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ABSTRACT
We study three dimensional bi-Hamiltonian systems in general and use the obtained
results to classify all three dimensional Lotka-Volterra equations, which admit a bi-

Hamiltonian representation.

ZUSAMMENFASSUNG.
In der vorliegenden Arbeit studieren wir drei-dimensionale bi-Hamiltonsche Systeme
und klassifizieren alle drei-dimensionalen Lotka-Volterra Gleichungen, welche eine bi-

Hamiltonische Darstellung zulassen.

Keywords: Hamiltonian systems, Lotka-Volterra equations

JEL-classification: C73




1. Introduction

In the last decade a lot of research effort has been devoted to the problem of finding constants
of the motion of three dimensional dynamical systems depending on parameters. Except for
some simple cases, this problem is very hard and no general methods to solve it are known up
to now. Nevertheless several approaches were developed in the last years and the most
important among them are: specific ansatz for a constant of the motion [1,2], Painleve
analysis [3,4], the Lie symmetry method [S] and the Frobenius integrability theorem [6,7].
Knowing constants of the motion for a given dynamical system is interesting both from an
analytical and numerical point of view. If a three dimensional dynamical system admits a
constant of the motion, then the phase space is foliated into two dimensional flow invariant
leafs and therefore certain types of irregular orbits cannot occur. For complex problems
constants of the motion are a welcomed check of the used numerical scheme with respect to
its accuracy and stability.

In some cases it is even possible to find for a given three dimensional dynamical system two
functionally independent constants of the motion. Then the orbits are the intersections of two
dimensional flow invariant surfaces and therefore non chaotic. ( Indeed, chaotic behaviour is
often associated with non-integrability of the dynamical system. )

The aim of the present paper is to show that almost all three dimensional dynamical systems,
which admit two independent constants of the motion are so called bi-Hamiltonian systems,
1.e. they can be written in Hamiltonian form in two distinct ways. The paper is organised as
follows: in section 2 we explain what Hamiltonian and bi-Hamiltonian systems are. In section
3 we study three dimensional bi-Hamiltonian systems in general and in section 4 we apply the
obtained results to the three dimensional Lotka-Volterra equations and classify all of them,

which admit a bi-Hamiltonian representation.




2. Hamiltonian and Bi-Hamiltonian systems

Hamiltonian systems have their origin in classical mechanics. In local coordinates they are

given by an ordinary differential equation of the form

x=8VH

0
where S = [

] OJ ( I the identity matrix ) and H a smooth real valued function. It is well

known that H is a constant of the motion, the so called symplectic structure S is preserved by
the induced flow and the matrix of the linearisation at every fixed point can be written as the
product of the skew-symmetric matrix S and a symmetric matrix, which implies a high
symmetry for the fixed point eigenvalues [8,9]. The main disadvantages of the classical
notion of Hamiltonian systems are the coordinate dependence and the artificial restriction to

even dimensional phase spaces. These drawbacks are eliminated by the following definition.

Definition 2.1

Let i = f(x) be a smooth differential equation defined on some open subset G of R”. It is

called a Hamiltonian system, if it can be written as X = JVH where
i) His a smooth real valued function defined on G.

i) J is a Poisson structure matrix, i.e. it is an x-dependent skew-symmetric matrix satisfying

T G Y . .
the Jacobi-identi Sk g iy SR =) VxeG, V1I<imk<n
ty ;(1 il ax’ ./ 134 ax/ I ml ale

ii1) the matrix of the linearisation at every fixed point can be written as the product of a skew

symmetric and a symmetric matrix.

This definition of a Hamiltonian system deviates from the usual one - as it can be found for
instance in Ref. [10] - by the extra assumption iii). We included iii) in our definition mainly

for two reasons: First of all classical Hamiltonian systems have this property and secondly




without condition iii) strange examples of Hamiltonian systems can arise. For instance, let A
be a n x n-matrix with a zero eigenvalue, then X = 4x is Hamiltonian in the sense of Ref. [10]:
Assume w.l.o.g. ( without loss of generality ) that the last row of A consists of zeros and take

H =x, and ] given by

fori<l

‘ 0 for l#n
= (4x) for I=n

Ju=~Jy Jor i>1
J is a so called Lie-Poisson structure [10].

