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Abstract

We examine an Outside Option Game in which player / submits a claim for a share of a cake while
player /I simultaneously either makes a claim or chooses to opt out. If player // opts out, then she
receives an opt-out payment while player / receives nothing. If player // opts in and if the claims total
less than the cake, then each player receives his or her claim plus half of the surplus. If the claims total
more than the cake, both players receive zero. Tension arises in this game between player /'s desire
to seek as large a share of the cake as possible and the necessity of providing player // with a
sufficiently large payoff to ensure that she will opt in. Economic theories that stress efficiency predict
that player I/ will opt in. We argue that trial-and-error learning processes can teach the competitive
skills needed to secure large shares of the cake more effectively than the cooperative skills needed to
ensure that the cake is available to be divided. As a result, outcomes will arise in which player // opts
out, especially when the payment from doing so is attractive. We conduct experiments in which player
Ils commonly opt in when their opt-out payment is small, but frequently opt out for larger opt-out
payments.
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1 Introduction

Orthodox economic theory assumes that the entrepreneurial spirit will call
forth individuals or institutions to exploit gains from trade whenever they
exist. Implicit in this assumption is the understanding that all parties to
any potential deal will receive a share of the surplus that is adequate to
ensure their cooperation. This will be the case, for example, if they can
count on distributional issues being settled by some variant of the split-the-
difference principle, as commonly assumed in the labor economics literature
(e.g. Macdonald and Solow [31]).

But why would an optimizing agent be satisfied to split the difference
if he has the power to force a less equitable deal? Aggressive bargaining
may put the whole deal at risk, but brinkmanship is what hard bargaining
is all about. It is precisely by making credible threats to delay or withhold
agreement that the strong are able to extort concessions from the weak.
Indeed, in a world of perfectly rational agents, a hard bargainer will judge his
tactics so finely that he extracts the last drop of surplus from his opponent
consistent with her continuing in the partnership. Equilibrium offers in the
Rubinstein bargaining model [37, 41], for example, are chosen to make the
respondent indifferent between accepting and refusing. In equilibrium, she
accepts and the resulting outcome is efficient. But only a small misjudgment
on either side would be enough to delay agreement for at least one period.
Rubinstein’s perfectly rational agents are therefore permanently poised on
the edge of a disagreement.

The modeling of agents as perfectly rational is often justified by arguing
that learning, imitation, or the discipline of the market will cause low-payoff
behavior to be supplanted over time by high-payoff behavior (e.g. Alchian
[1], Friedman [22]). If enough money is involved, the school of hard knocks
may indeed eventually teach its graduates to approximate the behavior of
the idealized agents of orthodox economic theory, but there is no guarantee




that they will succeed in precisely reproducing all the fine details of perfectly
rational bargaining strategies. Instead of reaching a compromise just short
of disagreement, one must consequently expect that sometimes a bargainer
will overreach himself just enough to push his opponent over the edge. The
chance of reaching an efficient deal will then be lost. Even in 2 world that is
only marginally imperfect, a tension therefore arises between the intuition
that agents will learn to drive a hard bargain and the claim that economic
opportunities will seldom remain unexploited.

The tradition of Coase [17] resolves this tension between efficiency and
distribution in favor of efficiency. Transaction cost economics, which views
new forms of property rights and contracts as arising in response to existing
inefficiencies, seconds this choice (Williamson [47]). The experimental work
of Harrison and McKee [25] and Hoffman and Spitzer [27, 28] also points in
the same direction.

This paper provides experimental and theoretical evidence for the con-
trary claim that interesting situations exist in which income-maximizing
agents may fail to learn to exploit all gains from trade. For this purpose,
we study a simple bargaining game in which one and only one of the two
bargainers can opt out and so precipitate an inefficient outcome. Standard
game-theoretic arguments applied to this Qutside Option Game predict that
the outcome will be efficient, but our experiments show that subjects fre-
quently learn instead to opt out.

Critics of game-theoretic reasoning in a bargaining context see nothing
paradoxical in its failing to predict how actual people behave in the labo-
ratory (Thaler [44]). Their usual line is that people do not optimize when
resolving distributional questions, but simply operate whatever social norm
happens to be focal. We do not doubt that inadequately inexperienced or
poorly motivated subjects behave more or less as such critics maintain. On
the other hand, there is much evidence that the behavior of adequately mo-
tivated subjects in simple games often shifts in the direction predicted by
optimizing theories—provided that they have ample opportunity to benefit
from trial-and-error learning. When an optimizing theory fails to perform
well under such circumstances, we therefore prefer not to abandon the theory
but to reconsider its theoretical basis.

In previous work on the Ultimatum Game (Binmore at al [5]), we argued
that apparently anomalous experimental results can sometimes be explained
by paying close attention to the adjustment process by which the players
learn to play a laboratory game. In the Ultimatum Game, the mechanics
of such processes can lead subjects who are essentially income-maximizers




to Nash equilibria that the literature on refinements of Nash equilibrium is
unanimous in rejecting.

We pursue a similar line in the current paper by studying a simple model
of adaptive learning in our Qutside Option Game. We find that subjects are
taught the competitive skills needed to secure a large share of the cake much
faster than the cooperative skills needed to ensure that a cake is available for
splitting. As a result, agents learn that it is not worth trying to cooperate
when their outside opportunities are sufficiently attractive. Potential gains
from trade then remain unexploited.

The following section introduces the Outside Option Game. Section 3
discusses the relationship of our work to previous results. Section 4 analyses
the behavior of agents who must learn to play the Outside Option Game in
an imperfect world. Section 5 reports the results of an experiment whose
instructions appear in an appendix. Section 6 briefly summarizes our con-
clusions.

2 The Outside Option Game

Our point of departure is the work of Binmore et al ([6, 13]), who conducted
experimental studies of Rubinstein bargaining models in which players al-
ternate in making offers as often as they please, with the sum of money
available for division shrinking fractionally after each refusal. Each player
could abandon the negotiations in favor of his best outside option whenever
he had just refused an offer. The outside options were inefficient in that the
sum of opt-out payments was always smaller than the current surplus to be
divided.

When both players are patient, two contending principles for dividing
the surplus in such bargaining problems are commonly considered:

Split-the difference: This is the outcome obtained by applying the
symmetric Nash bargaining solution after placing the status quo at
the pair of outside options. It assigns each player his or her outside
option plus half the remaining surplus.




Deal-me-out: This is the outcome to which one is led by applying
the Rubinstein bargaining theory in the presence of outside options
(Binmore et al [7, 8, 13]). Players split the surplus fifty-fifty regard-
less of their outside options as long as both are less than half the
surplus. if player I has an outside option smaller than half the sur-
plus and player I] has an outside option larger than half the surplus,
then player IT receives her outside option while player I receives the
rest of the surplus.}

Everybody agrees in predicting a fifty-fifty split when outside options are
zero (and hence split-the-difference and deal-me-out both predict fifty-fifty).
Advocates of split-the-difference argue that player II’s share should increase
from this base point as we strengthen her bargaining position by increasing
her outside option. But as long as her outside option falls short of half the
surplus, it is not at all clear that her bargaining position is indeed improved.
Given the opportunity, she could threaten to opt out if not offered better
than a fifty-fifty deal, but why should player I pay any heed? He is already
offering her more than she will get if she opts out. Nor is it clear how she can
bring pressure to bear on player I to secure more than her outside option
when the latter exceeds half the surplus.

In the experiments of Binmore et al [6, 13], deal-me-out performs well
when compared with split-the-difference as a predictor of player II’s share
of the money available at the time a deal is struck. Intriguingly, however,
deal-me-out’s prediction that player II will never opt out is often wrong.
In fact, she frequently opts out when her outside option is sufficiently high.
Hard bargaining over how the surplus from an agreement is to be distributed
therefore leads to potential gains from trade remaining unexploited.

