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Abstract
The “retrieval from mixed frequency sampling” approach based on blocking—
described e.g., in Anderson et al. (EconomTheory 32:793–826, 2016a)—is concerned
with retrieving an underlying high frequency model from mixed frequency obser-
vations. In this paper, we investigate parameter-identifiability in the Johansen
(Likelihood-based inference in cointegrated vector autoregressive models. Oxford
University Press, Oxford, 1995) vector error correction model for mixed frequency
data. We prove that from the second moments of the blocked process after taking dif-
ferences at lag N (N is the slow sampling rate), the parameters of the high frequency
system are generically identified. We treat the stock and the flow case.

Keywords Mixed frequency · REMIS · VAR · Cointegration · Vector error correction
model · Identifiability

Mathematics Subject Classification 62M10 · 62P20

1 Introduction

Econometric analysis is often encountered with multivariate time series data sam-
pled at mixed frequencies. Examples for treating this are Zadrozny (1988), Ghysels
et al. (2007)[MIDAS-regression], Anderson et al. (2012, 2016a), Schorfheide and

B Leopold Sögner
soegner@ihs.ac.at

Philipp Gersing
philipp.gersing@wu.ac.at

Manfred Deistler
manfred.deistler@tuwien.ac.at

1 Department of Statistics, Vienna University of Technology, Institute for Statistics and
Mathematics, Vienna University of Economics and Business, Vienna, Austria

2 Department of Economics and Finance, Institute for Advanced Studies, Josefstädter Straße 39,
1080 Vienna, Austria

3 Vienna Graduate School of Finance (VGSF), Vienna , Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00184-025-00994-4&domain=pdf
http://orcid.org/0000-0001-5388-0601


P. Gersing et al.

Song (2015), Ghysels (2016), and Chambers (2020). Identifiability is a prerequisite
for consistent estimation (see, e.g., Deistler and Seifert 1978; Pötscher and Prucha
1997) and often is needed for economic interpretation of effects related to particular
model parameters. This article investigates identifiability of the model parameters in
a Johansen (1995) vector error correction model.

The general question is whether the internal characteristics, i.e. the model param-
eters θ , can be retrieved from the external characteristics—in our case “observable”
population second moments (i.e. second moments which can be consistently esti-
mated from our mixed-frequency data). Identifiability means that the mapping from
the parameters to these second moments is injective. Often injectivity of this mapping
can only be achieved for a certain subset of the parameterspace. Here, we prove that
identifiability can be obtained for a generic subset of the parameterspace. For short
we write “g-identifiability” (see Anderson et al. 2016a).

As opposed to MIDAS-regression, where the observations at high frequency are
considered as additional information, we

commence from an underlying high frequency system (e.g., a VECM) for a
multivariate process written as

(yt )t∈Z =
((

y f
t
yst

))
t∈Z

,

parameterised by θ . The dimensions are n, n f and ns for yt , y
f
t (the fast variables)

and yst (the slow variables) respectively. Our aim is to identify and estimate the high
frequency system from the observed (mixed frequency) data.

The observational scheme is as follows:
While the fast variables y f

t are observed at t ∈ Z, for the slow variables yst we
consider: 1. Stock-Case: yst is observed only at t ∈ NZ for some sampling rate
N ≥ 2, hence we have a missing-value problem.
2. Affine aggregation: we observe an affine transformation

wt := cw + c0y
s
t + · · · + cpc y

s
t−pc , (1)

where ci are known constant matrices for i ≥ 0, cw is a known vector and wt is
observed at t ∈ NZ. A special case of affine aggregation are flow variables: For
example suppose yst = GDPt , the monthly gross domestic product of a country. The
quarterly GDP, wt , is the sum of three monthly GDPs. We call yst latent whenever it
is not directly observed. Hence, our aim is to retrieve the underlying high frequency
parameters θ from data observed according to the observational schemes described
above.1

With the procedure described above, we are able to retrieve the full high fre-
quency system, whereas the MIDAS (see, e.g., Ghysels 2016) approach only covers

1 In this example we assume that the variable considered, yt , is integrated of order one. If by contrast
(log yt ) is integrated of order one, the affine approximation of Aadland (2000) in combination with the
methodology developed in this article can be applied.
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relationships between observed variables. After identifying the parameters one may
interpolate missing values or dis-aggregate observations in a model based way by
using the retrieved parameters of the underlying high frequency system.

Estimation of continuous time models from mixed frequency data are investigated
in Chambers (2003, 2016, 2020). In particular, Chambers (2003, 2020) consider
co-integrating regressions and show that the scaled estimators proposed, converge in
distribution to functionals of Brownian motion and to stochastic integrals. Hence, the
estimators are (weakly) consistent. Then, by Gabrielsen (1978)—and for the case of
strong consistencybyDeistler andSeifert (1978)—themodel parameters are identified.

For the stable vector auto-regessive model Anderson et al. (2012, 2016a) either
used the blocking approach (see also Filler 2010; Ghysels 2016) or the extended
Yule-Walker equations (see Chen and Zadrozny 1998; Anderson et al. 2016a) to show
g-identifiability. For the same model class Gersing and Deistler (2021) present an
alternative proof for identifiability using the so-called canonical projection form. This
idea is also applied in this paper. On the other hand, Deistler et al. (2017) show that the
parameters need not be identified in the auto-regressive-moving average (VARMA)
case, if the order of the MA polynomial exceeds the order of the AR polynomial.

This article is organised as follows: Sect. 2 starts with the vector error correction
model developed in Engle and Granger (1987) and Johansen (1995) as the underlying
high frequency model.

In Sect. 2.2 we describe the observational schemes considered in detail. In par-
ticular, we introduce a stationary blocked process containing all observed variables.
Section2.3 introduces conditions, which are later shown to be sufficient for identifia-
bility.We prove that these conditions hold generically in the underlying high frequency
parameterspace. Section3 considers the non-stationary case: Here, we use the result
from Chambers (2020) that the cointegrating vectors can be identified frommixed fre-
quency data. First, we derive a state-space representation of the blocked process that
we call Canonical Projection Form (CPF). In this representation, the system matrices
are simple transformations of the parameters of the underlying high frequency sys-
tems. After that we start from the unique factor of the spectrum of the blocked process
(see, e.g., Deistler and Scherrer 2022, Chapter 6.2 and 7.3) to get an arbitrary minimal
realisation for this factor and relate this to the CPF. From there we can retrieve the
parameters of the underlying high frequency system using the structural properties of
the CPF. Finally, Sect. 4 concludes.

2 Notation andModel Class

2.1 Representations and Parameterspace of the Underlying High Frequency
System

In the first step, we introduce the class of underlying high frequency systems: We
commence fromaprocesswhich is integrated of order one and allows for cointegration.
Suppose (yt )t∈Z is n × 1 and a solution on Z of the vector error correction system:
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�yt = �yt−1 +
p−1∑
j=1

� j�yt− j + νt , νt ∼ WN (�ν) , (2)

where (νt )t∈Z is uncorrelated white noise, where �ν non-singular, and � is of rank
r > 0 in the case of cointegrating relationships, but we also allow the case r = 0.
Such solutions always exist and can be constructed as described in detail in Bauer
and Wagner (2012). We obtain a unique factorisation of � = αβ ′ with α, β ∈ R

n×r

applying the singular value decomposition to � in the following way:

� = U︸︷︷︸
n×n

diag(d1, . . . , dr , 0, . . . , 0)︸ ︷︷ ︸
D

V ′︸︷︷︸
n

×n = U1︸︷︷︸
n×r

diag(d1, . . . , dr )︸ ︷︷ ︸
D̃

V ′
1︸︷︷︸

r×n

= U1 D̃V ′
1 = U1Q

−1︸ ︷︷ ︸
α

QD̃V ′
1︸ ︷︷ ︸

β ′

,

where Q is a non-singular matrix of elementary row operations that transforms D̃V ′
1

into its reduced echelon form, such that QD̃V ′
1 = (

Ir β ′
n−r

)
. We stack the parameters

α, β,�1, . . . , �p−1 to a vector θV ECM ∈ R
d , where d = nr + (n − r)r + (p− 1)n2.

