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Abstract

The opportunity to bargain often causes costs for at least one party in many economic
situations, e.g. wage negotiations, joint ventures or interfirm cooperation. This paper studies
such situations. A "strong” and a “weak “ player have to agree how to divide the produced
surplus. The "weak” player has to bear opting in costs. We characterize the set of subgame
perfect equilibria. It is shown (i) that raising the costs of the weak party may strictly lower the
payoff of the strong party, (ii) that for some cost levels the only equilibrium is inefficient, (iii)
that if the players are sufficiently patient the outcomes of the “zero-cost model” and the
“vanishing costs” version of our model do not coincide, and (iv) that in general multiplicity of
equilibria arises.

Zusammenfassung

In vielen Gkonomischen Situationen, wie z.B. Lohnverhandlungen, Joint Ventures oder
anderen Formen der zwischenbetrieblichen Kooperation, hat zumindest eine der involvierten
Parteien Verhandiungskosten zu tragen. Diese Arbeit analysiert solche Situationen. Ein
“starker” und ein “schwacher” Spieler miissen ein Abkommen dartber treffen wie der von
ihnen produzierte Surplus aufgeteilt werden soll. Der schwache Spieler ist derjenige welcher
Eintriftskosten zu tragen hat. Die Menge der teilspielperfekten Gleichgewichte wird
charakterisiert. Weiters wird gezeigt: (i) Eine Erh6hung der Eintrittskosten des schwachen
Spielers bringt nicht immer einen Vorteil fur den starken Spieler; (ii) fur bestimmte
Kostenniveaus ist das eindeutige Gleichgewicht ineffizient; (i) Die Outcomes des “Null-
Kosten” Modells und des présentierten Modells mit verschwindenden Kosten stimmen nicht
Uberein wenn die Spieler hinreichend geduldig sind; (iv) im allgemeinen existieren keine
eindeutigen Gleichgewichte.
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1 Introduction

The opportunity to bargain over some given surplus often causes costs for at
least one party in many economic and political situations. Consider for example
a situation where a union and a firm have to come to an agreement about future
wages. The union may decide to act completely passively, accepting any wage
offered by the firm. This would be an ultimatum game situation. On the other
~ hand the union may decide to play an active part and force the firm to bargain
about the wage. Such an enforcement will in general not be cost-less. The costs
which the union and/or its members have to bear can be of various kinds. The
simplest kind of costs for a union one can think of are just the membership fees
which have to be paid by the workers. Furthermore, if a union wants to force
the firm to bargain about the wage, it has to convince the firm that the workers
are supporting the unions policy. Then the union has to bear costs because it,
for example, has to organize a workers meeting to demonstrate its power. In
this case the costs can be monetary ones, like a rent for a meeting room or/and
compensation payments for the workers who show up at the meeting, or non-
monetary ones, like foregone leisure time for the workers attending the meeting.
A further example of costs to be borne by the union is the salary that has to be
paid to the representative who is doing the negotiating with the firm. Since, in
general, such costs are increasing with the duration of the bargaining process, as
long as no agreement is reached, the union has to decide from time to time if it
wants to continue the negotiations or to stop it and to accept an ultimatum offer
made by the firm.

The possibility of such opting in costs can occur not only in union versus firm
bargaining situations. Suppose, for example, the following situation: two partners
are planning to run a production joint venture. They have to bargain over the
potential surplus which can be extracted by a jointly run production-line, before
the joint venture is actually set up. One partner owns the know-how of an efficient
production process, whereas the other possesses the hardware. The latter may
also have some know-how of how to run the production, but this may be an older
technology and therefore less efficient. This is typically the case in production
joint ventures between firms from Eastern Europe and firms from some Western
Industrialized Country. There exists a possible efficiency gain if the two firms
decide to cooperate in such a situation compared to the situation where they
don’t. Suppose furthermore that the firm who possesses the know-how can also
sell this knowledge on a market. If the two firms want to cooperate, they have to
agree and write a contract on how the produced surplus will be divided between
them. As long as they are negotiating no production can take place. This can
be due to the fact that the implementation of the technology is an irreversible
process. The know-how possessing firm therefore will only agree to implement
it if it can be sure that the gain from the know-how sale on the market is not
higher than the gain from cooperation. While the bargaining process takes place
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the surplus is shrinking due to discounting. Additionally, the foregone gains of
alternative utilization of the technology for this firm will be higher the longer the
negotiations lasts. These foregone gains as well as the costs mentioned in the
union/firm example can be regarded as opting in costs for one of the involved
parties.

Several questions arise. What is the effect of opting in costs on equilibrium
payoffs? Will these costs, as one would suggest at first sight, always work in favor
of the party which doesn’t have the cost? Is there a possibility of inefficient out-
comes in the sense that the potential gains from bargaining will not be exploited?
What is the relationship between the “zero-cost” model and a model with opting
in costs approaching 07 Will the former always be the limit case of the latter
one? In this paper we are trying to find answers to these questions. We model
the economic situations mentioned above as a “Rubinstein-like” bargaining game
to which we add the new feature that the weak party has to bear costs if she de-
cides to opt into the bargaining process. This paper therefore is in line with the
stream of contributions on noncooperative bargaining initiated by Rubinstein’s
(1982) seminal paper as well as the work of Stahl (1972). The studies on outside
options (see e.g. Shaked and Sutton (1984), Shaked (1987)) and money burning
(Avery and Zemsky (1994)) are most similar to ours. Hendon et al. (1994) intro-
duced switching costs for one player in addition to the usual discounting. They
showed that if these costs are sufficiently large the subgame perfect equilibrium
in a market with one seller and two buyers is always unique. These switching
costs are somewhat similar to the opting in costs introduced in this paper. In our
model, however, uniqueness is ensured for sufficiently large and sufficiently small
opting in costs. We also show that there always exists a non-empty interval of
such costs where multiplicity of equilibria will arise. Furthermore, the possibility
of inefficient outcomes occurs which are not due to delay. We also find that (i) an
increase of the opting in costs will not always work in favor of the stronger player
and (ii) that under some circumstances it is strictly worse for the strong player
if the costs of the weaker one increase. Hence, if a strong player has the option
to choose between two weak players, he will possibly prefer to bargain with the
relatively stronger one. Or if a firm has the possibility to influence the opting in
costs of the union, it will not always try to raise these costs. Comparing what our
model for costs strictly larger than 0 predicts, with the “zero-cost” model, we see
that for almost completely patient players (§ — 1) the equilibrium payoffs of our
model with vanishing opting in costs and the “zero-cost” model do not coincide.
Furthermore, we also find that for reasonable alternative payoffs “outside”, the
unique equilibrium payoff of the “zero-cost” model is not even contained in the
set of equilibrium payoffs of our “vanishing-costs” model. Hence for high dis-
count factors the “zero-cost” model is not the limit case of our model with costs
approaching 0.

