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Abstract

This paper examines the relevance of incorporating seasonality in agricultural supply models.
Former studies have eliminated the problem of seasonality by using seasonally adjusted data.
Recent developments in cointegration techniques allow the comprehensive modelling of error-
correcting structures in the presence of seasonality. We consider a four-variables model for
Austrian agriculture. Series on the producer price for soy beans, bulls and pigs, as well as the
stock of breeding sows are included. A vector autoregression incorporating seasonal cointe-
gration is estimated. A tentative interpretation of long-run and seasonal features is considered.
The model is also used to generate forecasts for the supply of pigs in Austria.

Zusammenfassung

Dieses Papier Uberprift die Bedeutung der Saison in landwirtschaftlichen Angebotsmodellen.
Frahere Studien haben das Saisonproblem i.a. durch Verwendung saisonbereinigter Daten
eliminiert. Neuere Entwicklungen in Kointegrations-Techniken erlauben nun das gemeinsame
Modellieren von Fehlerkorrektur-Strukturen und statistischen Saisonmodellen. Wir modellie-
. ren vier Variable aus der 6sterreichischen Landwirtschaft, namlich Zeitreihen tiber Produzen-
tenpreise von Sojabohnen, Stieren und Schweinen sowie den Bestand an Zuchtsauen. Ein
vektorautoregressives Modell unter Verwendung saisonaler Kointegration wird geschatzt. Die
geschatzten langfristigen und saisonalen Strukturen werden versuchsweise interpretiert. Auch
zur Prognose wird das Modell herangezogen.
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1. INTRODUCTION

Like in other economic sectors, modeling in agriculture frequently has to deal with the
issue of seasonal behavior. On the supply side, seasonality of data on crop, livestock and
livestock products arises from climatic factors, biological growth processes of plants and
animals, amplified by seasonality in input (feed) supplies. On the demand éide, the sources of
seasonality in agricultural data are usually linked to climatic factors, ‘religious’ holidays, and
other cultural traditions.

It seems that the theoretical economic literature does not yet fully reflect these
empirical facts. Only recently, economics has slowly begun to focus on analyzing the
phenomenon of seasonal cycles instead of viewing them as residual nuisance. A good example
for the rather divergent ideas in current economics are the two contributions by Miron (1990)
and Ghysels (1990). Whereas Miron views seasonal cycles as deterministic and strictly
repetitive, rooted in the synergy of production and other supply-side phenomena as well as to
periodic changes in consumer preferences, Ghysels views them as stochastic and subjected to
repeated and frequent changes, also due to periodic patterns in consumer preferences but in
conjunction with storage and adaptation costs. Anyway, it seems reasonable to allow for
cyclical variations in prices as well as in demand or supply if economic goods are seasonal by
their very nature - such as agricultural products, harvested only at certain times - and storage
would be costly or the utility of goods is strongly seasonal due to cultural traditions
(Christmas trees) or weather conditions (anoraks).

Here, we concentrate on agricultural products in Austria, a developed European
economy. In such an economy, it is reasonable to envisage the seasonal patterns in the
agricultural goods market as caused by a more or less time-homogeneous demand facing
seasonal cycles in supply. Again except for certain food products with some sort of cultural
tradition (ice cream in summer, turkey at Christmas, mutton at Easter time), consumer
demand has no outright preferences for consumption at fixed points during the year, and
Austrian consumers hastily seized the opportunity of having grapes and strawberries at Yule-

tide, once these became available. It is the supply side (high transport costs) that still keeps the




prices of out-of-season fruits above the level typical for domestically harvested food products.
Hence, we will view all seasonal variations in the following as reflecting mainly supply-side
effects. In this regard, we follow Barsky and Miron (1989) and Miron (1990) who attributed
seasonality in industrial production to supply-side features, such as the pooling of employees'
vacations to increase productivity. However, we follow Hylleberg (1990) and Ghysels (1990)
in viewing seasonality as a flexible stochastic phenomenon.