We also have a VAR(p) representation for (yt ) of the form,

yt = A1yt−1 + · · · + Ap yt−p + νt . (3)

Throughout this article, we assume that r and p are known a priori. For example, for
the stock case yt is observed on NZ, then r can be determined by the Johansen rank test
(see Johansen 1995, ch.6.3) (using only data on the low-frequency time grid). For the
case where the slow variables are only flow, we can consider the aggregate

∑N
j=0 yt− j ,

observed for t ∈ NZ. By using these aggregates and the Granger representation
theorem (see Johansen 1995, Theorem 4.2), we get an error correction model for∑N

j=0 yt− j with the same matrix of cointegrating vectors β. This also allows to apply
the Johansen rank test to estimate r . On the other hand p could be implicitly determined
using estimators for the state dimension of the system in the blocked representation
(13), (14); see, Pötscher (1989).

We obtain the representation in (3) by the mapping ψ :

ψ : θV ECM �→ θAR, defined as

A1 = In + � + �1, A j = � j − � j−1 for 1 < j < p, Ap = −�p−1,

with θAR = vec
(A1 · · · Ap

)
. On the other hand for a θAR which has a corresponding

VECM representation, we compute θV ECM as follows:

ψ−1 : θAR �→ θV ECM
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� = −In +
p∑

j=1

A j , �1 = −In + A1 + �, �2 = �1 + A2, · · · , �p−1 = −Ap.

Now, define the polynomial matrix a(z) = In − A1z − · · · − Apz p where z is a

complex variable or the lag operator on Z depending on the context. For č =
(
Ir
0

)
∈

R
n×r and č⊥ =

(
0

In−r

)
∈ R

n×(n−r), β⊥ := (
In − č(β ′č)−1β ′)č⊥, and α⊥ defined

analogously to β⊥. We impose the following assumptions ( Johansen 1995, Chapter4):

Assumption 1 (Cointegrated VAR-System)

(C1) rk αβ ′ = r < n.
(C2) det(α′⊥(In −∑p−1

j=1 � j )β⊥) 	= 0.
(C3) det a(z) = 0 ⇒ z = 1 or |z| > 1.
(C4) �ν = E νtν

′
t > 0.

We define the parameterspace as follows2:

�V ECM,1 := ψ−1

(
ψ

(
R
d
∣∣∣
C1,C2

) ∣∣∣∣
C3

)
, �1 := ψ

(
�V ECM,1

)

with �1
ψ↔ �V ECM,1

Note that under these assumptions ψ is a homeomorphism.
The set of vech�ν with �ν ∈ R

n×n , �ν = �′
ν and �ν > 0 (condition (C4)

in Assumption 1) is denoted by �2. The overall parameterspace for the VAR(p)
representation is

� = �1 × �2.

Wewill also need the state-space representation of (yt )t∈Z, which follows from (3):

⎛
⎜⎝

yt
...

yt−p+1

⎞
⎟⎠

︸ ︷︷ ︸
Xt+1

=

⎛
⎜⎜⎜⎝
A1 A2 · · · Ap

In 0
. . .

...

In 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎝
yt−1

...

yt−p

⎞
⎟⎠

︸ ︷︷ ︸
Xt

+

⎛
⎜⎜⎜⎝
In
0
...

0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
B

νt (4)

yt = (A1 · · · Ap
)

︸ ︷︷ ︸
C

Xt + νt . (5)

2 We write Rd
∣∣∣
C1,C2

to denote the set of real vectors in R
d for which C1 and C2 hold.
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Note that (4), (5) is always controllable as�ν and therefore �(t) := E
(
Xt+1X ′

t+1

)
are of full rank. The system (4), (5) is also observable wheneverAp is of full rank. This
follows sinceAp is then nonsingular (and thereforeA is non-singular) from the BPH-
test (see Kailath 1980, 2.4.3). Hence under Assumption 1 and if Ap is nonsingular
the system (4), (5) is minimal. For details on controllability and observability see e.g.
Deistler and Scherrer (2022), Chapter 7 or Hannan and Deistler (2012), Chapter 2.

2.2 Mixed Frequency Data: Stock and FlowVariables

Amain challenge of the identifiability proof in the integrated case—as opposed to the
stationary case (Anderson et al. 2016a)—is that the second moments of an integrated
process (that is, Eys yt , s, t ∈ Z) are time dependent and cannot be estimated directly.
Instead, for the sake of practical relevance of identifiability considerations, we identify
from observable second moments of stationary transformations of the level process
(yt )t∈Z.

Suppose for the moment, that the matrix of cointegration vectors β is known. Our
proof commences from what we call the “blocked process”, where we distinguish
between the Stock- and the Flow-case:

1. Stock Variables: In this case for t ∈ NZ, we get the co-stationary vector ỹt of
“observed” random variables. We will use ñ := r + n + (N − 1)n f for the dimension
of ỹt henceforth. Let uSt := β ′yt , �N yt := yt − yt−N = ∑N−1

j=0 �yt− j , and

ỹt =

⎛
⎜⎜⎜⎜⎜⎝

β ′yt
yt − yt−N

y f
t−1 − y f

t−N−1
...

y f
t−N+1 − y f

t−2N+1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

uSt
�N yt

�N y
f
t−1

...

�N y
f
t−N+1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

The blocked process (ỹt ) is similar to the blocked process inAnderson et al. (2016a)
with the distinction that we added the variable β ′yt = uSt and take differences at lag
N . Admittedly, the true β is in fact not observed, however since β can be estimated
consistently (see Miller 2016; Chambers 2020 and the Supplementary Appendix of
this paper, Section S-1), for the purpose of the analysis of identifiability we can assume
β ′yt to be observed.

2. Flow Variables:
In a similar way, we may consider the case where all slow variables are flow vari-

ables, in which case we are able to observe the temporal aggregate wt := ∑N−1
j=0 yst− j

at t ∈ NZ. So

��
N yt :=

N−1∑
j=0

yt− j −
N−1∑
j=0

yt−N− j = �N

N−1∑
j=0

(
y f
t
yst

)
.
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If all slow variables are flow variables, we can observe
∑N−1

j=0 yt− j =(
w′
t ,
∑N−1

j=0 y f ′
t− j

)′
, t ∈ NZ. Since β ′yt is stationary, we have that

(
β ′yt

)
t∈NZ

and

uFt := β ′∑N−1
j=0 yt− j ∈ R

r are integrated of order zero. For the flow case we define
the co-stationary vector process

ỹt =

⎛
⎜⎜⎜⎜⎜⎜⎝

uFt
��

N yt
�N y

f
t−1

...

�N y
f
t−N+1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

We call the autocovariance function of the (stationary) blocked process

γ̃ : h �→ E ỹt+h ỹ
′
t , where h ∈ NZ , (8)

observed second moments, which can be consistently estimated from the data (if β is
known) under standard assumptions, see also Supplementary Material S-1.

The motivation to consider this blocked process for identifiability is the following:

1. We take differences at lag N (as opposed to lag one) because these differences can
be directly computed from the mixed frequency data and are stationary.

2. Note that the set of observable autocovariances given mixed frequency data is

γ
f f

�N y(h) := E�N y
f
t+h�N y

f
t

′
h ∈ Z

γ
f s

�N y(h) := E�N y
f
t+h�N y

s
t
′ h ∈ Z

γ ss
�N y(h) := E�N y

s
t+h�N y

s
t
′ h ∈ NZ

γ ·
β(h) := E u·

t+hu
·
t
′ h ∈ NZ ,

where the superscript “·” is shorthand forS orF . Note that these are exactly the second
moments of the autocovariance function γ̃ of the blocked process defined in Eq. (6)
for the stock case. In an obvious way this is treated accordingly in the flow case (7).
So the blocked process “contains the whole second moment information available”
from which we can identify.

The same idea is also applied for the stationary case in Anderson et al. (2016a).

3. Our interest in the particular blocked process (6), (7) having u·
t in the first coor-

dinates, originates from the fact that we can obtain a minimal representation for
this process (see Sect. 3), where the parameters are fairly simple functions of the
parameters of the underlying high frequency system. This will finally help us to
retrieve the high frequency model parameters.
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Next, we define the concept of generic identifiability. Here, identifiability is con-
cerned with the problem whether the parameters of the underlying high frequency
system (4), (5) or (2) are uniquely determined from the observable second moments
(defined below in this section). To be more precise, a subset �I ⊂ � is called iden-
tifiable, if the mapping attaching the observable second moments to the parameters
θ ∈ �I is injective. In our setting identifiability for the whole set � cannot be
obtained.

