallel
negative mirror images for odd 7. In the case of 7, the patterns look even more strikingly
counterintuitive. However, in the multivariate model such divergent trends do not appear
necessarily. Hence, the key problem addressed in this paper is how one should accommodate
for and possibly restrict the deterministic part of seasonality such that the aforementioned
implausible features are avoided.

For illustrative purposes, we start with a simple VAR(1) model with cointegration at the

zero frequency. This model reads as

AX, =of X, +u+e, (2)
From integrating (2), it is clear that X; depends on a linear trend through "' only, where ot
denotes the orthogonal complement to o.. Hence, even if W is not 0 but a*'u=0, there is no
linear trend in the multivariate process X;. For a similar property in the seasonal cointegration
model, let us first re-write (1) with decomposed deterministics, i.e., with D=u+atr,, as:

AKX, =0,B,'S(B)X, ., +0,B," A(B) X, + 0B, A, X, + 1+

3
+acosn(r—1)+ (b,c)[cos—g(t - 1),0031;—(1 - 2))'+8, , ®)

where (b, ¢) is an nx2 matrix expressing the influence of the two annual dummies, each one of
type (1,0,-1,0,1,0,-1,...) with one of them lagged one quarter. Obviously, (3) has exactly the
same number of parameters as (1), since (u,a,b,c) replaces (djy,...,ds). It is now possible to
show that the unwanted and implausible divergent seasonal trends appear in the representation

of X; through o 'a and o '(b,¢) only. We state this result in the following proposition.




Proposition. If a vector autoregression is given by (1) or equivalently (3) and X; has four
Jixed consecutive starting values, then, in general, its deterministic part consists of an n-
dimensional linear time trend proportional to o'W, linear time trends diverging over the
seasonal cycle proportional to o;'a and a;'(b,c), and a periodic pattern of constants. If
oy 'a=0 and a;'(b,c)=0, the deterministic part only contains a linear trend and four

seasonal constants.

Proof of the proposition. We use a result developed by Tsay and Tiao (1990) who build on

previous work by Chan and Wei (1988). We re-write the VAR system in state-space form:;
X, r,r, r, I,|&X, €,
X, I 0 0 O0x,

0

= +
X, |0 I o Xl 1o
X, 1o o 1 0

0 or X =TX  +e,, 4)
0 || X,
where I';, /=1,2,3,4 are matrices directly depending on o and B; of (1). With deterministic
terms in (1), one must add additional terms to the right of (4), again with block zeros except in
the first n-block as in ¢;. Tsay and Tiao (1990) use the Jordan canonical form of the state
transition matrix D=T-II'T to rotate the system into T(X,',X,,", X, X,)=TX =¥,
where T denotes a transition matrix. The vector process Y; is a 4n-dimensional process,
naturally ordered according to the eigenvalues of the original transition matrix. One could,
e.g., consider ¥; with an (n-r|)-dimensional subvector corresponding to the eigenvalue of +1,
continue with an (#-r,)-dimensional subvector corresponding to the eigenvalue of -1, which is
the unit root that concerns the bi-annual frequency and a pair of (#-r3)-dimensional vectors
corresponding to 47, which are the complex unit roots that concern the annual frequency. The
real and imaginary parts of these latter vectors can also be interpreted in the real numbers as
real eigenvectors to the eigenvalue of -1 in the squared transition matrix. The remaining
eigenvalues are less than 1 in modulus. The matrix T contains the eigenvectors, ie., T =
(Ty,...,T4)" with the components T;, /=1,...,4 corresponding to +1,-1, +i, and the remainder.

Hence, the first (n-7])-component of ¥, is a random walk of the form




81 H'?al”:‘
0 0

Wo=Wa+T)  J# T o] 5)
0 0

This representation shows that it is only the first n-part of the eigenvectors comprising Ty that
has any further influence on the deterministics in the rightmost term. We denote this first part
as Ty;. If a starting value for 7 is given, then (5) can be inverted. The generated random
walk is superimposed with a time trend of the form Tj;'uf. The seasonal variables a; and r,
generate an additional cycle of constants. The whole system can be transformed into the
original X; by the inverse transformation matrix T-!. The contribution of the subsystem (5) is
then a stochastic random walk component, a linear trend proportional to Ty'u, and a basic
repetitive pattern of constants. Hence, (5) yields a plausible iﬁpact of intercepts.