The remainder of the paper is organized as follows. In section 2 the formal




model is presented and in section 3 the results of the bargaining game are derived
and presented. In section 4 we draw some conclusions.

2 The Model

Let us consider a situation where two parties have the possibility to extract a
surplus from cooperation if, and only if, they are able to settle on an agree-
ment how to divide these cooperative gains. At the beginning of each (potential)
bargaining round one of the players has to decide if she wants to continue the
negotiations. The decision to continue causes some effort costs. If she decides
not to continue, the status quo remains. This gives both players some exogenous
given “alternative” or “outside” payoffs. The parties face the following situation:
They have to play a “Rubinstein-like” bargaining game. The game exhibits some
asymmetry insofar as the bargaining position of one player, subsequently called
w, is weakened compared to the other player’s in two respects. Firstly, she has to
implement some costly effort to have the opportunity to participate in the bar-
gaining part of the game and secondly, her alternative payoff, called a, is smaller
then the alternative payoff b of the other player, whom we shall call s. To get
possible gains from cooperation, we assume that a-+b is smaller than the potential
surplus. This surplus can be divided between the two parties if bargaining actu-
ally takes place. Without loss of generality we normalize this surplus to unity.
Hence, the potential efficiency gains are given by 1 — (a + b). We now want to
define the game more formally.

The Bargaining Game

The game is played by two parties labeled s and w who bargain over the partition
of a potential surplus with a size normalized to 1. The bargaining process takes
place over time; the discrete time periods are of length 1 and are denoted by ¢,
t € {0,1,2,...}. In each period one of the parties is selected randomly (with
probability 5 and independently of previous selections) to propose an offer! x =
(z,y) € [0,1] x [0,1] with 2 +y = 1 where = (resp. y) is player s’s (resp. player
w’s) share of the surplus. The other party immediately responds by accepting
the offer, or rejecting it. If the offer is accepted an agreement is reached and the
play ends with the agreed upon partition of the surplus. If it is rejected, the play
will proceed into the next period.

The “Inside Option”

To get the opportunity to bargain with player s, player w has to decide if she
wants to opt in, at the beginning of each period. If she decides to do so, she has

1Since we are interested in investigating the influence of asymmetries with respect to altern-
ative points and opting in costs, we want to get rid of the so called “first proposer advantage”.
The proposed random selection procedure is the best and easiest way to do this.




to choose the action ¢, = 1. By doing this player w immediately incurs costs of
¢ > 0. Bargaining starts immediately after such a decision, with the selection of
the proposer by nature. If player w withdraws from bargaining with the other
player, the play ends with a payoff of b for player s and a payoff of a for player w.

The order of events in each period ¢ thus is: At the beginning of the period
party w has to decide upon opting in or not by choosing an e; € {0,1}. If she
decides to choose e; = 0 the play ends without bargaining taking place. Otherwise
a bargaining round will begin. A chance move then determines the identity of
the proposer who then makes an offer to which the other party responds with
acceptance or rejection. Acceptance terminates the game. Upon rejection the
play proceeds into the next period ¢ + 1.

insert Figure 1 here

Preferences and Costs

The parties are assumed to be risk neutral expected utility maximizers and they
discount future income (as well as future costs) with a common discount factor
¢ €]0,1[. This means that if they agree on a partition of the surplus of say (z,v)
in period ¢, then player s gets the payoff v = §'z, and player w’s payoff is given
by v = &'y — Si_, &%c. If player w decides not to opt in in period ¢, after having
chosen e; = 1 in periods ¢ = 0,...,t — 1, the strong player gets u = §'b whereas
the weaker one gets v = d%a — Y iy &'c, with 3% 6% = 0.

Strategies and Solution Concept

At each time period ¢ there are tree consecutive instances where one or the other
party might have to make a decision. These decisions are: (1) Player w has to
choose between e, = 1 and e, = 0; (2) What proposal to make (if player w has
chosen ¢; = 1 and the player was selected to be the proposer); (3) Whether or
not to accept the rivals proposal (if the player was selected not to propose). A
strategy of a player in this extensive form game is a sequence of decision rules
which specify the players action at every node of the game tree at which it is the
player’s turn to move, conditional on the history up to that node. We will denote
a strategy of player s with o and a strategy of player w with w.

Since this is a game of perfect and complete information the natural solution
concept to be employed is that of subgame-perfect equilibrium, developed by
Selten[1965, 1975).

3 Results

This section is partitioned into three parts. First we define two constants which
will play an important role in the analysis of the game. Both constants are related
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to particular levels of opting in costs. In section 3.1 some preliminary results
concerning the existence and (non)uniqueness of subgame-perfect equilibria are
presented. The main results of our analysis are stated in section 3.2.

Throughout the paper we will assume that 0 < a < b < 1 and a+b < 1 holds.
These assumptions reflect basic features of the situation we want to analyze.
Namely, that one party, player w, is weaker than player s, and that there exist
potential efficiency gains from bargaining. We now define the two constants
mentioned in the preceding paragraph.

Definition 1
(1) co = 3(1-08b—a(2-19)), (i) ¢ = (1-2a)i=L.

L]

Both constants specify particular levels of opting in costs. At first glance they
seem to be completely arbitrary. To get some intuition we will look at them for
discount factors approaching 1 (0 resp.). For § — 1 we get that ¢, approaches
5[1—(a+b)] and ¢; approaches the value 0. In this case ¢y “is” half of the potential
gains from cooperation. For § — 0 both values are approaching 152¢. Because of
our assumptions on a and b we have that a € [0,3[. Using this information we
can deduce that in case of vanishing patience the above defined cost levels are
somewhere between 0 and %, i.e. between zero and half of the surplus which the
parties can divide if they cooperate. ¢y as well as ¢, are strictly decreasing in the
discount factor. For intermediate levels of § they therefore lie in between their
limit values.