To see this, we consider a simple example where p = 1, r = 1, and n = 2,
the first coordinate of yt is a fast variable, denoted y f

t , while the second coordinate,
yst , is a slow stock variable. We assume that the cointegrating vector β = (1, βs)

is known. Recall that the observed second moments are as described in equations
(6) and (8). Let σ f f , σ f s = σs f , and σss denote the elements of the covariance
matrix�ν . Supplementary Appendix S-2 shows that there exist two parameter vectors

θ I :=
(
α I
f , α

I
s , 1, βs, σ

I
f f , σ

I
f s, σ

I
ss

)′ 	= θ I I :=
(
α I I
f , α I I

s , 1, βs, σ
I I
f f , σ

I I
f s , σ

I I
ss

)′

such that all observable second moments are the same; hence in this case the mapping
from the model parameters to observable second moments cannot be injective and the
model parameters are not identified from observed second moments. In this example
α I
f = α I I

f = 0. This implies that the fast coordinate follows a random walk and does
not provide any information on the parameter αs , that is on how β ′yt affects �yst ,
t ∈ 2Z.

However, in this paper we prove that identifiability holds for a so called generic
subset of �. Note that a set �I ⊂ � is called generic in �, if it contains a subset that
is open and dense in �. Let �I := (G ∩ �1) × �2, where G ⊂ R

n2 p is defined in
Assumption 2 below. In this paperwe showfirstly that�I is generic in� (see Sect. 2.3)
and secondly that the set of high frequency systems corresponding to�I is identifiable
from the observable second moments (see Sect. 3). Or formally, we show that

π : θ �→ γ̃ (9)

is injective on �I ⊂ �.
Finally, in terms of identifiability, we may suppose without loss of generality that

β is known. For instance Miller (2016) or Chambers (2020) propose estimators,
accounting for stock and flow variables, respectively.

The estimators of β scaled by T weakly converge to a random variable bounded
in probability. Hence, e.g. by White (2001), the estimator is weakly consistent. By
Gabrielsen (1978) the matrix of cointegrating vectors β ∈ R

n×r is identified from
mixed frequency observations given the assumptions imposed in Chambers (2020)
or Miller (2016). These assumptions are only posed on the stochastic properties of
the high frequency innovations (νt )t∈Z and therefore do not restrict our results on the
genericity of the identifiability conditions from Sect. 2.3. If strong consistency could
be established for some estimator of β, the results of Deistler and Seifert (1978) apply
and β is identified.
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2.3 Generic Identifiability and Topological Properties of the Parameterspace

In this section we define the conditions that we need for identifiability and prove
that these conditions result in a generic subset of the parameterspace. Define a set
G ⊂ R

n2 p by the following assumptions:

Assumption 2 (g-Identifiability Assumptions)

(I1) rkAp = n.
(I2) rk �(t) = np where �(t) = E(Xt+1X ′

t+1).
(I3) The eigenvalues ofA are of the form: (1, . . . , 1, λn−r+1, . . . , λnp)where |λ j | < 1

and λi 	= λ j for i 	= j with i, j = n − r + 1, . . . , np.
(I4) For non-unit eigenvalues λi 	= λ j it follows that λN

i 	= λN
j .

(I5) For all eigenvalues λ ofA smaller than one, it holds that 1+ λ + · · · + λN 	= 0 or
v1 consisting of the first n elements of the eigenvector v ofA corresponding to λ,
it holds that β ′v1 	= 0.

(I6) The pair (S(1)
n f , A) is observable, where S(1)

n f is defined in Eqs. (14), (15) and A is
defined in Eq. (10).

Assumption (I1) and (I6), (I5) are needed for observability (see also Anderson
et al. 2016b, proofofTheorem2). Assumption (I2) ensures controllability and already
follows from � > 0 (e.g. Deistler and Scherrer 2022, ch.7). Finally, Assumptions
(I3)-(I5) are used to uniquely retrieve the high frequency parameters from the blocked
system (see proof of Theorem 3). In particular Assumption (I5) is involved to show
observability for the stock and the flow case (see Lemma 6) and (I4) is used in the
algorithm constructed in the proof of Theorem 4, step 2 to identify the eigenvalues of
the underlying high frequency companion matrix A.

Recall that �I = (G ∩ �1) × �2.
These assumptions are similar to the stationary case considered in Felsenstein

(2014), Anderson et al. (2016a, b).
There, the stability condition defines an open set �′ ⊂ R

n2 p. We also have a
corresponding set G ′ defining the identifiability conditions for the stationary case,
which is generic in Rn2 p.

Then, the intersection �′ ∩ G ′ is generic in �′. However, in the integrated case,
where unit roots occur, the situation is more intricate since neither �1 nor G is open
in R

n2 p. This follows from the fact that for a process with n − r common trends,
the n − r eigenvalues of A in (4) are equal to one [note that the eigenvalues of A
are the reciprocals of the zeros of a(z)]. The following Theorem 1 implies that the
identifiability conditions are generically fulfilled in �:

Theorem 1 Let �1 be endowed with the Euclidean norm d. The set �1 ∩ G is open
and dense in �1.

For the proof see “Appendix A”.
Since genericity is a topological property, it also holds for the homeomorphic param-

eterspace corresponding the vector error correction representation in (2) defined by
Assumption 1.
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3 Generic Identifiability

In the following paragraphs, we first define a canonical state-space representation for
the blocked process running on t ∈ NZ. We prove that this representation is minimal
under our identifiability conditions. Then under an additional assumption on the lag
order p, we show that the high frequency parameters are generically identifiabile. The
proofs of minimality and identifiability make use of the canonical representation. We
follow Hansen and Johansen (1999) and obtain from (2) the following state-space
system for β ′yt and first differences of yt , that is �yt = yt − yt−1. Then,

⎛
⎜⎜⎜⎝

β ′yt
�yt

...

�yt−p+2

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
xt+1∈Rr+n(p−1)

=

⎛
⎜⎜⎜⎜⎜⎝

β ′α + Ir β ′�1 · · · · · · β ′�p−1
α �1 · · · · · · �p−1

0n×r In 0n×n
...

. . .
...

In 0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A∈Rr+n(p−1)×r+n(p−1)

⎛
⎜⎜⎜⎝

β ′yt−1
�yt−1

...

�yt−p+1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
xt

+

⎛
⎜⎜⎜⎜⎜⎝

β ′
In
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
B

νt (10)

(
β ′yt
�yt

)
︸ ︷︷ ︸
∈Rr+n

=
(

β ′α + Ir β ′�1 · · · · · · β ′�p−1
α �1 · · · · · · �p−1

)
︸ ︷︷ ︸

C∈Rr+n×r+n(p−1)

⎛
⎜⎜⎜⎝

β ′yt−1
�yt−1

...

�yt−p+1

⎞
⎟⎟⎟⎠+

(
β ′
In

)
︸ ︷︷ ︸

D∈Rr+n×n

νt .

(11)

By m := r + n(p − 1), we denote the dimension of xt . As we will see later,
given that our identifiability conditions hold,m is also the McMillan degree (see, e.g.,
Hannan and Deistler 2012, p. 51) of the transfer function of (ỹt )t∈NZ.

According to the observational scheme, the slow variables yst are observed only
every N -th period. We derive state-space representations for the processes (6) and (7)
running on t ∈ NZ:

1. Case: Stock Variables:We define a new state vector xt+1 in the following way,
with the condition that p ≥ N + 2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uSt
�N yt

.

.

.

�N yt−N+1
�yt−N

.

.

.

�yt−p+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
xt+1∈Rr+n(p−1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir 0 0 . . .

0 In In . . . In 0 . . .

0 0 In . . . . . . In 0 . . .

.

.

.
. . .

. . .

.

.

. In . . . . . . In 0 . . .

.

.

. . . . 0 In 0 . . .

.

.

.
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c∈Rr+n(p−1)×r+n(p−1)

⎛
⎜⎜⎜⎝

uSt
�yt

.

.

.

�yt−p+2

⎞
⎟⎟⎟⎠ . (12)

123



Retrieval frommixed sampling frequency: generic…

By iterating the system (10), (11), we get the non-miniphase system (in the sense
that the transfer-function is not causally invertible as the input dimension exceeds
(Nn) the output dimension (ñ), noting that �ν > 0):

xt+1 = c AN︸︷︷︸
:=Ab

c−1

︸ ︷︷ ︸
Ab,c

xt−N+1 + cBb︸︷︷︸
Bb,c

νbt (13)

ỹt = Sζ A
N

︸ ︷︷ ︸
:=Cb

c−1

︸ ︷︷ ︸
:=Cb,c

xt−N+1 + Dbν
b
t , (14)

where

Sζ :=

(r × m){
S(1)
n f (n f × m){
S(1)
ns (ns × m){

S(2)
n f (n f × m){

.