Although Rubinstein bargaining games are reasonably realistic, their
complicated structure makes it difficult to explore the tension between dis-
tribution and efficiency revealed by the experimental results. This paper
therefore introduces a static bargaining game in which only player /T has a
positive outside option. We call this game the Outside Option Game. An
extensive set of experiments is reported in Section 5 which confirms that
deal-me-out continues to predict player II’s share in this game very much
better than split-the-difference, but that player IT still opts out frequently

IThe Rubinstein theory predicts split-the-difference only if breakdown is involuntary
(Binmore et al [6]). It predicts the commonly-used variant in which the symmetric Nash
bargaining solution is replaced by an asymmetric version but the status quo remains at
the pair of outside option payoffs only if breakdown is involuntary and the probability of
a breakdown varies with the identity of the most recent proposer.




when her outside option is sufficiently high. We therefore regard the Outside
Option Game as an ideal vehicle for a study of how the pressures in favor
of learning to strike a hard bargain can win out over pressures that call for
restraint lest the available surplus be lost altogether.

The Outside Option Game. The bargaining game we consider involves
two players who can keep a ten dollar bill if they can agree on how to
divide it. In the classic Nash Demand Game (Nash [34]), players I and IJ
simultaneously announce take-it-or-leave-it demands, z and y. If z+y < 10,
both players receive their demands. Otherwise each gets nothing.

The Outside Option Game modifies the rules of Nash’s game in two ways.
We first add an opt-out strategy “O0” to player II’s list of strategies. If she
opts out instead of making a demand, she receives a payoff of @ (0 < & < 10)
and player I gets nothing, whatever he may have demanded. Second, if
player II opts in and z + y < 10, then each player gets half the unclaimed
surplus on top of his or her claim. Thus player I gets z + $(10 — z — ¥)
and player IT gets y + (10 — z — y). Inefficiencies can then only occur if
player II opts out or the two players make incompatible claims. The game
is intended to model a negotiation over the division of the profits from a
partnership worth ten dollars, where player II (only) incurs an opportunity
cost of a dollars in joining the partnership.

Rubinstein bargaining games usually have many Nash equilibria, but
just one subgame-perfect equilibrium. Since the Outside Option Game has
no proper subgames, all its many Nash equilibria are subgame-perfect. We
ignore the mixed-strategy equilibria (which are all inefficient) and sort the
pure-strategy Nash equilibria into two classes:

Efficient equilibria: Any pair (10 — y,y) with y > a is an efficient

Nash equilibrium.

Inefficient equilibria: Any pair (10 — y,00) with y < a is an

inefficient Nash equilibrium.

Split-the-difference selects the Nash equilibrium in which player II opts in
and receives a + 1(10 — a) and player I receives 3(10 — ). Deal-me-out
again calls for player II to opt in, but she gets only a when o > 5, leaving
10 — a for player I. When o < 5, the surplus is divided fifty-fifty so that

each player receives a payoff of 5.
Our basic questions are: What bargaining convention will be used to split

the surplus and compensate player II for the opportunity cost she incurs in




joining the partnership? Will attempts to drive a hard bargain sometimes
lead to inefficient outcomes in which player I opts out?

Falling off the edge. To be consistent with the experimental results, a
game-theoretic analysis should answer deal-me-out to the first of the previ-
ous two questions and yes to the second. However, game theory commonly
joins the Coasian tradition in answering no to the second question. Co-
operative game theories as well as noncooperative theories based on payoff
dominance simply assume that equilibria must be efficient. When efficiency
is not taken for granted, an argument along the following lines is often pro-
posed. Player I reasons that player II would do better to opt out than to
make a claim that results in her getting less than a. He therefore argues
that he cannot hope for more than 10 — o and so makes a claim for this
amount or less, thereby making it safe for player II to opt in with a claim
of .2

When such “forward induction” arguments are proposed, it is usually a
maintained hypothesis that there is common knowledge that everybody is
perfectly rational. But the arguments become less plausible in more realistic
worlds that retain even quite low levels of irrational behavior. In such cases,
we shall argue that the logic of forward induction may fail to be learned at
all.

To see how a period of trial-and-error adjustment may to an inefficient
outcome in the Outside Option Game, consider a case in which players
initially operate the split-the-difference norm. At the outset, it will therefore
be optimal for player I to opt in. However, one must anticipate that there
will be occasional coordination failures when other strategies are played by
agents who are confused or who are not party to the implicit agreement to
abide by the split-the-difference norm. Such perturbations would have only
an ephemeral effect at a Nash equilibrium that is deep inside its basin of
attraction (relative to the adjustment dynamics), and so is isolated from
other equilibria of the game. But Nash equilibria in the Outside Option
Game are packed close together. As a result, even small perturbations may
be enough to shift the system from an equilibrium to one of its neighbors.

2Notice, however, that this result is not produced by common forward induction criteria
such as the iterated elimination of weakly dominated strategies. Noldeke and Samuelson
[35] present an evolutionary model that would eliminate equilibria in which the outside
option is chosen in this game and in the Dalek Game considered below. In the terms
of Binmore et al [11], Noldeke and Samuelson’s is an ultralong-run theory, while we are
working here with long-run theories that we believe more relevant to experimental data.




We follow the biological literature in referring to perturbations that have
this effect as drift. In the Outside Option Game, we argue that drift is likely
to have a centralizing tendency, meaning that it pushes players toward the
fifty-fifty outcome. At this point, we simply explore the impact that such
centralizing drift is likely to have on equilibrium selection in the Outside
Option Game. Section 4 explains how and why perturbed adjustment in
the Outside Option Game can generate such drift.

Split-the-difference lies inside the set of efficient equilibria of the Out-
side Option Game. Close enough to this set of equilibria, the adjustment
pressures pushing the players towards income-maximizing behavior become
weak (because their behavior is already close to optimal). Drift then domi-
nates. If it has a centralizing tendency, it will move the system toward the
fifty-fifty outcome, where it will be stabilized if @ < 5. But the fifty-fifty
outcome is not an equilibrium when o > 5. In this case, the drift will move
the system to the endpoint (10 — a,a) of the cluster of efficient equilibria.
Player II then receives only the minimal rational compensation needed to
persuade her to opt in. This endpoint is therefore less stable than interior
points of the cluster. Once it has been reached, there is a risk that any
further perturbations will lead to the system “falling off the edge” and be-
ing carried away by renewed selection pressure to the cluster of inefficient
equilibria in which player II opts out.

3 Other Experiments and Alternative Explana-
tions

The experimental results of Binmore et al [6, 13] on Rubinstein bargaining
models with outside options need to be compared with the experiments of
Hoffman and Spitzer [27, 28] and Harrison and McKee [25], who studied the
behavior of subjects in free-form, face-to-face bargaining sessions. In these
latter experiments, one of the subjects was designated as the controller. The
controller could choose either to receive a dollars (leaving the other subject
with nothing) or to split a larger sum of money with the other subject.
The two subjects discussed which choice the controller should make and
then signed a binding agreement specifying how the total payment should
be split between them. In contrast to the results of Binmore et al [6, 13],
the deals reached under such circumstances were commonly efficient. In
particular, the controller rarely exercised his or her capacity to opt out.
We have doubts about the extent to which the results from such face-




to-face bargaining experiments involving relatively small amounts of money
are likely to generalize to a wider economic context, because the intimacy
generated while the subjects fraternize is likely to inhibit the hard bar-
gaining that we are interested in studying. Since we do not think we can
offer experimental subjects enough money to cvercome this intimacy in face-
to-face encounters, we have them communicate through a computer so that
both parties to the negotiation remain anonymous throughout.® Our doubts
about hard bargaining in face-to-face experiments are seconded by the will-
ingness of the controller in some of Hoffman and Spitzer’s treatments to
agree to deals close to a fifty-fifty split, even though he or she could have
obtained several dollars more by foregoing an agreement altogether and opt-
ing out.* Such behavior is virtually absent in the experiment reported in
this paper.