Our assumptions on a and b ensure that the intervals [0, ¢o[ and [0, ¢;[ are non-
empty. That ¢; > 0 is obvious because a < § holds. To see that ¢y > 0 assume
to the contrary that 0 > ¢;. Together with @ < b and a + b < 1 this leads to
the contradiction 1 < §. To investigate how the parameters §,a and b interfere
with ¢y and ¢; observe that ¢; < ¢y is equivalent to a < §7'(1 — (2 = §)b). In
Figures 2(a) and 2(b) we have drawn this relationship for two different values of
the discount factor ¢ in the (a, b)-plane.

insert Figure 2(a) and 2(b) here

The shaded region is the one where ¢; < ¢y holds. The plain one shows the
(a,b) configurations where the reverse inequality, ¢; > ¢, holds. Fig. 2(a) shows
that for relatively high discount factors, e.g. 0.9, the region of (a,b) values for
which ¢; < ¢y holds is relatively large, compared to the region where the reverse
inequality is valid. Even for small discount factors (Fig. 2(b)) the area where with
c; < ¢p is always larger than the area with ¢; > ¢g. If we think of a bargaining
process in “real world” one could argue that it is natural to assume that the more
“realistic” case will be that one of rather “high” discount factors. However, we
will analyze the case ¢; < ¢y as well as ¢; > ¢.

7




3.1 Preliminaries: Existence and (Non)Uniqueness of Sub-
game-Perfect Equilibria

Our first result, stated in Lemma 1, is just a variation of Rubinstein’s (1982) well
known “Existence-Theorem”. The difference to the classical result applies to the
equilibrium payoffs only, and is due to the fact that we have introduced opting
in costs.

Lemma 1 EXISTENCE OF A SUBGAME PERFECT EQUILIBRIUM FOR SUFFICIENT-
LY SMALL OPTING IN COSTS

If c € [0,¢1] then the strategy combination (o},w?}) described in Table I forms a
subgame perfect equilibrium.

Table I: Equilibrium strategies for ¢ € [0, ¢;1]

S
. s _ 1 1628

Player s  propose 7° = 50— 50i=%c

accept y < ¥
Player w e 1

demand || J¥ = $(2 - §) — %—ff—ac

accept y2>%5
Transition absorbing

(For a discussion of this method of representing an equilibrium see Osborne and
Rubinstein (1990).)

Proof: To see that this pair of strategies form a subgame-perfect equilibrium
(SPE) it suffices to check for one-shot-deviations, only (see Fudenberg and Tirole
(1991), and Harris (1986)).

(A) Player s:

() To propose more than §° is obviously worse than proposing 7°.

(8) To propose less than 7° gives an expected payoff of 61(1 —7° +1 — 7*) =
6 (%——{—%ﬁc) whereas following the proposed equilibrium strategy gives 1—7°
for sure. It is easy to show that 1 —7° > 65(1 —7° + 1 — 7*) is equivalent

to ¢ > —15;5 and therefore the inequality holds for all ¢ > 0.

7) If he doesn’t accept the proposal 1 —7", he will again get an expected payoff
g
of 63(1 — % +1 — ") which is exactly 1 — 7.

These arguments show that player s cannot do better in using any other strategy
then of, given that player w uses wj.

(B) Player w:




() To demand less than 7 is obviously not better than demanding exactly 7v.

(B) If player w demands more than 7“, player s will reject and player w can
expect to get §5(¥° + 7¥) — dc. It is easy to show that this is not larger
than g for all ¢ > 0.

(7) If she rejects the proposal ° made by player s, she will again get 61(7° +
7*) — dc which is exactly 7°.

(0) If player w chooses e = 1, she will get $(¥° + J*) — ¢. Hence we have to
show that $(7° +7") — ¢ > a holds. After some calculations one can show
that the above inequality is equivalent to ¢ < ¢;. Since we have assumed
¢ € [0, ¢;] this holds true and therefore this kind of deviation makes player
w not better off.

These arguments show that player w cannot do better in using any other strategy
then wy given that player s uses 7. Together with the observation in (A) this
shows that the strategy combination (o7,wf) is indeed a subgame perfect equi-
librium, given our assumptions.

a

As can be seen from Table I, the equilibrium strategies are such that player s
always proposes ¥* and accepts any offer not greater 7¥. Player w always opts in,
always proposes 7", and accepts any offer not smaller 7°. Hence, the equilibrium
strategies are stationary as in the classical noncooperative bargaining model.

Proposition 1 below states that if the opting in costs are small enough, then the
SPE described in Lemma 1 is unique. The intuition behind is similar to that
of a bargaining game with small enough outside option values (see e.g. Shaked
(1987)). The costs only have an effect on the agreed upon payoffs, but not on the
opt in decision of the weak plaver.

Proposition 1 UNIQUENESS OF THE SUBGAME PERFECT EQUILIBRIUM FOR
SUFFICIENTLY SMALL OPTING IN COSTS

If ¢ € [0,min{cy, c1 }[ then (o7, wi) from Lemma 1 is the unique subgame perfect
equilibrium and the unique ezxpected equilibrium payoff pair (uf,v}) is given by

Proof: Existence follows from Lemma 1. The players preferences satisfy all as-
sumptions stated in Rubinstein (1982), and Osborne and Rubinstein (1990). In
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particular the “Increasing loss to delay”-assumption is satisfied. Therefore the
above equilibrium is unique if e, = 1 V¢. Hence, it remains to show that in each
SPE after every history it is optimal for player w to opt in, i.e. to choose e, = 1
instead of e, = 0. If she chooses e, = 0 she will get ¢ immediately. Therefore
we have to show that in any SPE of the bargaining situation (BS) she can ex-
pect to get strictly more than a + c. Denote by m$, (m% resp.) the infimum
of all accepted SPE-shares of the potential surplus for player w in a BS where
player s (player w resp.) makes the offer. And m, = }(m$ + m¥) as the
infimum of the expected accepted SPE-shares of the surplus for player w imme-
diately before nature decides about the proposer. With this notation in mind
we have to show that m,, > a + ¢. In any SPE player s has to propose at least
max{da, dm,, — dc} because otherwise player w is better off in rejecting the offer
and waiting until the next period. In any BS on the other hand player s cannot
expect to get more than max{db,d(1 — m,)}. Therefore he will accept any offer
1—y>dmax{b1-my} ey <1l-—Imax{h1-m,}. Hence, Je > 0s.th. y+e¢
is still accepted by player s. But since player w is better off then such a y cannot
be an equilibrium offer. We get

mi, > d&max{a,m, —c}

my, = 1—odmax{b,1—m,}

We want to show that a < m,, — c. Assume to the contrary that a > m, — c.
Hence my, > da and my > 1 — dmax{b,1 —my}. If 1 —m, > b then m¥ >
1=68(1=my) = my 2 5(0a+1-30+dm,) & m, > 58 Together with
a+c > m, this implies (2 — §)(a + ¢) > 1 = § + da which is equivalent to
¢ > (1—2a)3=% = ¢;. But this is a contradiction to ¢ < min{cg,c;}. f1—my, < b
then mj > 1 —6b and m,, > $(éa + 1 — db). Together with a + ¢ > m,, this
implies that a + ¢ > £(da + 1 — §b). But the last inequality is equivalent to
¢ > 5(1—=0db—a(2—-4)) = ¢ what again is a contradiction to our assumption
¢ < min{cg, ¢;}. Therefore a < m,, — ¢ indeed holds and thus it is always better
for player w to opt in. Hence, the SPE (o7,wf) is unique if ¢ < min{cg, ¢, }.