.

.

S(N )
n f (n f × m){

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir 0 · · · 0

0
(
In f , 0

)
· · ·

(
In f , 0

)
0 · · · 0

0
(
0, Ins

) · · · (
0, Ins

)
0 · · · 0

0 0
(
In f , 0

)
· · ·

(
In f , 0

)
. . .

. . .
.
.
.(

In f , 0
)

· · ·
(
In f , 0

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Cb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Ir 0 · · · 0) AN

S(1)
n f A

N

S(1)
ns AN

S(2)
n f A

N

S(3)
n f A

N

.

.

.

S(N )
n f AN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Ir 0 · · · 0) AN

S(1)
n f A

N

S(1)
ns AN

S(1)
n f A

N−1

S(1)
n f A

N−2

.

.

.

S(1)
n f A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, νbt :=

⎛
⎜⎜⎜⎜⎜⎝

νt
.
.
.

.

.

.

νt−N+1

⎞
⎟⎟⎟⎟⎟⎠

∈ R
Nn . (15)

Thematrices Bb,c ∈ R
r+n(p−1)×Nn and Db ∈ R

r+n×Nn are obtained from B and A.

2. Case: Flow Variables:
Next, we obtain the state vector xt+1 for the flow case. Note that yt− j = yt −∑ j
�=1 �yt−�, such that

∑N−1
j=0 yt− j = ∑N−1

j=0

(
yt −∑ j

�=1 �yt−�

)
= Nyt − (N −

1)�yt−1 − · · · − �yt−N+1. Analogously to Eq. (12), this yields for p ≥ 2N + 1 that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β′ ∑N−1
j=0 yt− j

��
N yt

�N yt−1
.
.
.

�N yt−N+1
�yt−N

.

.

.

�yt−p+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
xt+1∈Rr+n(p−1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N Ir −(N − 1)β′ −(N − 2)β′ · · · −β′ 0 · · ·
0 In · · · In −In · · · −In 0
0 0 In · · · In 0 · · ·
.
.
.

. . .
. . .

.

.

. In · · · In 0

.

.

. · · · 0 In 0 · · ·

.

.

.
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c∈Rr+n(p−1)×r+n(p−1)

⎛
⎜⎜⎜⎜⎝

uSt
�yt

.

.

.

�yt−p+2

⎞
⎟⎟⎟⎟⎠ . (16)
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We use the same notation for ỹt , xt , c for both cases. With this notation, we obtain the
following state-space representation for blocked process in the flow case:

xt+1 = cAbc
−1︸ ︷︷ ︸

Ab,c

xt−N+1 + cBb︸︷︷︸
Bb,c

νbt (17)

ỹt = Sζ A
N

︸ ︷︷ ︸
Cb∈Rñ×m

c−1

︸ ︷︷ ︸
Cb,c∈Rñ×m

xt−N+1 + Db,cν
b
t

where

Sζ =

⎛
⎜⎜⎜⎜⎜⎜⎝

N Ir −(N − 1)β ′ −(N − 2)β ′ · · · −β ′ 0 · · ·
0 In · · · In −In · · · −In 0 · · ·
0 0 (In f , 0) · · · (In f , 0) 0 · · ·

. . .

0 0 (In f , 0) · · · (In f , 0) 0 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

The matrix Db,c ∈ R
ñ×Nn follows from Db, the matrix c and the selection of the

corresponding rows resulting in ỹt .
3. Case: Mixed Case: Consider the case where we have slow stock as well as slow

flow variables:
For example, if (yt ) is a three-dimensional process, where n f = 1, ns = 2, N = 2,

c1 = I2, and c2 =
(
0 0
0 1

)
in Eq. (1). Then β ′

(
y f ′
t , w′

t

)′
is (in general) not stationary.

However, in special cases, such as separate cointegrating relationships among the
slow flow variables only, or among the slow stock and fast variables only, etc. we can
proceed similarly to the flow case. In the following we only consider the stock or the
flow case.

The problemwith the systems considered above is that the inputs νbt are not the inno-
vations of ỹt . However, from the stableminiphase spectral factorisation,we only obtain
transfer functions corresponding to systems in innovation form (see, e.g., Deistler and
Scherrer 2022, Chapter 7). The following Theorem 2 is the first step for obtaining a
canonical state-space representation for the blocked process. A minimal state-space
representation is called “canonical” if its parameters are uniquely determined from
the transfer function. We introduce the following notation for specific subspaces
of L2(�,A, P), the space of square integrable random variables on the underlying
probability space (�,A, P):

H(y) := sp(yit | t ∈ Z, i = 1, . . . , n)

Ht (y) := sp(yis | s ≤ t, i = 1, . . . , n)

NH(y) := sp(yit | t ∈ NZ, i = 1, . . . , n)

NHt (y) := sp(yis | s ≤ t and s ∈ NZ, i = 1, . . . , n) ,

where sp(·) denotes the closed span and proj(v | U ) the projection of v on a closed
subspace U of L2.
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Theorem 2 Suppose thatAssumption 1 holds. Consider the blocked process (ỹt )t∈NZ

and set

st−N+1 := proj(xt−N+1 | NHt−N (ỹ))

ν̃t := ỹt − proj(ỹt | NHt−N (ỹ)).

Then there exists B̃c ∈ R
np×ñ such that

st+1 = Ab,cst−N+1 + B̃cν̃t (19)

ỹt = Cb,cst−N+1 + ν̃t (20)

is a miniphase and stable state-space representation of (ỹt )t∈NZ, i.e. it is in innovation
form.

For the proof see “Appendix B”.
We call the representation in (19), (20) canonical projection form (CPF) of ỹt . Note

that theCPFprovides an algorithm for computing the transfer function k̃(z̃) of (ỹt )t∈NZ

which corresponds to the Wold representation, where z̃ := zN . Next we show that the
system (19) and (20) is observable and controllable and therefore minimal (see, e.g.,
Hannan and Deistler 2012, Theorem 2.3.3) for all θ ∈ �I .

Theorem 3 For θ ∈ �I , the system (19) and (20) is minimal.

For the proof see “Appendix C”.
By Theorem 3, we know that the McMillan degree of the transfer function of the

blocked process (ỹt )t∈NZ corresponding to an underyling high frequency VECM is
m = r + n(p − 1). This will be used in the proof of the subsequent Theorem 4,
where we can relate an arbitrary minimal realisation ( Āb,c, B̄b,c, C̄b,c) of the trans-
fer function k̃(z̃) = (

C̄b,c
(
Im z̃−1 − Āb,c

)
B̄b,c + Iñ

)
(where z̃ := zN ) to the CPF

(Ab,c, B̃c,Cb,c). The minimal realisation ( Āb,c, B̄b,c, C̄b,c) can be either obtained by
the spectral factorisation and e.g. the echelon realisation from the Hankel matrix of
the transfer function (see e.g. Hannan and Deistler 2012, Theorem 2.6.2) or directly
from the Hankel matrix of the observed second moments (see, e.g. Anderson et al.
2016a, Proof of Theorem 8). In the next step we relate the CPF to the underlying
VECM/VAR—exploiting the fact that the parameters θ of the underyling VECM
reappear in the CPF. Finally, we show that the parameters of the high frequency sys-
tem are generically identifiable from the observed second moments, i.e. from γ̃ (see
Eq. (8)):

Theorem 4 (Generic-Identifiability: Flow or Stock Case) Let
p ≥ N + 2 for stock case or p ≥ 2N + 1 for the flow case. Then,

1. The mapping, π in Eq. (9) which attaches the second moments of (ỹt )t∈NZ to the
high frequency parameters θ is injective on �I .

2. Its inverse, π−1, is continuous on π(�I ).
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For the proof see “Appendix D”.
Since by Theorem 1, �I is a generic subset of �, we say that θ is generically

identifiable from the observed autocovariance function γ̃ . Theorems 3 and 4 imply
that the representation (19), (20) is indeed canonical on π(�I ). Since the second
moments of (ỹt ) can be consistently estimated from the data under mild conditions,
by the continuity of π−1 it follows that we have a consistent estimator for θ .

Finally, we consider the question whether π−1(π(�I )) = �I . This is important to
ensure that outside of the identified parameter set �I there are no elements, say θ¬I ,
which result in the same observable second moments as some θ ∈ �I :

Theorem 5 For all θ¬I ∈ �\�I there exists no θ ∈ �I such thatπ(θ¬I ) = π(θ) = γ̃ .

For the proof see “Appendix E”.