Results like those of Hoffman and Spitzer [27, 28] have led many authors
to argue that income-maximizing models of human behavior have little or
no predictive power in bargaining situations. Sometimes the optimizing
paradigm is not abandoned, but the subjects’ behavior is rationalized by
attributing complex motivations to the subjects which may include a “taste
for fairness” (Bolton [14]). However, it is common to reject the optimizing
explanation altogether and argue that subjects simply operate whatever fair-
ness norm happens to be triggered by the manner in which the experiment
is framed.

We do not deny that people are often ruled by social norms in their day-
to-day lives, nor that subjects bring such social norms into the laboratory
with them. However, we think it is a mistake to proceed as though social
norms are fixed and immutable. Real-world social norms have presumably
evolved to coordinate human behavior on equilibria in the game of life. But
when one of these norms is triggered in the laboratory, it is unlikely that
the behavior it engenders in the subjects will be adapted to the artificial
game invented by the experimenter. The subjects’ initial behavior may
then be hard to reconcile with income-maximization. But ample evidence
exists that new social norms can sometimes evolve during the experiment
that eventually succeed in coordinating the behavior of the subjects on an
equilibrium of the laboratory game.

3The suspicion that anonymity matters in such circumstances has been confirmed di-
rectly in a number of studies, notably that of Hoffman et al [29].

*Ochs and Roth [36] report that their subjects also often make disadvantageous offers
when anonymously playing alternating-offers bargaining games.




If the game resembles situations the subjects have had the opportunity
to learn about outside the laboratory, they may only have to fine-tune the
social norm triggered at the outset of the experiment. In other cases, they
may have to evolve an entirely new social norm from scratch. We suspect
the Outside Option Gaue represents a case nearer the first of these two
extremes. However, we need not commit ourselves to a view on this issue,
since our learning story applies both to learning within the laboratory and
to learning outside the laboratory.

The evidence that experimental subjects change their behavior over time
is overwhelming (Andreoni and Miller (2], Binmore et al [4, 6, 12, 13], Craw-
ford [19, 20], Miller and Andreoni [32], and Roth and Erev [40]). The change
of behavior over time is especially dramatic in Binmore et al [12]. In a
two-stage bargaining game, totally inexperienced subjects played much like
subjects are reported to behave in the much-replicated experiments on the
Ultimatum Game (Giith, Schmittberger and Schwarze [23], Giith and Tietze
[24], Roth [39]).5 In particular, the modal opening offer was fifty-fifty. But
after experiencing just one game as player I, subjects occupying the role
of player I mostly switched to the backward induction offer. Neither an
explanation that attributes exotic utility functions to the players nor an ex-
planation in terms of fixed fairness norms readily accommodates such data.
It is, however, consistent with models that treat the subjects as simple but
imperfect income-maximizers who need time to learn how best to play a
game.

Binmore et al [4] offers some insight on the evolution of fairness norms in
the laboratory. In a smoothed version of the Nash Demand Game, it proved
easy to condition the subjects to coordinate on a variety of Pareto-efficient
focal points by having them play against suitably programmed robots. But
when the subjects began to play against each other, their behavior adapted
until each group established a tight consensus on an exact Nash equilibrium
of the game. Different groups converged on different equilibria, but when
asked what was fair in a computerized debriefing, there was a strong ten-
dency to identify whatever consensus was achieved in their own group with
the fair outcome of the game. Similar results are reported in Binmore et al
[13] and the current paper.

5In the Ultimatum Game, player J makes on offer to player II for the division of the
sum of money. The money is split in the manner specified if she accepts. If she refuses,
both players get nothing.
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Figure 1: The Dalek Game

4 TFalling Off The Edge

This section examines the role of drift in equilibrium selection. We first
consider a stripped-down version of the Outside Option Game. Figure 1
shows a game whose basic form we borrow from Kohlberg and Mertens [30]
and which is sometimes called the Dalek Game.

The Dalek Game has two subgame-perfect equilibrium outcomes: one
in which players choose (T, L) and so obtain the payoff pair (3,9), and one
in which player I takes her outside option (strategy 00) because player
I plays B with probability at least 2/9. Only the first of these two possi-
bilities satisfies the forward induction criteria that are usually defended in
this context by an appeal to the iterated elimination of weakly dominated
strategies.® In particular, R is strictly dominated by OO for player II. She

6The iterated elimination of weakly dominated strategies is identified by Kohlberg and
Mertens [30] as one of the basic desiderata that an equilibrium concept should satisfy.
Dekel and Fudenberg [21, p.245] argue that the iterated elimination of weakly dominated
strategies “clearly incorporates certain intuitive rationality postulates”, while Nalebuff
and Dixit [33, p.86] offer it as one of their four basic rules for playing games. In the Dalek
game, the equilibrium (T, L) is also selected by the never-weak-best-response criterion
(Kohlberg and Mertens [30]) and van Damme’s [45] forward induction criterion
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Figure 2: Adaptation in the Dalek Game

will then never opt in to the game and play R because OO gives a higher
payoff. Player I, realizing this, eliminates R from consideration and then
finds that T weakly dominates B. Once B is accordingly eliminated from
consideration, L dominates OO for player II, causing her to opt in. The
result is the equilibrium (T, L).

This argument is appealing, but experimental studies of the Dalek Game
by Balkenborg [3) show that player IT virtually always opts out. Cooper et
al [18] find similar results in related games. How can such data be reconciled
with a theory that treats players as income-maximizers?

Our analysis of the Dalek Game begins by supposing that the game is
played repeatedly by pairs of agents chosen at random from two infinite
populations. We take the fraction of agents in population I using strategy
; at time ¢ to be z; (i = T, B). The proportion of agents in population II
using strategy j at time ¢ is taken to be y; (j = 00, L, R). The expected
payoff to an agent from population I using strategy ¢ who is chosen to play
at time ¢ is f;. The average payoff to agents in population I at time ¢ is
then f = z7fr + z5fp. The expected payoffs g; and 7 for population I1
are defined similarly.

The agents in our two populations learn how to play the game over time.
Our model of learning is taken from Binmore, Gale and Samuelson [5], who

11




show that an aspiration and imitation-based learning process leads to the
following form of the replicator equations,

i = zi(fi-f)/a (i=T,B)
4 = v(gi-9/a  (G=00,L,R)

where A is a constant that reflects how sensitive agents’ strategy choices
are to their payoffs and that could be eliminated by rescaling our measure
of time. Observe that the rate at which the fraction of a population in-
creases depends on how large the fraction is already and how much better it
is currently doing than the average. Other papers examining learning mod-
els that lead to some version of the replicator dynamics include Binmore
and Samuelson [9], Bérgers and Sarin [15), Cabrales [16], Schlag [43], and
Weibull [46]. While we must specify some learning model in order to do the
simulations reported below, and the replicator dynamic is convenient, it is
important to note that the qualititative nature of our results would continue
to hold as long as learning causes strategies to respond smoothly to payoffs.

Our learning model is unlikely to be so perfect as to have captured all
of the forces shaping agents’ strategy decisions, though we hope to have
captured the important ones. Omitted considerations appear in the form of
«drift”, which we capture by examining the following perturbed version of
the replicator dynamics:

(1-6))zi(fi—P)/A+6(:~2) (i=T,B) (1)
(1-62)y;(9; —9)/A+ 6203 —y;) (F=00,L,R). (2)

The parameters 6; and §; measure how much drift there is in the two pop-
ulations. As in Binmore et al [5], we model drift as switching an agent from
one strategy to another independently of the selection pressures, where such
a switch leads to each possible strategy being employed with equal prob-
ability. We are interested in cases in which & and d; are small because
large influences on strategy choices have presumably been incorporated in
the basic learning model.