The corresponding expected equilibrium payoff pair (u},v}) is easily calculated,
using 7°, 7 of table 1 and v; = 5(y* + y*) —cas well as u = (1 — ¢° + 1 — y*).

0

In this equilibrium player w will always opt in because the opting in costs
are small enough to ensure this behavior. The play ends with an immediate
agreement in the first period with the expected equilibrium-shares

SPRRRVE S SR S O
(vs, Y —(§+§1—‘_—50>§~§mc)~

The alternative points (b,a) determine only upper bounds for the opting in costs
for which the above equilibrium exists and is unique. They play no direct role in
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the determination of the equilibrium payoffs. This makes the situation similar to
that one of a bargaining game with outside-options where the payoffs “outside”
the bargaining game are too small to have an impact on the negotiated upon
equilibrium shares. The additional costs which player w has to bear work like
some additional impatience. It is therefore not surprising that, as it is easily
seen, the payoff for the stronger player is increasing and the payoff for the weaker
player is decreasing in ¢. Furthermore, the equilibrium-share of player w (s resp.)
is smaller (larger resp.) then in the “Rubinstein”-game. For ¢ = 0 we get the
solution (3, £) of the “traditional” bargaining game. Next we’ll analyze the other
“extreme”, namely the case of very high opting in costs.

Intuition tells us that for extremely large opting in costs the incentive to opt in
will be destroyed. If the weak player decides to opt in she expects to get some
compensation for her costs. But the “pie” is bounded and therefore the strong
player cannot credibly make such compensation promises if the costs are very
large. This leads to an equilibrium behavior of player s where he implements a
strategy which prevents the weak player from opting in. These reasonings are
described by Lemma 2 and Proposition 2 more formally.

Lemma 2 EXISTENCE OF A SUBGAME PERFECT EQUILIBRIUM FOR SUFFICIENT-
LY LARGE OPTING IN COSTS

If ¢ € [cg, +00[ then the strategy combination (o3,ws) described in Table IT form
a subgame perfect equilibrium.

Table II: Equilibrium strategies for ¢ € [cg, +00]

S
Player s  propose 7 = da
accept y < g¥
Player w e 0
demand || 7 = 1 — §b
accept y2>7
Transition absorbing

Proof: To see that this pair of strategies form a SPE we have to check for one-
shot-deviations, again.

(A) Player s:

() To propose more than 7* is obviously worse than proposing 7°.

(8) To propose less than 7° gives an expected payoff of 6b. But following o} gives
1 — da, which is larger than §b since 1 > a + b.

11




(7) If he doesn’t accept the proposal 1 — 7" he will again get an expected payoff
of 6b which is exactly the same as he would get in following the proposed
equilibrium strategy.

(B) Player w:

(o) To demand less than 7" is obviously not better than demanding exactly 7*.

(B) If player w demands more than 7% player s will reject and player w can expect
to get da. Since 1 > a + b we have ¥ =1 — b > da.

() If she rejects the proposal 7° = éa made by player s she will get da, and the
deviation is not profitable.

(6) If player w chooses e = 1 as wj prescribes, she will get a. Deviating gives
the expected payoff §(7° +3“) — ¢ = $(1 — 6b + da) — ¢. Suppose that the
deviation is profitable, i.e. a < $(1 —6b—da) — c. It is easily seen that this
inequality is equivalent to ¢ < §(1 — db — a(2 — §)) = ¢, which contradicts
¢ € [cg, +00].

These arguments show that the strategy combination (03, w;) is indeed a subgame
perfect equilibrium, given our assumptions.

0

As for small opting in costs we are able to state a uniqueness result for sufficiently
large opting in costs, too.

Proposition 2 UNIQUENESS OF THE SUBGAME PERFECT EQUILIBRIUM FOR
SUFFICIENTLY LARGE OPTING IN COSTS

If ¢ € Jmax{cg, c1 }, +00[ then (03,ws) stated in Lemma 2 is the unique subgame
perfect equilibrium and the unique equilibrium payoff pair (uh,vi) is given by

(b, a).

Proof: Existence is ensured by Lemma 2. If ¢, = 0Vt then the above equilibrium
is obviously unique. It remains to show that in each SPE after every history it
is indeed always optimal for player w to choose e = 0. Denote by Mg ( MY
resp.) the supremum of all accepted SPE-shares of the surplus for player w in a
BS where player s (player w resp.) makes the offer. Define M,, := 3(M$ + MY)
as the supremum of the expected accepted SPE-shares for player w immediately
before nature decides about the proposer. Given these definitions we have to show
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that a > M, — c. With arguments similar to those in the proof of Proposition 1

we get that
M, < ¢max{a, M, - c}
MY < 1-{6min{b,1- M,}

and from table 2 we know furthermore that

szé————é(b a)

must hold.
Suppose to the contrary that a < M,, — ¢. This implies

M,
MY

< M, - dc
< 1-4min{b,1— M}

Ifb <1- M, then My < 1-3db which in turn implies M,, < 5(6M,, —dc+1—6b).

This is equivalent to
1 L )

T S
Together with M, > 5—36 (b a) this implies 1—db—dc > (2—6)3(1-d(b—a)) &
(1 —36b—a(2- ) = cp. But this contradicts ¢ > max{cg,¢;}.

If, on the other hand, b6 > 1 — M, then M} < 1-46(1 — M,), and therefore
M, < 3(6M,, — dc+ 1~ 3§+ 6M,,) which is equivalent to

M,

My, <

Together with a +¢ < M,, this impliesa+c¢ < i -1 fcwc< (1~ 20)1=8 = ¢,
which again contradicts ¢ > max{cg, ¢, }. Hence we must have a > M, — ¢ as
desired.