4 Conclusion

In this paper, we generalise the results on identifiability from mixed frequency data
in Anderson et al. (2016a, b) obtained for stationary VAR-systems to the case of unit-
roots and cointegrating relationships.As iswell known these systems have also a vector
error correction representation. The corresponding parameterspaces are homeomor-
phic. We commence from a solution of the (unstable) VAR system on the integers
Z (see Bauer and Wagner 2012, for the existence of such a solution). Then we take
differences at lag N (which is the sampling rate of the slow/aggregated process) and
stack these to what we call the “blocked process”. In addition, the blocked process
also contains the stationary process β ′yt , where β is the matrix of cointegrating rela-
tionships. This matrix is identified from mixed frequency data as already shown in
Chambers (2020). This blocked process is stationary and contains all relevant differ-
ences of the observations. The contribution of this paper can be seen as an extension of
the results in Chambers (2020), by proving that also the remaining parameters of the
vector error correction model (i.e. besides β) are (generically) identified from mixed
frequency observations.

Finally, we show that all common cases of deterministic terms in the VECM can
be reduced to the case of non-deterministic terms (see Supplementary Appendix S-3).

A Proof of Theorem 1

1. (G ∩ �1 is dense.)
Suppose that θ0 ∈ �1 does not satisfy at least one of the identifiability conditions. Let
ε > 0, we show that there exists θ ∈ G ∩ �1 such that ‖θ − θ0‖ < ε by perturbing
the eigenvalues / eigenvectors of the companion matrix A corresponding to θ0.
For this we define amapping fθ0 thatmapsA to a companionmatrixA∗ with perturbed
eigenvalues and eigenvectors such that θ = vec

(A∗
1 · · · A∗

p
)
is in G ∩ �1:

1. Compute the Jordan decomposition of A = Q�Q−1.
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2. Perturb the eigenvalues:

Ā∗ = Q
(
� + diag(0, . . . , 0︸ ︷︷ ︸

n

−r − times, ξ1, . . . , ξnp−(n−r))
)

︸ ︷︷ ︸
�̃

Q−1. (A.1)

3. We transform Ā∗ to a similar matrixA∗ that has the companion structure by using
the procedure from Anderson et al. (2016a):

A∗ = T Ā∗T−1, hence A∗T =

⎛
⎜⎜⎜⎝
A∗

1 · · · A∗
p

In 0
. . .

...

In 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
T1
T2
...

Tp

⎞
⎟⎟⎟⎠ = T Ā∗ ,

where Tj for j = 1, . . . , p are the n × np rowblocks of T . Now we set T1 =[
In 0 · · · 0] and solve the equation above:

A∗
1T1 + · · · + A∗

pTp = T1Ā∗, T1 = T2Ā∗, . . . , Tp−1 = TpĀ∗,

which yields

Tj = Tj−1Ā∗−1 for j = 2, . . . , p.

Clearly, the mapping fθ0 : ξ �→ A∗ �→ θ for ξ = (ξn−r+1, . . . , ξnp)
′ ∈ R

np−(n−r) is
continuous at θ0 and fθ0(0) = θ0 (as in this case T = Inp). So for the ε-neighborhood
around θ0 denoted by Uε(θ0) there exists a δ > 0, such that for all ξ ∈ Uδ(0) we
have fθ0(ξ) ∈ Uε(θ0), whereUδ(0) is the open δ-neighborhood around 0 inRnp−(n−r).

Now, λ∗ := (1, . . . , 1, λn−r+1 + ξ1, . . . , λnp + ξnp−n−r ) are the eigenvalues of
A∗ because they are the zeros of the characteristic polynomial of �̃ in Eq. (A.1) from
which we obtainA∗ by similarity transformation with T Q. For any δ > 0, we can find
a ξ ∈ Uδ(0) such that the corresponding eigenvalues λ∗ of A∗ satisfy the conditions
(I1), (I3), (I4) and (I5). Analogously to Eq. (A.1), we can perturb the eigenvalues and
eigenvectors of A to ensure conditions (I5) (second part) and (I6).

We have to ensure that the image fθ0(ξ) is real valued: Since A is real valued, for
any complex eigenvalue z = a + ib ∈ C \ R, the conjugate z̄ = a − ib is also an
eigenvalue ofA. If the algebraic multiplicity of z is larger than 1, z has to be perturbed.
As is easily shown, if we add to z and z̄ the same small real number, the resulting Ā∗
(and therefore also A∗) is again real valued.
Thus, we found θ ∈ G close to θ0 and are left with checking whether θ is also in �1.
(C3) is trivial.

For (C1), note that, still n − r eigenvalues of A∗ equal unity which ensures that
rk� = r (see Bauer and Wagner 2012). Applying the procedures described above,
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we obtain the vector error correction representation corresponding to fθ0(ξ) = θ , say
(α(ξ), β(ξ),�1(ξ), . . . , �p−1(ξ)), and see that

g : θ �→ det α⊥(ξ)′
(
In −

p−1∑
j=1

� j (ξ)
)
β⊥(ξ)

is continuous at θ = θ0.We know that g(θ0) 	= 0 since θ0 ∈ �1. So there exists ε3 > 0
such that the neighbourhood Uε3

(
g(θ0)

)
is bounded away from zero. By continuity

there exists ε2 > 0 such that for all θ ∈ Uε3(θ0), we have g(θ) ∈ Uε2

(
g(θ0)

)
. For the

same reasons as above we can find suitable ξ such that fθ0(ξ) = θ ∈ Uε(θ0)∩Uε3(θ0).
Hence � ∩ G is dense in �.

2. (G ∩ �1 is open in (�1, d)),
where d denotes the Euclidean metric. Suppose now for θ∗ ∈ G ∩ �1, we have to
show that there exists ε > 0 such that Uε(θ0) ⊂ G ∩ �1. The eigenvalues are the
zeros of the characteristic polynomial of A and therefore continuous functions at θ∗
(since as is well known, the zeros of any polynomial are continuous function of its
coefficients).

So the mapping

e : θ �→ A �→ (
λn−r+1 · · · λnp

) = λ

is continuous in θ∗. Clearly there is an open neigbourhood U ⊂ C
np−(n−r) of λ∗ =

e(θ∗) such that for all λ ∈ U the corresponding spectrum
(
1 · · · 1 λ′)′ satisfies the

identifiability conditions. The pre-image e−1(U ) ⊂ G is an open neighborhood of θ0.
Analogously to the arguments applied above, we can establish (C2).
(I2) follows from (C4) and (I1) which completes the proof.

B Proof of Theorem 2

This follows from transforming a state-space system into prediction error form.
See Hannan and Deistler (2012)[Chapter 1] and Gersing and Deistler (2021). From
Johansen (1995)[Proof of Theorem 4.2] it follows that the largest eigenvalue of A is
in modulus smaller than one. Hence the system is stable. The linear expansion of the
transfer function for a stable system is already the Wold representation as the inputs
ν̃t are the innovations. Hence, the system is also miniphase (see, e.g., Deistler and
Scherrer 2022, Chapters 2 and 7.3).

C Proof of Theorem 3

By Johansen (1995)[Proof of Theorem 4.2] it follows that the eigenvalues of modulus
smaller than 1 are the same, for A and A.

123



Retrieval frommixed sampling frequency: generic…

1.1Observability for the Stock Case:We use the PBH-Test (see, e.g., Kailath 1980,
Section 2.4.3) to prove that the pair (Ab,Cb) is generically observable (note that the
observability of (Ab,Cb) also implies the observability of (Ab,c,Cb,c) since c is non-
singular). For this, note that the eigenvectors of Ab are the same as the eigenvectors
of A. Let λ be an eigenvalue of A and q = (

q ′
β q ′

1 · · · q ′
p−1

)′
the corresponding

eigenvector. We write

Aq =

⎡
⎢⎢⎢⎢⎢⎣

β ′α + Ir β ′�1 · · · β ′�p−1
α �1 · · · �p−1
0 In 0
...

. . .

0 In 0

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

qβ

q1
...

qp−1

⎞
⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎝

qβ

q1
...

qp−1

⎞
⎟⎟⎟⎟⎟⎠

,

where qβ is r × 1 and qi is n × 1 for i = 1, . . . , p − 1. From this, we obtain the
relations

(β ′α + Ir )qβ +
p−1∑
i=1

β ′�i qi = λqβ (A.2)

αqβ +
p−1∑
i=1

�i qi = λq1 (A.3)

qi = λqi+1 , i = 1, . . . , p − 2. (A.4)

Since A is of full rank, λ 	= 0 and q1 = 0 imply q = 0, which is a contradiction
(noting that α has rank r ). Now we look at

Cbq =

⎛
⎜⎜⎜⎜⎜⎝

Ir 0 · · · 0
0 In · · · In 0 · · · 0
0 0

(
In f , 0

) · · · (
In f , 0

)
. . .