Figure 2a shows the state space for the perturbed replicator dynam-
ics in the Dalek Game. The strategy R is strictly dominated, and will be
eliminated by the replicator dynamics (Samuelson and Zhang [42])." Figure
2b accordingly shows the bottom face of the state space, where strategy

z;

Y5

7 A small proportion of R will survive in the perturbed dynamics because drift continu-
ally introduces B into the population.

12




R is never used, along with a phase diagram for the perturbed replicator
dynamics. The details of this phase diagram will depend upon the precise
specification of drift.8 The vertex (T, L) corresponds to the population state
in which all members of both populations play the forward induction solu-
tion. There is an asymptotically stable state nearby that approaches (T,L)
as 6; and 6, approach zero (for any specification of drift). However, we
focus attention on a second asymptotically stable state £ that Binmore and
Samuelson [10] show can arise close to the component of Nash equilibria on
the edge of the prism that corresponds to player II’s choosing her outside
option OO.

Efficiency is therefore not guaranteed. Nor need the final outcome re-
spect the deletion of weakly dominated strategies. Nor can equilibria in
mixed strategies safely be neglected. Where the system ends up depends on
the basin of attraction in which it begins, and the basin of attraction for £
is substantial.

What drives these results? Unless the process is too noisy, we expect
the adaptive learning process to converge on whatever equilibrium lies at
the heart of the basin of attraction in which the system begins.® At the
outset, adjustment will be quick as the more extreme types of irrationality
are eliminated. But as an equilibrium is approached, convergence will slow
down as the driving force behind the dynamics, payoff differences between
strategies, gets small. When rival equilibria are far apart, such slowing down
in the rate of convergence creates no problem for equilibrium selection. In
the Dalek game however, the component of equilibria in which player IT
plays OO consists of a large number of equilibria packed arbitrarily close
together. Near this component, the learning forces modeled by the replicator
dynamics become arbitrarily weak and the motion of the system is almost
entirely driven by drift. It then becomes crucial whether drift pushes the
system toward or away from this component. If drift pushes the system
toward the component by continually introducing strategy B as well as T
for player I, then an asymptotically stable state near the component can
appear, as in Figure 2. This asymptotically stable point remains no matter
how small are the drift parameters 6; and d2.

In the Dalek Game, there is no counterpart of the deal-me-out solution
and so no way to examine the role of drift in determining whether split-

8 Binmore and Samuelson {10] explore this dependence.
9This obviously ignores a host of nonconvergence problems. Fortunately, we work with
such simple games in this paper as to not have to worry about such problems.
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the-difference or deal-me-out is selected, as well as no way to study the
relationship between this choice and whether player II opts out.'® We
accordingly turn to the Outside Option Game.

The Outside Option Game. The key feature of drift in the Outside
Option Game is its potential to have a centralizing tendency, much as the
key feature of drift in the Dalek game is whether it pushes the system toward
or away from the component of equilibria in which player IT plays 0O. In
this section, we explore the forces behind this centralizing tendency. To
more effectively study these forces, we consider the QOutside Option Game
without the outside option.

The sum of money to be divided in our experimental version of the
Outside Option Game is $10.00, with claims made in increments of a dime.
Hence, the set of possible claims for both players (in the absence of an outside
option) is X = {0,0.1,0.2,...,10}. The perturbed replicator dynamics are
given by:

& = (1=-0zn(fi-N/A+8(FH-=) (GeX) (3)
g = (1-8y(g;i—9/Aa+6(~v) (GeX) 4)

Since nothing hangs on asymmetries in the drift levels, we take §; = 62 =
6§ > 0.

We are unable to solve this system analytically. Instead, we compute
numerical solutions. Figure 3 reports some of the calculations.!?

The first column describes the initial condition. In a uniform initial
condition, 1/101 of the players in each population initially make each of
the possible claims. In a “spike” initial condition, described with a pair of
numbers written as z/y, 95 percent of population I players initially make
claim z while 95 percent of population I players initially make claim y.
If z + y = 10, these claims exactly exhaust the surplus, while claims with
z +y > 10 are incompatible. The remaining five percent in each population
is equally distributed among the remaining claims. The second column in
the table reports the value of the noise parameter 6.12

1°The outside option in the Dalek Game might also be interpreted as having fairness
virtues that are absent in the Outside Option Game.

11Proulx [38] contains a more extensive report of the numerical calculations.

12G¢rategies and payoffs in the numerical calculations where measured in dimes, and
hence ranged from 0 to 100. We set A = 100. The value of A again affects nothing other
than the units in which we measure time and rates of drift.
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Initial Condition & z; (f(zs))  ws (9(ye)) F(10—yg) G(10~1zy)

1 Uniform .0001 5.0 (.99900) 50(99900) .99990 199990
1 Uniform 010 5.0 (.89889) 5.0 (.89889)  .98981 .98981
3 Uniform 023 5.0 (.75620) 50 (.75620)  .97514 97514
4 Uniform 058 5.0 (.22772) 5.0 (.22772)  .91638 91638
5 Uniform 160 5.0 (.01664) 5.0 (.01644)  .77378 77378
6 8.0/8.0 010 5.0 (.89889) 5.0 (.89889)  .98981 98981
7 2.0/2.0 010 5.0 (.89889) 5.0 (.89889)  .98981 98981
8 5.0/8.0 010 5.0 (.89889) 5.0 (.89889)  .98981 98981
9 4.0/8.0 010 4.0 (.89918) 6.0 (.89718)  .98478 99317
10 7.5/9.5 010 7.5 (.89131) 2.5 (.89240)  .99653 96977
11 9.0/1.0 010 9.0 (.86406) 1.0 (.86406)  .99877 91093
12 9.0/1.0 015 9.0 (.74107) 1.0 (.78061)  .99803 86632
13 9.0/1.0 023 7.9 (.68101) 2.1 (.74175)  .99287 90894
14 9.0/1.0 054 5.5 (.24444) 4.5 (.35281)  .93995 .91020
15 5.5/4.5 015 5.5 (.84498) 4.5 (.84751)  .98724 .98109
16 5.5/4.5 023 5.5 (.75201) 4.5 (.75893)  .97953 96977
17 5.5/4.5 054 5.5 (.24444) 4.5 (.35281)  .93995 91020
18 5.5/4.5 063 4.9 (.13192) 4.9 (.13192)  .90746 90746

Figure 3: Numerical Calculations

The next two columns present the modal claim when the system has
reached equilibrium, with z; being the modal claim in population [ and y,
the modal claim in population II. The modal claims are followed by num-
bers f(z;) and g(z,) (in parentheses) indicating the proportion of the pop-

ulation playing this claim. The final columns report the fraction F(10-y,)
of population I making a claim less than the surplus left by the popula-
tion II modal claim, and the fraction G(10 — z) of population II making
claims less than the surplus left by the population I modal claim. These
provide some guide as to how much disagreement survives in equilibrium,
with higher numbers indicating less disagreement.

The first five lines of Figure 3 show that the smaller is §, the more con-
centrated is the distribution of claims in each population around its mode.
As the level of drift increases claims tend to become more dispersed, though
this dispersion leads primarily to players claiming less instead of more than
the surplus left by the opponent’s modal claim. In each of these cases, the
modal claim is the fifty-fifty outcome. This is a product of the symmetry
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of the uniform initial condition. Lines 6-8 show that other initial condi-
tions can also give the fifty-fifty outcome, including claims that are initially
incompatible, claims that initially leave a large surplus, and asymmetric
claims. Lines 9-10 show, however, that not all initial conditions lead to the
fifvy-fifty outcome.

Lines 11-18 of Figure 3 reveal the centralizing force of drift. In each
of these lines, we start with an initial condition in which the agents have
very nearly coordinated on an asymmetric division of the cake. A division
that provides 90% of the surplus to player I survives for a drift level of .015
but not for drift levels of .023 and higher. In contrast, if the initial division
provides only 55% of the surplus to player I, then these modal claims survive
for drift levels as high as .054.