O

The equilibrium strategies described in Table II are stationary. Player w never
opts in, always demands 1 — ¢b and accepts any offer not smaller than da. The
strong player always proposes da and accepts any offer which gives him at least Jb.
The weak player never opts in because the opting in costs are too large compared
to the possible equilibrium shares of the surplus she can ensure for herself. Similar
as in Proposition 1 the alternative points determine - via ¢; and ¢; - bounds on
the costs for which the above equilibrium exists (is unique resp.). But in contrast
to the equilibrium in Proposition 1 the equilibrium payoffs are now completely
determined by these points b and a, since if the weak player chooses ey = 0 both
parties get their alternative payoffs.
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So far we have characterized the equilibria for the extreme cases of very small
and very large opting in costs. We turn now to the case where the opting in costs
are in some intermediate range, i.e. ¢ € [min{cg, ¢;}, max{cy,c;}]. The following
Lemmata 3-4 show that in this case multiplicity of subgame-perfect equilibria
arise. Propositions 3-4 state that not only the equilibria are not unique, but that
they also lead to multiplicity of equilibrium-payoffs. Lemma 3 and Proposition
3 are concerned with the case ¢; < ¢y whereas Lemma 4 and Proposition 4 are
concerned with the case ¢; > ¢;.

Lemma 3 EXISTENCE OF SUBGAME PERFECT EQUILIBRIA FOR “INTERMEDI-
ATE” OPTING-IN COSTS (PART 1)

If ci < ¢p and ¢ € [cy,¢o) then the strategy combinations (o3,w}) described in
Table III form subgame perfect equilibria.

Table III: Equilibrium strategies for ¢ € [¢y, ¢o]

51 52 53 54
Player s  propose 7 evs Ve & v
accept y <y” y<y y< V¥ y <V’
Player w e 1 1 1 0
demand || ¥ € V¥ yv Yo v
accept y> 7 y2V’ y2V y>Ve
Transition if s rejects if s rejects if srejects | if w chooses

Y<ST =84 |ySV¥ 5 S |ysV 2 S|e=1-5,
if s proposes
y <y —5;
if w rejects
Y2y =S5
if w demands
y>yY =S

Where

1—8b 28
05=F — 556,

I
1

Ve e, 7°), ¥° = da, v
Ve = [V® VY, V¥ o= a2-68)+2 VY = 1-4b

(In the “transition-row” of the above table the phrase “if A — S,”in the column
S; means that immediately after the event A has occurred the state changes from
Sj to Sz)

Proof: see Appendix.

To support the whole ranges V* and V* of stated in Table III as proposals
accepted in equilibrium extreme punishment in case of deviation is needed. If
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one of the players deviates from the proposed equilibrium strategies the state
will change such that in the future the worst possible equilibrium for the deviant
is played. Suppose, for instance, that in state S; player s proposes less than
prescribed. Then player w will change her behavior in such a way that the
opponent gets less or at most equal to that payoff he would have been able to
ensure to himself by following the proposed strategy. If player w deviates the
punishment by player s works in an analogous way. As Table III indicates, in
the case of intermediate opting in costs, the equilibrium path depends on both
the initial state and the chosen proposals. In states S; — S3 the weak player will
opt in and the play ends in the first bargaining round (¢ = 0) with acceptance
of one of the equilibrium offers shown in Table IIL. If the initial state is given by
Sy the weak player will not opt in and the play ends in the period zero without
bargaining taking place. In this case both parties get their alternative payoffs,
namely b and a. The expected equilibrium payoffs sustainable by (o}, w?) are
easily calculated, using the intervals V¥ and V. They are stated in the following
Proposition.

Proposition 3 If ¢; < ¢y and ¢ € [c1,¢) then the exzpected equilibrium payoffs
(u3,v3) sustainable by the strategy combination (0}, ws) from Lemma 3 are given
by

(Us U {b},15)

where the first entry are the payoffs for player s, the second entry are the payoffs
for player w and '

® 1—~3(1—b) §
IJS = [T+m6,l_a_c],
TR 1—-6b 2
Ve = e, 5% — %50

For the case ¢y < ¢ similar results hold. The following Lemma follows
straightforwardly from Lemmata 1 and 2.

Lemma 4 EXISTENCE OF SUBGAME PERFECT EQUILIBRIA FOR “INTERMEDI-
ATE” OPTING IN COSTS (PART 2)

If cg < ¢; and c € [cy, 1] then there exists a subgame perfect equilibrium.

Proposition 4 shows that also in the case of ¢y < ¢; a whole range of payoffs is
sustainable as a subgame-perfect equilibrium.

Proposition 4 If ¢y < ¢; and ¢ € [cg, ¢1] then the strategy combination (o}, w})
described in Table IV below are subgame perfect equilibria. The exzpected payoffs
(uy,vi) sustainable by (o}, w)) are given by

(U5 U{b}, V)
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where again the first entry are the payoffs for player s, the second entry are the
payoffs for player w and

Ui = [§+3i%el-a—(
Vi = a5 - 3155

Table IV: Equilibrium Strategies for ¢ € [ep, ¢1]

S Sy S3
Player s  propose 7 evVs 178 da
accept y<y¥ y<vV” y<1-—4b
Player w e 1 1 0
demand || F¥ e Vv v 1-4b
accept y> 7 y2V | y>da
Transition if s proposes | absorbing | absorbing
y<y =S5
if s rejects
YySg¥ =Sy
if w demands
y>7v = S
if w rejects
Y2y — S
Where
Vs o= [V5,V°), V' = da, Vv? 50 — %5?%‘50,
Ve = [VUVY], VY o= a2-0)+2, TV 12-0) - iS5

Proof: We only have to check for one-shot deviations in state .S;, because for
states Sy and S3 optimality follows from the fact that they are the stationary
equilibrium strategies of Tables 1 and 2.

(A) Player s

«) To propose more than 7° is obviously worse than proposing 7°.
Y g

(B) If player s proposes less than 7° the state changes to S;. The expected
deviation payoff is therefore given by %ﬁ 1-V'+1- V). Following the
equilibrium strategy gives at least 1 — V.

Claim : V" >V,
Since V' >V @ 2-§— %c > 46— 5:12%55% < 1 -6 > —dc which is true for all
c> 0.

Suppose now that the deviation is profitable, i.e. 1=V < 16(1-V*+1-V") <
§(1—7") which is a contradiction. The second inequality follows from the claim.

16




() If he doesn’t accept the proposal 7“ the state again changes to S, and the
expected deviation payoff is given by the discounted value of the expected
equilibrium payoff uj of Proposition 1, namely 63 +61%:c = du}. Following
the proposed equilibrium strategy gives at least 1-V" = §1+61-L-c = Juj.
Hence the deviation is not profitable.