. . .
...(

In f , 0
) · · · (

In f , 0
)
0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λNqβ

λNq1
...

λNqp−1

⎞
⎟⎟⎟⎠ , (A.5)

which is not equal to zero. If, for example,

λNq1 + · · · + λNqN = λNq1 + λN−1q1 + · · · + q1 = (1 + λ + · · · + λN )q1 	= 0

⇔ (1 + λ + · · · + λN ) 	= 0,

which is generically the case (see Assumption 2).
Recall that by q we denote eigenvectors of A and by v eigenvectors of A, where

both correspond to the same eigenvalue |λ| < 1. In Lemma 6, we show that

qβ = λ

λ − 1
β ′q1 = β ′v1, (A.6)

so if we suppose that v1 is not in the right kernel of β ′, we also get Cbq 	= 0.
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1.2 Observability for the Flow Case:
The first part of the proof is analogous to the stock case. It remains to show that

there exists no eigenvector that is in the right kernel of Cb, where Cb is now defined
in (18).

Now, analogously to the procedure in (A.5) we obtain, that an eigenvector of Ab is
not in the rightkernel of Cb if e.g.

λNq1 + · · · + λNqN − λNqN+1 − · · · − λNq2N

= λNq1 + λN−1q1 + · · · + λq1 − q1 − · · · − λ−N+1q1

= λN−1(−1 − λ − · · · − λN−1 + λN + · · · + λ2N−1)q1 	= 0

⇔ (−1 − λ − · · · − λN−1 + λN + · · · + λ2N−1) 	= 0,

Also the second part is similar to the stock case: By Lemma 6, qβ = λ
λ−1β

′q1 =
β ′v1. Assume that v1 is not in the right kernel of β ′ (as already done in the stock case).
In addition, by considering the first r rows of the matrix c for the flow case, provided
in (16), we get

N Ir qβ − (N − 1)β ′q1 − (N − 2)β ′q2 − · · · − 2β ′qN−2 − β ′qN−1

= N Ir
λ

λ − 1
β ′q1 − (N − 1)

λ0
β ′q1 − (N − 2)

λ
β ′q1 − · · · − − 2

λN−2
β ′q1 − 1

λN−1
β ′q1

=
(
N

λ

λ − 1
− (N − 1)

λ0
− (N − 2)

λ
− · · · − 2

λN−2
− 1

λN−1

)
β ′q1

= 1

λN−1

(
N

λN

λ − 1
− (N − 1)λN−1 − (N − 2)λN−2 − · · · − 2λ − 1

)
β ′q1.

Note that λ 	= 1 and λ 	= 0 by the model assumptions (recall that by Johansen
(1995)[Proof of Theorem 4.2] it follows that the eigenvalues of modolus smaller
than 1 are the same, for A and A). Hence, if v1 is not in the right kernel of β ′ and
N λN

λ−1 − (N − 1)λN−1 − (N − 2)λN−2 − · · · − 2λ − 1 	= 0 we also get that C̃bq 	= 0
for the flow case.

2. Controllability: It is enough to show that the matrix E xt+1
(
ỹ′
t ỹ

′
t−N · · ·)′ has

full rank. For k sufficiently large, we have

xt+N−1 = Ak−1
b,c xt−kN+1 +

k−1∑
j=0

A j
b,cBb,cν

b
t−N− j N

�N yt−kN = [
0n×r In 0 · · · 0]︸ ︷︷ ︸

S�N y

xt−kN+1

E�N yt−kN x
′
t−N+1

= E

{
S�N yxt−kN+1x

′
t−kN+1A

k−1
b,c

′ + S�N yxt−kN+1

( k−2∑
j=0

A j
b,cBb,cν

b
t−N− j N

)′}

= S�N y c�rpc
′︸ ︷︷ ︸

�rp,c

Ak−1
b,c

′
.
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Therefore

E xt−N+1
(
�N y′

t−kN �N y′
t−(k+1)N · · · �N y′

t−(k+p−1)N

)
= Ak−1

b,c

[
�rp,cS′

�N y Ab,c�rp,cS′
�N y · · · Ap−1

b,c �rp,cS′
�N y

]
,

which has full rank if �rp > 0 as follows from the proof of Theorem 7 in Anderson
et al. (2016a).

By Hannan and Deistler (2012)[Theorem 2.3.3] controllability and observability
imply that the system is minimal.

Lemma 6 Suppose the Assumptions 1 and 2 hold. Then Eq. (A.6) holds.

Proof Substracting β ′ times (A.3) from (A.2), we obtain

qβ = λqβ − λβ ′q1 such that qβ = λ

λ − 1
β ′q1.

Next, we consider the eigenvector v = (
v′
1 · · · v′

p
)′
ofA corresponding to λ (recall

that eigenvalues in modulus smaller that one of A and A are the same). By using the
relations of the parameters between the VECM and VAR representation, we get

λv1 = (In + αβ ′)v1 + �1(v1 − v2) + �2(v2 − v3) + · · · + �p−1(vp−1 − vp)

αβ ′v1 + �1
λ − 1

λ
v1 + �2

λ − 1

λ2
v1 + . . .

λ − 1

λp−1 v1 = (λ − 1)v1 ,

where the last relation follows from vi = λvi+1 for i = 1, . . . , p − 1, which results
by the companion structure of A. Now, we see that q1 = ((λ − 1)/λ)v1 solves (A.2)
and (A.3). ��

D Proof of Theorem 4

Consider the stable, miniphase spectral factor k̃(z̃), z̃ := zN , corresponding to the
Wold representation of (ỹt )t∈NZ.

Step 1: We obtain an arbitrary minimal realisation ( Āb,c, B̄b,c, C̄b,c) of k̃(z̃), e.g.
by taking the echelon form, see Hannan and Deistler (2012)[Thm 2.5.2.].

Step 2: (Obtain eigenvalues � = diag
(
λ1, . . . , λr+n(p−1)

)
and a linear combina-

tion of the eigenvectors of A, denoted qi , from Āb,c).

By, e.g., Hannan and Deistler (2012)[Theorem 2.3.4] the parameter matrices of
minimal systems relate via Āb,c = T−1Ab,cT , C̄b,c = Cb,cT and B̄b,c = T−1 B̃c,
where T is a non-singular matrix.
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SinceA (see Eq. (4)) is assumed to be diagonalizable (Assumption 2), the matrix A
(see Eq. (10); recall that by Johansen (1995)[Proof of Theorem 4.2] the of mod-
ulus smaller than 1 are the same, for A and A) can be expressed by means of
A = Q�Q−1, where � = diag(λ1, . . . , λr+n(p−1)) is the diagonal matrix of eigen-
values of A and Q = (

q1, . . . , qr+n(p−1)
)
contains the eigenvectors. Ab = AN ,

Cb,c = Cbc−1 and Ab,c = cAbc−1, such that Āb,c = T−1Ab,cT = T−1cAbc−1T =(
T−1cQ

)
�N

(
T−1cQ

)−1
, C̄b,c = Cb,cT = Cbc−1T .

By the eigen-decomposition of Āb,c, we obtain
(
T−1cQ

)
and �N . In addition,

(0n×r , 0n×n, In 0 . . . 0) A2 = (0n×r , In 0 . . . 0) A by the companion structure of A.
Hence by (15), we have

C̄b,cT
−1cQ = Cbc

−1T T−1cQ = CbQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
Ir 0 · · · 0) AN

S(1)
n f A

N

S(1)
ns AN

S(1)
n f A

N−1

S(1)
n f A

N−2

.

.

.

S(1)
n f A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q. (A.7)

Now we look at the last two rowblocks of Cb with the eigenvectors qi , 1 ≤ i ≤ m.
From assumption 2 (I4), it follows that the eigenvectors of A are the same as the
eigenvectors of A2 (also as AN ) (see Felsenstein 2014, Lemma3.2.1), therefore we
have

S(1)
n f

A2qi = S(1)
n f

λ2i qi

S(1)
n f

Aqi = S(1)
n f

λi qi , (A.8)

and we can compute all eigenvalues not equal to one since S(1)
n f qi 	= 0 by Assumption

2 (I6). The flow-case is analogous.
Summing up, from Āb,c we are able to obtain T−1cQ, �N =

diag(λN
1 , . . . , λN

r+n(p−1)) and � = diag(λ1, . . . , λr+n(p−1)).