In order to exclude such exotic examples of Hamiltonian systems we were forced to include
condition iii) in our definition.

It has to be noted that condition iii) of definition 2.1 is automatically fulfilled, if the rank of
the Poisson structure matrix J is locally constant at the fixed points; this can be proved by a
generalisation of the well known Darboux theorem for classical Hamiltonian systems [11].

A nxn-matrix A, which can be written as the product of a skew-symmetric and a symmetric
matrix, we call Poisson-matrix. Then definition 2.1 implies that for a given differential
equation to be Hamiltonian it is necessary that the matrix of the linearisation at every fixed
point is a Poisson-matrix. A detailed analysis of Poisson matrices can be found in Ref. [12].

There the following result is proved.
Theorem 2.2
A nxn-matrix A is a Poisson-matrix if and only if 4=-4, i.e. there exists an invertible

matrix 7 suchthat A =-T""A4T.

An easy consequence of theorem 2.2 is the following corollary.




Corollary 2.3

If a n x n-matrix A is a Poisson-matrix, then with A also —A,X,—X are eigenvalues of A.

These are the familiar symmetry properties of the eigenvalues at fixed points of classical
Hamiltonian systems and the above example shows that assumption iii) of definition 2.1 is

crucial for this property to hold.

Sometimes it is the case that a given differential equation can be written in two distinct ways
as a Hamiltonian system; if further the Poisson structure matrices are in a certain sense
compatible, then it is called a bi-Hamiltonian system. Formally this situation is described by

the following definition.

Definition 2.4

Let &= f(x) be a smooth differential equation defined on some open subset G of R". It is
called a bi-Hamiltonian system, if it can be written in two distinct ways as a Hamiltonian
system, 1.e. X = J\VH, = J,VH, where

1) J, and J, are not constant multiples of each other and compatible, i.e. &/, + £/, is a Poisson
structure matrix for all o, feR.

i1) H, and A, are functionally independent for all non singular points of the differential

equation.

According to a fundamental theorem of Magri [13], provided certain technical conditions are
satisfied, bi-Hamiltonian systems are completely integrable systems in the sense of Liouville
[8,11]. In the present work, however, we do not study bi-Hamiltonian systems in general, but
we restrict our attention to the study of three dimensional bi-Hamiltonian systems, and we

will see that in this special case, things become very simple, mainly for dimensional reasons.




3. Three dimensional Bi-Hamiltonian systems

Definition 2.4 implies that for a given three dimensional differential equation to be a bi-
Hamiltonian system it is necessary that the linearisation at each fixed point is a Poisson
matrix and that there exist two globally defined functionally independent constants of the
motion. In the remaining part of this section we will show that these conditions are already
sufficient for a three dimensional dynamical system for being a bi-Hamiltonian one. This is
surprising because it implies that in three dimensions the two Poisson structure matrices are
completely determined by the constants of the motion. How a Poisson structure matrix can be

generated form a constant of the motion is answered by the following proposition.

LetC, = g—g— for the rest of this section.
X,

3

Proposition 3.1

Let C, mG c R’ — R be arbitrary smooth functions, then

0o ¢ -G
J=m(x)|-C, 0
¢, -C 0

is a Poisson structure matrix.

Proof:
J is clearly skew-symmetric.

The Jacobi-identity reduces in the three dimensional case to the following single equation:

j(_gﬁ_éf”] J(@,z @23} ](0713 %J
12 dCl dfz 13 @C é\ 23 c'zk d(fz




mCy(m,C, +mC,, —m,C, =mC,,) -
mC,(mCy +mC,, —m,C, —mC,;)+
mC,(=m,C, —=mC,, +m,C, +mC,,)=0

Now we are able to prove the main result of this section.

Theorem 3.2

A three dimensional differential equation % = f(x) x € G ¢ R® is a bi-Hamiltonian system if

and only if it admits two functionally independent constants of the motion and the Jacobian of

each fixed point is a Poisson matrix.

Proof:

One direction of this theorem is trivial. If a three dimensional differential equation is a bi-
Hamiltonian system, then by definition it has two functionally independent constants of the
motion and the Jacobian of each fixed point is a Poisson matrix.

