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Abstract
This paper is the first to analyze the effects of robotization on internal migration
flows and rural decline, which is an important driving force of societal and political
polarization in many developed economies. Using detailed migration flow data from
Austria, I show that robotization has caused significant declines in manufacturing
employment, to which populations reacted by increasingly migrating out of affected
regions. Since rural regions relymuchmore than cities onmanufacturing employment,
these migratory responses largely consist of rural-to-urban flows. Overall, increases in
robotization explain roughly one-fourth of rural-to-urban net migration between 2003
and 2016, which is primarily driven by young and medium/low-skilled individuals.
Technology-driven labor demand shocks, thus,make an important contribution to rural
decline, deepening the cleavage between advantaged and disadvantaged regions.

Keywords Employment · Internal migration · Robots · Rural decline

JEL Classification J21 · J23 · J61 · O14 · P25 · R23

1 Introduction

Over the last decades, population declines in remote rural areas have become a persis-
tent feature of demographic change in both Europe and the USA. As young and highly
educated individuals increasingly migrate towards the cities, declining rural regions
are left with lasting declines in human capital (Bjerke and Mellander 2017) and eco-
nomic performance (Dax and Fischer 2018), the disappearance of many private and
public services (Rickardsson 2021) and drastic shifts in the age structure (Johnson
et al. 2015). At the same time, rural areas in most developed economies have larger
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shares of manufacturing employment than urban areas.1 Similarly, Autor (2019, 2020)
documents that highly skilled occupations are much more prevalent in cities, while
rural areas are more reliant on employment in low- and middle-skilled jobs (especially
in recent decades). This leaves rural areas more exposed to shocks to these segments
of the skill distribution, which are especially prevalent in the manufacturing sector.
While the context-specific causes of rural decline in Europe and the USA are not well
understood, recent work by Johnson and Lichter (2019) shows that rural-to-urban
migration flows in the USA are tightly linked to declines in manufacturing.

This paper is the first to shed light on the connection between the rise of roboti-
zation, a major cause of the manufacturing decline, and rural-to-urban migration in
an advanced economy. Following the seminal work of Blanchard and Katz (1992), it
is well established in the economic literature that labor demand shocks prompt out-
migration responses and population declines in affected regions. It is, however, much
less understood where these internal migrants move and what the consequences for
regional disparities are. This paper aims to close this gap by showing that internal
migration flows caused by automation-based labor demand shocks are specifically
directed from rural to urban areas, thereby contributing to the decline of remote rural
regions. To this end, I use detailed data on internal migration flows in Austria during
the period 2003–2016. While most studies concerned with internal migration typi-
cally rely on rather crude approximations of migration flows via observed changes in
population counts, this data has the unique feature that it allows tracking migration
flows by origin and destination region. This information is crucial for examining the
direction of internal migration flows, and thus for linking them to rural decline. Since
existing studies on internal migration typically do not have information on the desti-
nation regions, rural-to-urban migration is generally not examined in this literature,
even though it is one of the prime consequences of internal migration.

To relate internal migration trends to robotization, I follow Acemoglu and Restrepo
(2020) and Dauth et al. (2021) and predict changes in robotization as a shift-share
variable, using regional industry structures and industry-level data on changes in robo-
tization from the International Federation of Robotics (IFR). To isolate the causal
effect of robotization on internal migration and rural depopulation, I rely on varia-
tion in industry-level robotization trends in other high-income countries. As is shown
in Borusyak et al. (2022), leveraging plausibly exogenous variation in robotization
shocks in other high-income countries isolates the component of robot adoption that
is driven by exogenous advances in technological possibilities. Applying this identi-
fication strategy to the Austrian data confirms a robust negative effect of robotization
onmanufacturing employment and a positive effect on out-migration flows, indicating
that robotization has had displacement effects in highly exposed local labor markets,
which in turn led to migratory responses of affected workers.

Decomposing these migration flows by the type of origin and destination region
(urban or rural) reveals that robotization led to out-migration in affected rural areas,
with the majority of this out-migration taking the form of rural-to-urban migration

1 SeeTable 1 (panelG) forAustria andTableA1 in the SupplementaryMaterial for other European countries
and the USA.
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flows, thereby contributing to rural depopulation. Overall, the estimations suggest that
increases in robotization explain roughly one-fourth of all rural-to-urban net migra-
tion flows during the observational period. This effect on rural-to-urban migration
flows is primarily driven by the demographic sub-groupswhose employment prospects
are most heavily affected by the robotization shock, namely by young and medium-
to low-skilled individuals. Their increase in net out-migration exclusively operates
through increases in out-migration rates, indicating that robotization-induced popula-
tion declines in remote rural areas are driven by these affected groups leaving highly
exposed rural regions for the cities.

This paper relates to the extensive literature on the effects of industrial robots on
labor market outcomes, as well as the literature on migratory responses to local labor
demand shocks. It contributes to this literature by (i) showing that robotization shocks
prompt out-migration responses in a similar fashion as other large-scale labor demand
shocks and (ii) connecting these migratory responses to a highly relevant demographic
trend in recent decades—rural decline.2 This paper further relates to an extensive liter-
ature on left-behind regions, which has shown that economic decline of disadvantaged
regions has fostered discontent and political polarization.3 It contributes to this litera-
ture by showing how technological progress deepens the cleavage between advantaged
and disadvantaged regions, specifically through its impact on rural population loss.
To the best of my knowledge, this paper is the first to present causal evidence on a
connection between automation-based shifts in labor demand and rural decline.

2 Descriptive evidence

To illustrate the close connection between out-migration and general population trends
in rural regions, Fig. 1 compares the change in overall population counts (panel A)
and the migration balance (panel B) of all Austrian regions between 2001 and 2016.
Urban and rural areas are classified according to the urban-rural-classification from the
Austrian statistical agency Statistics Austria. This classification consists of three broad
categories: urban centers, regional centers, and rural areas, each consisting of several
subcategories. It is graphically depicted in Figure A1 in the Supplementary Material.
For this paper, I consider regions classified as “urban centers” (large, medium, or
small) as urban, while all remaining regions (including regional centers) are classified
as rural.4 While urban centers (which are indicated by name in Fig. 1) generally showed

2 On migration responses to labor demand shocks, see, for example, Blanchard and Katz (1992), Bound
and Holzer (2000), Boman (2011), Cadena and Kovak (2016), Huttunen et al. (2018), Foote et al. (2019),
Greenland et al. (2019), Jauer et al. (2019), Dix-Carneiro and Kovak (2019), Notowidigdo (2020), Faber
et al. (2021), Peri and Zaiour (2023), or Konietzny (2024). Apart from migration responses, recent work by
Costanzo (2025) has further shown that robotization may affect fertility decisions and thus has effects on
demographic structures that go beyond migration effects.
3 See for example Wuthnow (2018), Autor et al. (2020), MacKinnon et al. (2022), Rodríguez-Pose et al.
(2023), Alamá-Sabater et al. (2024), Connor et al. (2024) or Pike et al. (2024) among many others.
4 Robustness checks where regional centers are instead classified as urban are discussed in Section 5. In
sum, all results presented in this paper are robust to this choice.
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Fig. 1 Population change and migration balance (2001–2016). Note: Regions are classified according to
the urban-rural classification from the Austrian Statistical Agency (Statistics Austria; see Figure A1 in the
Supplementary Material). Large urban centers (according to the urban-rural classification) are indicated by
name. Population data is from the decennial census (2001) and the register-based labor market statistics
(2016). Data onmigration flows is taken from theAustrianmigration statistics. All data sources are available
from Statistics Austria and are described in more detail in Section 3
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Table 1 Descriptive statistics (2001–2016)

Urban Rural
All Growing Declining

(1) (2) (3) (4)

Panel A: Share of population

2001 50.03% 49.97% 30.94% 19.03%

2016 52.60% 47.40% 31.08% 16.32%

Change +2.57% −2.57% +0.14% −2.70%

Panel B: Share of municipalities

with population declines 14.29% 42.17%

with negative migration balance 16.45% 45.78%

Panel C: Population change 2001–2016 (in % of 2001 population)