Drifting toward the center. Why does drift yield a centralizing force?
Let f(z,6) be a density describing the proportions of population I making
the various claims in the strategy set X. Let F(z,d) be the cumulative
distribution, so that F(z,8) = Yp<g f(z',6). Let g(y,6) similarly be a
density describing population II’s claims and let G(y,6) = L,y g(y,8) be
the corresponding cumulative distribution. We will be interested in cases in
which f(z,6) and g(y,6) describe stationary states of (3)-(4).

Let z; and y, be the modes of f and g. From (3), it is clear that, in
a stationary state, the mode z¢ is the player I claim that has the highest
expected payoff. Because there is drift, f(zs) < 1. Similarly, y, is the
payoff-maximizing claim for player II and g(y,) < 1. Just as the game has
many Nash equilibria, the system (3)-(4) has many stationary states when
drift is small. For any claims z; and y, that exactly exhaust the surplus
and give each player positive surplus, there is a stationary state of (3)—(4)
with modes z; and y, if drift is sufficiently small:®

Proposition 1 Let 0 < z; < 10 and z; + y, = 10. Then for sufficiently
small § there exists an asymptotically stable stationary state of (8)-(4) with
modes T and y,.

137his contrasts with the Dalek game, where the effects of drift appear for arbitrarily
small values of 6. In the Dalek game, the key effect of drift is to move the system along
a continuum of weak Nash equilibria. In the Outside Option Game, we are dealing with
a large number of strict Nash equilibria. These equilibria lie close together in the state
space, so that relatively small levels of drift suffice to move the system between Nash
equilibria. However, any pure strategy Nash equilibria in which each player gets positive
surplus will survive if § is made sufficiently small.
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Proof: Let 0 < z; < 10 and z; + g, = 10. Then it is a strict Nash
equilibrium for players I and II to make claims ¢ and y,. There is thus an
asymptotically stable state of the unperturbed replicator dynamics, denoted
by z*, in which z; and yy are played with unitary probability. But then for
sufficiently small ¢, ihe replicator dynamics with drift have an asymptoti-
cally stable state arbitrarily close to z* (Hirsch and Smale [26, Theorems
1-2, p. 305]). O

We do not expect drift to always be arbitrarily small. If not, some equi-
libria will no longer be stationary states. To determine which equilibria are
eliminated, we require some more information about the nature of station-
ary states. Our approach here is to observe that the stationary states in our
numerical calculations satisfy three properties. Let (fi(z,61),9(%1,61)) and
(f2(z,62),92(y, 62)) be stationary states of (3)-(4). Then:

Property 1 Let z;, = 10 — yy,. Then fi(z,61) and g1(y, 61) are quasicon-
cave. In addition, (f(z,6),§(y,68)) is a stationary state, where f(z,8) =
f(lo - .’E,é) and g(yaé) = g(lo - y,é).

Property 2 Let o5, = zf, = @5 = 10 —yg, = 10—y, = 10 — y, and
6y > 62. If x5 > 5, then

g1(yy +0.1,61) S 92(yg + 0-1,52)_ (5)
G1(3/g751) G?(y9752)

A symmetric condition holds for fi and f; when zy <.

Property 3 Let 6, = 6 = 6 and 25, = 10 — yg, > zp, = 10 — 4, > 5.
Then:
91(Yg, + 0.1,6) _ g2(yg, +0.1, 6) (6)

>
Gl(yylaé) GZ(ygza‘s)

A similar condition holds for fi and f; when x5 = 10—y < Zp, =
10 — yg, < 5.

Property 1 indicates that the distributions f(z,6) and g(y, 6) increase mono-
tonically as z and y approach the modes of f and g. This is simply the state-
ment that expected payoffs increase as one approaches the expected-payoff
maximizing strategy. Property 1 also notes that the game is symmetric.
Properties 2-3 address a particular measure of the dispersion of the densi-
ties f and g. This measure concerns the agent receiving the smaller share
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of the surplus, and is the ratio of the probability attached to a claim just
higher than the modal claim to the probability attached to claims less than
or equal to the modal claim. Properties 2-3 state that this measure is higher
when drift is higher and when the mode is further from 5.

A necessary condition for equilibrium is that the player with the larger
share receive a higher payoff from the modal claim than from the next lower
claim. When z; > 5, we thus need 7(zy,9) > r1(zs—.01,g), where 7/(z,9)
is player I's payoff from claim z given density g, or:

ri(zs,9) - 7r1(:cf~—.01,g)
10—-xf 10-:1:f+0.1 10 —y - xf + 0 1)

-3 (@) - g (T

y=0 y=0
= %G(lO—zf,é) - (.’Ef-O.l)g(iL’f—O.l,(S)>0. (7)

Comparing (7) with Properties (2) and (3), we immediately obtain:

Proposition 2 Let (fi(z,6),9(yi,68))ier be a collection of strictly positive
densities satisfying Properties 1-3.

(2.1) Fiz 6; = § for all i. If there ezists an i with zg, = 10 — yg, > 5,
then then we can add a pair (f;(z,6),9;(y,6)) that preserves Properties 1-8
such that x5, = 10 — y,; for any zy, € [10 — zj;,z5], but may be unabdle to
do so for x5, & [10 — x5,z 5].

(2.2) If there exists an i with z5, = 10 — yg;, then then we can add a
pair (f;(z,6;),9i(y,6;)) that preserves Properties 1-3 such that z; = 25, =
10 — yg,; for any 0 < 65 < 6;, but may be unable to do so for 6; > 6;.

This proposition reveals the centralizing tendency of drift. The necessary
condition (7) for a stationary state with exactly compatible modal claims,
given Properties 2-3, can be satisfied for an interval of modal claims that
is centered around the fifty-fifty outcome, and which shrinks toward the
fifty-fifty outcome as the drift level increases.

To see the forces behind this result, notice that abandoning the modal
claim to make the next lowest claim reduces the surplus from agreements
when the opponent makes her modal claim or less, but achieves some new
agreements (arising from cases in which the opponent makes a larger claim).
As the drift rate increases, the relative probability of such a larger claim in-
creases and hence it is less likely that (7) is satisfied, so that higher drift
levels yield a stronger centralizing force. More importantly, the new agree-
ments that can be realized by reducing a player’s claim are most lucrative
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when the player is already receiving a large share of the cake. Hence, con-
dition (7) is most likely to fail for extreme divisions of the surplus and
most likely to hold for more equitable divisions. The collection of possible
exactly-compatible modal claims will thus be centered around the fifty-fifty
outcome, and higher drift levels will give a smaller collection of such claims.
This is the centralizing force created by drift. ,

Why are we interested in Proposition 2 when (7) is only a necessary
condition for a stationary state, showing that a single alternative claim is
not a better reply than the modal claim? We have reason to believe that
the particular alternative considered in (7) is the most likely superior reply
to the modal claim. In particular, we expect a better reply to be a lower
rather than a higher claim, since a higher claim sacrifices any chance at an
agreement when the opponent makes her modal claim. Among lower claims,
we expect the claim just below the modal claim to be the most profitable,
since (given the quasiconcavity of f and g noted in Property 1) it is here
that the largest increase in the probability of an agreement is achieved. In
addition, this next lower claim is most likely to be a better reply for the
player receiving the largest share of the surplus, since this is the player for
whom the newly achieved agreements are most valuable. This is precisely
the claim addressed by (7).1*

Finally, what does this have to do with the Outside Option Game? Sup-
pose a > 5. An efficient outcome requires an agreement giving player II
a payoff larger than . Suppose this is produced a stationary state of the
learning dynamics in which zg = 10— 25 > . If the drift level is sufficiently
small, this is no difficulty. For somewhat higher drift levels, however, such a
stationary state does not exist. Instead, player I7 finds it more profitable to
reduce her claim in order to secure more agreements with the noisy player
Is who are claiming more than 10 — z,. Because z, is relatively large, it
is worth claiming somewhat less in order to secure these agreements. A
stationary state thus requires modal claims closer to 10 — « (for player I)
and a (for player IT). If there is enough drift, a stationary state in which
player IT does not opt out will require a modal claim for player I less than
o and will give player IT a payoff less than . But then player IT will opt
out, and an inefficient outcome appears.

