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A flexible distribution family for testing MCMC implementations1

Tamás K. Papp (tkpapp@gmail.com)
Institute for Advanced Studies, Vienna

August 2, 2025

Abstract

We propose a flexible, extensible family of distributions for testing Markov Chain Monte Carlo
implementations. Distributions are created by nesting simple transformations, which allow various
shapes, includingmultiplemodesand fat tails. The resultingdistributions canbesampledwithhigh
precision using quasi-random sequences, and have closed form (log) density and gradient at each
point, making it possible to test gradient-based samplers without automatic differentiation.

1 Introduction

Bayesian inference results in a posterior distribution over the parameter space of the model. Except for
special cases, such posterior distributions do not conform to any well-known family, and their analysis
requires sampling, which is a computationally intensive task that requires specialized algorithms and
software developed for this purpose. The history of Bayesian computation is a procession of increas-
ingly complex and sophisticated algorithms (Robert and Casella 2011), with constant new develop-
ments (Bou-Rabee, Carpenter, and Marsden 2024; Bou-Rabee, Carpenter, Liu, et al. 2025).

Testing software implementations of these algorithms is challenging for three reasons. First, their
output is stochastic, which requires a statistical approach, as opposed to simply comparing that the im-
plementation maps known inputs to known outputs (Whittaker 1997; Ševčíková et al. 2006). Second, as
emphasized by Grosse and Duvenaud (2014), it is difficult to separate the problems with the mixing of
the Markov chains from the flaws in the implementation. Third, the very quantities we want to compare
are, in general cases, unknown: as Talts et al. (2020) put it,

The most straightforward way to validate a computed posterior distribution is to compare
computed expectations with the exact values. An immediate problem with this, however,
is that we know the true posterior expectation values for only the simplest models.

This paper addresses the last point, by providing a very general distribution family which allows

1. accurate sampling using low-discrepancy sequences, which can be compared to MCMC output,

2. closed form calculations for the gradient of the log posterior, allowing the use of gradient-based
methods (Neal 2011; Hoffman and Gelman 2014) without automatic differentiation, making the
software implementation easier.

We review the related literature in Section 2. Section 3 introduces the model family, while Section 4
demonstrates one possible approach to unit testing MCMC software. Section 5 concludes.

2 Related literature

Geweke (2004) relies on posterior distributions being (unscaled) products of a prior and a likelihood.
Samples are obtained in two ways:

1. sample p(θ) from the prior, then sample p(x |θ) from the generative model,

2. given a (θ,x) from the previous step, update θ using an MCMC transition, then generate data
from p(x |θ). The combination of these steps should preserve the joint distribution p(θ,x).

1This paper documents the internals and rationale of the Julia software library Papp and contributors (2025b). Tamás
K. Papp acknowledges the support of the Austrian National Bank Jubileumsfonds Projekt 18847. I would like to thank Robert
Kunst for comments.
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Figure 1: Sobol sequence in 2D, 1024 points.

Both methods should yield samples from exactly the same distribution, and they can be compared
using various statistics.

Cook, Gelman, and Rubin (2006) suggest the following procedure. Use the prior p(θ) to generate a
parameters θ0, then the generative model p(x |θ0) to generate a data sample x. Finally, obtain posterior
samples θi, for i=1,2,...,L, and calculate the quantile q̂(θ0) =

1
L

∑︁L
i=11θ0>θi . The authors show that as

L→∞, q̂(θ0) converges to the uniform distribution. This can be evaluated graphically or using formal
statistics.

Talts et al. (2020) suggest comparing the data averaged posterior

pD(θ)=

∫︂
p(θ |y)p(y |θ)d(y)p(θ)

to the prior distribution, where the integral is evaluated numerically, direct sampling fromt the prior
p(θ) and the data generating model p(y |θ), and MCMC for p(θ |y). The comparison is performed using
one-dimensional rank statistics f :Θ→R, using empirical quantiles similarly to the q̂ of Cook, Gelman,
and Rubin (2006). The preferred method of comparison is visual, and the proposed simulation strategy
also allows for error bands.