In the literature, a wide variety of econometric specifications of seasonality can be
found, often based on ad-hoc considerations. Only occasionally, researchers provide an
explicit justification for their handling of seasonal variation (cf. Beaulieu and Miron, 1993, and
Ghysels, 1990). Despite the fact that several authors have emphasized the significance of using
unadjusted time series in economic modeling, numerous studies are still based on adjusted
time series data, largely ignoring the possible effect that seasonal adjustment of individual time
series bears on relations between them. As has been observed by Wallis (1974), this neglect
might stem from the belief that the seasonal component of a given series should be viewed as
"noise", and even if correlated with the seasonal component of another series, it may still be
seen that way. However, it is doubtful if such strict decomposition is applicable to real-life
data series. For example, Raynauld and Simonato (1993) argue that the orthogonality
conditions Between the seasonal and non-seasonal components imposed by seasonal
adjustment procedures, including the frequency-domain approach advocated by Sims (1974),
actually remove an important linkage. Also, Sims (1993) has pointed out that observations on
economic behavior related to seasonal frequencies may often be informative about the
unknown parameters we are trying to estimate in a regression, so that using seasonally
adjusted data at best amounts to throwing away information and at worst could severely bias
results (see also Sims, 1974 and Wallis, 1974).

The traditional approach is to decompose seasonal data into three unobserved
components: trend, cycle, and seasonal, with economic interest focusing on the second
component and possibly a fourth irregular component added. Depending on the criterion of
optimality and the nature of the specification of the stochastic structure of the unobserved

components, various seasonal adjustment methods have been suggested in the literature and




also applied to data, with the objective to remove the seasonal component without distorting
the remainder (see e.g., Grether and Nerlove, 1970). Some authors argue that the predominant
use of seasonally adjusted time series may be justified for the aims of short-term forecasting
and policy analysis, where the implicit view seems to be that the seasonal component as such
is of little interest, being not only exogenous to the economic system but also uncontrollable,
yet predictable (Wallis, 1974). |

Recent developments in time series analysis, such as cointegration in the framework of
vector autoregressions (VAR), enable the comprehensive modeling of economic time series in
the presence of seasonality. In modeling agricultural phenomena, one of the areas where these
new econometric techniques have been especially useful are supply-response relationships (see
e.g., Eckstein, 1985; Worgétter, 1990). Output response to a price change is not specified
under ceteris paribus assumptions, but rather assumed to be possibly correlated with changes
due to supply shifts, e.g., switches between farm enterprises.

In the VAR model used by Worgotter (1990) to analyze supply response in the
Austrian milk sector, certain variables were subjected to seasonal adjustment before they were
used in the analysis. Raynauld and Simonato (1993) take up the common argument that
multivariate models and especially VAR models are routinely used to highlight stylized facts,
which may make the usage ‘of adjusted series look more attractive. However, they point out
that even though unadjusted series may need longer delays (for example, two seasonal lags,
i.e., 24 lags for monthly series in the SARIMA framework are not uncommon) and these are
not easily accommodated considering the number of variables to be included and the usual size
of economic samples, researchers often fail to recognize the implicit loss of degrees of
freedom stemming from the seasonal adjustment process when they estimate a model with
officially adjusted series.

In this paper we use a VAR model to provide forecasts for the stock of breeding sows
in Austria, in the presence of seasonal unit roots in some of the variables. The size of the
breeding livestock is considered to be the key decision variable in pigmeat (pork) supply. In
this regard, our study follows the related work by Hallam and Zanoli (1993) who, using VAR

cointegration techniques and UK data, established one long-run relation between the herd size,




the feed price, and the pig price but no long-run stable relations between any two of the three
variables in pairs. Our study extends their supply response system by the producer price of
bulls, i.e., an alternative category of livestock, and refines the procedure by explicitly
accounting for seasonality.

The organization of this paper is as follows. Section 1 is a general introduction.
Section 2 expounds the econometric methodology. Section 3 reports and interprets the

empirical results. Section 4 concludes.

2. METHODOLOGY
2.1 The concept of seasonal cointegration

It is well established that the time-series behavior of many trending economic variables
can be adequately described by first-order integrated processes. In short, a process is said to
be first-order integrated (denoted I(1)) if its first differences are covariance-stationary
(denoted I(0)). Typically, this concept provides a better approximation to the generating
process of economic time-series variables than the alternative conception of trend stationarity.
A variable is said to be trend stationary if it can be represented by the sum of a deterministic
trend function and a stationary process. The two alternatives are notoriously difficult to
discriminate statistical]y particularly as they represent non-nested hypotheses and the relevant
properties are long-run features only recognizable after observing long trajectories of the
processes.