14None of our numerical calculations produced a counterexample to this belief.
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5 Experimental Results

This section examines the extent to which the theory of the previous section
matches the outcomes of experiments in the Outside Option Game.

Experimental design. The experiment was conducted at the Michigan
Economics Laboratory with undergraduates of the University of Michigan.
Fach experimental session involved 12 subjects who sat at networked mi-
crocomputers that were screened from each other. The subjects were asked
to read the written instructions (reproduced in the Appendix) and given an
interactive demonstration of how claims were registered, payoffs determined,
and so forth.

Following the demonstration, subjects participated in a series of bargain-
ing sessions. At the beginning of each session, subjects saw on their video
displays the outline in white against a black background of a tall, hollow,
rectangular “cake”. To the left of the cake, in blue print, the number 10
together with brackets reaching from top to bottom reminded subjects that
the total height of the cake represented an amount of money that was al-
ways nominally worth 10 dollars. Almost as wide and slightly inside the
rectangular cake was a second, smaller, hollow rectangle which began at the
bottom of the cake and whose height represented the amount of money that
player IT could obtain unilaterally by opting out. The numerical value of
the opt-out payment was also indicated. To avoid suggesting focal points,
only these two numbers were indicated on the display.

Player I indicated his claim by moving a small red cursor that pointed
to the right side of his cake up or down using the computer’s up and down
arrow keys. As the red cursor moved down from its initial position at the
top of the cake, the area of the rectangle between the top and the cursor
filled with red to represent the amount of player I's claim. When player I
was satisfied, he registered his claim by pressing ENTER. At that point the
numerical value of his claim was indicated and he had the opportunity to
revise the claim by pressing the function key F10 or confirm the claim by
pressing SPACE BAR.

The procedure by which player IT indicated a claim was similar except
that player IT moved a small green cursor that was initially positioned at
the bottom right hand side of his cake. As the green cursor moved up or
down, the area between the bottom of the cake and the cursor filled with
green to indicate the amount of player II's claim. Player II could also
indicate a decision to opt out by pressing the BACKSPACE key, at which
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time the area of the rectangle indicating the opt-out payment filled with
white to indicate the amount that player I could gain by opting out. As
with player I, player II was given the opportunity to revise his choice by
pressing F10 or confirm it by pressing SPACE BAR.

After both player I and player I confirmed their choices, the choice
of each player’s counterpart for the session was displayed by overlying the
appropriate red, green, or white region on the player’s own display. If the
red and green claims of the two players overlapped, then the total claimed by
both players was more than 10 dollars, and neither player received anything.
The area of overlap was shown in yellow. If the red and green claims did not
overlap, then each player received his claim together with half the unclaimed
cake. A white line dividing the surplus (i.e., the remaining dark region in
the middle of the cake) was displayed together with the numerical value of
the player’s total payoff. Finally, if player IT opted out, then he received his
opt-out payment while player I received nothing. Along with a graphical
display of the players’ choices and payofs, a brief written summary of the
outcome was displayed. For example, if player [ claimed 2 dollars and
player IT claimed 4 dollars, so that a surplus of 4 dollars remained, then the
following message was shown:

Player II has opted in and the claims can be met. Player I gets $4.00.
Player II gets $6.00. FEither player could have gotten more by claiming
more.

Subjects did not know with whom they had been paired in each session
and communicated anonymously through the computer as described above.
After each session, subjects were paired with a new partner who was cho-
sen randomly subject to constraints discussed at the end of this section.
Whether a player was player I or player II in a given session was also de-
termined randomly subject to the constraint that no subject was the same
type of player for more than two sessions in a row.!?

Players participated in twenty “practice” sessions followed by ten “real”
sessions. The cake in each session was always nominally worth ten dollars.
However, subjects were paid the amounts they succeeded in obtaining in
only two of each set of ten sessions. Moreover, for the first ten practice
sessions, the subjects were paid at the rate of one dime for each dollar they
carned. In the second set of practice sessions, subjects were paid at the

15]f we had strictly alternated the players’ types, then any given subject could have
participated in bargaining sessions with only half of the subjects.
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rate of one quarter for each dollar they earned. Only in the final set of
ten real sessions were subjects paid at the full rate of one dollar per dollar
earned. After each set of ten sessions, a “roulette wheel” appeared on each
subject’s screen, and the two sessions for which that subject would be paid

were randomly seiected.’®

The opt-out payment which a player I could receive varied from session
to session. There were two types of experiments. In experiments that re-
ceived the “up” treatment, the opt-out payments for each set of ten practice
or Teal sessions were in the following ascending order: { 0.90, 0.90, 2.50,
2.50, 4.90, 4.90, 6.40, 6.40, 8.10, 8.10 }. In experiments that received the
“down” treatment, the opt-out payments for each set of ten sessions were in
the opposite, descending order.

After the bargaining sessions were over, subjects were asked to complete
a computerized questionnaire. For each opt-out payment, subjects were
asked the question: “What do you feel would be a fair amount for player I
to get?” by moving a green cursor to indicate a claim on the rectangular
cake precisely as in the actual bargaining sessions as player II. The opt-
out payments in the questionnaire were presented in the same (ascending or
descending) order that was used in the bargaining sessions.”

Our expectation before undertaking the experiment was that player I[s
would not take the outside option, with the primary question of interest be-
ing how much compensation they would receive for not doing so. Foregoing
a large outside option is potentially risky, however, especially if there are
player I's who make such large claims as to not allow player IT a payoff at
least equal to the outside option. When designing the experiment, we at-
tempted to isolate the effect of this risk and attain conditions under which
player II would not opt out. This motivated our presenting the outside
options in both an up and a down treatment. In addition, subjects were
“fltered” in the practice bargaining sessions.

Our motivation for the filtering was a suspicion that “irrational” behavior
by player Is would be correlated with a larger frequency of disagreements
and, consequently, lower profits and greater risk to player IJ from not taking
the outside option. Hence, after the first ten practice sessions, the four
subjects with the lowest total profit in these sessions were “filtered out”,

16WWe believe that “intermittent reinforcement” like that which we provided increases
the subjects’ interest in the experiment. Such effects are widely reported by psychologists.

1"Por each opt-out payment, subjects were also asked to indicate their best guess of the
median of the claims that the other subjects in their group designated as fair for a player
II. The subject whose guess was closest to the actual median was awarded $2.
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and, in subsequent practice and real sessions, these subjects were matched
only with others in their group. After the second ten practice sessions, the
four subjects of the remaining eight who had the lowest cumulative profit in
all twenty practice sessions were also grouped. Thus, at the start of the real
bargaining sessions there were three groups of four subjects who had been
selected by their profits in the practice sessions and who bargained in real
sessions only with subjects in their own group. Subjects were not informed
of this filtering procedure.

Somewhat to our surprise, the behavior of the average subject in each
group during the real sessions and the average responses to the questionnaire
did not differ much from group to group. For example, pooled over all
subjects who experienced the same treatment, the differences between the
frequencies with which subjects in different groups opted out were always
within 0.11 for opt-out payments greater than 5.00 dollars. For each opt-out
payment, the median player-I claims of each group never differed by more
than $.40, and the medians of the claims indicated as fair for player I in
the questionnaire were identical for all three groups. As a result, Figures
4-5 summarize the data pooled across all three groups.