It is the converse which is of interest. If a three dimensional differential equation admits two
functionally independent constants of the motion X and H, then VK, VH are linearly
independent and orthogonal to f{x). Since we are in three dimensions this implies that the

cross product of VK, VH is, up to an.x-dependent scalar m(x) equal to fix), i.e.

7(x)=m(x)VK x VH . And the rest of the proof follows from the following observation:

0 K -K)H 0 -H, H YK
fx)=m(x)VKxVH=m(x)| -k, 0 K |H|=mx)| H, 0 -H|K,
K, =K 0 H, -H, H, 0 K




0 K, =K, 0 -H, H,
That m(x) -K, 0 K, | and m(x) H, 0 —H, | are Poisson structure matrices
K =K 0 ~H, H 0

follows form proposition 3.1. They are not constant multipliers of each other, since X and #
are functionally independent. That they are compatible Poisson structures can be seen by

applying proposition 3.1 to the following smooth function:

okK(x)+pH(x) , a, BeR
Finally recall that the Jacobian of each fixed point is a Poisson matrix by assumption.

g.e.d.

Note that, if m(x) does not change sign, then dx, ndx, Adx, is as an invariant volume

m(x)

form of the underlying differential equation, since div(VK x VH )=0.

In the next section we will show for a very prominent example how powerful a local analysis
can be in order to detect submanifolds in the parameter space on which a given dynamical

system is a Hamiltonian or even a bi-Hamiltonian one.




4, Three dimensional Bi-Hamiltonian Lotka Volterra equations: a classification

The 3-dimensional Lotka-Volterra equations are given by

J=1

3
jc’,:x{b’.-i-Zay.ij i=1,2,3 (1)

where b,, g, (i,7=1,2,3) are arbitrary parameters.

This class of differential equations is of interest in different branches of science. In physics
they are important for such problems as mode coupling of waves in laser [14] and plasma
physics [15]. In chemistry they were used by Lotka [16] to investigate autocatalytic chemical
reactions. And their role in theoretical biology and evolutionary game theory is well described
for instance in Ref [17]. So the variables x;, may represent, among other things, frequencies of
biological species or chemical components and, as such, belong to R;. Therefore it is natural
to restrict the analysis of (1) to the non negative orthant. The special structure of (1) implies
that the boundary and the interior of the non negative orthant are flow invariant. It is easy to
analyse under what conditions (1) is a Hamiltonian system on the boundary, since it is two
dimensional there ( see for instance Ref. [18] ). So we can restrict ourselves to the interior of
the non negative orthant, denoted by R’. In the remaining part of this section we study the
consequences of our assumption iii) in definition 2.1. We will see that this local property

already determines the global dynamics of (1).

So let us assume that (1) admits at least one interior fixed point p, i.e. all components of p are

positive and p satisfies the following equation:
Ap+b=0 (2)

The Jacobian at such a fixed point p is given by




and, 4P appb
Jac(p): anp, anpp, Aanp; (3)

anwpPy AppP; Aup;

From the definition of a Poisson matrix with the help of theorem 2.2 and corollary 2.3 one

can easily deduce that a three dimensional matrix is a Poisson matrix if and only if the

determinant and the trace of this matrix are equal to zero. The condition det(]ac( p))= 0

implies - since p is by assumption an interior fixed point - that
det(4)=0 4)

(4) together with (2) yields that we have a fixed point line in the interior of the first orthant

and hence the trace of (3) has to be equal to zero for all interior fixed points, i.e.:

3
> a,p, =0 for all interior fixed points p (5)
i=]

Condition (4) implies that the rank of the interaction matrix A is <2. Since the two cases

rank( A) =0 and rank( A) =1 are trivial, we omit them. What remains is the rank(4) =2 case.
If rank(4) =2, then the conditions (2) and (4) imply that (1) has a fixed point line in the

interior of the first orthant. Further there exists an @ € K not the null vector, such that:

Aa=0 (6)

From (6), (4) and (2) follows that the vector € R® determined by (6) is orthogonal to the &

vector, i.e.
(a]p)=0 %

since (a|b) = {(a|-4p) = <A7'al——p> ={0|p)=0.
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The equations (6) and (7) together with corollary 4.6. of Ref [18] yield the following

proposition, which is our first global result.

