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Abstract
This article introduces a shrinkage procedure which allows to improve upon the 
parametric portfolio approach introduced in Brandt et  al (Review of Financial 
Studies 22(9): 3411–3477, 2009) and more general factor conditional frameworks. 
We analyze optimal investment decisions for constant absolute and constant rela-
tive risk aversion. In both preference classes, especially out-of-sample performance 
of the optimal strategies is rather volatile. In order to reduce parameter and model 
uncertainty, we augment the optimal strategies by a shrinkage device that pulls the 
portfolio weights toward a predetermined policy portfolio. Our theoretical approach 
thereby extends the demand systems approach of Koijen and Yogo (Journal of Polit-
ical Economy, 127(4):1475–1515, 2019) to more general classes of preferences and 
provides conditions for the existence of equilibrium. As a side product, we establish 
that the characteristics-based parametric portfolio approach of Brandt et al. (Review 
of Financial Studies 22(9): 3411–3477, 2009) can only be justified as optimal invest-
ments under exceedingly strong assumptions. In empirical US data, our shrinkage 
approach outperforms the parametric approach and the naive 1/N-strategy over quite 
a wide range of levels of absolute and relative risk aversion.
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1 Introduction

The concept of characteristics-based parametric portfolio policies introduced by 
Brandt et al. (2009) provides an attractive reduction technique for determining opti-
mal portfolio choices. By directly applying optimal portfolio weights as functions of 
observable characteristics, the cumbersome determination of the effects of under-
lying economic and financial variables on a multitude of moments of the return 
distributions can be avoided, which according to classical portfolio theory drive 
optimal portfolio weights. However, without providing a micro-foundation of para-
metric portfolio choice Brandt et al. (2009) cannot identify the limitations of their 
approach.

A potential micro-foundation is provided by Koijen and Yogo (2019). In their 
widely acclaimed contribution, these authors develop an asset pricing model with 
flexible heterogeneity in asset demand across investors. However, they provide it for 
a special utility function only, logarithmic utility and hence relative risk aversion of 
1. Their framework is especially useful in modeling non-atomic investors such as 
large institutions and pension funds. In their framework, however, short selling con-
straints are required, such that optimal portfolio choice reduces to characteristics-
based demand, when returns exhibit a factor structure. This allows them to construct 
and apply an instrumental variable estimator in order to deal with the endogeneity of 
demand and asset prices. Finally, these authors illustrate the power of their approach 
on US stock market data and investor holding data from 1980-2017.

Therefore, this article extends the approach of Koijen and Yogo (2019) in order 
to allow more general preferences in order to provide for a richer and robust micro-
foundation of Brandt et al. (2009) for potential applications in portfolio choice. First, 
in contrast to Koijen and Yogo (2019) we allow for general constant relative risk 
aversion (relative risk aversion parameter 𝛾 ∈ ℝ>0 ) rather than imposing log-linear 
utility ( � = 1 ). Second, we extend the analysis to the case of constant absolute risk 
aversion. Doing so allows us to connect the demand system approach directly to the 
parametric portfolio approach of Brandt et al. (2009). Third, we add the analysis in 
the absence of short selling constraints in order to analyze and evaluate the empiri-
cal relevance of this restriction. In this regard, we identify potential problems of the 
parametric portfolio policy for low enough levels of constant relative risk aversion in 
recent US data. Fourth, we show how a shrinkage device can be included in a simple 
way to “stabilize” the investment strategies and to improve performance in empirical 
data. Fifth, we show the existence of equilibrium in an economy with heterogene-
ous agents specifically for the cases of constant absolute risk aversion (CARA, also 
considered almost recently in Koijen et al. 2023) and constant relative risk aversion 
(CRRA) preferences. This result still holds if a subset of the agents, which is not 
necessarily proper, apply the shrinkage device proposed in this article.

Finally, we illustrate the performance of those extensions (in terms of the cer-
tainty equivalent and the Sharpe ratio) at the hand of US stock market data.