(B) Player w:
(o) To demand less than ¥ is obviously not better than demanding exactly 7*.

(B) If player w demands more than 7 the state changes to S;. Therefore she
would get da. Following the proposed strategy gives at least V¥ = a(2 —
§) + 2¢. Since a(2 — §) + 2¢ > da < ¢ > —a(l — §) always holds for ¢ > 0.
The deviation is not profitable.

() If she rejects the proposal 7° made by player s the state again changes to Ss.
But following the proposed strategy gives at least VV° = da, the same she
would get by deviating. Rejecting %° is therefore not profitable.

(6) If player w follows the proposed strategy and chooses e = 1 she will get at
least the expected payoff $(V° + V") —c = $da+ 2a(2~0) +c—c = a.
Which is the same as she would get if she deviates by choosing e = 0.

Hence the strategy combinations described by Table IV are indeed a SPE’s. The
expected payoff pairs (uf,v;) follow by simple calculations from the accepted
equilibrium offers stated in Table IV and the fact that if the initial state is given
by S; player s gets the alternative payoff b.

[

As in the case where ¢; < ¢ the equilibrium payoffs are again supported by
equilibrium strategies where deviation from the proposed action is heavily pun-
ished. If, for example, player s deviates the state changes such that in the future
always the worst possible equilibrium for player sis played. The punishment after
a deviation of player w is similar. The “actual” outcome again depends on the
initial states. In states S, and S, the weak player opts in and the play ends in
the first bargaining round with an agreement on one of the shares given in Table
IV. If the initial state is given by S; then the weak player stays out and the play
ends without bargaining. The payoffs are then given by b for the strong player

and a for the weak player.
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3.2 Main Results

In this section we summarize the results obtained that far in Theorem 1 and
show that the sustainable payoffs derived in the previous section give the full
range of possible expected payoffs sustainable by a subgame-perfect equilibrium.
Thereafter some important properties of the model are derived and limit case
of vanishing impatience is analyzed. We also compare this limit case with the
“zero-cost” model. First we sum up the results obtained that far (see Propositions
1-4):

Theorem 1 The following expected payoffs can be attained by some subgame
perfect equilibrium:

Table V: Ezpected equilibrium payoffs

opting in costs Player s Player w
: 1,14 ¥ — 1 _ 12=6
¢ € [0,min{co, 1 }{ ui =3+ 575¢ of = 3 — 3i55c

c € [er,c0]and ¢y < ¢ uge[hg——(_lgﬁl+-2-§-gc,1~a—c]u{b} vge{a,%—z—z—gc]

c€leg,ci]andeg <ey | i€ +3i:501-a—dU{b) vi € [a, 3 — $34q

¢ € Jmax{cg, ¢1 }, +00[ uy =10 Vi =a

In Propositions 1 and 2 we have already shown that for sufficiently small and
sufficiently large opting in costs the payoffs sustainable by a subgame perfect
equilibrium are unique for a given ¢. For the intermediate cases however we have
only shown that the payoffs stated above are sustainable by some equilibrium
strategies. We want to strengthen the statements for these cases now and show
that the expected payoffs given in Propositions 3 and 4 in fact give the full
range of expected equilibrium payoffs. We put our concentration on player w's
payoffs, first. Remember that we have denoted the interval of player w’s payoffs
sustainable by (o3, ws) (resp. (of,wj)) with V' (resp. Vj ).

Theorem 2 .

(i) If c; < ¢g and ¢ € [¢, ¢p) then the set of expected payoffs to player w in subgame
perfect equilibria is the interval V.

(i) If co < ¢ and ¢ € [cg,¢] then the set of expected payoffs to player w in
subgame perfect equilibria is the interval V.
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Proof: See appendix.

Since, whenever player w decides to opt in, for every uj € U; the payoff for
player s is uniquely determined by v = 1 — (u} — ¢) the payoffs for player s
sustainable by a subgame perfect equilibrium in which player w opts in follow
straightforwardly from Theorem 1 and Theorem 2. Thus, we get

Corollary 1 .
(1) If c; < ¢q and c € [y, ¢o] then the set of expected payoffs to player s in subgame
perfect equilibria where player w opts in is the interval U3,

(1) If ¢cg < ¢y and ¢ € [cy,cy] then the set of expected payoffs to player s in
subgame perfect equilibria where player s opts in is the interval Uf.

insert Figure 3(a) and Figure 3(b) here

Figure 3(a) (resp. Figure 3(b)) describes the payoff for both players as a
function of the opting costs c of the weak player. Figure 3(a) captures the
case ¢; < ¢ and Figure 3(b) the case ¢y < ¢;. Some facts are worth to be
noted here. Firstly, it can be shown after some tedious calculations that, for
¢ € [min{cy, ¢; }, max{cg, ¢, }], the payoff which player s can get if player w opts
in is always greater than or equal to b as long as ¢; < ¢p. If, however ¢; < ¢,
holds the alternative payoff for player s will always be larger than any payoff he
can get in an equilibrium where bargaining takes place. Secondly, player w never
gets less than her alternative payoff a. Thirdly, multiplicity of equilibrium payoffs
vanish if and only if ¢; = ¢p. Fourthly, in both cases - for certain values of opting
in costs - the possibility of inefficient outcomes which are not due to delay arises
for certain values of opting in costs and fifthly, in the case of ¢; < ¢q the increase
of the opting in cost of the weaker player may harm the strong in the sense that
the equilibrium payoff player s can get is strictly smaller the higher the costs for
player w are. We summarize these observations in the following Theorem.

Theorem 3 SOME IMPORTANT PROPERTIES OF THE MODEL
(i) Multiplicity of equilibrium payoffs:

If ¢ € [min{cy, 1}, max{cy, ¢, }] then, whenever c; # cy holds multiplicity of equi-
librium payoffs arise.

(7i) First period inefficiency:

If e; < ¢y and ¢ € [c1, ) then there always ezists an equilibrium where player w
decides not to opt in leading to the inefficient payoff pair (b, a).

If e; < ¢g then there exists a nonempty interval [co, €] such that if ¢ €]cy, ¢ the
unique equilibrium, where player w decides not to opt in, is inefficient.
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If co < ¢; and ¢ € [y, c1) then there always ezists an equilibrium where player w
decides to opt in leading to a joint payoff lower than a + b.

If ¢y < c; then there exists a nonempty interval [¢,co) such that if ¢ €]¢, ¢ the
unique equilibrium, where player w decides to opt in is inefficient.