3 The distribution family

It is assumed that the user has access to an implementation of low-discrepancy sequences2 to generate
quasi-random numbers u(i), i = 1, ... ,N in [0,1]m.3 Figure 1 shows samples from a commonly used
low-discrepancy sequence, the Sobol sequence, which we also use in our implementation.

Each distribution implements the hypercube transform h : [0,1]m→Rn and a density function p :Rn→
R+ that have the property ∫︂

Rn

g(x)p(x)dx≈ 1

N

N∑︂
i=1

g
(︁
h(u(i))

)︁
)ℓ
(︁
h(u(i))

)︁
where the properties of the approximation depend on the variation of g as described in Morokoff and
Caflisch (1995) and Caflisch (1998).

Provided that a distribution has this property, we are able to
2See Niederreiter (1988).
3Lacking that, we assume that ui are obtained from a suitable random number generator, but that is less than ideal for

accuracy so we suggest that it is avoided.
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1. obtain low-discrepancy samples using h, and

2. compare them to the the result of MCMC methods sampling from f .

We describe the construction of a family of functions that have this property below. For numerical
accuracy, we construct the log density function

ℓ(x)= log(p(x))

and its gradient ∇ℓ(x).
Notice the two dimensions associated with a distribution in this family: n is the dimension of the

domain, whilem≥n is the hypercube dimension. The two may be different because we need extra values
to generate mixtures, as explained in Section 3.3.

3.1 Primitives

Assume that a univariate distribtion D is available with log density ℓ : R → R+ and inverse cumulative
distribution function I : [0,1]→R. Then, for a given dimension n≥1, we define

ℓD(x)=
N∑︂
i=1

ℓ(xi)

∇ℓD(x)=

N∑︂
i=1

ℓ(xi)

hD(u)=

⎛⎝I(u1)
...

I(un)

⎞⎠
Averyconvenientprimitive family is thestandardnormal. WeintroduceStdNormal(n)usingtheabove
notation4 with

ℓ(x)=−x2/2+log(2π)
2

I(u)=
√
2erf−1

(2u−1)

It follows that

ℓStdNormal(x)=−
∥x∥22+nlog(2π)

2
∇ℓStdNormal(x)=x

hStdNormal(u)=
√
2

⎛⎝erf−1
(2u1−1)
...

erf−1
(2un−1)

⎞⎠
Figure 2 shows the contour plot of the highest density regions of the StdNormal(2) distribution, primar-
ily for establishing the convention of illustrating distributions in R2 with 90%, …, 10% highest density
contours in the paper.5

3.2 Transformations

All transformations are defined using a differentiable bijection g :Rn →Rn where n is the dimension of
the distribution. In this section we use the convention y=g(x).

4Notation in this paper closely follows the software package Papp and contributors (2025b), with names exported from
that package typeset in slanted font. Upper/lowercase and minor spelling conventions may differ.

5Given the exact sampling using Sobol sequences, such contours are trivial to obtain computationally.
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Figure 2: The standard normal distribution StdNormal(2). Contour lines are highest density regions
containing 90%, …, 10% of the probability mass.

Given a source distribution S, characterized by ℓS ,hS , the destination distribution D has

hD(u)=g(hS(u))

ℓD(y)=ℓS
(︁
g
−1
(y)

)︁
−log

(︃⃓⃓⃓⃓
det

(︃
∂

∂x

(︁
g
−1
(y)

)︁)︃⃓⃓⃓⃓)︃
⏞ ⏟⏟ ⏞

≡c

∇ℓD(y)=∇ℓS
(︁
g
−1
(y)

)︁ ∂

∂y

(︁
g
−1
(y)

)︁
⏞ ⏟⏟ ⏞

∂x
∂y

−∂c

∂y

where c is the correction required for transformation of the variables. For all transformations, we pro-
vide analyitical characterizations of g−1, c, ∂x

∂y , and ∂c
∂y , which makes calculations possible without au-

tomatic differentiation.
All transformations preserve the hypercube dimension of the source distribution.