Population change +14.70% +3.51% +9.60% −6.40%

Migration balance +13.01% +3.42% +7.70% −3.53%

Internal +1.72% −1.72% +1.80% −7.44%

External +11.29% +5.14% +5.90% +3.91%

Birth balance +1.69% +0.08% +1.90% −2.87%

Panel D: Internal migration balance by destination type

Total +1.72% −1.72% +1.80% −7.44%

Urban destination − −1.72% +0.36% −5.09%

Rural destination +1.72% − +1.44% −2.35%

Panel E: Internal migration balance by age

Total +1.72% −1.72% +1.80% −7.44%

Age 0 to 34 +2.88% −2.88% −0.51% −6.73%

Age 35 to 64 −0.95% +0.95% +1.83% −0.48%

Age 65 and above −0.21% +0.21% +0.48% −0.23%

Panel F: Share of individuals aged 65 and older

2001 15.78% 15.14% 14.14% 16.76%

2016 17.98% 19.17% 17.99% 21.41%

Increase +2.21% +4.03% +3.85% +4.65%

Panel G: Share of manufacturing industries in total employment

2001 19.85% 26.62% 26.15% 27.38%

2016 15.66% 23.24% 22.69% 24.30%

Decrease −4.19% −3.37% −3.46% −3.08%

Note:Regions are classified according to the urban-rural classification from the Austrian Statistical Agency
(Statistics Austria; see Figure A1 in the Supplementary Material). Population data is from the decennial
census (2001) and the register-based labor market statistics (2016). Migration flow data is from the Aus-
trian migration statistics. Since the register-based census, the register-based labor market statistics and the
migration statistics are collected from the same administrative register and refer to the same reference date
(October 31st of any year), they are consistent and directly comparable. Therefore, the birth balance can
be calculated as the part of the population change that is not explained by the migration balance. Data on
manufacturing employment is taken from the Austrian Social Security Database (ASSD). All data sources
are described in more detail in Section 3. All statistics are calculated as population-weighted averages
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increases in population counts and net in-migration, a large fraction of rural regions
experienced population losses through out-migration. These declining rural regions
tend to be inmore remote areas of Austria, as rural regions in closer proximity to urban
centers also experienced population growth through positive population spillovers
from nearby cities (Veneri and Ruiz 2016). While the Austrian population is divided
in roughly equal parts between urban and rural regions (Table 1, panel A), around 42%
of all rural areas are characterized by declining population counts (panel B), which are
strongly driven by out-migration (panel C). The majority of these out-migration flows
in declining rural areas is directed towards the cities (panel D) and is accounted for
by younger individuals (panel E). As a consequence, rural-to-urban migration leads
to older rural societies (panel F) and declines in the birth balance (panel C). This
highlights that rural out-migration not only directly decreases population counts in
declining rural areas, but also has an indirect negative effect through the acceleration
of natural decline (Johnson et al. 2015).

Importantly, panel G of Table 1 shows that rural areas are on average more reliant
on employment in themanufacturing industries, as these industries account for a larger
fraction of total employment (27% in 2001) as opposed to urban areas (20%). This
strong reliance on manufacturing employment leaves rural areas particularly exposed
to changes in labor demand in these industries, which are tightly linked to industrial
robotization. If these labor demand disruptions cause internal migration responses
(as is suggested by a vast literature following the seminal work of Blanchard and
Katz 1992), it is very likely that these internal migration flows from rural regions are
directed towards the cities and thereby contribute to rural decline. To investigate this
hypothesis, this paper focuses on three main questions: (i) did robotization reduce
employment specifically in the manufacturing industries, (ii) have these disruptions
in labor demand prompted out-migration responses, and (iii) to what degree these
migration responses contribute to rural decline.

3 Data

This section presents an overview of all primary data sources used in the analysis.
While these data are in principle available for allAustrianmunicipalities, the analysis is
carried out at the aggregated level of 158 commuting zones. This approach is chosen to
account for the fact that a local shock to a plant inmunicipality i does not only influence
employment (and reactions related to employment losses) in the same municipality.
Rather it is to be expected that employment in neighboring municipalities will react as
well, simply because someworkerswhoworked in the same plant, and thus are directly
affected by the shock, commuted there from neighboring areas. The construction
of these commuting zones uses municipality-to-municipality commuting data from
the Austrian register-based census and strictly follows the methodology used for US
commuting zones described in Tolbert and Sizer (1996) and Dorn (2009).5

5 Supplementary Material Appendix D presents a more detailed description of these commuting zones, as
well as robustness checks regarding their construction.
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To investigate the migratory responses to robotization, I use register-based data
on migration flows from the Austrian migration statistics. This data contains detailed
information on changes of the municipality of residence within Austria. It is compiled
by Statistics Austria from the central residence register, which contains mandatory
reports of all Austrian residents on their primary (and if applicable secondary) place
of residence. In Austria, reporting ones place of residence to the local authorities is
required by law, and therefore, the central residence register contains information on
all individuals legally residing in Austria. The migration statistics covers all changes
of the primary residence of all individuals that have been registered in Austria for at
least 90 days. Therefore, this data allows to reliably track the number of individuals
that moved their primary residence between municipality i and municipality j (or
moved between municipality i and countries outside of Austria) in any year starting in
2002.6 As this data covers the entirety of the population legally residing in Austria, it
allows a muchmore precise measurement of migration flows than other administrative
data sources, which often only refer to the employed population (like the employer-
employee data from the Austrian Social Security Database discussed below). Hence,
the Austrian migration statistics also allows to track the migration behavior of young
individuals and labor market entrants who may also react to a regional decline in
employment prospects.

Data on robotization comes from the International Federation of Robotics (IFR).
The IFR offers rich industry-level data on robot stocks and deliveries for many high-
income countries. This data is collected by the IFR through an annual survey of
industrial robot suppliers worldwide and covers about 90% of the global market for
industrial robots.7 For Austria, country-level robotization trends are available starting
in 1993, while a detailed industry-level breakdown is available from 2003 onward.
Most manufacturing industries (according to the NACE-Rev. 2 classifications) are
available on the 2-digit or 3-digit industry level, while several other industries are
available at the 1-digit level (see Table E1 in the Supplementary Material).8 Figure A2
in the Supplementary Material shows the change in robotization in Austria over the
period 1993 to 2016. During this time period, industrial robot density has increased
substantially from 0.597 to 2.532 robots per 1000 workers. By 2003, robot density
had reached approximately 1.047 robots per 1000 workers. Thus, the majority of the
increase in robotization falls in the period 2003–2016, for which the IFR data includes
a detailed industry-level breakdown of robot stocks for Austria.

6 Due to data privacy reasons Statistics Austria only provides municipality-level migration flows with
additional information on the type of destination region (according to the urban-rural classification in
Supplementary Material Figure A1), but not on the exact destination region. This data was provided as a
special delivery from Statistics Austria.
7 The IFR data has been introduced into the economic literature in the seminal contribution of Graetz and
Michaels (2018). A detailed survey of the database and other applications can be found in Klump et al.
(2022), or Bekhtiar et al. (2024).
8 The industry-level IFR data also contains unclassified robot stocks, which are not accounted for by
the reported industries. For Austria, about 30% of all robots are unclassified, which is very similar to
the proportion of unclassified robots for the USA reported in Acemoglu and Restrepo (2020). I follow
Acemoglu and Restrepo (2020) and allocate these unclassified robots to the available industries according
to the proportions of classified robots in the data.
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To measure the structure of regional employment as well as changes in manufac-
turing employment, I use data from the Austrian Social Security Database (ASSD,
Zweimüller et al. 2009). The ASSD is a register-based database, which covers all pri-
vate sector employees in Austria, starting in 1975. This data contains a variety of infor-
mation about the individual workers, as well as detailed information about the firms
these workers are employed in. Crucially, it contains information on the geographic
location of firms and their industry affiliation (at the NACE-Rev. 2 four-digit level).