The basic insights are the following:
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• We find that parametric portfolio policies (see Brandt et  al. 2009) can be 
derived as optimal portfolio policies only under very restrictive assumptions. 
Typically, optimal portfolio investments differ from solutions to the character-
istics-based approach.

• The case of constant absolute risk aversion generates relatively simple solu-
tions because of the absence of wealth effects. We demonstrate that our opti-
mal strategies with shrinkage outperform parametric portfolio policies and a 
simple 1/N investment strategy (see, e.g., DeMiguel et al. 2009).

• In the case of constant relative risk aversion, technical pitfalls have to be 
avoided by imposing restrictions on domains or adapting objective func-
tions for the region of large losses. The necessity of such restrictions is dem-
onstrated empirically at the example of S&P 500 stocks for the USA in the 
period from 1995 to 2013, especially for low levels of relative risk aversion. 
Overall, we find that the performance of the “constant relative risk aversion 
adaptions” is relatively poor for low levels of relative risk aversion � . How-
ever, the performance is improving for higher levels, both in sample and out of 
sample. We observe that for moderate and higher � our optimal strategies with 
shrinkage outperform parametric portfolio policies and a simple 1/N invest-
ment strategy. For large � the differences in the performance become small.

The demand systems approach can be interpreted as a reduction technique to 
explain asset prices as a function of a few exogenous characteristics.

Such a reduction technique is expected to reduce numerical complexity and to 
enhance robustness. Obviously the validity of such a procedure depends on the 
true underlying economic structure.

Our insights are particularly useful for popular machine learning algorithms 
(see, e.g., Nagel 2021), since they allow to fuse prior economic knowledge with 
big data on asset prices and further underlying information sources. Our analy-
sis identifies potential, and empirically relevant pitfalls, and provides solutions 
to such challenges for algorithmic portfolio optimization. In particular, and in 
contrast with Nagel (2021), where ridge regression is used to predict returns, we 
propose an algorithm that allows to shrink toward some specific portfolio weights 
such as the 1/N-portfolio.

The paper is organized as follows: Section 2 provides a literature review. Sec-
tion 3 presents the basic model. Section 4 presents asset demand based on con-
stant absolute risk aversion (CARA preferences) and develops the conditions for 
the parametric portfolio policy as an optimal solution to the portfolio investment 
problem. Section 5 analyzes CRRA-preferences. Section 6 presents asset prices 
derived in general asset market equilibrium for both, the CARA and the CRRA 
preferences discussed in the sections before. Section  7 presents an empirical 
evaluation of the pricing theories at a sample of one-hundred S&P 500 stocks. 
This chapter also provides robust empirical evidence of potential pitfalls for the 
unchecked parametric portfolio approach. Section  8 concludes. Appendix con-
tains a section on the properties of the empirical data, while Supplementary 
Material provides further technical details.
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2  Literature and relations to machine learning

As already stated in Introduction, in our approach we obtain optimal portfolio 
weights given some characteristics (abbreviated xit in the later parts of this arti-
cle). In the following sections, we also investigate whether these optimal rules are 
equal to or at least approximately correspond to the parametric portfolio approach of 
Brandt et al. (2009). In addition, we observe that the optimal rules show poor out-of-
sample performance, at least in the empirical data set considered in this article. To 
improve on this issue, a quadratic penalty function will be included.

Our paper is not the first to discuss issues related to the missing micro-founda-
tions of the parametric portfolio policy approach. Ammann et al. (2016) show that 
the parametric portfolio policy approach implies unrealistically large amounts of 
implied short sales and provide conditions to render the approach more empirically 
appealing, and more in line with the empirical findings of Medeiros et al. (2014). 
Our contribution complements these earlier studies by providing a micro-foundation 
for the parametric portfolio policy approach in a factor setting.

We adopt this approach to a S&P 500 sub-sample of 100 assets for the period 
of 1979-2013 and compare it to the optimal solution implied by the micro-founded 
model. Other closely related work is Hjalmarsson and Manchev (2012), who con-
sider the special case of mean–variance preferences. We also compare the results 
with the ad hoc heuristics of the 1/N-rule (see, e.g., DeMiguel et al. 2009) 1.