3.2.1 Linear map

The linear map Linear(A) uses the mapping y=g(x)=Ax, for an n×n invertible matrix A. Then

x=A
−1
y

∂x

∂y
=A

−1
c= log(|det(A)|) ∂c

∂y
=0

Figure 3 shows an example.

3.2.2 Translation

Translation Shift(b) takes a vector b of length n, and is defined using y=g(x)=x+b. Then

x=y−b
∂x

∂y
=0 c=0

∂c

∂y
=0

Shift may seem like a trivial transformation, but it is very useful since it allows omitting a location
parameter from the other transformations: a general transformation τ centered around the origin can
be recentered around an arbitrary location b as Shift(b)◦τShift(−b). We use this extensively below.

4
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Figure 3: Linear(A)(StdNormal(2)) with A =
(︁
0.2 0.5
0.4 −0.7

)︁
. Contour lines are highest density regions

containing 90%, …, 10% of the probability mass.

3.2.3 Elongate

The Elongate(k) transformation stretches (or shrinks) the tails around the origin. For a given parameter
k∈R, it is defined by

y=g(x)=x·
(︂
1+∥x∥22

)︂k

In order to characterize g−1, we define ξ(Y,k) as the X>0 that

Y =X ·(1+X2)k (1)

for all Y > 0. The solution always exists since the right hand side of (1) is increasing in X . Calculating
ξ(Y,k) requires a univariate numerical solver, such as bisection or Newton’s method.6

Then, for a given y, let

κ=ξ(∥y∥2,k)
2 D=(1+κ)−k x=D ·y

c=knlog(1+κ)2+log(1+kκ/(1+κ)) A=1+κ B=1+(1+2k)κ

Using these, we can calculate

∂x

∂y
=(In−(2k/B)xx′)D

∂c

∂y
=
k(2+Bn)

A2k+B2
·y

Figure 4 shows an example.

3.2.4 Funnel

The transformation for Funnel, inspired by the well-known example of Neal (2003), uses the mapping

y=g(x)=

⎛⎜⎜⎝
x1

x2exp(x1)
...

xnexp(x1)

⎞⎟⎟⎠
6Newton’s method can be set up in a way that it is always convergent in a few steps. See the related source code.
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Figure 4: Elongate(0.5)(StdNormal(2)). Contour lines are highest density regions containing 90%, …,
10% of the probability mass.
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Figure 5: Funnel(StdNormal(2)). Contour lines are highest density regions containing 90%, …, 10% of
the probability mass.

which has

∂x

∂y i,j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i=j=1

exp(−y1) if i=j ̸=1

−yiexp(−y1) if i ̸=1,j=1

0 otherwise

c=(n−1)y1
∂c

∂y
=

⎛⎜⎜⎝
n−1
0
...
0

⎞⎟⎟⎠
Figure 5 shows an example.
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Figure 6: Let ℓN = StdNormal(2), b = (20), ℓ1 = Shift(b)(ℓN ), ℓ2 = Shift(3b)(ℓN ). Define two
mixtures: a constant mixture Shift(−2b)(Mix(0.3, ℓ1, ℓ2)), (left panel) and a directional mixture
Shift(−2b)(Mix(αD(·;

(︁
0.5
−0.7

)︁
),ℓ1,ℓ2)) (right panel). Contour lines are highest density regions containing

90%, …, 10% of the probability mass.

3.3 Mixtures

Consider two n-dimensional distributions, characterized by hA,ℓA,∇ℓA and hB,ℓB,∇ℓB , and a weight
function α :Rn→ [0,1]. Define and n+1 dimensional distribution with

h(u)=

{︄
hA(u[1:n]) if u[end]<α(u[1:n]),

hB(u[1:n]) if u[end]≥α(u[1:n])

where x[1:n] are the first n elements of x, and x[end] is the last element: we use the last coordinate of
the hypercube to mix the distributions. The hypercube dimension of the mixture distribution is

m=max(mA,mB)+1

The log density of the mixture distribution is7

ℓ(x)= log(α(x)exp(ℓA(x))+(1−α(x))exp(ℓB(x)))

and its gradient is

∇ℓ(x) = (∇α(x)+α(x)∇ℓA(x))exp(ℓA(x)−ℓ(x))+ (−∇α(x)+(1−α(x))∇ℓB(x))exp(ℓB(x)−ℓ(x))