Based on the Wold Theorem, any first-order integrated variable can be represented
formally by the moving average representation of its first differences. Excepting certain cases
of non-invertibility of this moving average representation, an equally valid and empirically
handier representation is the autoregressive one, which in turn can be approximated to an

arbitrary degree of precision by finite-order AR models such as:




17
Ayr:yr'—yr—l:a+Z¢iAy1~i+gr (1)

i=l

The constant a gives rise to a linear trend in the process y; of the form yy+d f for some 4. In
our analysis, we will henceforth assume that the data follow models like (1) with respect to
their trend behavior.

I(1) models do not provide an adequate description of other non-stationary features of
data series, in particular of non-stationary seasonal behavior. Again, there are two conflicting
model conceptions available from the literature. Deterministic seasonal models assume
seasonality to be explicable by adding a linear combination of seasonal dummies to models like
(1). In contrast, seasonal unit root models view stationarity to be attainable only after

application of a seasonal moving average filter S(B), for the case of quarterly data

S(B)=1+B+B*+ B’ =(1+B)1+B%) (2)

Joint application of first differencing (to remove the trend non-stationarity) and of
seasonal averaging (to remove the seasonal non-stationarity) is equivalent to seasonal
differencing or differencing at the seasonal lag, e.g., 4 for quarterly data, i.e., A;=1-B4. The
operator A4 can be decomposed as Ay = ( 1-B)(l+B)(1+BZ), hence if seasonal differencing is
necessary to achieve stationarity, one speaks of processes with "unit roots at 1 and #/".
Usage of the operator A4 suggests replacing the basic model (1) by the seasonally first-order

integrated model

])
Ay, =y, =Y_s=a+) oA,y +& 3)

i=}

In the following, we will work with our data as if they had been generated by a model of type

(3). If actual variables are non-seasonal but have been seasonally differenced for the




representation (3), then this imposes non-invertibility on the moving average representation of
Ay, and makes reasonable approximation by p-th order autoregressions impossible. We will
see, however, that this difficulty can properly be accounted for in a multivariate framework.
Although the idea of error correction is much older, the seminal paper by Engle and
Granger (1987) is to be credited for drawing attention to the fact that dynamic filtering with
the goal of achieving stationarity may create severe problems in m-variate models, even in
those cases where this filter is needed to make all individual series stationary and hence
working with filtered data would be appropriate for univariate processes. Two or more series
may be individually I(1) but a linear combination may be 1(0). There may be up to »-1 such
linear independent "cointegrating" combinations of this type ("cointegrating vectors") and the

proper representation would be

P
AY, =a+af¥  + DAY, +¢, @)
=l

with ¥; = (yyp....V)' and ®; being matrices of order #xn. o and B are now matrices of full
rank and order snxr with r the number of linear independent cointegrating vectors, usually
called the cointegrating rank. It is interesting to note that possible stationary components y;
do not invalidate the representation but logically are ‘'self-cointegrating” and the
corresponding cointegrating vector is the unit vector with 1 at the j-th position. The matrix 8
contains the cointegrating vectors as columns and is therefore sometimes called the
cointegrating matrix. The matrix o describes the influence of the » cointegrating relationships
on the » variables and is therefore sometimes called the loading matrix, in analogy to classical
principal components analysis.

If the n-variate vector is seasonally integrated, some components may be non-seasonal,
some linear combinations may be non-seasonal but trending, other linear combinations may be

non-trending but seasonal and again others may be non-seasonal and non-trending. Such




features are called seasonal cointegration and are well presented in the work of Hylleberg et

al. (1990). The overall representation (4) changes to:

A =a+aBS(B)Y_ +a.,BA(B)Y,_ + oA, +a,fiAY,_ +
P
+> DAY +e, ®)
i=1

with A(B) denoting the alternating dynamic operator 1-B+B2-B3. In (5), B; contains (as
columns) the long-run cointegrating vectors that sweep out stochastic trends in Y but, in
general, not seasonals; 35 contains semi-annual cointegrating vectors that sweep out the
quicker seasonal patterns but neither the annual cycles nor the trends; 3 and B, handle the
annual seasonal cycles but not the other two frequencies, i.e., the long run and the biannual
patterns. If ;=0 then B; contains the annual seasonal cointegrating vectors. Just as in (4),
non-seasonal variates show up by their corresponding unit vectors belonging to the 3, and B5
column spaces. In many empirical applications, it is safe to assume that so-called
asynchronous cycles represented by 34 do not really play a role, hence we will proceed under
the assumption B4=0. In this case, it may also be interesting to check whether the column
spaces of B, and B3 overlap. Then, certain linear combinations sweep out all seasonality at
both the annual and semi-annual frequency.