Further reduction techniques and methods to stabilize and improve estimates 
and/or forecasts are tools recently provided in machine learning literature (for an 
overview, see, e.g., Nagel 2021). For example, in Nagel (2021)[Chapter  4] ridge 
regression is applied to improve the forecasting performance of a predictive regres-
sion model, where a quite large set of exploratory variables is used to predict asset 
returns. Then, these forecasts are used for portfolio allocation.

Also Kelly et al. (2021) use ridge regression techniques to forecast asset returns 
by using a large set of predictors. The authors also connect ridge regression to the 
Moore–Penrose pseudo-inverse (which corresponds to the case where the shrinkage 
parameter becomes small). In addition, the authors consider the case where the num-
ber of regression parameters becomes large and use random matrix theory to obtain 
asymptotic results (further theoretical results are provided in Hastie et  al. 2022). 
In their empirical analysis, CRSP-data were used. The authors show that using a 
bulk of “plausibly relevant predictors” in combination with “rich nonlinear models” 
improves return forecasting and portfolio returns. Nonparametric regression in com-
bination with shrinkage is applied to portfolio allocation in Freyberger et al. (2020).

Alternatively, neural networks—in particular reinforcement learning—can be 
used to directly optimize the objective function of an investor (see, e.g., Cong et al. 
2020). The parametric portfolio approach of Brandt and Santa-Clara (2006); Brandt 
et al. (2009) can be seen as special case of this machine learning approach (by con-
sidering a small number of predictors as well as a linear dependence structure).

1 An overview on reduction techniques is e.g. provided in Thös (2019).
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In this article, we augment our objective function (that is, either CARA or CRRA 
expected utility) by a quadratic penalty term. In contrast with Kelly et  al. (2021), 
Nagel (2021) and a lot of other ’machine learning in finance papers’ cited there, the 
number of predictors remains small in our analysis. The main reason for that is to 
keep our approach comparable to Brandt et al. (2009) and DeMiguel et al. (2009), 
that is, whether we can improve on 1/N or parametric portfolio policies already with 
a small number of prediction variables.

We show that for CARA utility our optimization problem exactly corresponds to 
the optimization problem observed in the case of ridge regression. For constant rela-
tive risk aversion, we show that by using a second-order Taylor series approxima-
tion of the utility function the optimization problem corresponds to a ridge regres-
sion problem. Our approach allows to shrink the portfolio weights toward weights 
chosen by the investor (such as the equally weighted portfolio). We observe that in 
our empirical data the implementation of the characteristics-based approach of Koi-
jen and Yogo (2019) requires the application of shrinkage methods to stabilize and 
improve out-of-sample performance.

As is well known in the literature (see, e.g., James et al. 2017, p. 226), the ridge 
regression estimator corresponds to the posterior mean of the vector of regression 
parameters in a Bayesian regression model with normally distributed noise and a 
normal prior on the regression parameters (e.g., w̆t and covariance matrix 1

cp
In in 

Section 5). In our analysis, the vector of regression parameters corresponds to our 
portfolio weights. The ridge regression methodology easily allows to integrate a-pri-
ori information on portfolio weights. The stronger the prior on these weights the 
more we shrink toward the a-priori weights chosen by the investor. One prominent 
example is the equally weighted portfolio discussed in DeMiguel et  al. (2009). 
Hence, in contrast with the machine learning approaches discussed above, our 
approach directly allows to integrate a-priori information on investment weights.

3  Model and assumptions

We consider an economy in discrete time t ∈ ℕ . Denote the one-period return 
(or yield) of security i from period t to t + 1 as rit+1 and the gross returns as 
Rit+1 ∶= 1 + rit+1 , i = 1,… ,N , where N is the number of risky assets traded.2

In the case a risk-free asset is traded, we apply the index i = 0 , its return is 
rft+1 , and the total number of assets is n = N + 1 (in sums the summation index 0 
is used for the risk-free asset) otherwise n = N . Denote the share price of asset i 
in period t by Pit and the number of traded shares by Sit . Accordingly, the market 
value of equity of asset i is given by PitSit and aggregate market capitalization reads ∑N

i=1
PitSit , while Pt ∶=

(
P1t,… ,PNt

)⊤ denotes the vector of share prices.