Note that a special case of a constantα is what is usually called a mixture distribution, but the concept can
be generalized readily. For example, let

αD(x;d)= logistic(x·d)

define a directional weight, which varies between 0 and 1 in the direction of d. Combined with Shift and
Linear, the 0.5 mixture hyperplane can be relocated from the origin. Figure 6 shows an example.

7Care should be taken to prevent over- and underflows; this is addressed in the accompanying package but not detailed
here.
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Figure 7: Bin statistics for the correct implementation (left) and an erroneous implementation (right).
Thin grey: bin shares obtained using low-discrepancy sequences and a hypercube transform, thick
red: MCMC sampling.

4 Use in testing MCMC implementations

Let ℓ be a (log) density constructed using the transformations described in Section 3. An MCMC im-
plementation would provide a sample from the posterior ℓ, possibly pooled from multiple chains, after
convergence assessment (Vehtari et al. 2021). LetL denote the total (pooled) sample size. At this point,
one could generate a sample using the hypercube transform related to ℓ, and compare the two distri-
butions using formal tests, such as the two-sample Kolmogorov–Smirnov test (Berger and Zhou 2014).

Here, we outline a more visual approach that accounts for sampling variation, with the understand-
ing that similar ad hoc methods can be invented depending on the intended use. Draw K ·L samples
using the hypercube transform and a low-discrepancy sequence, where K is a small integer, eg 20–50.
Similarly to Cook, Gelman, and Rubin (2006), we use a test quantity f that maps posterior samples to
a real number, calculate Q quantiles q1, ... ,qQ of the test quantity using the sample. Then divide the
sample into K subsamples and count the proportions of the test quantity in each bin. The idea is to
establish sampling variation for the bin ratios using the same sample size.

In order to compare to the MCMC draws, apply f to the posterior, and bin using the same q1,...,qQ as
above. One can then compare either visually, plotting the low-discrepancy ratios vs the MCMC draws,
or using rank statistics.

We demonstrate using the distribution

ℓT =Mix(0.5,Funnel(ℓN10),ℓN10) where ℓN10=StdNormal(10)

which is Neal’s funnel (Neal 2003) “tamed” by mixing it with a normal distribution. We test Papp and
contributors (2025a), which is an implementation of the No-U-turn sampler as described in Betancourt
(2017). The left panel of Figure 7 shows the bin statistics using the first coordinate for the correct im-
plementation, while the right panel demonstrates the effect of introducing a typo in the probability
calculations.8 Observe how the erroneous implementation shows bin ratios outside the variation ob-
tained from the low-discrepancy sample.

Note that the binning is just an example. In a similar manner, one can compare moments or other
generalized statistics of distributions. The choice of test statistics is outside the scope of this paper, see
Modrák et al. (2025) and Säilynoja, Bürkner, and Vehtari (2022).

8While this typo is artificial for the purpose of demonstration, similar mistakes were caught using the approach described
while developing Papp and contributors (2025a).
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5 Conclusion

By combining simple transformations, we have obtained a very flexible family of distributions in Rn

from which we can obtain accurate samples using low-discrepancy sequences. By comparing these
samples to the output of MCMC algorithms and implementations, we can use these to test the latter,
and also devise challenging distributions to show how an MCMC algorithm improves on another.

Compared to other approaches, this one just generates a log density, which can be used a “poste-
rior”, with the understanding that there is no prior, model, or data involved. Also, the distribution is
continuous, so it cannot be used to test MCMC implementations that work on discrete distributions
without some appropriate transformation. Furthermore, the user still has to pick test statistics or mo-
ments to compare, and which requires understanding of the weak points of each sampler. However,
even with these limitations, we believe that this family is a useful addition for unit testing MCMC im-
plementations.
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