Step 3: (relate c−1T to T ) To jointly treat the stock and the flow case, we write

c =
⎛
⎜⎝
cββ cβ1 cβ2 · · · cβN−1 0 · · ·
0 c11 c12 · · · · · · c1N c1,N+1 · · ·
...

. . .
. . .

⎞
⎟⎠ ,

where cβ1, . . . , cβN−1 and cN−1+ j , j ≥ 1 are zero for the stock case (see Eq.
(12)). For the flow case c11, . . . , cN−1,1 = In and c1N , . . . , c2N−1,1 = −In (see
Eq. (16)). For the case of stock and flow variables the corresponding coordinates of
c1N , . . . , c2N−1,1 are zero for stock variables.
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Let

A =

⎛
⎜⎜⎜⎝

Aβ

A1
...

Ap−1

⎞
⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎝

Tβ

T1
...

Tp−1

⎞
⎟⎟⎟⎠ , and R := c−1T =

⎛
⎜⎜⎜⎝

Rβ

R1
...

Rp−1

⎞
⎟⎟⎟⎠ . (A.9)

Observe that for the stock case (the flowcase is treated analogously)

C̄b,c Ā−1
b,c =

⎛
⎝
⎛
⎝ Ir cβ1 . . . cβN−1 0 . . .

0 In In . . . In 0 . . .

�

⎞
⎠ AN

⎞
⎠ c−1T T−1cA−N c−1T︸ ︷︷ ︸

Ā−1
b,c

=
⎛
⎝ Ir cβ1 . . . cβN−1 0 . . .

0 In In . . . In 0 . . .

�

⎞
⎠ c−1T =

(
[c](1:n+r ,1:m)

�

)
c−1T =

⎛
⎝ Tβ

T1
�

⎞
⎠ (A.10)

where “�” denotes some matrix entries which are not important here. Note that
Āb,c = T−1cAbc−1T . From Steps 1 and 2, we obtain Āc := T−1cAc−1T =
T−1cQ�Q−1c−1T . Ac−1T = c−1T Āc and

AR = A

⎛
⎜⎜⎜⎜⎝

Rβ

R1
.
.
.

Rp−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(Ir + β′α)Rβ + β′�1R1 + · · · + β′�p−1Rp−1
αRβ + �1R1 + · · · + �p−1Rp−1

R1
.
.
.

Rp−2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Rβ Āc
R1 Āc
R2 Āc

.

.

.

Rp−1 Āc

⎞
⎟⎟⎟⎟⎟⎟⎠

= R Āc (A.11)

AR = R Āc = c−1

⎛
⎜⎜⎜⎜⎜⎜⎝

Tβ Āc
T1 Āc
T2 Āc

.

.

.

Tp Āc

⎞
⎟⎟⎟⎟⎟⎟⎠

= c−1

⎛
⎜⎜⎜⎜⎜⎜⎝

TβT
−1cAc−1T

T1T
−1cAc−1T

T2T
−1cAc−1T

.

.

.

TpT−1cAc−1T

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.12)

Now, Rβ = c−1
β T and R1 = c−1

1 T , where c−1
β := [

c−1
]
(1:r ,1:m)

and c−1
1 :=[

c−1
]
(r+1:r+n,1:m)

. Therefore, we receive Ri for i = 2, . . . , p − 1, given R1 = c−1
1 T1

from the recursion Ri+1 = Ri Ā−1
c , for i = 1, . . . , p − 2.

Step 4: (obtain R = c−1T , T and β,�1, . . . , �p−1 )

To retrieve T and R we proceed as follows: By means of (A.10) and (A.12), and
the assumption p ≥ 2N we derive
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T = cR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cββ Rβ + cβ1R1 + cβ2R2 + · · · + cβN−1RN−1
0Rβ + c11R1 + c12R2 + · · · + c1N RN + c1,N+1RN+1 + · · · + c1,2N R2N
0Rβ + 0R1 + R2 + R3 + · · · + RN+1
.
.
.

RN + RN+1 + · · · + R2N−1
In RN+1
.
.
.

In Rp−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.13)

Recall that for stock case c1 j = In , j = 1, . . . , N , c1 j = 0, j > N , cβ j = 0,
for j ≥ 1, while for the flow case c1 j = In , j = 1, . . . , N , c1 j = −In , j =
N + 1, . . . , 2N , and cβ j = −(N − j)β ′, for j = 1, . . . , N − 1.

From the above considerations T1 can be obtained from (A.10). Since Ri+1 =
Ri Ā−1

c , Eq. (A.13) yields

T1 =
{
R1 + R2 + · · · + RN , for the stock case,

R1 + R2 + · · · + RN − RN+1 − · · · − R2N , for the flow case.
(A.14)

In the above Step 3, we obtained Ri+1 = Ri Ā−1
c , which results in

T1 =
{
R1 + R2 + · · · + RN , for the stock case,

R1 + R2 + · · · + RN − (R1 + · · · + RN ) Ā−N
c , for the flow case,

(A.15)

such that R1+· · ·+RN = T1 for the stock and R1+· · ·+RN = T1
(
Im − Ā−N

c

)−1
for

the flow case. As already obtained above, Ri+1 = Ri Ā−1
c . This yields R1+· · ·+RN =

R1
∑N

j=1 Ā
− j+1
c . Since R1 +· · ·+ RN follows from (A.15) we are also able to derive

R1 and therefore Ri+1 by the recursion Ri+1 = Ri Ā−1
c , i = 2, . . . , p− 1. Finally, we

observe

T2 = R2 + R3 + · · · + RN+1 = (R1 + R2 + · · · + RN ) Ā−1
c

.

.

.

TN = RN + RN+1 + · · · + RN+N−1 = . . .

TN+1 = RN+1

.

.

.

Tp−1 = Rp−1. (A.16)

Hence Ti , i = 2, . . . , p − 1, are provided by (A.15). Recall that Tβ and T1 follow
from (A.10).

Step 5: (Obtain �ν)
Let

γ�N y(κ − �) := E�N yt−��N y′
t−κ ,
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γβ(κ − �) := Eβ ′yt−�(β
′yt−κ )′ , (A.17)

γβ,�N y(κ − �) := Eβ ′yt−��N y′
t−κ = (

E�N yt−κ (β ′yt−�)
′)′ = γ�N y,β (� − κ)′ , and

�rp := E xt+1x
′
t+1 ∈ R

m×m

=

⎛
⎜⎜⎜⎜⎜⎝

γβ(0) γβ,�y(0) γβ,�y(1) . . . γβ,�y(p − 2)
γ�y,β (0) γ�y(0) γ�y(1) . . . γ�y(p − 2)

γ�y,β (−1) γ�y(−1) γ�y(0) . . . γ�y(p − 3)
. . .

γ�y,β (−p + 2) γ�y(−p + 2) γ�y(−p + 3) . . . γ�y(0)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

γβ(0) γβ,�y(0) γ�y,β (−1)′ . . . γ�y,β (p − 2)′
γ�y,β (0) γ�y(0) γ�y(−1)′ . . . γ�y(−p + 2)′

γ�y,β (−1) γ�y(−1) γ�y(0) . . . γ�y(−p + 3)′
. . .

γ�y,β (−p + 2) γ�y(−p + 2) γ�y(−p + 3) . . . γ�y(0)

⎞
⎟⎟⎟⎟⎟⎠

, (A.18)

where xt was defined in (10), (11). The last step follows from the fact that
(
xt
)
t∈Z is

stationary, such that �rp has to be symmetric.

Let Sβ := (Ir×r , , 0r×n, . . . , 0) ∈ R
r×m , and S�N y := (0n×r , In, 0, . . . , 0) ∈

R
n×m . Then (10) and (11) result in

γu·(−hN ) := E u·
t−hNu

·′
t = SβcA

hN c−1c�rpc
′S′

β = Sβ A
h
b,cc�rpc

′S′
β ,

γu·,�N y(−hN ) := E u·
t−hN�N y

′
t = SβcA

hNc−1c�rpc
′S′

�N y = Sβ A
h
b,cc�rpc

′S′
�N y ,

γ�N y(−hN ) = S�N ycA
hN c−1c�rpc

′S′
�N y = S�N y A

h
b,cc�rpc

′S′
�N y , and

⎛
⎜⎜⎜⎜⎜⎝

γu· (0) γu·,�N y (0)
γu·,�N y (0) γ�N y (0)
γu·,�N y (N ) γ�N y (N )

...