2 In more general terms, an index set of traded risky securities �r
t
 in period t can be defined. For example, 

the set �r
t
 contains S&P 500 or CRSP-identifiers. To simplify the analysis, the number of risk assets is 

kept fixed in the following.
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For a given set of weights wit ∈ ℝ , i = 0, 1,… ,N , the portfolio return is 
rpt+1 ∶=

∑N

i=(N−n)+1
witrit+1 , with Rpt+1 ∶= 1 + rpt+1 denoting the portfolio’s gross 

return.3
We collect observed characteristics in xit ∈ ℝ

k , i = (N − n) + 1,… ,N , where xit 
could contain endogenous, predetermined and or exogenous variables. For the risk-
free asset xft is known in period t − 1 ( Ft−1-measureable in mathematical terms4).

In particular, we assume that market equity (in the empirical data a stationary 
transformation of market equity) of asset i, that is, PitSit , is contained in xit . Follow-
ing Koijen and Yogo (2019), let x̆it contain these observed variables as well as unob-
served variables. We explicitly assume that prior investment weights or amounts 
invested are not contained in x̆it . Let

collect terms obtained from raising the elements of x̆it by j = 1, 2,… . Then, we 
assume that returns follow from

Aj , j = (N − n) + 1,… , n , are 1 × ky-dimensional matrices. In the case, a risk-free 
asset is traded �ft = 0 , and Rft = af + Af yft already known in period t − 1 . The vector 
of noise terms �̃t contains the N-dimensional subvector �t affecting the risky assets. 
Its expectation is zero and covariance matrix �.

To slightly simplify the analysis and in contrast with Koijen and Yogo (2019), 
we did not impose a factor structure on the covariance matrix � ; however, this sim-
plifying assumption can be relaxed in a straightforward way. [The above paragraphs 
imply that Assumption 1 of Koijen and Yogo (2019) holds by our model assump-
tions.] To simplify the notation, an additional index for an investor is only included 
if necessary. Next we impose

(1)yit ∶=

⎛
⎜⎜⎝

x̆it
vech

�
x̆itx̆

⊤
it

�
⋮

⎞
⎟⎟⎠
∈ ℝ

ky

(2)

⎛
⎜⎜⎜⎝

R0t

R1t

⋮

RNt

⎞
⎟⎟⎟⎠

���
Rt

=

⎛
⎜⎜⎜⎝

af
a1
⋮

aN

⎞
⎟⎟⎟⎠

���
a

+

⎛
⎜⎜⎜⎝

Af ⋯ ⋯ 0

0 A1 0 0

⋮ ⋱

0 ⋯ 0 AN

⎞
⎟⎟⎟⎠

�������������������
A

⎛
⎜⎜⎜⎝

yft
y1t
⋮

yN

⎞
⎟⎟⎟⎠

���
yt∈ℝ

nk

+

⎛
⎜⎜⎜⎝

0

𝜀1t
⋮

𝜀Nt

⎞
⎟⎟⎟⎠

���
�̃t

.

3 If no risk-free asset is traded wft = 0 . For vectors and matrices, we apply boldface notation. That is, 
x ∈ ℝ

a denotes an a-dimensional column vector, while X ∈ ℝ
a×b denotes a matrix with a rows and b 

columns. xit,j =
[
xit
]
 abbreviates the jth coordinate of the vector xit . 1N×1 (for short 1N×1 ) and 0N×1 =N×1 

denote N-dimensional column vectors of ones and zeros, respectively. vech(A) transforms the lower tri-
angular part of an n × n matrix A into a n(n + 1)∕2-dimensional column vector. 1(A) denotes an indica-
tor function. u�(x) and v�(x) denote the first derivatives of the functions u(⋅) and v(⋅) evaluated at x ∈ ℝ . 
Given a filtered probability space with filtration 

(
Ft

)
t∈ℕ0

 , the random variables observed in the periods 
1,… , s ≤ t are Ft-measurable. The Ft-conditional expectation is abbreviated by �t

(
Rt+1

)
 ; the Ft-condi-

tional (co-)variance is �t

(
Rt+1

)
.