The second component has dimension n-r, and looks like

g, u,a,.r
- - 0 0 '
th:_W/;—l'*'TZ‘ 0 +T,' 0 . (6)
0 0

This is an (n-7,)-dimensional random jump process. We again denote the first section of T, by
T1. Inverting the representation (6) using one starting value leads to five parts. Firstly, the
purely stochastic alternating sum of white noise. Secondly, an alternating influence of the form
(Tp1'n,0,T51'w,0,Ty;'w,0,...). Thirdly, two diverging trends at odd and even indices ¢
corresponding to T,j'a,, i.e. different trends for different seasons. Fourthly, a cyclical pattern
of constants corresponding to the ; influence. Fifthly, an alternating additional term deriving
from the starting conditions. The diverging seasonal trends in the third influences deserve
further attention, since it is this effect that may not be present in empirical data. That influence,

however, is strictly rooted in T,;'a. Re-transforming with T-1, it can be shown that there is a
stochastic seasonal cycle of periodicity m in the original process depending on T,; and an

additional deterministic feature proportional to T,;'a.




In order to continue with our proof of the proposition, we need the first sections of the
eigenvectors of the transition matrix I in (4) with respect to the unit eigenvalues. To this aim,

we directly express I as

a,B, o, oy —aLB, FasB,y oy By LB, o, By —o,B, ~osBy +

ro I 0 0 0
- 0 1 0 0
0 0 I 0

An eigenvector for the eigenvalue of +1 is then defined by the property

¥I=x'

o Ter o
Partitioning ¥'=[%' %,

1

X' X, '], we obtain the equation system

%, '(0‘131 '+, 3, ') +%,'=%
1 !(G'}Bl "’OczBZ '+OL3B3|) +
B+, ') +E, =%

1B1'—a2B2’“a3B3'+I) =%,

=

ot
3—x2
St
xl

1

(o
(o

=

1

which, summed up, yields directly

4%'af)'=0 = £« all'
A similar technique for the seasonal root of -1 confirms the conjecture that the first part of the
corresponding eigenvector is proportional to a; . It follows directly that the other part of the
nxn-dimensional space, o, does not influence the possibly undesirable feature of expanding
trends, as it disappears after the transformation into the Jordan coordinates.

For the complex root pair of +i, we have the basic condition ¥'I"=ix", i.e.,

X, ‘(OL]BI +a,B, ,) + X, =10x)

X, '(OLIBI '—a,B, o, N+ X, =ix,"
X, '(OLlBl '+o,B, ') +%,'=1&,'
% '(a,B,'~0t,B, '-oc3B3'+I) =ix,’

Subtracting the third from the first equation and the last from the second yields
" 1)} = ')EI 'CX.3B3‘= 0

and hence the proposed condition also holds for the complex pair. Note that this proof gets

slightly more involved if the general seasonal model instead of specification (1) is considered.




Due to arguments entirely analogous to the previous cases, only «; '7, is able to generate the

possibly implausible feature of seasonally expanding trends. Hence, if o} '(b,¢)=0, model (3)

is free of that undesirable feature. This completes the proof of our proposition. 0

Some additional remarks can be made. The first is that one should note that the remaining
3n components of the eigenvectors - which are not used in the proof - are not trivial. For
example, for the root +1, we obtain

=[05f‘ "o (1- a,p, ) a (1- asﬂsi) ay '(1- B, oy, ')]

This means that, if one wants to extend Granger's definition of a common trend in zero-

frequency cointegrated systems to this seasonal case, ¥ (X X X, X )’ may be
preferable to simple ;' X,, as the former is a multivariate random walk while the latter is not.
The second remark is that our proposition can easily be generalized to higher-order systems of

the form
r
A X, =0,B,'S(B)X,_ +0,8,' A(B) X, +0,B,'A X, , +Z(piA4X

i=1

+Zd61 4~ 1)/4

which extends (1) by the inclusion of p lags of A4X; variables, by a straightforward extension

of the proof.