From (5), note the idea of decomposing seasonal cycles with an annual frequency into
a "faster” component (the "biannual” or "semi-annual" cycle) and a "slower" component (the
annual cycle proper). The former part can be viewed as a sequence of type (+a,-a,+a,-a,...),
the latter part as a sequence of type (+a,+b,-a,-b,+a,...). The two frequencies can also be
envisaged in the frequency domain as distinct spectral peaks at the spectral frequencies © and
/2, respectively.

An algorithm to efficiently estimate the coefficient matrices has been provided by
Siklos (1990) who based his GAUSS program on the procedure by Lee (1992). In analogy to
the algorithm for estimating cointegrating structures in the absence of seasonality by Johansen

(1988), the cointegrating vectors at each frequency evolve as solutions to conditional




canonical correlation problems. The paper by Lee (1992) also contains some simulated
significance points to check on the ranks of the matrices B; (/=1,2,3). Lee and Siklos (1991)
tabulate further significance points for the empirically relevant situation of augmenting (5) by
deterministics such as constants, seasonal dummies, or linear trends. Although several
procedures have proved to be useful in generating rank estimates from repeated LR-type tests
on null hypotheses of lower ranks against alternatives of higher ranks, the entire strategy of
estimating ranks based on tests appears awkward. Keeping in mind that the goal is rank
estimation, not testing per se, and without any safe knowledge of criteria for evaluating the
efficiency of discrete-parameter estimates in an otherwise continuous framework, all statistics
and significance points should always be viewed as guidelines rather than rigorous statistical
procedures.

This warning against over-reliance on statistical hypothesis tests in the seasonal
cointegration framework in particular and in VAR models in general is supported by the
observation that diagnostic checking tests in multivariate models rarely find a data set that
passes all tests. Some authors save their assumptions - such as linearity, normality,
homoskedasticity - by introducing dummies, usually ignoring the effect of this action on
further testing. It is perhaps more reasonable to view the linear VAR as a fairly adequate
approximation to a much richer economic reality. As long as the description remains "fairly
adequate”, some interpretation can still be given to identified statistical objects such as
estimated long-run or seasonal features. A basic requirement for this aim is that the
approximating VAR model is adequate within the class of /inear structures, hence estimated

errors should be ,e.g., reasonably free from serial correlation.

2.2 The model

The object of this study is a four-dimensional model of Austrian quarterly agricultural

time series. In particular, we selected the following four variables:




SOB The real producer price for soy beans
BULL The real producer price for bulls
HOG The real producer price for pigs

SFB  Stock of breeding sows

The real producer price series have been obtained by dividing nominal prices by the producer
price index. These data series were available from the first quarter of 1972 to the second
quarter of 1994. Time series plots of the four series (in logarithms, see below) are shown as
Figure 1. A downward trend in all price series is clearly recognizable. The stock of breeding
sows shows an upward slope followed by a downward slope, which could possibly point to a
longer-run cyclical pattern. The downward part of the pattern also has an economic
interpretation. It is probably due to farmers' expectations of the outcome of Austria's entry
into the EU. Before January 1995, Austria's agricultural protection rate exceeded the EU
average (see OECD, 1994). Entry into the EU will imply a reduction in price support and
open up intense competition with meat products from other EU member countries due to the
Common Agricultural Policy (CAP). The expected fall in pig product prices causes a
corresponding fall in supply.

Beginning from Dean and Heady (1958), most previous studies on response in pig
supply have used modifications of the original Nerlove model (Nerlove 1958). In this regard,
the most common approach has been to employ some form of capital stock model embodying
a Nerlove adjusfment mechanism. Most researchers have also included a price expectations
formulation in their supply models, with expectations often incorporating recent prices as well
as those of one or several past periods, which reflects the lags between adjustment decisions
(Askari and Cummings, 1976; Hayes and Schmitz, 1987). Following Hallam and Zanoli
(1993), we model the stock of breeding sows directly.