4 For definitions, see, e.g., Davidson and MacKinnon (1993).
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Assumption 1 (i) Rt , yt , and �t are jointly stationary and ergodic.5 The first and the 
second moments exist.

(ii) yt has full rank covariance matrix.
(iii) The noise term process 

(
�t
)
 follows a martingale difference sequence.

(iv) The covariance matrix � is finite, symmetric and positive semi-definite.

By (ii), we exclude constant characteristics and colinearities between yt . That is, 
no characteristic is redundant. The stronger assumption of a positive definite (con-
ditional) covariance matrix of risky returns is imposed in Section 4 only to obtain a 
unique optimal investment strategy. Part (i) is important for the empirical implemen-
tation of the model, since it avoids technical problems with possibly non-stationary 
regressors. By (iii), the conditional expectation is affine in yit . That is, the condi-
tional expectation of the return of asset i is ai + Aiyt.

We consider a sequence of myopic investment problems. There are no trad-
ing costs. In each period t, t = 1, 2,… , an investor is endowed with wealth et > 0 . 
This wealth can be invested into n alternatives. Portfolio optimization tradition-
ally involves the optimal determination of those weights wit (or amounts invested 
into asset i, �it ,) with respect to a utility function, potential endowment and trad-
ing constraints. �it = etwit is the amount invested in monetary units in asset i, while 
wt ∶=

(
w1t,… ,wNt

)⊤
∈ ℝ

N and �t ∶=
(
𝜙1t,… ,𝜙N,t

)⊤
∈ ℝ

N are the invest-
ments (investment weights) into the risky assets in the following. Let W ⊂ ℝ

n and 
W𝜙 ⊂ ℝ

n denote the sets of feasible strategies. Hence, (wft,wt)
⊤ ∈ W or equiva-

lently (𝜙ft,�t)
⊤ ∈ W𝜙 [if no risk-free asset is traded the W and W� are such that 

wft = 0 and �ft = 0 ]. Preferences of a typical (or representative) investor are speci-
fied by the expected utility (conditional on the information in period t) over gross 
portfolio returns Rpt+1 =

∑n

i=(N−n)+1
witRit+1 , resulting in the optimization problem

where u(⋅) is a strictly monotone increasing Bernoulli utility function defined on the 
domain 𝔻 ⊂ ℝ and et the wealth invested in period t. We assume that et , t = 1, 2,… , 
are already given or fixed before any portfolio optimization is performed. Hence, 
in the optimization problem (3), the et invested are deterministic. Given a vector 
of investment weights wt ∶=

(
w1t,… ,wNt

)⊤
∈ ℝ

N into the risky assets, the t + 1 
period wealth is Et+1 = etw

⊤
t
Rt+1 if no risk-free asset is traded. If a risk-free asset 

is traded (or depositions and lending in cash are allowed), its gross return will be 
Rft+1 ≥ 0 ; wft is the corresponding proportion of the wealth invested into the risk-free 
asset at period t. In the case a risk-free asset is traded Et+1 = etw

⊤
t
Rt+1 + etwftRfT+1 . 

To jointly consider both cases, we write Et+1 = etw
⊤
t
Rt+1 + etwftRfT+1 , and assume 

that wft = 0 if no risk-free asset is traded. As already stated above, note that the next 

(3)

max
(wft ,wt)

⊤W

�t

(
u
(
etRpt+1

))
= max

(wft ,wt)
⊤∈W

�t

(
u
(
Et+1

))

= max
(wft ,wt)

⊤∈W
�t

(
u

(
et

(
1 +

N∑
i=(N−n)+1

witrit+1

)))
,

5 For definitions, see, e.g., Klenke (2008), Chapter 20.
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period’s amount invested, et+1 , need not be equal to the realization of Et+1 . By con-
trast, et+1 > 0 is some non-random real number.