Experimental Results. Figures 4 and 5 summarize the results from the
real bargaining sessions of the experiments and the questionnaire. The data
are reported separately for each opt-out payment and each treatment. There
were a total of 9 experiments where subjects were presented with the opt-
out payments in ascending order (the up treatment) and 19 experiments
where the opt-out payments were presented in descending order (the down
treatment). There were 12 subjects in each experiment and each opt-out
payment was presented for two real bargaining sessions. Since half the sub-
jects were player I and half were player /1 in each session, for every opt-out
payment there were a total of 108 choices by each type of player in real
sessions with the up treatment and 228 choices by each type of player for
the down treatment.!®
We summarize the results as follows:

Division of surplus: Deal-me-out is in many respects a good predic-
tor of subjects’ behavior. As player I, the median subject made claims
that were only slightly less than those predicted by the deal-me-out

18Gince every subject responded once to each questionnaire item, there were also a total
of 108 responses to each question for the up treatment and 228 responses for the down
treatment,
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outcome: for each value of a the median claims depart from the deal-
me-out claims of min{5,10 — a} by less than 50 cents. The median
claims of those player Ils who chose not to opt out were within 10
cents of the deal-me-out claims of max{5,a}. With one exception, the
expected-profil-ruaaimi.ing claim for a player [ I who chose not to opt
out was within 30 cents of max{5,c}. Finally, after the bargaining
sessions were over, subjects were asked what would be a fair claim for
a player who could opt out. For each opt-out payment, the median
claim designated as fair was max{5,a}.

Opting out: When o was large, player [ I frequently chose to opt out,
yielding an inefficient outcome. The opt-out frequencies for a = $4.90,
o = $6.40, and o = $8.10 were .33, .61, and .83, respectively.

Rows 1a and 1b of Figures 4 and 5 describe the player-II claims made by
players who chose not to opt out, with the median, 5th percentile and 95th
percentile claims indicated (the latter two being the first and second num-
bers in parentheses, respectively) in each case.!® Rows 2a and 2b similarly
report player I claims, while rows 3a and 3b report the subjects’ estimates
of what would be a “fair” claim in each case. The median claims of both
player Is and player IIs reported in rows la, 1b, 2a and 2b and the median
claims indicated as fair for player IT in rows 3a and 3b correspond well to
the predictions of the deal-me-out outcome. Moreover, the 95th percentiles
reported for the player II claims indicate that virtually no player II ex-
pected to receive much more than the deal-me-out claim. In addition, rows
4a and 4b of Figures 4 and 5 show that player IT rarely opted in and made
a claim less than e, much less made a disadvantageous offer.?’

Player I behavior is also generally consistent with the deal-me-out out-
come, though the 5th percentiles for the player I claims for opt-out payments
$6.40 and $8.10 show that at least some subjects made claims as player [
that were close to the split-the-difference outcome.

19For 108 observations, the 5th percentile is calculated as the mean of the 6th and Tth
order statistics, that is, the 6th and 7th elements of a list of the observations sorted from
lowest to highest. The 95th percentile is the mean of the 102th and 103th order statistics
and the median or 50th percentile is the mean of the 54th and 55th order statistics. For
228 observations, the 5th, 50th, and 95th percentiles are given by the means of the 12th
and 13th, the 114th and 115th, and the 216 and 217 order statistics, respectively.

2By “disadvantageous offer” we mean a claim making it impossible for player IT to
receive a payoff of at least . Claiming less than «a may yield payoffs higher than o as
long as some player s claim less than 10 — a.
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Opt-out payments21 _
0.90 2.50 4.90 6.40 8.10

1a. Median claims of player IIs who did not opt out
4,95 5.00 5.00 6.40 8.10

(4.15 - 5.20) (3.95 - 5.10) (4.90 - 5.20) (5.10 - 6.80) (5.05 - 8.40)

2a. Median claims of player Is
4.90 4.90 4,70 3.25 1.60

(4.20 - 5.25) (4.30 - 5.00) (2.75 - 5.00) (2.20 - 4.80) (0.90 — 4.00)

3a. Median claims asserted as fair for player IJ
5.00 5.00 5.00 6.40 8.10
(4.40 - 5.50)  (4.05-6.15)  (4.90-680)  (5.05-7.35)  (4.90-8.70)

4a. Frequency with which player IIs made claims less than their outside option
0.000 0.000 0.019 0.065 0.028

5a. Frequency of player I claims greater than 4.50
0.880 0.852 0.574 0.074 0.037

6a. Frequency of player I claims providing player I a payoff lower than the opt-out

value
0.000 0.000 0.009 0.083 0.102

7a. Frequency with which player IIs opted out

0.000 0.019 0.343 0.556 0.750
8a. Mean profit of player IJs who did not opt out.*

4,43 4.63 4,72 5.79 7.54
(0.00,5.00,5.27)  (0.00,5.00,5.27)  (0.00,5.15,5.65) (0.00,6.60,7.28)  (3.35,8.25,8.53)

9a. Maximum expected profit of a player I1 who does not opt out.”

4.77 5.00 5.23 6.13 7.47

(4.90) (4.90) (5.00) (6.40) (7.80)
10a. Maximum expected profit of a player 1%

4.78 4.89 4.70 3.31 1.89

{4.80) {4.80) (4.80) (3.10) (1.60)

Figure 4: Summary Data for “UP” Treatment
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Opt-out payments®? ‘
0.90 2.50 4.90 6.40 8.10

1b. Median claims of player IIs who did not opt out
5.00 4.90 5.00 6.40 8.10

(3.85 - 5.20) (3.90 - 5.20)  (4.90 - 5.70) (4.95 - 7.00) (4.85 — 8.35)

2b. Median claims of player Is
4.90 4.90 4.60 3.15 1.70
(4.10 - 5.20) (4.00 - 5.10) (3.45 - 5.00) (2.05 - 4.85) (1.00 ~ 5.00)

3b. Median claims asserted as fair for player IJ
5.00 5.00 5.00 6.40 8.10
(2.20 ~ 5.45) (2.50 - 5.70) (4.35 - 5.70) (4.10 - 6.95) (5.00 - 8.45)

4b. Frequency with which player IIs made claims less than their outside option
0.000 0.000 0.013 0.105 0.061

5b. Frequency of player I claims greater than 4.50
0.846 0.759 0.535 0.083 0.154

6b. Frequency of player I claims providing player II a payoff lower than the opt-out

value
0.000 0.000 0.009 0.140 0.237

7b. Frequency with which player IIs opted out
0.000 0.000 0.325 0.640 0.868

8b. Mean profit of player /Is who did not opt out.??
4.42 4.66 4.88 5.45 6.51
(0.00,5.00,5.40)  (0.00,5.00,5.45)  (0.00,5.20,6.00)  (0.00,6.57,7.33)  (0.00,8.15,8.70)

9b. Maximum expected profit of a player /I who does not opt out.?

4.85 4.96 5.21 5.82 6.37

(4.80) (4.80) (5.00) (5.00)** (8.00)
10b. Maximum expected profit of a player I*°

4.77 4.89 4.56 3.24 2.21

(4.80) (4.80) (4.20) (3.00) - (1.60)

Figure 5: Summary Data for “DOWN?” Treatment
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Rows 5a and 5b report the frequencies with which player Is made claims
greater than 4.50 dollars, i.e., claims that were close to the fifty-fifty pre-
diction. Rows 6a and 6b report the frequencies with which player Is made
claims greater that 10 dollars minus the opt-out payment. Such claims give
player I/ a smaller playoff than opting out. Fer hoth treatments, the fre-
quencies reported in rows 5a, 5b, 6a and 6b are relatively small for opt-out
payments that exceed half the cake, which is consistent with deal-me-out.
The most noticeable differences in the data from the up and down treat-
ments are the larger frequencies with which player Is in sessions with the
down treatment made claims that did not leave player IJ with a payoff larger
than o when the opt-out payment was $6.40 or $8.10.%°

The deal-me-out solution thus matches player I's behavior reasonably
well and matches player II's behavior reasonably well when player II opts
in. Contrary to the deal-me-out prediction, however, player II frequently
opts out. Rows 7a and 7b in Figures 4 and 5 reports the frequency with
which player IIs chose to opt out.?