4 Research design

Estimation

Measuring any commuting zones robot exposure would ideally require detailed firm-
level data on robot adoption. Since such data is not available for Austrian firms,
I follow Acemoglu and Restrepo (2020) and Dauth et al. (2021) and construct a
measure for regional robot exposure in commuting zone r from the industry-level
robotization data as a shift-share variable. The idea of a shift-share research design is
that industry-specific shocks affect regions differently, depending on the structure of
their local economy.9 Therefore, the shift-share measure for regional robot exposure
is constructed by interacting the local industry structure with the industry-specific
change in robot density:

�Robotsr ,t =
∑

i

Empi,r ,t
Empr ,t

× �Robotsi,t
Empi,t

(1)

In Eq.1, the industry-level change in robotization �Robotsi,t in industry i over
period t (normalized by overall employment in this industry) is interacted with the
share of industry i in commuting zone r ’s overall employment (measured at the begin-
ning of period t). This projects the industry-level robotization change in industry i onto
the commuting zone-level, while considering the relative importance of industry i for
commuting zone r ’s overall employment. I then compute local exposure to robotization
as the weighted sum of industry-level robotization changes, whereby the region-
specific employment shares (which are known in the theoretical literature on shift-share
inference as exposure shares) serve as weights. Calculating �Robotsr ,t as outlined
in Eq.1 requires (i) data on the industry-specific robotization shock and (ii) detailed
regional data on the employment shares. While the industry-level robotization data is
available from the IFR, exposure shares are calculated from the ASSD (see Section 3).

Throughout the analysis, this measure of regional robot exposure serves as the main
explanatory variable of interest. To estimate the effect of changes in robot exposure

9 See also Borusyak et al. (2025) for a detailed overview of the recent literature on shift-share inference.
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on manufacturing employment and internal migration flows, I estimate equations of
the form:

�Yr ,t = γ�Robotsr ,t + X ′
r ,tβ + ρr + τt + εr ,t (2)

whereby�Yr ,t denotes the outcomeof interest (changes inmanufacturing employment
or net out-migration rates), �Robotsr ,t is the measure for robot exposure from Eq.1
and Xr ,t is a vector of control variables. Themodel is estimated as a stacked difference
model, using changes over two time periods 2003–2009 and 2009–2016, which allows
for the inclusion of period fixed effects τt and commuting zone fixed effects ρr .10 All
estimations are weighted by the start-of-period working-age population.

The vector of control variables Xr ,t includes several sets of distinct variable types.
Thefirst set of covariates controls for the demographic characteristics of the localwork-
force. For this, I include the detailed age-sex-education-nationality distribution of the
local working-age population, measured in the initial year of each panel period (i.e.,
2003 or 2009) to avoid endogenous contamination.11 The inclusion of the composition
of the local working-age population is motivated by concerns that commuting zones
with different demographic structures are very likely to be on different trends regard-
ing population changes and migration flows. Furthermore, it has been shown in recent
work by Acemoglu and Restrepo (2022) and Zhang et al. (2022) that the structure
of the workforce (particularly the age composition) has a direct impact on robotiza-
tion trends. Therefore, this very detailed set of demographic variables is included to
control for this simultaneous impact of the demographic structure on robotization and
migration trends.

Secondly, controls that aim at capturing regional heterogeneity are included. These
controls include the start-of-period logarithm of the gross regional product (total and
per-capita) and the start-of-period regional unemployment rate (to control for differ-
ences in economic performance) and the start-of-period share of the population living
in urban areas (to control for different population trends depending on the degree of
urbanization).

The next set of covariates controls for other types of labor demand shocks. For
this, I include shift-share variables for changes in import- and export-exposure from

10 Robot adoption is strongly concentrated within the manufacturing sector. Therefore, most industries out-
side ofmanufacturing experienced zero robotization. In Eq.1 thismeans that the regional sumof all exposure

shares of industries with non-zero robot adoption is generally smaller than 1, such that
∑

i
Empi,r
Empr

< 1.
As is explained in detail in Borusyak et al. (2022), conventional period fixed effects do not properly isolate
within period variation in shift-share applications with incomplete exposure shares. To correct this, they
recommend to interact the period fixed effects with the regional sum of the incomplete exposure shares, as
only in this case, the fixed effects fully absorb between period variation. Therefore, the period fixed effects
τt in Eq.2 refer to the interaction of conventional period dummies with the regional sum of the incomplete
exposure shares. In OLS estimations the incomplete shares for the measure for regional robot exposure in
Eq.1 are used, while in 2SLS regressions, the lagged exposure shares for the computation of the instrument
(from Eq.3) are used.
11 The composition of the local working-age population is included in 64 age-sex-education-nationality
cells, where each cell indicates the size of the respective group in 1000 individuals. The 64 demographic cells
are defined by 4 age groups (ages 15–34, 35–49, 50–64, and 65 and above), 2 gender groups (male, female),
4 educational groups (highest level of education completed is either compulsory schooling, apprenticeship,
high school or university) and 2 nationalities (Austrian or foreign citizen). These control variables are
constructed from publicly available data from the Austrian census and the Austrian register-based labor
market statistics.
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China and the former Eastern Bloc, as well as ICT-capital intensity.12 Adao et al.
(2019) have shown that other types of labor demand shocks that can be expressed
as shift-share variables have a mechanical correlation with �Robotsr ,t , since they
can be constructed from similar exposure shares. Therefore, these control variables
have to be included to control for other large-scale labor demand shocks originating
in international trade or other forms of automation technologies. Data on import- and
export-exposure comes from the UN-Comtrade database, while data on ICT-intensity
is taken from the EU-KLEMS database.13

By a similar logic, I also control for shocks to labor supply originating in migration
from foreign citizens. Following Card (2001), the migrant share in a region is a strong
predictor for migration inflows. To the extent that this migrant share correlates with
the industry exposure shares used in Eq.1 to construct the regional measure for robot
exposure, migration-based labor supply shocks are also mechanically correlated with
the robotization shock (see Adao et al. 2019). To account for this, I include changes
in the migrant population, differentiated by four educational groups.

Lastly, I control for the regional start-of-period industry structure, to check for the
possibility that commuting zones with different industry structures are on different
trends, both in robotization as well as in changes in employment or migration flows.
This is done in two different ways. Firstly, the share of manufacturing employment is
included as additional control. Secondly, instead of the manufacturing share, a more
detailed set of industry structure controls are included. These include the initial period
employment shares of sub-industries of manufacturing (production of food products,
consumer goods, industrial goods, and capital goods), as well as industries outside of
manufacturing (construction, personal services, and business services).

All variables used during the analysis are described in detail in Table A2 in the
Supplementary Material.

Identification strategy

Onemajor reason for endogeneity concerns in Eq.2 is that the adoption of robotsmight
be correlatedwith unobserved industry-specific demand shocks,which simultaneously
influence employment trends or internal migration decisions. For example, negative
shocks to the domestic demand for goods produced by industry i might reduce that
industry’s demand for industrial robots. Such demand shocks could be related to
changes in employment or migration flows in areas where industry i is a relevant part
of the local economy. In such a scenario, the estimate for γ in Eq.2 would no longer
isolate the effect of industrial robotization but would additionally reflect effects arising
from the unobserved demand shock.

12 Since the Austrian economy traditionally has very strong ties to the countries of the former Eastern
Bloc, I follow Dauth et al. (2014) in considering trade exposure with both China and the East. Therefore,
the shift-share variables for import- and export-exposure reflect changes in trade exposure from China,
Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and the succession states of the
former USSR - Russian Federation, Belarus, Estonia, Latvia, Lithuania, Moldova, Ukraine, Azerbaijan,
Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan.
13 TheComtrade data,which is only available at the commodity level, has been crosswalked to the ISIC-Rev.
4/NACE-Rev. 2 classification using the concordance-package in R (Liao et al. 2020). The EU-KLEMS
data comes from the September 2017 release.
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Another source for endogeneity concerns relates to the construction of the pre-
dicted robotization measure in Eq.1. Here, the industry-level change in robotization
is assigned to any commuting zone r purely via the regional structure of employ-
ment. This implicitly assumes that all firms in a given industry i are equally likely
to adopt robots. Any violation of this assumption leads to a measurement error in the
explanatory variable,which, to the degree that it is systematically related to unobserved
regional characteristics, would lead to a bias in the estimate for γ . Consider, for exam-
ple, the presence of regional agglomeration effects that incentivize high-performing
firms to settle in a certain commuting zone. If high-performing firms are also more
likely to adopt industrial robots (as recent findings in Bonfiglioli et al. 2024 and Koch
et al. 2021 suggest), then the predicted robotizationmeasure in Eq.1would have amea-
surement error that is systematically related to this unobserved agglomeration effect.