2.2 An alternative empirical method

In practice one may want to test for seasonal and nonseasonal cointegration in a model
framework which does not allow for diverging seasonal trends in the data. For that purpose,
we use our proposition to re-write (3) in a simple form that permits exclusion of such

diverging trends, i.e,,

AX, =B, S(B)X,, +a,(B,' 4(B) X, , +a’ cosn(t—1))+
(7
+0t3{B3 A, X, +(b",¢")cos2(r 1), cosZ(z - 2))} +U+e,




for =1,2,...,N. Note that in most empirically relevant cases a linear time trend generated by p
is perfectly admissible, as most economic time series are trending. Further note the change in
dimensionality between a, b, ¢ in (3) and a*, 4%, ¢* in (7). In (7), the row dimensions of the
vectors are only ry and 73 whereas in (3) they have row dimension ». Maximum-likelihood
estimation of (7) is straightforward and it amounts to a reduced-rank system regression of
A4X;, in analogy to the traditional estimation of frequency-zero cointegrated models. Johansen
(1994) points out that, in such cases, the rank of e.g. a,f,' is determined by the canonical
correlations between AyX; and (4(B)X,.;, cos n(z-1)), conditional on remaining influences.
Hence, the right-hand side set of variables is to be extended by the deterministic influences.
For the nonseasonal case this deterministic term is 1, in our case of seasonal cointegration at
the bi-annual frequency it is cos m(z-1). Lee (1992) outlines that the three terms S(B)Xj,
A(B)X,, and A,X; are asymptotically independent, hence tests on the various ranks can be
conducted by conditioning on the complete set of remaining variables. In the absence of rank
restrictions at other frequencies, conditioning can be conducted efficiently by auxiliary least
squares regressions preliminary to the canonical analysis. A certain loss in efficiency may occur
due to the fact that the rank at different frequencies may not be full but also restricted. Lee
(1992) argues that this loss of efficiency is negligibly small.

Because of the independence of the three terms S(B)X,, A(B)X,, and A,X,, the asymptotic
distribution of the likelihood-ratio test statistic for testing hypotheses on the rank of the
matrices does not depend on the remaining frequencies. As a consequence, tests for the rank

of a3, can be based on
i 1 i
jo (dB)F [ jOFF ] jo F(dB)',

where I denotes the extended (#-r;)-dimensional limit process of a process of the type

Xy = -Xpytey
The limit process of this X, is, however, standard Brownian motion again. Replacing every
other g, by -g,, this is obvious from symmetry arguments. Using the same symmetry argument,
we can show that extending such a process by the alternating a, variable is tantamount to

extending the usual random walk by 1. Hence, for the frequency n, the standard table T.III of




Johansen (1989) can be used. For the frequency /2, however, we need a slightly different

table.

Based on 10,000 Monte Carlo replications, significance points for the trace test statistic

£,=-N Slog(l-p,)

JEn-itl

for the 7 smallest squared canonical correlations at the respective frequencies are given in
Table 1a and 1b for the cases /=1 and /=2. The distribution depends on 7 only. If there are only
two variables, i.e., #=2, the situation is as follows. The statistic &; tests for the null hypothesis
of integration at the respective frequency against the alternative of no integration at that
frequency, while &, tests the null hypothesis of no cointegration against the alternative of
cointegration or no integration. If, in the second case, the maintained hypothesis is integration
at that frequency, a variant called the A, test should be used. We tabulate significance points
for this Ay, test statistic in Table 1c.