γu·,�N y ((np − 2)N ) γ�N y ((np − 2)N )

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
�β�N y

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sβ

S�N y

S�N y AN
b,c

S�N y A2N
b,c

...

S�N y A
N (np−2)
b,c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ON

c�rpc
′
(

S′
β

S′
�N y

)
.

Note thatON A−N
b,c = O, whereO is defined in (A.22). The matrixO has full column

rank, as will be shown in Lemma 7, such that also ON has full rank. Thus we obtain
the first two column blocks of �rp,c. Now looking at the specific structure of

�rp,c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γu· (0) γu·,�N y (0) γu·,�N y (1) γu·,�N y (2) · · · γu·,�N y (N − 1)
γ�N y,u· (0) γ�N y (0) γ�N y (1) γ�N y (2) · · · γ�N y (N − 1)

γ�N y,u· (−1) γ�N y (−1) γ�N y (0) γ�N y (1) · · · γ�N y (N − 2)
γ�N y,u· (−2) γ�N y (−2) γ�N y (−1) γ�N y (1) · · · γ�N y (N − 3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

γ�N y,u· (−(N − 1)) γ�N y (−(N − 1)) γ�N y (−(N − 2)) γ�N y (−(N − 3)) · · · γ�N y (0)
γ�y,u· (−N ) γ�y,�N y (−N ) γ�y,�N y (−(N − 1)) γ�y,�N y (−(N − 2)) · · · γ�y,�N y (−1)
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γu·,�y (N ) γu·,�y (N + 1) · · · γu·,�N y (p − 2)
γ�N y,�y (N ) γ�N y,�y (N + 1) · · · γ�N y,�N y (p − 2)

γ�N y,�y (N − 1) γ�N y,�y (N ) · · · γ�N y,�N y (p − 3)
γ�N y,�y (N − 2) γ�N y,�y (N − 1) · · · γ�N y,�N y (p − 4)

.

.

.

.

.

.

.

.

.

.

.

.

γ�N y,�y (1) γ�N y,�y (2) · · · γ�N y,�N y (p + 2 − (N − 1))
γ�y (0) γ�y (1) · · · γ�y (p + 2 − N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A.19)

we see the following relations

�(2+h)
rp,c = �(2)

rp,c(h) for h = 1, . . . ,m − 2

�rp,c(h) = Ah
c�rp,c for h = 1, 2, . . .

�rp,c(2 + h) = Ah
c�

(2)
rp,c, (A.20)

where by�
( j)
rp,c(h), we denote the j-th column block of�rp,c(h). The first equation fol-

lows from the structure of the autocovariances of the states, i.e. �rp,c(h) = E xt+hx ′
t

for h ∈ N0, the second equation follows from the Lyapunov equations. Hence,
we receive all columns of �rp,c by using the recursions in (A.20) and therefore of
�rp = c−1�rp,cc−1′

. Finally, again by using the Lyapunov equations we have all
second moments of (�yt )t∈Z and (uSt )t∈Z.

Now �ν retained by using the “high frequency Yule-Walker type equations”, that
is,

�yt − αβ ′yt−1 − �1�yt−1 − · · · − �p−1�yt−p+1 = νt

�yt�y′
t − αβ ′yt−1�y′

t − �1�yt−1�y′
t − · · · − �p−1�yt−p+1�y′

t = νt�y′
t

E�yt�y′
t︸ ︷︷ ︸

γ�y (0)

−α Eβ ′yt−1�y′
t︸ ︷︷ ︸

γβ y�y (1)

−�1 E�yt−1�y′
t︸ ︷︷ ︸

γ�y (1)

− · · · − �p−1 E�yt−p+1�y′
t︸ ︷︷ ︸

γ�y (p−1)

= Eνt�y′
t︸ ︷︷ ︸

�ν

. (A.21)

Hence, also generic identifiability of �ν is established.
Finally we prove continuity of π−1. This involves two steps: 1. The continuity of the
mapping from the observed second moments to the parameters of a canonical minimal
realisation ( Āb,c, B̄b,c, C̄b,c) (say the echelon form):
Recall that the set of transfer functions with McMillan-degree m, call it M̃(m), can be
decomposed in disjoint pieces corresponding to different Kronecker indices summing
up to m. The set of transfer functions where the first m rows of the Hankel matrix are
a basis of the row space of the Hankel matrix is generic in M̃(m) [(w.r.t. the pointwise
topology for M̃(m) (see Hannan and Deistler 2012, p. 65)]. This set is also called the
“generic neighbourhood”. As has been shown in Step 5 above, �r ,pc from equation
(A.19) has full rank m. We know that the linear dependencies in the Hankel matrix of
the transfer function, say H̃, and the Hankel matrix of the second moments, say H̃γ ,
are the same (for the definitions see Anderson et al. 2016a, ). Now since �rp,c is the
upper left m × m block of H̃γ , we know that the first m rows of H̃ are a basis of the
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row space of H̃. Therefore �I is a subset of the generic neighbourhood.

2. Note that from a given minimal realisation ( Āb,c, B̄b,c, C̄b,c) of θ ∈ �I all
transformations involved in the retrieval algorithm described above are continuous.

Lemma 7 Suppose that Assumptions 1 and 2 hold. The matrix

O =

⎛
⎜⎜⎜⎜⎜⎜⎝

Sβ Ab,c

S�N y Ab,c

S�N y A
2
b,c

...

S�N y A
n(p−1)
b,c

⎞
⎟⎟⎟⎟⎟⎟⎠

(A.22)

is of full column rank m = r + n(p − 1).

Proof The proof is very similar to the proof that the observability matrix is of full rank
in Anderson et al. (2016a)[Proof of Theorem 7, p. 823].

Since thematrix c is of full rankm we are allowed to consider AN and A. To see this,
let q̃i now denote an eigenvector of cAc−1 with eigenvalue λi , then

(
cANc−1

)
q̃i =

cAN−1c−1cAc−1q̃i = λi cAN−1c−1q̃i = λN
i q̃i .

In addition, if qi is an eigenvector of A, then q̃i = cqi is an eigenvector of Ab,c.
Moreover, A j

b,cq̃i = cA jN c−1cqi = λ
N j
i cqi . The eigenvalues of A are such that

λi 	= λ j implies λ2i 	= λ2j , the eigenvectors of A and A2 coincide. To see this, let
qi ∈ R

m and λi ∈ R denote an eigenvector and an eigenvalue of the matrix A. Then,
Aqi = λi qi and A2qi = AAqi = λi Aqi = λ2i qi ; for N > 2 this works in the same
way. Therefore it is sufficient to look at the eigenvectors and eigenvalues of the matrix
A.

Similar to Anderson et al. (2016a)[Lemma 2] we have shown in the proof of the
above Theorem 3 that the first r + n components of an eigenvector of A or cAc−1

are not equal to a vector of zeros. Therefore, by the Popov-Belevitch-Hautus (PBH)-
eigenvector test (see, e.g., Kailath 1980, p. 135), the matrix O has full column rank
r + n(p − 1). That is,

⎛
⎝
(
AN − λN

i Im
)

(
Sβ

S�y

)
AN

⎞
⎠ qi =

(
0m×1

λN
i [qi ]1:n+r 	= 0n+r×1

)
. (A.23)

��

E Proof of Theorem 5

The proof is constructed as follows: For each of the identifiability conditions in
Assumption 2, we suppose that (Ij) is violated for j = 1, . . . , 6 and show that there
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exists no “observationally equivalent” θ ∈ �I .
Suppose (I1) or (I2) are violated for θ¬I , then it follows that the McMillan degree
of k̃(z̃) is less than m. Hence there exists no θ ∈ �I with the same auto-covariance
function γ̃ , which is granted by K̃ (0) = Iñ .

Suppose (I3) or (I4) are violated, then the minimal realisation of Āb,c, which is
directly obtained from γ̃ has eigenvalues λN

i = λN
j for some i 	= j , and thus (I4) is

violated.

Suppose that neither of the conditions in (I5) hold, then by Eq. (A.5), we have
Cbq = 0 and the system is not observable (and therefore of McMillan degree smaller
than m).

Suppose that condition (I6) is not satisfied, then after going through steps Steps 1
and 2 of the retrieval algorithm in the proof of Theorem 4, we obtain in Eq. (A.8) that
S(1)
n f qi = 0 for some i and therefore we are outside of �I already.
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