To address these concerns I follow Acemoglu and Restrepo (2020) and Dauth
et al. (2021) and construct an instrumental variable that leverages exogenous variation
in robot adoption from other high-income countries. Since industry-level robotization
trends in other high-income countries are unrelated to unobserved regional characteris-
tics in anyAustrian region (like regional demand shocks or agglomeration economies),
this approach isolates changes in the supply of robots, which are driven by advances
in the technological frontier. Similarly to the measure for robot exposure in Eq. 1,
this instrumental variable is constructed as a shift-share variable, where industry-level
robotization changes in other high-income countries are interacted with regional expo-
sure shares.

�Robots I Vr ,t =
∑

i

Empi,r ,t−15

Empr ,t−15
× �RobotsOtherCountries

i,t

Empi,t−15
(3)

To further remove the instrumental variable in Eq.3 from the robot exposure mea-
sure in Eq.1 the exposure shares used to construct the instrument are lagged by 15
years.

As has been shown in recent work by Adao et al. (2019) and Borusyak et al. (2022),
the validity of this instrumental variable hinges on the exogeneity of the industry-
level robotization shocks occurring in other high-income countries. The underlying
identifying assumption, thus, is that industry-level robotization trends in other high-
income countries �RobotsOtherCountries

i,t are quasi-randomly assigned with respect
to unobserved regional characteristics in Austria. In the examples described above,
this means that the robotization trends in other high-income countries must not have
a direct impact on region-specific demand shocks in Austria or the location decisions
of robotizing Austrian firms. As is shown in Borusyak et al. (2022), this exogeneity of
the robotization shocks is both necessary and sufficient for the instrumental variable
to be valid. Hence, the regional exposure shares (i.e., the lagged industry structure) are
allowed to be endogenous.14 To construct these robotization shocks occurring in other

14 In a related paper Goldsmith-Pinkham et al. (2020) argue that the exogeneity of the exposure shares is
also a sufficient condition for the validity of the instrumental variable. Borusyak et al. (2022), however,
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high-income countries, I use industry-level robotization changes in Canada, Denmark,
Finland, France, Italy, Mexico, Norway, Spain, Sweden, the UK, and the USA.15

While the exogeneity of the robotization shocks, which essentially mirrors a stan-
dard exclusion restriction, cannot be tested directly, Borusyak et al. (2022) propose
several plausibility tests. These tests aim to assess the plausibility of quasi-random
shock assignment by assessing whether the robotization shocks themselves and the
constructed instrument are balanced (i.e., not systematically related to pre-determined
characteristics in Austria). In sum, these tests indicate that both the shocks and the
instrumental variable are reasonably balanced. A more detailed discussion of these
tests is provided in Supplementary Material Appendix B. To further probe the sensi-
tivity of the analysis with regard to the construction of the shift-share instrument in
Eq.3, I conduct a range of robustness checks relating to the definition of exposure
shares, the definition of the panel periods, and the pool of donor countries. These
robustness checks are presented in Section 6.

Standard errors

Throughout the analysis, I report two types of standard errors. Firstly, all estima-
tions report conventional robust standard errors, clustered by region (at the level of
the nine Austrian federal states) and time period. To correct these standard errors
for the small number of clusters, they are inflated using the Bias-Corrected-Cluster-
Robust-Variance-Matrix-correction for few clusters described in Cameron and Miller
(2015). Secondly, shift-share-exposure robust standard errors from Adao et al. (2019)
are reported. As is outlined in detail in Adao et al. (2019), conventional clustered
standard errors might be unreliable in shift-share settings, as the regression residuals
are likely to be correlated across (potentially distant) commuting zones with similar
exposure shares. These standard errors are, thus, a shift-share analog to conventional
cluster-robust standard errors, as they essentially cluster commuting zoneswith similar
industry structures.

5 Results

Employment &migration flows

Panel A of Table 2 shows the estimation results for the change in the manufactur-
ing employment-to-population ratio. Overall, the estimations show a robust negative
effect of industrial robotization on manufacturing employment in all specifications.
Including only the baseline set of controls in column 1 of Table 2 results in precisely
estimated negative coefficients of −0.265 in the OLS regression and −0.575 in the

show that the orthogonality of the shocks is both sufficient and necessary and that in the Goldsmith-Pinkham
et al. (2020) setting of exogenous regional exposure shares, shock exogeneity is implicitly fulfilled due to
the exogenous (i.e., quasi random) assignment of the regional exposure shares. See also Borusyak et al.
(2025) for a detailed comparison of these two approaches.
15 Canada, Mexico, and the USA are not available as separate countries in the IFR data, but are rather
aggregated to a single region (North America).
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Table 2 Robotization, manufacturing employment, and migration flows (2003–2016)

(1) (2) (3) (4) (5) (6)

Panel A: Dependent variable: � Manufacturing-employment-to-population ratio ×100

OLS

� Robots −0.265 −0.207 −0.202 −0.218 −0.173 −0.107

(0.035)*** (0.042)*** (0.041)*** (0.029)*** (0.024)*** (0.041)**

[0.037]*** [0.039]*** [0.039]*** [0.042]*** [0.038]*** [0.040]***

2SLS

� Robots −0.575 −0.401 −0.388 −0.429 −0.459 −0.476

(0.134)*** (0.156)** (0.141)*** (0.135)*** (0.091)*** (0.114)***

[0.095]*** [0.072]*** [0.070]*** [0.077]*** [0.065]*** [0.066]***

Panel B: Dependent variable: Net out-migration rate ×100

OLS

� Robots 0.146 0.087 0.061 0.069 0.047 −0.011

(0.051)*** (0.053) (0.116) (0.075) (0.071) (0.127)

[0.042]*** [0.048]* [0.054] [0.091] [0.093] [0.069]

2SLS

� Robots 0.594 0.879 0.877 0.874 0.886 1.101

(0.289)** (0.277)*** (0.176)*** (0.243)*** (0.281)*** (0.382)***

[0.157]*** [0.152]*** [0.145]*** [0.166]*** [0.165]*** [0.169]***

First stage results 0.011 0.012 0.012 0.011 0.011 0.011

(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***

[0.0008]*** [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]***

First stage F 43.62 41.67 38.65 32.56 32.24 30.66

Period FE x x x x x x

Region FE x x x x x x

Demographics x x x x x x

Regional char. x x x x x

Labor supply x x x x

Labor demand x x x

Manuf. share x

Industry structure x

2SLS regression. Contrasting those two estimates suggests that the OLS estimate is
slightly upward biased. Such an upward bias is consistent with an unobserved pos-
itive demand shock that simultaneously increases robot adoption and employment.
This pattern could also be caused by the presence of agglomeration economies that (i)
incentivize robotizing firms to settle in certain commuting zones, (ii) increase those
firms’ productivity via agglomeration effects, and thereby (iii) have a positive impact
on employment. In both cases, the OLS estimate would absorb the positive impact
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Table 2 continued

(1) (2) (3) (4) (5) (6)

Commuting zones 158 158 158 158 158 158

Periods 2 2 2 2 2 2

Observations 316 316 316 316 316 316

Notes: *p < 0.10; **p < 0.05; ***p < 0.01. Conventional cluster-robust standard errors are shown in
parentheses, and shift-share clustered standard errors from Adao et al. (2019) are shown in brackets. Units
of observation are 158 clustered commuting zones (for details see SupplementaryMaterial AppendixD). All
specifications include a set of commuting zone and period fixed effects, whereby the period fixed effects
are interacted with the sum of exposure shares used to construct the explanatory variable (OLS) or the
instrument (2SLS). Demographic controls include the start-of-period structure of the local workforce in 64
age-gender-education-nationality cells. Regional characteristics control for the start-of-period logarithm of
the gross regional product (total and per-capita) and the unemployment rate, as well as the start-of-period
degree of urbanization. Shift-share controls are included as the changes in import- and export-exposure and
ICT-intensity (labor demand shifts) and changes in the migrant population differentiated by 4 educational
groups (labor supply shifts). The detailed industry structure controls include start-of-period employment
shares of several sub-industries of manufacturing (production of food products, consumer goods, industrial
goods, and capital goods), as well as industries outside of manufacturing (construction, personal services,
and business services). All regressions are weighted by the start-of-period working-age population

of the unobserved demand shock/agglomeration effect, resulting in an upward bias of
the estimate. The fact that 2SLS shows a stronger negative estimate in all specifica-
tions suggests that the instrumentation strategy is able to address these endogeneity
concerns. Including further control variables in columns 2 to 6 of Table 2 has only a
moderate impact on the size of the 2SLS estimate, which stays relatively stable over
all following specifications. In the full specification, including all available control
variables in column 6 of Table 2, the 2SLS estimation suggests a negative effect of
−0.476. In Table A3 in the Supplementary Material this effect is decomposed by age
groups, which reveals that the majority of the shock incidence (52% of the effect on
manufacturing employment) falls on younger workers below the age of 35. The robo-
tization shock, thus, particularly hampers the employment prospect of young workers,
a group that is known in the literature to be more geographically mobile in response
to labor demand shocks (Bound and Holzer 2000).16