Proposition 4.1
If the Jacobian of all interior fixed points of the three dimensional Lotka Volterra equations is

a Poisson matrix, then they admit a constant of the motion of the following form:

Clx)= Hx ®)
i=1

where « € R’ is given by (6).

Since e R’ is not the null vector, we can assume - after an appropriate labelling of the
variables - w.l.o.g. that o;=1. This has two nice consequences: first the third row of the
interaction matrix A can be represented as a linear combination of the first and second one

and secondly we get from (8) the following coordinate transformation

X, X,
L= X5 )
C
X3 @
» XX

The coordinate transformation (9) can be used to bring the three dimensional Lotka Volterra
equations into a form, which is appropriate for our purposes. But before doing this, let us
collect some more results.

Since the third row of the interaction matrix A is a linear combination of the first and second

one the fixed point equation (2) reduces to:

A
4y Gy G5 _ b 10
Uy Gy p
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rank( A) = 2 implies further that at least one 2 x 2-sub matrix of the matrix
(a” %, an3} ‘ 11
Gy Gy Gy
is non-singular. We demonstrate the consequences of this fact exemplary for the case

det[‘a“ a‘z} +0 (12)

Gy Ay
Condition (12) together with equation (10) yields
(1%): 1 (azz ~a12j(_b1~al3p3] (13)
P) Gy =aut \~% a4 \~b—aup,

where p; is arbitrary.

Inserting (13) into (5) gives after some algebraic computations the following result:
- 1a22(an - am) + bzau(azz - a12) - P det(Av Az’"diaé"(A)) =0, forall p;>0 (14)

where diag(4) = (a,,,4,,,a,,) and 4, denotes the i-th row of A.

(14) is fulfilled if and only if

det(4,, 4,,~diag(A4)) =0 (15)

and
~ ba,, (an ——a21)+b2a“(a22 - alz) =0 (16)
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Equation (15) together with the fact that the third row of A is a linear combination of the
first and second one implies that -diag(4) is a linear combination of the row vectors of the

matrix 4; i.e. there exists a S & R’, such that
A= ~diag(A) (17)

This S e R’ is orthogonal to the b vector, i.e.
(Blb)=0 (18)

since (B|6) = (|- Ap) = <—Arﬂ1p> = (diag(4)|p) = iaﬁpi =0.

j=

From (6) follows further that:

—diag({A) = A B= A B+ 4 a= A (Aa+p)

where A € R is arbitrary and therefore we can assume w.l.o.g. that £, =1 (set A=1- 4, and

recall that we assumed o =1).

In proposition 4.1 of Ref. [18] we have proved that the n-dimensional Lotka Volterra

n
equations are volume preserving with density function fo"‘“ whenever the conditions

i=1

A'B=~diag( 4) and {B]6) = 0 are fulfilled. This fact together with (17) and (18) yields our

next global result.

Proposition 4.2
If the Jacobian of all interior fixed points of the three dimensional Lotka Volterra equations
is a Poisson matrix, then they are volume preserving with a density function of the following

form;

xf (19)
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Since multiplying a differential equation with a density function does not change the phase
portrait, we can multiply (1) with (19). Further we can apply the coordinate transformation
(9) to these differential equations. After these manipulations the three dimensional Lotka

Volterra equations are given by the following system of differential equations:

c
A -1 .
% = xPd (bl + Ay X X, g e j

12

. _ C
X, = xf‘ le{bz + a4y X+ X, + Ay e j (20)
~ ]

¢=0

As it should be, in this new coordinates, the three dimensional Lotka Volterra equations

have a trivial constant of the motion, namely:
K=c¢ 21

The constant of the motion (21) generates a foliation of the phase space into two
dimensional flow invariant leafs. The dynamics on such a leaf is given by the following two

dimensional differential equation:

] - . c_
X, =X,ﬂ"€fz [bx"‘anxl'*'axz)z"*‘au xa,tag)
1%

(22)

. ) c

X = “\{}’ 1)‘? [bz T+ + X F Uy J
X, X e

1

Calculating the divergence of (22) yields:

ﬂqwlxgz_lliﬁbi +,82b2+(,ﬁq1+,@a2,+a”)x1 +(ﬁ5‘12+1@%2+%2)x2+(ﬁa13+)@%3“%ax3“%3)'%a%g} (23)
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The expression (23) implies that the divergence is identical to zero if ‘and only if
- A"B=~diag(A) and (B|b)=0. But these conditions are automatically fulfilled, since they
coincide with (17) and (18). Hence the differential equations (22) are a divergence free two
dimensional system and therefore Hamiltonian with the canonical Poisson structure matrix

0 1
( l OJ and the Hamilton function H given by:

¢
R
for suitable chosen f(x,) and g(x,) and ¢, a, given by (6) and 3, f3, given by (17).