The critical values in Tables la-c lead to a few remarks. The first is that spuriously
augmenting lags (i.e., the cases where p=1) tends to decrease critical values slightly at o=n
and ®o=n/2 but not at ©=0. The second remark is that all cases (drift or no drift, spurious
augmenting lags present or absent) produce the same asymptotic distribution for w=n and
@=n/2. The third remark is that the asymptotic distribution for ®=0 depends on the presence
or absence of a drift only. Lag augmentation does not seem to have much effect. Fourthly, the
differences between N=100 and N=200 are not very pronounced. Smaller N are probably
uninteresting because of the low power of the tests, larger N are unlikely to occur in current
econometric practice. Finally, for =0 and @=n, correspondence to existing tables of simulated
significance points (see Johansen, 1989, and Osterwald-Lenum, 1992) is close. Exception is
the no-drift design for ©=0, where the statistics are considerably larger even for N=200.
Correspondence to published tables is a good indicator of the strength of finite-sample cross
effects between frequencies. Our results show that such cross effects play little role,

confirming the conjectures reported by Lee (1992) and Lee and Siklos (1992).
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3. An application

As an empirical example, we use the German real disposable income and private
consumer expenditure series contained in Lutkepohl (1991, Appendix E) that are measured for

1960.1-1987.4.
3.1 Results of standard method

An application of the standard seasonal cointegration tests in the spirit of Lee (1992) and
Lee and Siklos (1992) results in the evidence displayed in Table 2. The number of lags p of
A4X; ranks between 0 and 4. These values correspond to VARs for X; of orders 4 to 8. The
optimum lag order is unclear and we abstain from selecting such a lag. For each of the four
different specifications of added deterministics, we give the test statistic for the two
eigenvalues (€;) and the one for the smallest eigenvalue (§;). If €, leads to statistical rejection,
we have evidence of cointegration. If additionally &, is significant, the corresponding unit root
at the relevant frequency is absent. If none of the two tests rejects, there is no cointegration
and there are two independent sources of nonstationarity in the two time series.

From the results in Table 2, we observe that there is no evidence on frequency-zero
cointegration, except for one poorly specified case (constant, p=0). With respect to the other
frequencies, evidence hinges critiéally on the deterministic specification and on p. We find
cointegration at frequency m only if seasonal dummies are used. This may be explained as
follows. Without inserting seasonal dummies, the procedure finds two independent sources of
seasonal cycles and only after inserting dummies, one of the two sources is identified as
identical to the deterministic sine wave. The effect is even stronger at =/2. Here, after
introducing seasonal dummies, a unit root is rejected for low p, hence both previously detected
sources of seasonal variation are then identified as being deterministic manifestations.
Although this latter result is not backed strongly in all specifications, we tend to rely on it as it
is confirmed by (unreported) univariate testing» of unit roots for the single series, which

suggests that unit roots are found at frequencies 0 and w but not at /2. In sum, the standard

11




method to test for seasonal cointegration yields evidence in favor of cointegration at the

frequency =.
3.2 Results of restricted method based on (7)

When we apply the maximum likelihood estimator outlined in Section 2.2 for model (7), we
obtain trace statistic values, which are summarized in Table 3. Comparing the results with the
simulated fractiles in Tables la and 1b shows that the overall evidence on seasonal
cointegration at frequency m weakens and is now restricted to the auxiliary regressions with
p=0 and p=1. In other words, the standard method tends to enhance the constancy or co-
constancy of seasonal patterns whereas the restricted method finds more evidence of changing
seasonal patterns as it does not permit fixed seasonal effects that would generate divergent
trends.

It should be mentioned, though, that it is yet unknown whether decisions based on our
restricted method are more accurate than those based on the standard method of Lee (1992).
In large samples, imposing a valid restriction certainly increases test power but in smaller
samples the answer to this question may depend on a variety of details in the overall
specification. Our proposed restricted procedure can be valuable in casé one wants to abstain
from inadmissible long-run behavior from the outset. Notice that this implies that considering
linear trends as additional deterministic regressors is not attractive. A slight extension of our
proposition shows that the coefficient vector of such trends would have to be orthogonal to

o ,0;,0; simultaneously in order to avoid the appearance of quadratic trends or seasonally

diverging trends in the resulting model.