A vast literature, following the seminal work of Blanchard and Katz (1992), has
shown that after local labor demand shocks, migration responses play an important
role in the local labor markets’ return to equilibrium (see, for example, Jauer et al.
2019). To examine whether the labor market disruptions caused by industrial robots
documented in panel A of Table 2 have led to increased out-migration, panel B of
Table 2 presents estimations of the effect of robotization on net out-migration rates.
For any period t that spans the years j = 1, ..., J this measure is constructed as:

∑J
j=1 Net Outflow j

Population j=1
=

∑J
j=1(Outflow j − Inflow j )

Population j=1
(4)

16 Further results on the employment effects of robotization are provided in Supplementary Material
Appendix C.
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Hence, net out-migration rates are calculated by subtracting migration inflows from
migration outflows and summing up over all years that make up the panel period. The
measure is then normalized by the initial year working-age population to arrive at a
relative measure of net out-migration flows.

The estimation results for the migratory response in panel B of Table 2 show that
robotization has led to an increase in net out-migration rates during 2003–2016. Here,
the full specification in column 6 suggests that one more industrial robot per 1000
workers leads to net out-migration flows of around 1.101% of the start-of-period
working-age population. This effect is robust over all specifications and statistically
significant in both standard error definitions.

Comparing the results for the OLS and 2SLS estimations shows that the 2SLS point
estimates are drastically larger than the OLS estimates. This picture is again consistent
with the presence of unobserved positive demand shocks or agglomeration effects that
reduce migration responses, as in both cases the OLS estimate would absorb their
reducing effect, leading to a downward bias in the OLS estimate. Additionally, recent
work by Borusyak et al. (2022) has shown that there is another factor in migration
regressions, like the one estimated in panel B of Table 2, that can lead to an, at times
severe, attenuation of estimated effects on migration behavior. This problem arises
whenever the local labor demand shocks between origin and destination regions are
correlated. In this case, the estimated migration effects are biased toward zero (even if
the labor demand shock is plausibly exogenous).While the size of the estimatedmigra-
tion response in panel B of Table 2 suggests that severe attenuation of the estimated
effect is unlikely, it cannot be fully ruled out. Therefore, it is possible that the estimated
effect on net out-migration rates represents a lower bound of the true effect.17

Looking at the results of the first stage estimation shows that the instrument is strong
and highly relevant. Here, the point estimate of 0.011 indicates that for one additional
robots installed in the countries used to construct the instrument, 0.011 additional
robots are installed in Austria. This point estimate in the first-stage regression partly
reflects the size difference between Austria and the aggregate of all countries used
to construct the instrument. Here, Austria increased its robot stock (in raw units)
by around 3.2% of the total volume installed in the countries used to construct the
instrument.18 Since the instrument is constructed in per-Austrian-worker terms (see
Eq.3), this difference carries over to the size of the first stage coefficient. If robot
adoption in Austria were entirely explained by the adoption pace in the IV countries
this, thus, would imply a first-stage coefficient of 0.032. Hence, the point estimate of
0.011 implies that around one-third of overall robot adoption in Austria is explained
by common trends between Austria and the countries used to construct the instrument,
while the remaining two-thirds are explained by (possibly endogenous) regional deter-
minants in Austria.

17 Borusyak et al. (2022) propose a way of correcting this attenuation, by including migration-weighted
averages of the shocks to other regions as an additional control variable. The construction of this control
variable requires data on migration flows in periods preceding the observational period. Since the Austrian
migrationflowdata is only available from2002onward, this correction cannot be implemented in this setting.
18 In total, there were 6,719 units installed in Austria, while there were 207,255 units installed in the IV
countries.
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Table A4 in the Supplementary Material presents estimations using an alternative
migration measure. Here, the log-change in working-age population counts is used
to approximate migratory responses. In the literature on migratory responses to local
labor demand shocks, the log-change in working-age population counts is frequently
used as the primary measure for migration responses (especially when more detailed
data on migration in- and outflows is not available). Table A4 shows that using the log-
change in working-age population counts to approximate migration responses yields
similar results as when using net out-migration rates. Consistent with previous results,
these estimations suggest that robotization leads to significant decreases in the size of
the working-age population, both overall (Table A4, panel A) and when focusing only
on rural areas (panel B). Comparing the effect size to similar results in Faber et al.
(2021) suggests that the overall population decline induced by robotization (−0.320;
panel A) is slightly smaller than in the USA, where they find an estimated effect of
−0.560 (see Faber et al. 2021, Table 2).

Rural depopulation

While the results in Table 2 confirm that robotization shocks led to out-migration in a
similar fashion as is firmly established for other types of labor demand shocks, these
results do not tell much about the direction of these migration flows. To lay a specific
focus on the question whether robotization causes migration flows directed from rural
to urban areas, and thereby contributes to rural depopulation, I use the fact that the
data on net out-migration rates used in Table 2 contains detailed information on the
region of origin, as well as the destination. As any commuting zone may consist of
both urban and rural areas (see Supplementary Material Appendix D), the net outflow
from any commuting zone can be decomposed into the respective contributions of
rural and urban areas:

∑J
j=1 Net Outflow j

Population j=1
=

∑J
j=1 Net Outflow

Rural
j

Population j=1
+

∑J
j=1 Net Outflow

Urban
j

Population j=1
(5)

Using the available information on the destination type (urban, rural, or abroad),
the net outflows from rural areas can be further decomposed by destination:

∑J
j=1 Net Outflow

Rural
j

Population j=1
=

∑J
j=1 Net Outflow

Rural→Urban
j

Population j=1
+

∑J
j=1 Net Outflow

Rural→Rural
j

Population j=1
+

∑J
j=1 Net Outflow

Rural→Abroad
j

Population j=1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Internal

⎫
⎪⎬

⎪⎭
External

(6)
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Hence, the net out-migration rate from all rural regions in any commuting zone is
decomposed into flows directed towards urban or rural areas (internal migration) and
flows with other countries (external migration).19

Table 3 applies this decomposition to the net out-migration rates from rural areas.
Here, column1 shows the effect of industrial robots on all rural net outflows. This effect
(1.060) is on a very similar magnitude as when net outflows from both rural and urban
areas are considered (1.101; Table 2, panel B, column 6). Decomposing this effect into
the part explained by external migration (column 2) and internal migration (column
3) makes clear that increases in net out-migration flows are exclusively driven by
increases in internal net out-migration. Further decomposing these internal migration
flows into rural-to-urban and rural-to-rural flows in columns 4 and 5 of Table 3 reveals
that a large part of this effect stems from rural-to-urban migration. While one more
additional robot per 1000 workers increases internal out-migration rates from rural
areas by around 1.136%, approximately 0.612% of this increase is accounted for by
outflows that are directed towards urban areas. This effect for rural-to-urban net out-
migration rates is precisely estimated and significant at the 1%-level in both standard
error definitions. This coefficient in column 4 of Table 3 provides direct evidence that
robotization contributes to population declines in rural areas by specifically increasing
rural-to-urban internal migration flows.20

Column5ofTable 3 shows that robotization also has an increasing effect on rural-to-
rural migration flows. Here, the estimation suggests a positive effect of 0.524. Since
the demographic trends in rural regions are very heterogeneous between declining
remote regions and growing regions in close proximity to the large cities (see Fig. 1),
it is interesting to see whether these rural-to-rural migration flows are directed towards
more centrally located rural areas. This is investigated in columns 6 and 7 of Table 3,
where the overall rural-to-rural effect is further decomposed into flows directed to
central and remote rural regions. Here, it becomes apparent that a large part of the rural-
to-rural migration response is directed towards rural regions that lie in close proximity
to large urban centers. This type of rural-to-(central) rural migration accounts for
an additional 16.1% of all internal migration movements, which are caused by the
robotization shock. In sum, the estimation results in Table 3 show that robotization has
prompted strong internal migration responses in rural areas, which are predominately
directed towards urban areas (around 54% of the total effect) and rural regions in close
proximity to these urban centers (another 16%).