Some earlier studies have considered the prices of pigmeat and of feed either
individually (e.g., Holt and Johnson, 1988) or in combination as margins or ratios (e.g., Ness
and Colman, 1976). Hallam and Zanoli (1993) exclude the possibility of significant cross-price

effects as far as other outputs are concerned arguing that the specialist nature of pig




production does not warrant the inclusion of a major substitute in a supply model. However,
Jumah and Stehlik (1994) have found the producer price for pigs to be cointegrated with the
producer price of bulls in the Austrian market. Also a look at the 1993 Austrian pig farm
structure revealed that only 23.2% of all pig farms are pure stands, whilst 43.7% and 33.1%
are mixed farms of pig and cattle and of pig and poultry (chicken, geese, ducks and turkeys),
respectively (see "Nutztierhaltung in 1993," Schnellbericht, Osterreichisches Statistisches
Zentralamt, Wien).

We contend that the inclusion of the price of bulls is important becéuse a price increase
in the producer price for pigs will result in buyers substituting beef for pork, thereby
increasing the demand for and causing the price of beef to increase. Producers will shift the
factors of production, especially family labor and financial capital, towards the production of
bulls to benefit from the higher price of beef. This relative reduction in the production of pigs
will cause an increase in the price of pork. Similar price transmission mechanisms could evolve
from price shocks to any of the three prices (i.e., including poultry prices) and are not specific
to the producer price for pigs (see also Gordon et al., 1993). We therefore include the price of
bulls in our analysis but exclude the price of poultry due to the inhomogeneity of this variable.
In a preliminary version of this paper, we also included the price of calves but found that it
was highly correlated with bull prices.

In our analysis, we rely on an input price for Austrian farmers (SOB), two output
prices (BULL and HOG) and a quantity variable (SFB). All four raw series appeared to be
volatile and non;stationary. Taking logarithms turned out to be a comfortable transformation
as it reduced evidence on time-changing volatility. In particular, logged data permitted more
parsimonious dynamics than non-logged data. Also many theoretical economic models use
logarithmic transforms of original data. Moreover, logging establishes a convenient
correspondence between growth rates of original data and first differences of logged data.

The framework of cointegrated vector autoregressions enables the distinction between
short-run adjustment of variables to perceived deviations from equilibria and long-run
equilibrium conditions. A priori, one would expect SOB to follow its own dynamics as it

probably cannot be much influenced by the Austrian agricultural market. The treatment of

10




seasonality also allows us to trace back the sources of seasonal fluctuations and to analyze the

way they dynamically spread to the variates.

3. EMPIRICAL RESULTS

3.1 The main results

The main results are summarized in Table 1. The estimation procedure for the
cointegrating ranks 7; based on the significance tests and their simulated fractiles in Lee (1992)
identified three cointegrating vectors at frequency zero (long run), no seasonality (4
cointegrating vectors) at frequency © ("semi-annual”, two cycles per year), and two seasonal
cointegrating vectors at frequency n/2 ("annual", one cycle per year). One short-run lag of
A4Y, was necessary to achieve serially uncorrelated errors, i.e., p=1 in (5), but the main
features turned out to be rather robust with regard to changing the lag length. Fortunately, the
result turned out to be unique with respect to whether multiple testing was conducted bottom-
up or top-down, i.e., beginning from the null hypothesis "r=0 vs. >0 or 7=1" or from "r;=3
vs. ri=4".

Before attempting to analyze the fine structure of the results, i.e., the cointegrating
vectors etc., we would like to point out that the cointegrating ranks provide some interesting
information on their own. Firstly, three long-run cointegrating vectors mean that there is just
one "common trend" in the system that drives all four variables. Notwithstanding the fact that
there is no unique definition of what such a common trend is, it is tempting to investigate
whether such common trend is linked closely to one or two variables. Loosely speaking, this
variable may then be viewed as "exogenous in the long run" to the other ones.

Secondly, the absence of semi-annual seasonality points to the regular "sinusoidal"
nature of seasonal cycles in agricultural series, reminding of the smooth seasonal structure in

meteorological data such as temperature. On the other hand, two seasonal cointegrating
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vectors at the annual frequency indicate that there are two independent sources of seasonal
cycles in the system, which in turn could perhaps also be linked to two data series.