The model presented in the above paragraphs is closely related to the model of 
Koijen and Yogo (2019). In contrast, however, we allow for the case without short 
selling constraints.6 To simplify notation, we do not consider time varying A , a , and 
�.7

Since both, Koijen and Yogo (2019) and our model, result in optimal strategies 
which are affine in some variables considered, we relate our approach to the para-
metric portfolio approach proposed in Brandt et al. (2009), where strategies consid-
ered are typically affine in some characteristics. Note that the parametric portfolio 
policy of Brandt et al. (2009) reduces the dimensionality of the optimization prob-
lem by modeling a small number of drivers of the portfolio weights directly.8 Often 
the number of the drivers x̃it is very low (e.g., 3 in our empirical setting below), and 
only investments into risky assets are considered ( wft = 0 ). Typically, x̃it is a vector 
of standardized variables. That is, we consider exogenous or predetermined vari-
ables � it contained in xit . For the variables � it ∈ Rk� , we subtract the vector of sam-
ple means and multiply by the inverse of the diagonal matrix containing the sample 
standard deviations on the main diagonal, which results in x̃it.

� = (𝜃1,… , 𝜃k𝜒 )
⊤ is a k�-dimensional parameter vector in the parameter space 

Θ ⊂ ℝ
k𝜒 ; if not otherwise stated Θ = ℝ

k� . � is assumed to be constant over time and 
is chosen such that expression (3) is maximized.

Following Brandt et al. (2009), we focus on the affine parametric portfolio policy

In all applications, we work with w̄it = 1∕N , where w̄t ∶=
(
w̄1t,… , w̄Nt

)⊤ . Some 
further results on this form of parametric portfolio policies are provided in Supple-
mentary Material S.5.

The vector x̃it denoting the parametric portfolio policies does not need to be iden-
tical to the observed characteristics driving expected returns. To simplify notation 
and to provide a fair comparison between parametric strategies and some (approxi-
mately) optimal strategies obtained later, in our empirical analysis we set xit = � it 
(hence also k = k� ), where the standardized characteristics x̃it are assumed to be sta-
tionary. Finally, in order to compare the optimal strategies derived from our model 
with the affine parametric policy (4) we define 9:

(4)wit = w̄it +
1

N
�⊤ x̃it , for all i = 1,… ,N .

9 Our definition is different from Koijen and Yogo (2019)[see equation (10) there] where ln
(
wit∕wft

)
 [in 

our notation] are affine in the firm’s characteristics yit , while in our case the strategy is allowed to depend 
in all yit , i = 1… ,N . Since a risk-free asset need not be traded, we proceed with the definition provided 
in (5). To reduce the notational burden, we simply write w∗

t
 instead of w∗

t

(
ỹt
)
 , etc.

6 To obtain market equilibrium in this less restrictive model setup, we have to impose stronger assump-
tions on yit to proof the existence of market equilibrium; see footnote 14.
7 This extension would be straightforward in the theoretical parts of this article, but the econometric 
analysis is much more involved.
8 This approach is in contrast with the standard Markowitz (1952) approach, where optimal portfo-
lio weights typically depend on a large number of first and second moments of the return distribution. 
For the estimation of the covariance matrix and related problems necessary to empirically implement a 
Markowitz (1952)-type approach, see, e.g., Ledoit and Wolf (2004, 2017, 2024).
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Definition 1 (i) An investment rule is affine characteristics based (ACB in the fol-
lowing) if the investment weights wit for the risk assets—or the amounts invested �it 
into the risky assets—are affine in yt defined in (1) and (2), i = 1,… ,N . That is, for 
the investments into the risk assets we have

(ii) Consider an observed and exogenous or predetermined subvector of yit , 
denoted � it and let x̃it abbreviate the standardized � it . A portfolio strategy is called 
affine characteristics-based in observed variables (ACBOV) if the investment 
weights for the risk assets, w♯

it
 , or the amounts invested into the risky assets �it , are 

affine in x̃it.
(iii) We call a strategy implementable by an affine parametric policy if w̄it = 𝜋it 

and �itxt =
1

N
�⊤ x̃it.