Since the dependent variables used in the estimations shown inTable 3 are computed
by subtracting in-migration flows from out-migration flows (to arrive at the desired net
out-migration measure in Eq.4) it is interesting whether the increase in rural-to-urban

19 While the migration flow data contains detailed information on the region of origin, it does not contain
information on the exact destination region. Rather, the type of destination is provided (as defined in the
urban-rural-classification from Statistics Austria in Supplementary Material Figure A1). While this does
not allow a detailed reconstruction of the destination region, it allows for a distinction between rural and
urban destinations.
20 In Table 3 the intermediate regional class “regional centers” (see Supplementary Material Figure A1)
is classified as rural area. To check whether this choice affects the results, Table A5 in the Supplementary
Material presents estimates, where “regional centers” are included in urban areas. The estimates in Table
A5 show that the results are unaffected by this choice.
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net out-migration stems from an increase in out-migration flows or rather a decrease
in in-migration flows. To answer this question, panel A of Table 4 presents separate
estimations for those two components of net out-migration rates. Panel B presents
similar estimations for net out-migration rates from rural areas towards other centrally

Table 4 Contribution of in- and out-flows to rural depopulation (2003–2016)

Net out-migration Out-migration In-migration
(1) (2) (3)

Panel A: Rural-to-urban migration

2SLS

� Robots 0.612 0.793 0.181

(0.201)*** (0.092)*** (0.135)

[0.074]*** [0.078]*** [0.049]***

First Stage F 30.66 30.66 30.66

Panel B: Rural-to-central rural migration

2SLS

� Robots 0.183 0.277 0.094

(0.037)*** (0.038)*** (0.055)*

[0.035]*** [0.046]*** [0.036]***

First Stage F 30.66 30.66 30.66

Period FE x x x

Region FE x x x

Demographics x x x

Regional char. x x x

Labor supply x x x

Labor demand x x x

Industry structure x x x

Commuting zones 158 158 158

Periods 2 2 2

Observations 316 316 316

Notes: *p < 0.10; **p < 0.05; ***p < 0.01 Conventional cluster-robust standard errors are shown in
parentheses, and shift-share clustered standard errors from Adao et al. (2019) are shown in brackets. Units
of observation are 158 clustered commuting zones (for details see SupplementaryMaterial AppendixD). All
specifications include a set of commuting zone and period fixed effects, whereby the period fixed effects
are interacted with the sum of exposure shares used to construct the instrument. Demographic controls
include the start-of-period structure of the local workforce in 64 age-gender-education-nationality cells.
Regional characteristics control for the start-of-period logarithm of the gross regional product (total and
per-capita) and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-share
controls are included as the changes in import- and export-exposure and ICT-intensity (labor demand
shifts) and changes in the migrant population differentiated by 4 educational groups (labor supply shifts).
The detailed industry structure controls include start-of-period employment shares of several sub-industries
of manufacturing (production of food products, consumer goods, industrial goods, and capital goods), as
well as industries outside of manufacturing (construction, personal services, and business services). All
regressions are weighted by the start-of-period working-age population
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located rural areas. Comparing columns 2 and 3 of Table 4 shows that the increase in
net out-migration rates is exclusively driven by an increase in out-migration (column
2), while the estimates for the effect of robotization on in-migration are small. Hence,
population declines in remote rural areas, which are induced by the robotization shock,
specifically operate through individuals leaving exposed areas towards the cities and
more centrally located rural areas.

Taken together the results in Tables 3 and 4 clearly show that robotization has
increased migration flows from rural areas towards large urban centers. The majority
of these flows are directed at cities. However, a non-negligible part is also explained
by increased migration into rural areas that lie in close proximity to the large cities.
As these specific types of internal migration flows greatly contribute to population
declines in many remote rural areas, these results show that robotization-based labor
demand disruptions have contributed to the decline of remote rural regions in Austria
between 2003 and 2016.

To benchmark the magnitude of this effect Fig. 2 presents a counterfactual calcu-
lation, where robotization is held constant at its 2003 level. This Figure shows that
between 2003 and 2016 rural areas inAustria lost around 3.62%of their 2003working-
age population through rural-to-urban net outflows. In the absence of robotization, this
number drops to around 2.67%. Increases in robotization, thus, explain around one-
fourth of all rural-to-urban migration flows during the period 2003 to 2016.
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Fig. 2 Benchmarking effect size: cumulative rural-to-urban net out-migration (2003–2016). Notes: The
counterfactual evolution of the cumulative net out-migration rate is calculated by multiplying the observed
change in robots per 1000 workers (1.485; Figure A2 in the SupplementaryMaterial) by the estimated effect
of one additional robot per 1000 workers on the rural-to-urban net out-migration rates of the working-age
population (0.612; Table 3, column 4). The resulting contribution of industrial robots to the change in the
net out-migration rate is then spread out evenly over the entire observational period and subtracted from
the observed trends to construct the counterfactual. The grey area corresponds to 90% confidence interval
(computed from the conventional cluster-robust standard errors)
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Heterogeneous effects by population subgroups

While the results in Tables 2 to 4 show that industrial robotization has led to reductions
in labor demand in the manufacturing industries and increased out-migration, specif-
ically out of rural areas, this section explores heterogeneous effects by age, gender,
and skill level. For this Table 5 presents estimates for rural-to-urban net out-migration
decomposed by age and gender groups. Here, the estimate in the first row of column
1 corresponds to the total effect of industrial robots on rural-to-urban migration. To
better assess the total effect of automation-induced out-migration on the age structure
of rural areas, Table 5 considers migratory responses of the entire population (instead

Table 5 Rural-to-urban migration by age and gender (2SLS estimates)

Dependent variable: Net outflow from rural areas by age group
All Age 0 to 14 Age 15 to 34 Age 35 to 49 Age 50

and above
(1) (2) (3) (4) (5)

Panel A: All

� Robots 0.483 0.096 0.295 0.087 0.006

(0.149)*** (0.028)*** (0.089)*** (0.034)** (0.025)

[0.058]*** [0.013]*** [0.035]*** [0.018]*** [0.007]

First Stage F 30.87 30.87 30.87 30.87 30.87

Panel B: Male

� Robots 0.317 0.031 0.203 0.054 0.029

(0.124)** (0.012)** (0.084)** (0.027)** (0.014)**

[0.044]*** [0.006]*** [0.031]*** [0.012]*** [0.004]***

First Stage F 30.87 30.87 30.87 30.87 30.87

Panel C: Female

� Robots 0.168 0.066 0.092 0.032 −0.022

(0.034)*** (0.018)*** (0.005)*** (0.009)*** (0.011)**

[0.019]*** [0.008]*** [0.008]*** [0.008]*** [0.005]***

First Stage F 30.87 30.87 30.87 30.87 30.87

Panel D: Relative contribution to net out-migration by age

All 19.9% 61.1% 18.0% 1.2%

Male 65.6% 6.4% 42.0% 11.2% 6.0%

Female 34.7% 13.7% 19.1% 6.6% −4.6%

Period FE x x x x x

Region FE x x x x x

Demographics x x x x x

Regional char. x x x x x

Labor supply x x x x x

Labor demand x x x x x

Industry structure x x x x x
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Table 5 continued

Dependent variable: Net outflow from rural areas by age group
All Age 0 to 14 Age 15 to 34 Age 35 to 49 Age 50 and above
(1) (2) (3) (4) (5)