(iii) Weakening the weak may harm the strong:

If ¢ < ¢y then an increase of the opting in costs of player w may lower (resp.
lowers for sure) the payoff of player s even if the efficient outcome occurs. I.e.
the equiltbrium payoffs of player s exhibit some kind of (strong) non-monotonicity
in the sense that

Je with ¢ < ¢; and 3¢ with T > ¢; s.th. uj(c) > u3(c) Ve €], ¢g.

Proof: (i): This follows from Propositions 3 and 4. (ii): First and second state-
ment: Observe that the joint payoff (net of costs) in the equilibria where player w
opts in is given by 1 —c. This is larger than a+b iff ¢ < 1 — (a+b). Furthermore
co<1l=(a+0b) & c <cy. Define é:=1- (a+b). From Lemma 3 and Propos-
ition 3 we know that there always exists an equilibrium where the weak player
decides not to opt in with the corresponding equilibrium payoff pair (b,a). For
¢ > o this equilibrium is unique (see Proposition 2). Hence for every ¢ € [cy, ¢
the equilibrium where player w decides not to opt in is inefficient. The third and
the fourth statement follow from (a) Lemma 1 and Lemma 2 (resp. Proposition
4), (b) the observation that the joint payoff (net of costs) in the equilibria where
player w opts in is again 1 — ¢ which is smaller than a + b iff ¢ > 1 — (a + b) and
(c) the fact that ¢g > 1 — (a+b) @ ¢; > ¢;. If we define & := 1 — (a + b), now
then we are done. In these cases the equilibria where the weak player decides
to opt in are the inefficient once. (iii): Denote for any ¢ € [c;, ¢p] the maximum
of U3 (c) (which is the set of the strong players expected equilibrium payoffs for
the case ¢ € [cy, co]) by Us. Observe that it is strictly decreasing in ¢ and that
Us(c) = ui(c). Since ul(c) is strictly increasing in ¢ and both functions are
continues in ¢ the above statement holds.

insert Figure 4(a) and 4(b) here

In Figures 4(a) and 4(b) we depict the “first period inefficiency” statements
of Theorem 3. In both figures the horizontal line shows the value of the sum of
the alternative payoffs a and b. The negatively sloped line is given by 1 — ¢, the
surplus (net of opting in costs) if the parties cooperate, i.e. if the weak player
decides to opt in. We know that for all values of opting in costs between ¢; and
¢y a equilibrium exists where the weak player decides not to opt in. But as can
be seen from Figure 4(a), if ¢; < ¢y the line 1 — ¢ is above the line a + b for
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all ¢ € [¢,¢. For ¢ > ¢y the only equilibrium has the feature that the weak
player does not opt in. Hence, these equilibria are inefficient, in the sense that
the potential gains from bargaining are wasted. If ¢y < ¢; (see Figure 4(b)) then
for ¢ €]¢, c;] the equilibria where player w opts in are inefficient since from an
efficiency point of view it would be better if the weak player does not opt in. In
Figure 4(b) this can be seen from the fact that the line 1 — ¢ is always below the
line a + b, for the appropriate values of c.

insert Figure 5 here

From Figure 5 one can see that for an appropriate ¢ we can find a ¢ such
that the equilibrium payoffs for costs larger than ¢ are all smaller then the unique
equilibrium payoff at cost level ¢. This is exactly what statement (iii) of Theorem
3 says. The reason why an increase of opting in costs does not always work in
favor of the stronger party is that player s has to compensate player w if he wants
to induce “opting-in behavior”. If these costs exceed a certain value, namely ¢,
the weakness of player w gets also features of a “threat”, since as long as ¢; < ¢
holds the expected payoffs to player s in any equilibrium where player w opts in
are larger than his outside alternative b. Therefore it is in his interest to give the
weaker player an incentive to opt in. But since the surplus is of limited size he has
to give up more of his share the higher the costs for player w are, lowering his own
payoff, too. As can be seen from figure 3(a) there is also a discontinuity at c;. At
this level of opting in costs player s suddenly decides to stop the compensation
payments although the net-size 1 — ¢ of the surplus exceeds the sum a + b of
the alternative payoffs. So the question arises why player s will not continue to
compensate player w up to the point where 1 — ¢ = a + b? The reason for the
inefficiency which arises here is that the stronger player cannot commit himself
to pay a compensation after the weaker player has opted in. The commitment
is not possible because if he deviates player w has to punish player s. But any
punishment contains the rejection of an offer and at costs higher than ¢, the
punishment is too expensive and the threat of punishing the other player is not
credible any more and therefore player s has always an incentive to deviate. The
weak player anticipates this and therefore decides not to opt in. For the case
¢y < ¢ the inefliciency for ¢ € )¢, ¢y arises because player w has no incentive not
to bargain with player s, since the stronger player has no possibility to threaten
the weaker one. His only possibility would be to reject the offers made by player
w. But this is not credible if he knows that player w will always opt in. And, on
the other hand, player w will always opt since the costs are small enough.

We are turning now to the question: How will things change as impatience
vanishes? First of all observe that for ¢ — 1 the cost level ¢, approaches 0 and
limsyy ¢o = (1 — (a +b)). Hence the equilibrium stated in Lemma 1 vanishes,
except for ¢ = 0, and ¢, equals half of the possible gain from bargaining. Using
this observation, Theorem 1, Theorem 2 and Corollary 1 we get
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Corollary 2 EXPECTED EQUILIBRIUM PAYOFFS FOR VANISHING IMPATIENCE

Let 6 — 1 and denote lims—y; ¢ = 5(1 — (a + b)) by Cos—1 ond limuf (limof) by
Ui 51 (Vi1 Tesp.) (i =2,3), then:

(i) The following ezpected payoffs can be attained by some subgame perfect equi-
lebrium.

Table VI: Ezpected equilibrium payoffs for vanishing impatience

opting in costs player s player w

c €10,¢0,6-1] uzs, €b+el—a-cu{b} V341 € [a,1—b—2c]

¢ € Jco,61, +00] ug,é—n =b ’U;ﬁ’*l =a

(i) If ¢ €]0, ¢ 551] then the set of expected payoffs to player w in subgame perfect
equilibria is the interval [a,1 — b — 2¢].

(i4) If c €]0, co551) then the set of expected payoffs to player s in subgame perfect
equilibria where player w opts in is the interval [b+¢,1 —a — c].