All of these estimation results are more reliable if the overall model conforms with the
statistical assumptions. These assumptions concern serial non-correlation of the errors
(innovations) as well as normal distribution but the first point is probably the more critical one.
It turned out that the rank-restricted cointegrating model is "clean", i.e., without 5%
significant residual autocorrelation with one short-run lag of AY added. Since there is no
seasonality at the biannual frequency, the system should rather be written in the following way

with two lags of the operator A(B) whose application suffices to render all series stationary:

A(B)Y, =@ AB)Y,_, + D, AB)Y,, +a,B,(1+ B*)Y,_, + (6)
+a3/)‘).3AY/-2 + €,

Slight evidence on remaining flaws is provided by the Ljung-Box Q statistics whose
significance reaches levels of around 8% for the residuals of equations 2 and 3, i.e., the
equations determining BULL and HOG.

Estimates for all parameters of model (6) under the restrictions identified from our

analysis - i.e., a rank of 3 for o131 and a rank of 2 for 033;' - are shown in Table 2.

3.2 Tentative interpretation of the results

As in many empirical applications of the seasonal cointegration procedure, results are
not easily interpretable and occasionally are at odds with theoretical considerations (see, e.g.,
Kunst, 1993a,b). However, a careful look at the empirical summary in Table 1 allows some
further insight into the structure of the agricultural supply system.

Typically, economic interest focuses on the long-run features summarized in the first

panel of Table 1. There are four vectors evolving as solutions from a canonical correlation
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procedure between seasonal differences of the variables and the seasonally averaged series.
According to the statistical hypothesis test, the lower three of them "cointegrate", i.e., they
generate stationary variables. The uppermost does not cointegrate. The evolving
"components" are graphically represented as Figure 2. This decomposition into components
can be viewed as a dynamic counterpart to classical principal components analysis (PCA).
Whereas PCA orders the transformed series according to their share in the total of explained
variance, cointegration-based components are ordered according to the (conditional)
correlation between succeeding observations. In the first three components, such correlation is
sufficiently smaller than 1 to statistically reject the hypothesis of unit-root non-stationarity in
favor of stationarity. In the fourth component, this correlation between past and present is so
close to unity that the series is seen as first-order integrated at the zero frequency.

Counted from bottom up, the first cointegrating vector appears to tie the stock of
breeding sows to bull prices. Interestingly, it is not the price of pigs that is taken as an
indicator for the long-run evolution of sow stocks but the price of bulls, maybe because this is
a more reliable indicator of overall price behavior. However, the difference is not extremely
important, as the second cointegrating vector establishes a joint long-run movement of bull
and pig prices.! Co-movements of bull and pig prices dominate substitution effects in the long
run. Finally, the third vector relates the development of output prices (again with an emphasis
on bull prices) to input prices, as we suppose these are well indicated by our variable SOB.
This structure appears economically reasonable.

If there are three cointegrating vectors in four variables, there is only one common
trend, a "backbone" for the long-run evolution of the system. A priori, we supposed that SOB
may represent such a trend. Unfortunately, the definition of the "common trend" is not
unanimous in the literature but most authors prefer a;'X, to alternative definitions (see

Gonzalo and Granger (1991)). Here, «; denotes the orthogonal complement to the matrix o.;.

1 This squares with the remark by Engle and Granger (1987) that prices of close substitutes in the same market

are expected to be cointegrated.
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Note that it is the orthogonal to the long-run or zero-frequency loading matrix and not to the

cointegrating matrix 3, that is used. In our case, this common trend turns out to be

TREND =0.14 SOB + 0.47 BULL + 0.66 HOG - SFB 7

The resulting variable TREND is smoothly changing in a way close to a random walk.
Contrary to theoretical considerations, all variables contribute substantially to TREND, with
the overall influence of price variables appearing to be the dominant force. Note that the sign
of the common trend is technically undefined and that the variable TREND defined in (7)
shows a persistent downward motion,

It is worth pointing out that our results differ in an important point from those of
Hallam and Zanoli (1993) who only found one cointegrating vector in a set of three variables
closely corresponding to our SOB, HOG, and SFB. Whereas they do not find a long-run
relation between input and output prices, we do find such a relationship. Adding the
~alternative producer price BULL to the system then allows us to identify one further
cointegrating relation linking developments in the two livestock prices. In other words, the
three-variable agricultural system of Hallam and Zanoli (1993) contains two separate common
trends whereas one stochastic trend suffices to describe long-run movements in our full set of
four variables. Also note that Hallam and Zanoli (1993) were using a lower observation
frequency (half-yearly data). In our sample, the finding of three cointegrating vectors is
relatively robust against different specifications of seasonality, though the third vector
becomes just marginally significant - i.e., the corresponding eigenvalue statistic just matches
its theoretical 5% fractile point - if seasonality (deterministic or stochastic) is ignored
completely in the VAR specification.