Commuting zones 158 158 158 158 158

Periods 2 2 2 2 2

Observations 316 316 316 316 316

Notes: *p < 0.10; **p < 0.05; ***p < 0.01. Conventional cluster-robust standard errors are shown in
parentheses, and shift-share clustered standard errors from Adao et al. (2019) are shown in brackets. Units
of observation are 158 clustered commuting zones (for details see SupplementaryMaterial AppendixD). All
specifications include a set of commuting zone and period fixed effects, whereby the period fixed effects
are interacted with the sum of exposure shares used to construct the instrument. Demographic controls
include the start-of-period structure of the local workforce in 64 age-gender-education-nationality cells.
Regional characteristics control for the start-of-period logarithm of the gross regional product (total and
per-capita) and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-share
controls are included as the changes in import- and export-exposure and ICT-intensity (labor demand shifts)
and changes in the migrant population differentiated by 4 educational groups (labor supply shifts). The
detailed industry structure controls include start-of-period employment shares of several sub-industries of
manufacturing (production of food products, consumer goods, industrial goods, and capital goods), as well
as industries outside of manufacturing (construction, personal services, and business services). Since these
estimates reflect effects on the entire population (instead of just regarding the working-age population), all
regressions are weighted by the start-of-period size of the overall population

of just regarding the working-age population as in Tables 2 to 4). This allows to also
examine migratory responses of the age groups “0 to 14” and “65 and older.”21 While
the age group “0 to 14” clearly does not migrate on their own, but rather moves along
with their migrating parents, a decline in this age group still has important implications
for the age structure (both present and future) of rural areas. Especially if automation-
induced labor demand shocks hit young families and parents, which then respond by
migrating to the cities, the age group “0 to 14” might also experience a downward
trend in population counts in rural areas, which further accelerates societal aging of
the population (Johnson et al. 2015). Since Table 5 looks at the rural-to-urban com-
ponent of net out-migration rates of the entire population the total effect (0.483; panel
A, column 1) is somewhat smaller when compared to the results for the working-age
population (0.612; Table 3, column 4). This already suggests that the age groups “0
to 14” and “65 and older” are less mobile than the working-age population. This is
further confirmed by the estimates in columns 2 to 5, which present the decomposition
of the total effect by age groups. Here, around 61% of the total effect (panel D, column
3) is explained by the out-migration of individuals between the age of 15 and 34, while
another 20% (panel D, column 2) of the total effect stems from children under the age
of 15 who out-migrate with their parents. Hence, around 81% of the total migratory
response are accounted for by the out-migration of individuals below the age of 35,
showing that automation-based labor demand shocks lead to out-migration of predom-
inantly young individuals out of affected rural areas. While the age group “35 to 49”

21 For better readability, the age groups “50 to 64” and “65 and older” are aggregated to a single category
in Table 5.
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also shows relevant, although much smaller, migratory responses, individuals above
the age of 50 do not respond to disruptions in labor demand by moving to the cities.

Panels B and C of Table 5 further decompose the total effect by gender. Since males
account for a larger fraction of manufacturing employment, and thus bear a stronger
shock incidence, they also account for a higher fraction of the migratory response,
with around two-thirds of the total effect being explained by male migration.

Since technological change is known to have very heterogeneous effects on dif-
ferent skill groups, it is likely that it also affects the migration behavior differently,
depending on the skill levels of affected individuals (see also Beerli et al. 2023). This

Table 6 Percentage change of working-age population in rural areas by skill groups (2SLS estimates)

By skill-group
All High-skill Medium-skill Low-skill
(1) (2) (3) (4)

� Robots −0.440 −0.073 −0.091 −0.275

(0.047)*** (0.034)** (0.084) (0.033)***

[0.045]*** [0.012]*** [0.049]* [0.029]***

First Stage F 30.66 30.66 30.66 30.66

Contribution to total effect 16.6% 20.7% 62.5%

Period FE x x x x

Region FE x x x x

Demographics x x x x

Regional char. x x x x

Labor supply x x x x

Labor demand x x x x

Industry structure x x x x

Commuting zones 158 158 158 158

Periods 2 2 2 2

Observations 316 316 316 316

Notes: *p< 0.10; **p< 0.05; ***p< 0.01. Conventional cluster-robust standard errors are shown in paren-
theses, and shift-share clustered standard errors from Adao et al. (2019) are shown in brackets. Units of
observation are 158 clustered commuting zones (for details see Supplementary Material Appendix D). All
specifications include a set of commuting zone and period fixed effects, whereby the period fixed effects are
interacted with the sum of exposure shares used to construct the instrument. Demographic controls include
the start-of-period structure of the local population in 64 age-gender-education-nationality cells. Regional
characteristics control for the start-of-period logarithm of the gross regional product (total and per-capita)
and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-share controls are
included as the changes in import- and export-exposure and ICT-intensity (labor demand shifts) and changes
in the migrant population differentiated by 4 educational groups (labor supply shifts). The detailed industry
structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods, and capital goods), as well as industries
outside of manufacturing (construction, personal services, and business services). High-skill workers are
defined as university graduates.Medium-skillworkers are individualswhofinished high school or an appren-
ticeship, and low-skill workers have finished compulsory schooling or less. The dependent variables are
constructed as percentage changes where the change in the population by skill group is divided by the initial
year’s working-age population. Hence, all skill group-based variables have a common denominator and thus
sumup to the aggregated change.All regressions areweighted by the start-of-periodworking-age population
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is investigated in Table 6. Since the migration flow data does not contain information
on educational attainment, migratory responses of different skill groups are approx-
imated by percentage changes in population counts of each respective skill group.
Therefore, the results in Table 6 cannot distinguish between the type of destination
region (urban or rural), but rather approximate all migratory responses in rural areas.
Using percentage changes in the working-age population instead of the logarithm has
the advantage that the overall effect on the entire working-age population (in column 1
of Table 6) can be additively decomposed into the respective contributions of different
skill groups. The estimation results for high-, medium- and low-skilled workers in
columns 2 to 4 of Table 6 show that the majority of the migration response to the
robotization shock is caused by movements of individuals in the middle and at the
bottom of the skill distribution. Together these two groups account for around 83% of
all migratory responses to the robotization shock.

Taken together Tables 5 and 6 show that the rural-to-urban migration flows caused
by robotization are predominantly driven by those individuals that bear the strongest
shock incidence. These groups are mainly young workers (below the age of 35; see
Table A3) and workers of medium to low skill levels.

Heterogeneous effects by shock exposure

Table 7 shows heterogeneous effects by exposure to the robotization shock. Columns
2 and 3 decompose the overall effect of industrial robots on the manufacturing
employment-to-population ratio by effects occurring in the top-5 most exposed

Table 7 Effect heterogeneity by shock exposure

By industry exposure By regional exposure
Total effect Top-5 Other < Median ≥ Median
(1) (2) (3) (4) (5)

Panel A: � Manufacturing employment-population-ratio × 100

� Robots −0.476 −0.071 −0.405 −0.147 −0.329

(0.114)*** (0.037)* (0.125)*** (0.060)** (0.070)***

[0.066]*** [0.039]* [0.085]*** [0.039]*** [0.066]***

First Stage F 30.66 30.66 30.66 30.66 30.66

Panel B: Net out-migration rate ×100 (Rural)

� Robots 1.060 0.130 0.930

(0.362)*** (0.077)* (0.411)**

[0.145]*** [0.033]*** [0.135]***

First Stage F 30.66 30.66 30.66
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Table 7 continued

By industry exposure By regional exposure
Total effect Top-5 Other < Median ≥ Median
(1) (2) (3) (4) (5)

Panel C: Net out-migration rate × 100 (Rural-to-urban)