4. Concluding remarks

In this paper we have shown that unrestricted seasonal intercepts in a seasonal

cointegration model can lead to diverging seasonal trends. Since such seasonal trends may be

12




implausible in practical occasions, we proposed an alternative empirical method to investigate
seasonal cointegration where we impose restrictions on the seasonal intercept parameters. We
tabulated critical values for the various test statistics in the case of two variables. A
comparison of the standard method and our proposed restricted method to quarterly
consumption and income data for Germany resulted in a dramatic weakening of the evidence
for seasonal cointegration when we restrict the seasonal dummy parameters.

The analysis in the present paper can be extended in at least two ways. Firstly, it should be
investigated using an extensive simulation study whether our restricted method consistently
outperforms the standard method in the case of, e.g., no diverging trends or no deterministics
at all. In other words, it seems useful to study the relative loss of using the standard
unrestricted method in a variety of occasions. Secondly, and very much related to the first
topic, it seems interesting to re-evaluate earlier empirical studies of seasonal cointegration to
investigate the robustness of the findings to the restriction of seasonal dummy parameters.
Indeed, the finding of more or less similar results across the two methods may yields additional

confidence in the reported outcomes.
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Table la

Simulated significance points (based on 10,000 Monte Carlo replications) for trace test statistics £; under the

restriction of no diverging seasonal trends, i.e., model (7) in text. The data generating process is AgX; = pte,,

where &, is univariate Gaussian with o¥=1.

©=0 =N o=n/2

N .90 95 99 .90 .95 .99 .90 .95 .99
100 6.5 8.1 11.3 7.4 8.9 124 10.8 12.8 16.5
100 6.6 83 11.9 7.2 8.6 11.9 11.1 12.9 17.5
100 2.8 3.8 7.1 7.3 8.8 12.1 10.8 12.6 16.4
100 2.9 4.1 73 72 8.7 12.1 11.0 12.9 17.3
200 6.7 8.2 11.5 74 9.0 12.4 11.0 12.9 17.0
200 6.7 8.4 11.8 7.3 8.8 12.3 11.2 13.0 17.0
200 2.7 3.9 6.4 7.4 9.0 12.4 11.0 12.8 17.0
200 2.8 4.0 6.7 7.4 8.9 12.4 11.1 12.9 17.1

Notes: The & test statistic considers the hypothesis of integration at frequency @ against the alternative of no

integration at that frequency. N is the number of observations, p denotes whether the auxiliary regression (7)

includes an additional lag of A4X} (1) or not (0), and p is the constant term in the DGP.




Table 1b

Simulated significance points (based on 10,000 Monte Carlo replications) for trace test statistics £, under the

restriction of no diverging seasonal trends, i.e., model (7) in text. The data generating process is AgX;

= pu(1,1)"+s;, where ¢; is bivariate Gaussian with Z=/.

®=0 O=T w=n/2
N .90 .95 99 .90 .95 .99 .90 .95 .99
100 16.0 18.2 23.1 17.9 20.1 24.8 23.9 26.5 31.9
100 16.4 18.8 23.8 17.0 19.2 234 233 25.8 31.0
100 13.6 15.5 20.1 17.8 20.1 248 23.9 26.4 317
100 13.9 16.3 21.1 17.0 19.2 23.7 233 25.8 30.8
200 16.0 18.3 22.8 17.9 20.1 24.9 24.0 26.3 31.8
200 16.1 18.4 23.2 17.2 19.4 23.6 23.7 259 30.9
200 13.3 155 19.8 17.9 20.1 24.8 23.9 26.3 31.8
200 13.7 15.7 20.3 17.2 19.3 23.8 23.6 25.9 31.0

Notes: The & test statistic considers the hypoihesis of no cointegration at frequency o against the alternative

of cointegration or no integration at that frequency.  is the number of observations, p denotes whether the

auxiliary regression (7) includes an additional lag of A4X; (1) or not (0), and p is the constant term in the

DGP.