Why do player II's opt out? Rows 8a and 8b describe the profit achieved
by player IIs who did not opt out.2” The first number is mean profit. In
addition to the 5th and 95th percentiles, the middle number reported in
parentheses in rows 8a and 8b is the median profit obtained by the I
player ITs who did not opt out. In each case, the median profit is the same
as or slightly larger than the opt-out payment or half the cake, whichever is
larger. On the other hand, the mean profit is always lower than the median
profit, often by a substantial margin. The difference between the mean and

21Fxcept where noted, the statistic reported is the median of the observations pooled
over all subjects who participated in experiments with the same treatment, and the num-
bers in parentheses are the 5th and 95th percentile of the observations. Claims and profits
are in dollars.

22Numbers in parenthesis are respectively the 5th percentile, median, and 95th per-
centile of the profits obtained by player IIs who did not opt out.

23Gee text for details. The number in parenthesis is the optimal claim for such a player.

24The expected profit function was not always a unimodal function of the subject’s
claim. In this case, for example, there was a second local maximum at 6.40. The expected
profit obtained by making a claim of 6.40 was 5.76 dollars.

25 A5 one might expect, the larger frequencies of such claims for the down treatment
coincide with lower mean profits for player IIs as reported in rows 8a and 8b.

26The overall opt-out frequencies reported in the summary are the weighted average of
the frequencies reported in Figures 4-5 for the up and the down treatments.

2TFor the larger opt-out payments, many player IIs chose to opt out; hence, for these
opt-out payments, the numbers of observations summarized in rows la,1b,8a and 8b are
much smaller than 108 or 228.
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median profit is one measure of the risk of disagreement. ‘This risk pushes
the mean profit of player IJs who did not opt out below the opt-out payment
for the three largest opt-out payments.

The mean profit reported in rows 8a and 8b involves only those player
I claims thai were actually matched with player IIs who did not opt out.
In contrast, rows 9a and 9b report the maximum expected profit that a
player IT could achieve when playing against the entire population of player
I claims made in bargaining sessions with the designated opt-out payment
and treatment. The numbers reported in parentheses are the player I7
claims that achieve this expected profit.?# The maximum possible expected
profit obtained by not opting out is less than the opt-out payment for those
opt-out payments which exceed $5.00.%°

These experimental results reflect the tension between optimization and
efficiency. In their quest for a hard bargain, player I's push player IIs toward
the fifty-fifty outcome. If the outside option for player IT is enough smaller
than $5.00 (i.e., outside options $.90 and $2.50), then the system settles
on the fifty-fifty outcome. For higher outside options, hard bargaining on
the part of player J pushes player II to a claim very close to her outside
option, with player I claiming the rest. This is the deal-me-out outcome,
and we expect the system to settle there in a perfect world. However, the
experimental world is not perfect. Instead, hard bargaining sometimes leads
to disagreements, and this causes the deal-me-out outcome to give player
IIs lower mean payoffs than their outside options. As a result, player IIs
often opt out and the gains from trade go unrealized.

6 Conclusion

We believe that the phenomena studied in this paper are widespread and
that efficiency will therefore sometimes fail to be achieved even when the
agents involved are as close to being rational as real people are ever likely to
get. Contract theorists have recently devoted considerable attention to the
problem of avoiding the expropriation of rents meant to compensate parties

281, a similar fashion, rows 10a and 10b report the maximum expected profit and the
optimal claim for a player J who is matched randomly with one from the designated
population of claims made by player IIs who did not opt out.

29Because row 9 involves a larger sample of player Is, it is not contradictory that the
maximum profit in row 9b (the down treatment) falls short of the mean profit in row 8b
for outside option 6.40.
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for sunk costs. Our results indicate that attention must also be devoted to
providing appropriate compensation for opportunity costs that are not sunk
at the time contracting occurs.

The traditional line taken by such authors as Coase [17] or Williamson
[47] is that efficiency is guaranteed if the parties to the deal have a costless
opportunity to negotiate a binding contract before the costs are sunk. More
generally, they argue that new property rights and new forms of contracting
will emerge to deal with the inefficiencies that can result from a variety of
frictions that the literature bundles together under the catch-all notion of a
transaction cost. Our paper can be reconciled with this literature by classi-
fying the learning frictions that we study as yet another form of transaction
cost whose existence calls for the appearance of new institutions. An ob-
vious possibility is the replacement of primitive bargaining institutions like
those built into the Outside Option Game by more sophisticated schemes,
but it is necessary to recall that we first turned our attention to the opting-
out phenomenon because of its appearance in Rubinstein bargaining models
(Binmore at al [6, 13]). A more hopeful development might be the increased
use of arbitration agencies or bargaining consultancies in those cases where
the problem cannot otherwise be internalized. But in the absence of such
institutional crutches, it seems wise to soft pedal the claim that all gains
from trade will necessarily be exploited in a sufficiently rational society.

7 Appendix: Instructions to Subjects

Bargaining Experiment

In this experiment, you will bargain via the computing equipment in
front of you with people seated at other machines in the room. You will
participate in a large number of very short bargaining sessions. Whether
you are player I or player II in these sessions is determined randomly.
Sometimes you will be player I and sometimes player I1. After each session,
you will be randomly paired with a new bargaining partner.

In each bargaining session, you and your counterpart for that session
will have the opportunity to split a “cake” between you. You will each
simultaneously make a claim. If the two claims sum to no more than the
value of the cake, then each of you will receive their claim plus half the
surplus after the claims have been met. If the two claims sum to more than
the value of the cake, each of you will get nothing at all.
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Only one thing complicates this very simple scenario. Before each bar-
gaining session begins, player 1T only is offered the opportunity of opting
out. If player II opts out, he or she gets a payment that may vary from
session to session. But, in each session, both players will know what player
[[’s opting out payment is for that session. Player I gote nothing if player
IT opts out. ,

The cake is always nominally worth $10 but you will be paid the amounts
you succeed in securing only for two of the bargaining sessions. These will
be chosen at random from the final ten sessions in which you participate.
The preceding two sets of ten sessions are for practice. In each of these two
sets of ten practice sessions, you will also be paid for two sessions chosen
at random, but you will not be paid at the full rate. In the first set of ten
practice sessions you will be paid at the rate of one dime for each nominal
dollar. In the second set of ten practice sessions, you will be paid at the rate
of one quarter for each nominal dollar. Only in the third set of ten sessions
will you be bargaining for real and getting paid at the full rate for the two
sessions the computer chooses at random.

After the bargaining sessions are over, you will be asked to complete
a computerized questionnaire. Money prizes will be awarded during the
questionnaire for answers to some questions.

When all subjects have completed the questionnaire, the computer will
display how much money you have earned during the experiment. This
will include the amounts you secured during the bargaining, and any prizes
you won while completing the questionnaire. It will not include your $2
attendance fee. Please remain in your seat until the supervisor calls ycur
seat number and then bring your seat tag so that you can be paid.

This is not an experiment to find out what kind of person you are. “When
we see the results, we shall neither know nor care who did what. Yve are
only interested in what happens on average. So please don’t feel th it some
particular sort of behavior is expected of you. However, we do ask that you
do not talk to the other subjects or look at their screens. It is :mportant
to the experiment that our subjects interact only through the computer
equipment.

Now press the SPACE BAR on your keyboard. You will see a demon-
stration that will review the information in these instructicus and give you
hands-on experience in making claims or opting out. R¢member to keep
pressing the SPACE BAR to see a new screen. There is no need to hurry.
You may have to wait for the other subjects to be ready anyway. If you still
have questions after seeing the demonstration, there will be an opportunity
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to ask the supervisor.
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