¢

H(x,x) =J«\{*Xf’"[lz a3+, + b+ 1 () ‘=-Ix{"‘xf‘[1a O )d% +g(x,) (24)

Integration of (24) is straightforward and hence not carried out here. ( But note that an
inspection of (24) immediately implies that functions of the form x* have to be integrated

and hence in the constant of the motion only terms of the form x” or Inx can appear )

H is clearly also a constant of the motion of the full three dimensional system (20) and
functionally independent of the constant of the motion (21).Hence we get a further global

result, namely:

Proposition 4.3
If the Jacobian of all interior fixed points of the three dimensional Lotka Volterra equations is
a Poisson matrix, then they admit a second constant of the motion of the form (24), which 1s

functionally independent of the constant of the motion (21).

Finally let us give also a dynamical interpretation of the condition (16). It is easy to verify
( see for instance Ref [18] ) that (16) is equivalent to the fact that the two dimensional

subsystem on the x,, x,-face is - after multiplying it with an integrating factor of the form

(19) - divergence free and hence Hamiltonian. But this implies the following proposition.
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Proposition 4.4
If the Jacobian of all interior fixed points of the three dimensional Lotka Volterra equations is

a Poisson matrix, then at least one two dimensional subsystem is a Hamiltonian one.

Putting all the results obtained in this section together we get with the help of theorem 3.2 the

following classification theorem for three dimensional Lotka Volterra equations.

Main Theorem 4.5

Consider a three dimensional Lotka Volterra equation with at least one interior fixed point,
then the following statements are equivalent:

1) It is a bi-Hamiltonian system.

ii) It is a Hamiltonian system.

ii1) The Jacobian of all interior fixed points is a Poisson matrix.

iv) It has a fixed point line in the first orthant and the the conditions (15) and (16) are
satisfied.

v) It has a fixed point line in the first orthant and the trace of the Jacobian is equal to zero at
all fixed points.

vi) It has a fixed point line in the first orthant, it is volume preserving with a density

function of the form (19) and at least one two dimensional subsystem is a Hamiltonian one.

Note that in general only the implications /) = i7) = iii) hold, but not their converse.

Condition iv) of the main theorem 4.5 implies the following corollary.

Corollary 4.6
In the class of three dimensional Lotka Volterra equations Hamiltonian and bi-Hamiltonian

systems form in general a codimension 4 phenomenon.
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The above results imply that the foliation of the phase space is symplectic. The dynamics
on a symplectic leaf is characterised by the eigenvalues at the fixed points: are the
eigenvalues at a fixed point real, then we have a saddle point with a stable and unstable
manifold. On the other hand, if the eigenvélues at a fixed point are purely imaginary, then
the fixed point is a center, i.e. surrounded by a continuum of periodic orbits. Whether the
fixed point eigenvalues are real or purely imaginary is determined by the sign of the

following algebraic expression ( to see this, calculate the eigenvalues of (3) ):
2123 (a} o = oy, ) + Py Gy — @35, ) + P2P3(azza33 — Gy, ) (25)

If (25) is positive, then the eigenvalues are purely imaginary and if (25) is negative, then the

eigenvalues are real.

5. Conclusions

In the present work we studied three dimensional bi-Hamiltonian systems in general and we
used the obtained results to classify all three dimensional Lotka Volterra equations, which
admit a bi-Hamiltonian structure. We proved that for this class of differential equations bi-
Hamiltonian systems form in general a codimension 4 phenomenon. We gave a dynamic
interpretation of the four conditions defining the " Hamiltonian " codimension 4 manifold in
the parameter space and further we found out that there is no difference between
Hamiltonian and bi-Hamiltonian Lotka Volterra equations. All these results were obtained

from a detailed local analysis around the fixed points of the system.
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