It is seen from the bottom panel of Table 1 that all four vectors cointegrate at the
semi-annual frequency. Hence, there is no integration at this frequency and any interpretation
of these vectors becomes uninteresting. Turning to the seasonally cointegrating structures at
the annual frequency (center panel), we note a joint seasonal movement in the stock of sows

and in the prices of soy beans (used for feeding) as well as in the market price for pigs.
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Although it would be preposterous to slaughter all pigs when feeding becomes seasonally
more expensive and to repeat this action every year, a marginal effect of that kind appears to
be entirely rational. Such an effect is well known from colder climates where the herd sizes of
sheep are greatly reduced in autumn when grazing becomes impossible due to the onset of
snowfalls. Exercises parallel to those depicted in Figure 2, but now with respect to the
seasonal features, are graphed as Figures 3 and 4. For definitions and ﬂlrther details on

common seasonals, see Kunst (1993b).

3.3 Predicting future developments

Based on (6) and the coefficient estimates displayed as Table 2, a forecasting system
can be set up. In a vector autoregression, all variables - including the theoretically exogenous
SOB - are assumed as endogenous, hence such forecasting can be conducted for all four
variables. However, we were mainly interested in the evolution of the stock of sows. The out-
of-sample prediction based on the estimates and on the identified seasonally cointegrating
structures is shown as Figure 5.

For an analysis of ‘the merits and drawbacks of using seasonal cointegration in
prediction, see Kunst (1993b), where it was demonstrated that the true model with respect to
the number of seasonally cointegrating vectors typically fails to dominate its "misspecified"
rival models with respect to forecasting accuracy (see also Reimers, 1995). In fact, this is not
only true for seasonal cointegration but also for the classical case of long-run cointegration, as
was shown by, e.g., Brandner and Kunst (1990), among others. Correspondingly, in the
analysis of Engle and Yoo (1987), imposing the correct cointegrating restriction enhanced 1-
step prediction for t>5 only. In summary, forecasting is a very special purpose for an
econometric model and "best" models according to statistical criteria are not necessarily best
forecasting models. In consequence, some forecasters prefer to evaluate their models by ex-
post and ex-ante prediction based on some reasonable model specifications rather than by

common statistical measures such as likelihood-ratio tests and information criteria.
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In our setting of a seasonally cointegrating VAR, the following prediction experiments
look promising:
(1) Ex-post analysis to see how well the model tracks its own reality. This experiment was
conducted and produced extremely satisfactory results, as usual.
(2) The long-run and seasonal cointegrating vectors are taken from the full sample but all
other short-run coefficients are re-estimated for a shorter interval and the omitted observations
are then forecasted.
(3) The decision on cointegrating ranks is adopted from the full sample, i.e., Table 1.
Everything else is re-estimated. Cases 2 and 3 are representative of the idea that the
cointegrating features are possibly #7ue and hence best estimated from a longer time span but
all other features are possibly unstable or lag lengths are under-specified.
(4) Full ex-ante prediction in the European sense of the word.
(5) Out-of sample ex-ante prediction in the American sense of the word. This experiment is
shown in Figure 5. In order to get a better understanding of longer-run prediction properties,
we also recommend stochastic simulation, even in a linear model. The resulting pictures are
possible scenarios if random shocks are drawn from Gaussian dfstributions with their variances
taken from the sample estimates.

The qualitative result from experiments 2 to 4 can be summarized as follows. For cases
2 and 3 and for prediction intervals covering up to 2-3 years, prediction is almost as accurate
as in case 1. The only exceptions are a slight under-prediction of soy-bean prices SOB with
corresponding siight over-prediction of the herd size SFB. For our data set, the canonical
correlations, by which the cointegrating ranks are determined, proved remarkably robust
against shortening the sample from the end, hence experiment 4 was no different from
experiment 3. An exemplary graphical protocol of a case 2 experiment with just the last 6
observations predicted is shown as Figure 6.