� Robots 0.612 −0.062 0.673

(0.201)*** (0.079) (0.245)***

[0.074]*** [0.025]** [0.072]***

First Stage F 30.66 30.66 30.66

Period FE x x x x x

Region FE x x x x x

Demographics x x x x x

Regional char. x x x x x

Labor supply x x x x x

Labor demand x x x x x

Industry structure x x x x x

Commuting zones 158 158 158 158 158

Periods 2 2 2 2 2

Observations 316 316 316 316 316

Notes: *p < 0.10; **p < 0.05; ***p < 0.01. Conventional cluster-robust standard errors are shown in
parentheses, and shift-share clustered standard errors from Adao et al. (2019) are shown in brackets. Units
of observation are 158 clustered commuting zones (for details see SupplementaryMaterial AppendixD). All
specifications include a set of commuting zone and period fixed effects, whereby the period fixed effects
are interacted with the sum of exposure shares used to construct the instrument. Demographic controls
include the start-of-period structure of the local population in 64 age-gender-education-nationality cells.
Regional characteristics control for the start-of-period logarithm of the gross regional product (total and
per-capita) and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-share
controls are included as the changes in import- and export-exposure and ICT-intensity (labor demand shifts)
and changes in the migrant population differentiated by 4 educational groups (labor supply shifts). The
detailed industry structure controls include start-of-period employment shares of several sub-industries of
manufacturing (production of food products, consumer goods, industrial goods, and capital goods), as well
as industries outside of manufacturing (construction, personal services, and business services). Columns 2
and 3 decompose the overall employment effect by industry exposure. The top-5 industrieswith the strongest
change in robot exposure are the manufacture of motor vehicles, electronic components and devices, rubber
and plastic products, metal products, as well as household and domestic appliances. The “other” category
in column 3 summarizes all remaining manufacturing industries. Regions in columns 4 and 5 are split along
the median of regional robot exposure (calculated using the average robot exposure of both panel periods).
All regressions are weighted by the start-of-period working-age population

industries and the remainingmanufacturing industries.22 Here, it stands out that, while
the top-5 most robotized industries account for a relevant part of the total negative
effect on manufacturing employment, the remaining industries are responsible for the
majority of the employment effect. Hence, the negative effect robotization has had on
manufacturing employment in Austria is not only driven by those heavily robotized

22 The top-5 industries with the strongest change in robot exposure are the manufacture of motor vehicles,
electronic components, and devices, rubber and plastic products, metal products, as well as household and
domestic appliances.
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industries, but instead is a much broader phenomenon affecting the entirety of the
manufacturing sector.

Columns 4 and 5 of Table 7 decompose the overall employment and migration
effects into the contributions of highly and less exposed regions. For this, the depen-
dent variables are interacted with dummies that take the value of one if a region is
above or below the median of the average change in robot exposure during 2003–
2016. This approach ensures that the coefficients in columns 4 and 5 sum up to the
total effects in column 1. Regarding this decomposition of the employment effect in
panel A shows that the majority of the negative effect of robotization is explained
by those regions that lie above the median of average robot exposure. Nevertheless,
regions below the median still show relevant negative reactions. This picture trans-
lates to the effect on net out-migration rates from rural areas (panel B) where again the
majority of the migration response is driven by regions with the highest exposure to
the robot shock, while less exposed regions also show significant migration responses,
albeit at a much smaller magnitude. Interestingly, this pattern does not persist when
specifically regarding rural-to-urban migration flows in panel C of Table 7. Here, the
entirety of the effect on rural-to-urban migration is explained by those regions that are
especially affected by changes in robotization. While less-exposed regions thus show
someminor effects on manufacturing employment and overall migration behavior, the
effect on rural-to-urban migration is exclusively driven by regions that are particularly
exposed to the robotization shock.

6 Robustness checks

Fixed exposure shares

To increase the strength of the first stage the instrumental variable used during themain
part of this paper relies on exposure shares that are lagged by 15 years for each of
the two-panel periods, instead of exposure shares that are uniformly fixed at the same
base year (see Eq.3). To assess the impact of updating the exposure shares, column
2 of Table A6 in the Supplementary Material presents estimation results where the
exposure shares for both panel periods are fixed at the common base year 1988 (i.e., 15
years before the start of the first-panel period). Fixing the exposure shares markedly
reduces the first-stage F-statistic, which drops to values below 10. With regard to the
estimated effects, all previous conclusions remain intact.

Long-difference specification

Column 3 of Table A6 in the Supplementary Material shows the results of a long-
difference specification over the entire observational period 2003–2016. Comparing
these long-difference results to the baseline specification using stacked differences
(column 1) shows that the primary results remain intact. Notably, the long-difference
specification results in a much larger estimated effect of robotization on migration
flows, indicating that unobserved heterogeneity along the spatial and time dimensions
appears to bias the estimate in a long-difference specification. Controlling for this
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unobserved heterogeneity via the inclusion of period and commuting zone fixed effects
in the stacked-difference specification thus leads to a smaller size of the estimated
migration response in the baseline specification. This, however, does not seem to be
the case for the employment estimations. Lastly, the long-difference specification also
results in a much weaker first stage.

Pool of donor countries for the instrument

A potential concern for the validity of the instrumental variable stems from possible
correlations between industry-level robot adoption between subgroups of countries
that are caused by (potentially endogenous) factors other than the increased supply of
robots due to technological progress. Since some of the countries used to construct
the instrument share a common currency, and thus a common monetary policy with
Austria, the simultaneous effects of commonmacroeconomic shocks on investment in
robots and outcome variables (i.e., changes in manufacturing employment or migra-
tion behavior), therefore, are a source of concern. If factors such as the Euro Crisis,
or changes in monetary policy, which rather prominently took place during the sam-
ple period, influence investment decisions in industrial robots specifically in certain
industries, this might lead to correlations between robotization shocks in Austria and
other member states of the European Union that is not driven by changes in the supply
of robots, and thus does not represent increased availability of industrial robots due to
technological progress. To the degree that such common macro shocks influence the
outcome variables, this might violate the exogenous shocks assumption. In principle,
the period fixed effects are able to deal with such a problem, if such effects are homo-
geneous across commuting zones. If such shocks, however, affect some industries
more strongly than others, this might introduce regional heterogeneity in this effect,
which might not be captured by period fixed effects. To assess whether the results are
influenced by such contamination of the instrumental variable column 4 of Table A6
in the Supplementary Material presents results for an alternative computation of the
instrument for which only robotization changes from countries outside the European
Monetary Union are used, while column 5 presents estimates where only countries
outside of Europe are used. Comparing the results for the baseline instrument in col-
umn 1 of Table A6 to the results for the alternative instruments in columns 4 and 5
of Table A6 shows that all results are robust to the exclusion of these countries in the
computation of the instrument.

Regional selection into robot usage

A further source of concern regarding the empirical strategy stems from strong het-
erogeneity between rural areas and cities. For example, the regional pattern of robot
usage might be driven by larger firms (which are more common in urban areas). Sim-
ilarly, robotization might be concentrated in areas with a more suitable age or skill
composition of the local workforce. If this is the case, then the instrument might be
contaminated by these selection processes. To control for this possibility column 6 of
Table A6 includes the average firm size in a commuting zone (differentiated by rural
and urban regions) as additional control variables, while column 7 includes age and
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skill shares of the local workforce (differentiated by rural and urban regions). Again,
all results are robust to these additional checks.

7 Conclusion

It has been long established in the economic literature that internal migration plays
a crucial role in the recovery of local labor markets after large-scale shocks to labor
demand. While this mechanism is well understood, the question of where internal
migrantsmove after a shock has remained largely unstudied. This question is, however,
of particular relevance as internal migration flows are a major contributing factor to
populationdeclines inmany rural areas in bothEurope and theUSA.This phenomenon,
which is known as rural depopulation, poses a great challenge for many rural areas,
and also for society as a whole, as it is closely connected to increases in geographical
inequality and social and political polarization.

In this paper, I explore the connection between changes in labor demand, which
are caused by the rise of industrial robotization, internal migration, and rural depop-
ulation in Austria during the period 2003–2016. The results of the analysis show
that industrial robotization has had a substantial negative impact on manufacturing
employment, and increased out-migration in local labor markets most exposed to the
robotization shock. Laying a specific focus on rural areas reveals that a large part
of their internal out-migration flows are directed towards urban areas, thereby con-
tributing to the decline of many rural regions. In sum, the estimations suggest that
rural-to-urban migration flows, which are specifically caused by industrial robotiza-
tion, explain roughly one-fourth of all rural-to-urban movements between 2003 and
2016. This increase in net out-migration exclusively operates through increases in out-
migration rates, indicating that robotization-induced population declines in remote
rural areas are driven by individuals leaving highly exposed rural regions toward the
cities. Exploring heterogeneous effects by population subgroups further shows that
these rural-to-urban migration flows are primarily driven by those individuals that
bear the strongest incidence of the robotization shock, namely young and medium-
and low-skilled individuals.

One important consequence of rural decline is a deepening of the cleavage between
advantaged and disadvantaged regions. With recent increases in societal and political
polarization, future work should explore how rural decline and its causes contribute
to this development.
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