Notice that for ¢ = 0 Proposition 1 applies and the equilibrium payoff pair
is given by (4, %). For ¢ > 0 the equilibrium payoffs are only determined by the
alternative payoffs b, @ and the opting in costs. In the model with vanishing impa-
tience similar properties as in the general model hold. In particular, multiplicity
of equilibrium payoffs do not vanish for any costs in the interval ]0, ¢y 5_,;). Hence
even if the opting in costs are almost zero multiplicity arises. The possibility of
first period inefficiency arises and the increase of opting costs may decrease the
pavoff of the stronger player, again. Let us summarize these observations.

Theorem 4 IMPORTANT PROPERTIES OF THE MODEL WITH VANISHING IMPA-
TIENCE

(i) Multiplicity of equilibrium payoffs:
Multiplicity of equilibrium payoffs arise for all ¢ €]0, ¢g 5_41].
(i1) First period inefficiency

If ¢ €]0,co 5-1] then there exists an equilibrium where player w decides not to opt
in leading to the inefficient payoff pair (b,a).

Ifc € [co 51, 1—(a+D)] then the unique equilibrium leads to an inefficient outcome
(b,a).

(iii) Weakening the weak may harm the strong:
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If ¢ €]0, ¢y 51) an increase of the opting in cost of player w may lower the payoff
of player s.

Proof: Similar to the proof of Theorem 3.

If we look at the model with zero opting in costs it is clear, from Proposition
1, that the expected equilibrium payoffs will be (3,1). This equilibrium payoff
pair is supported by strategies that require player w always to opt in, and it is
unique since a is strictly smaller than §. Of course this equilibrium will remain
if impatience of the players vanish. Let us compare this with our findings stated
in Corollary 2 for ¢ approaching 0, now. Obviously there is a huge difference
in the payoffs supported by subgame perfect equilibrium strategies. First of all
the multiplicity does not vanish for vanishing opting in costs and even more
surprising, for reasonable alternative payoffs for player s, namely for b > £, the
equilibrium payoff pair of the “zero-cost” model is not even an element of the
equilibrium payoff pairs of our model. We want to state this more formally now.

Theorem 5 THE “ZERO-COST” MODEL WITH VANISHING IMPATIENCE IS NOT
THE LIMIT CASE OF THE PRESENTED MODEL WITH VANISHING IMPATIENCE

(i) In the presented model with vanishing impatience multiplicity does not vanish
when the opting in costs approach zero. In particular, for ¢ — 0 the set of expected
payoffs for player s (w resp.) is given by the interval [b,1 — a] (Ja,1 — b] resp.).

(i) For b > & the unique equilibrium payoff pair of the “zero-cost” model is not
contained in the set of equilibrium payoffs of the presented model with vanishing
impatience and opting in costs approaching 0, i.e. (3,3) € [b,1—a]x[a,1-b]Vb €
13,1

Proof: The first statement follows from Corollary 2 and the second is obvious.

The statements of this Theorem are due to the fact that it is not equal if we
take the limit of the opting in costs first and then the limit of the discount factors
or if we do it the other way round. Since the opting in costs are discounted, the
level of the discount factor plays only a role as long as the costs are non zero.
With this in mind it is clear that the “zero-cost” model and our model with
vanishing costs don’t coincide.

4 Conclusions

We have examined a noncooperative bargaining model where one of the players
has to bear so called opting in costs if she wants to participate in the bargaining
process. Several results have been derived. Similar as in Shaked’s (1987) cost-
less opting out model and the “switching-cost” model of Hendon et al. (1994)
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we get multiplicity of equilibria, and therefore possible inefficiency due to delay.
However, unlike the results of other bargaining models, in our model the possib-
ility of inefficiency which is not due to delay arises. We have shown that for a
large range of opting in costs such equilibria exist, and that for some nontrivial
interval of opting in costs the only equilibrium is one where the play ends in the
first period with an inefficient outcome. We also got a result which we call “weak-
ening the weak may harm the strong”. What is meant by this phrase is that an
increase of the opting in costs of the weaker player does not always work in favor
of the stronger party which does not have opting in costs. In particular, for some
cost levels all equilibrium payoffs for the stronger player are strictly decreasing
with the opting in costs of the weaker player. In a union versus firm bargaining
situation this result allows us to understand why firms are not always interested
in raising the opting in costs of the union, if they are not strong enough to hinder
the existence of a union or if it is illegal to prevent workers from organizing. This
reflects the often observed fact of some sort of social partnership between a firm
and a union.

We have also investigated the relationship between the “zero-cost” model
and our model for costs approaching 0. The main conclusion here is that, for
high discount factors, the “zero-cost” model is not the limit case of our model.
For vanishing impatience the set of equilibrium payoffs of the “zero-cost” model
and the “vanishing-cost” model do not coincide. Furthermore, for reasonable
alternative payoffs for the stronger player (i.e. if the alternative payoff of the
stronger player is larger than one half of the “pie”), the unique equilibrium payoff
of the “zero-cost” model is not even contained in the set of equilibrium payoffs
of our model with vanishing opting in costs.
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Appendix

A  Proof of Lemma 3:

Remember that the proposed equilibria (o3, w;) are described by Table III. For
ease of exposition the table is given below, again.

Table III: Equilibrium strategies for ¢ € [cy, ¢o]

S5 Sy S3 Sy
Player s  propose 7 eV Ve v’ Vs
accept y <g¥ y <y y< V¥ y< v
Player w e 1 1 1 0
demand | ©¥ e V¥ v v v
accept y > 7 y >V y>V y> Ve
Transition if s rejects if s rejects if srejects | if w chooses

Y<P oS8 |ySVP oS |y<V =58 |e=1- 5,
if s proposes
y <y — 53
if w rejects
y >y = 5
if w demands
y>g¥ o S

Where
L 7s 178 7S 75  —§b 29
1% =z U_ ’};U], Ls = 5(1,7 Kw = 6'127() - mc,
Ve .= [Kw’ v ]’ Vv = a2~ 8) +2, V = 1 — b,

To see that these pairs of strategies form SPE’s we have to check for one-shot-
deviations in each state. First we state a claim.

Claim Al: Define V.= L(V° + V") and V := 5(V" + 7).

(1) V = a+c (1ie) V° <
) T = e () V' <

INIA
<l
<C
oo
Mm m
)
s

() Vv <V Ve € [¢y, )

The statements of Claim Al are easily shown by simple but partly lengthy cal-
culations.

(Aa) State S, Player s
() To propose more than §° is obviously worse than proposing 7°.
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(8) If he proposes less than 7° the state changes to S;. Player w will rejec