On the whole, the prediction performance of the model proved "satisfactory"
according to visual criteria for known data, hence it is tempting to presume that it will also be
satisfactory for future developments. However, this conclusion only holds true if the

immediate future does not bring any unforeseen major changes in the economic environment.
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Austria's full membership in the European Community from January 1995 could be such a
major change. EU membership brought some changes in legislation emanating from the CAP.
Pfingstner (1994) pointed out that, at the early stage of Austrian EU membership, the
producer price of pigs will decrease by 22 %. As already outlined, Austrian farmers seem to
have anticipated such a price fall by gradually reducing the level of livestock. Future data will
decide on whether our assumption is correct - i.e., that the main agriculturakl supply response
structures are stable and continue to hold - or whether this is a case for exogenously

determined structural breaks.

4, CONCLUSION

We have examined the relevance of incorporating seasonality in agricultural supply
models. Former studies have eliminated the problem of seasonality by using seasonally
adjusted data. Recent developments in cointegration techniques allow the comprehensive
modeling of error-correcting structures in the presence of seasonality. Without accounting for
seasonality, Hallam and Zanoli (1993) have identified exactly one cointegrating vector in semi-
annual data for the United Kingdom. Our conclusions for the Austrian market are different
from Hallam and Zanoli's conclusions for the UK market. Whereas Hallam and Zanoli's
cointegrating relation expresses one long-run equilibrium condition between herd size, input,
and output pricés, the three cointegrating vectors found for Austria correspond to long-run
individual relations between producer's prices and the herd size, between producer's prices of
close substitutes, and between input and output prices.

In many empirical applications of the seasonal cointegration procedure, results are not
easily interpretable and occasionally are at odds with theoretical considerations. In contrast,
the results of our analysis seem to meet economic criteria, This shows the robustness of our

model's validity.
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TABLE 1: Main empirical results of seasonal cointegration analysis. Canonical vectors (shown
as row vectors) at long-run and seasonal frequencies. Significant cointegration due to the

specified vector at each frequency is indicated by an asterisk. Columns correspond to SOB,

BULL, HOG, SFB in this order.

(a) canonical vectors at frequency 0
0.0857 -0.5100 0.0120 -0.9523
0.6773 -1.0693 -0.3816 -0.0416*

-0.0366 -0.9295 0.9886 0.5233 *
- 0.1044  -1.3044 0.5975 1.1300 *

(b) canonical vectors at frequency 7t (semi-annual cycles)
0.0708 7.3645 -5.8777 -2.1497*
1.2332 -4.4036 -5.2912 10.8851 *
1.7843 24355 6.8005 -9.4491 *
-0.1877 13.1036 2.7092 9.0389 *

(c) canonical vectors ét frequency n/2 (annual cycles)
0.1632 93131 27884 0.6245
0.0832 6.1544 -3.5824 1.0112
-0.7647 0.0296  1.2931 14.2996 *
2.1086 -0.3761 0.7107 5.4606*

Example: Take the second row vector from the bottom. We see that
-0.76*SOB+0.03*BULL+1.29*HOG+14.30*SFB defines a variable which is free from
seasonal cycles at the annual frequency. As all variables are free from semi-annual cycles, this
vector cointegrates at both seasonal frequencies and the resulting variable is non-seasonal.




TABLE 2: Parameter estimates for the seasonally cointegrated vector autoregressive model for

the four series contained in the agricultural supply system with the four series (SOB, BULL,

HOG, SFB) = (¥}, I, Y3, ¥;). Estimation has been conducted by Maximum Likelihood under

the rank restrictions identified from Table 1. See formula (6) in the text.

Y,

It

A(B)| ¥

3

¥y

e

-0.12
-0.01
-0.03
0.02

[ 0.19
0.20
-0.20
| -0.01

[0.44
0.00
0.02
10.01

-1.68

-1.57
1.15

-0.20

0.37
0.46
-0.22
-0.08

0.03
0.06
0.10
0.10

-0.19
0.00
0.02

0.06

-0.04 0.70 0.09 -0.02 Y,
-0.01 0.38 0.07 -0.12 Y,
AB)|
0.01 041 012 -0.76 Y,
-0.00 0.07 0.01 -0.12 Y.,
-0.31 -0.09 Y,
-0.14 -0.27 Y.,
AB) .7 |+
0.45 -0.99 Y
O. 1 l "012 Y4_,_:
-0.48
0.02 0.68 -1.07 -0.38 -0.04
o.o; -0.04 -0.93 0.99 0.52 |(1+B%)
' 0.10 -1.30 0.60 1.13
-0.01 ,
Y,
-0.7647 0.0296 1.2931 14.2996 A Y.,
2.1086 -0.3761 0.7107 5.4606 Y.,
Y.
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