Table 1c
Simulated significance points (based on 10,000 Monte Carlo replications) for eigenvalue test statistic Ap,,y
under the restriction of no diverging seasonal trends, i.e., model (7) in text. The data generating process is

AgXy = u(1,1)+e;, where g is bivariate Gaussian with =/.

@=0 O=T ’ w=n/2
N p B .90 95 .99 .90 95 .99 .90 .95 .99
100 0 0 133 15.1 18.8 13.7 15.7 19.5 17.3 194 23.8
100 1 0 134 15.5 20.9 13.1 15.1 18.8 16.9 18.9 23.4
100 0 1 12.4 14.3 18.6 13.8 15.7 19.6 17.3 19.3 23.8
100 11 12.6 14.8 19.3 13.2 15.1 18.7 16.8 18.9 23.4
200 0 0 131 15.0 19.5 13.8 15.8 20.0 17.4 19.5 239
200 1 0 13.2 15.2 19.7 133 15.2 18.9 17.1 19.1 233
200 0 1 12.1 14.1 18.3 13.7 15.8 20.0 17.4 19.5 23.9
200 1 1 12.3 14.3 18.9 13.3 15.2 18.9 17.1 19.2 23.2

Notes: The Ampqay test statistic considers the hypothesis of integration at frequency ®. N is the number of
observations, p denotes whether the auxiliary regression (7) includes an additional lag of A4X; (1) or not (0),

and p is the constant term in the DGP.




Table 2

Results of standard seasonal cointegration tests for German consumption and income.

constant seasonals trend seasonals & trend

p g1 & €1 &2 €1 &2 €1 &2
Frequency 0

0 471 20.45" 3.29 9.18 0.93 6.87 1.47 6.88

1 1.49 5.52 1.60 6.38 1.73 9.10 1.94 11.97
2 1.07 5.83 0.97 5.50 3.00 12.40 3.27 13.03

3 1.28 8.03 1.47 8.36 3.48 16.29 2.57 13.39
4 2.10 10.86 0.94 9.71 3.11 10.02 3.99 11.17
Frequency m

0 1.47 6.88 6.47 62.51** 1.09 10.28 6.56 62.78™*
1 1.94 11.97 4.65 27.67°* 0.340 6.58 4.44 27.66™*
2 3.27 13.03* 5.01 38.23** 0.27 7.71 5.09 39.11%*
3 2.57 13.39" 2.60 41.78™* 0.42 4.98 2.48 40.87**
4 3.99 11.17 2.95 34.55** 0.41 6.00 2.97 35.09™*
Frequency n/2

0 1.68 4.84 22.19"*  50.58™* 1.66 4.93 2231*%  51.22%F
1 0.14 4.15 13.19%  35.14™ 0.14 4.40 13.11* 35.96™*
2 0.32 3.38 7.77 24.55" 0.36 3.48 7.84 23.77

3 0.31 3.68 5.63 22.03 0.37 3.54 572 21.17

4 0.00 3.20 4.56 14.68 0.00 3.20 4.45 15.09

Notes: The auxiliary regression is (1) with the inclusion of p lags of AgX;. The regression can contain a

constant (constant), four seasonal dummy variables (seasonals), a constant and a trend (trend), or four seasonal

dummy variables and a trend (seasonals & trend). ** denotes significance at the 5% level, * denotes

significance at the 10% level.




Table 3

Results of seasonal cointegration tests restricted at seasonals based on regression (7).

=0 : ©o=T o=n/2
P €1 &2 &1 &2 &1 &
0 3.29% 9.18 6.74 57.88** 22.80"*  50.08**
1 1.60 6.37 5.26 21.30** 12.72 34.00**
2 0.97 5.50 538 18.48* 7.09 23.45
3 1.47 8.36 2.95 11.25 4.74 20.29
4 0.94 9.71 2.92 8.94 3.90 13.83

Notes: The auxiliary regression is (7) and contains p lags of AgX}. ** denotes significance at the 5% level, *

denotes significance at the 10% level.
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