By using Definition 1, an ACBOV strategy is also ACB, while ACBOV demands 
for wit or �it to depend only on (a subvector of) yit contained in yt . ACB or ACBOV 
strategies need not be parametric in a very narrow sense, since even if the investment 
weights are affine in yt or x̃it , a matrix like �it need not follow from solving an opti-
mization problem in some parameter vector � . However, if �itxt is equal to 1

N
�⊤ x̃it , 

then the optimal strategy can be implemented by using a parametric policy. In more 
detail, �ityt =

1

N
�⊤ x̃it demands for B� it , where B is a submatrix of �it (equal for all 

i and t). Then, by using the population mean and the population standard deviation 
of � it , B� it can be expressed by means of 1

N
�⊤ x̃it plus a constant term.

The question whether an optimal strategy can be implemented by the reduc-
tion strategy (4) is discussed Sections 4 and  5. For an investor, the question arises 
whether an optimal strategy after performing parameter estimation is really better 
than a simple reduction strategy or the “1/N-rule.” This question will be investigated 
in our empirical Section 7.

Remark 1 Ferson and Siegel (2001) investigate unconditional minimum variance 
portfolios. In their work, the corresponding moments are obtained by condition-
ing on random variables, similar to our variables xt . In addition, Hjalmarsson and 
Manchev (2012) show that if the return generating process is linear in the lagged, 
de-meaned predictor variables ( xit in our notation), the optimal parametric portfolio 
weighting policy (i.e., the � s) can be derived analytically but only for the case of 
mean–variance preferences. [Compare also to discussion about in optimal � in the 
Supplementary Material S.5.4].

(5)wit = �it +�ityt , for all i = 1,… ,N .
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Next we develop asset demand for the cases of constant absolute risk aversion 
(Section 4) and then for constant relative risk aversion (Section 5).

4  Parametric portfolio policies with constant absolute risk aversion

In this section, we explore constant absolute risk aversion by applying a Bernoulli 
utility function u(x) = − exp(−�x) , x ∈ ℝ , where the parameter 𝜌 > 0 expresses con-
stant relative risk aversion, defined by u

��(x)

u�(x)
= � . The domain � of this function is the 

real axis.
For the CARA case, it is easier to work with the amounts invested �t . The weights 

of investments into the N risky assets follow from �t and et , that is, wt =
1

1⊤
N
�t

�t.

The portfolio vector of risky investments is �t =
(
𝜙1t,… ,𝜙Nt

)⊤
∈ ℝ

N , where �it 
is the money amount invested into risky asset i at period t. The amount invested in 
the risk-free asset is 𝜙ft = et − �⊤

t
1N if a risk-free asset is traded, and �ft = 0 , ∀t , 

otherwise. Hence, the value of the portfolio in period t + 1 is a random variable and 
given by Et+1 = et

�
wftRft +

∑N

i=1
witRit+1

�
= �ftRft+1 +

∑N

i=1
�itRit+1 =

∑N

i=1
�itRit+1

+
�
et −

∑N

i=1
𝜙it

�
Rft+1 = 𝜙⊤

t
�t+1 +

�
et −

∑N

i=1
𝜙⊤
t
�N

�
Rft , where Rt+1 denotes the 

vector of risky returns and �t ∈ Θ = ℝ
N . In this section, we impose:

Assumption 2 Rt+1 conditional on yt (or the observed variables xit , i = 1,… ,N ) 
is multivariate normal with mean parameter �t

(
Rt+1

)
 and conditional covariance 

�t = �t

(
Rt+1

)
 satisfies 0 < �t

(
Rt+1

)
< ∞ [i.e., the conditional covariance matrix is 

finite and regular].
We first analyze optimal investment strategies and then apply a shrinkage 

procedure.

4.1  Optimal strategy
Using the assumption of normally distributed innovations in the absence of transac-
tions costs, we can derive conditional expected utility

Maximizing (6) yields the vector of optimal amounts invested into the risky assets

(6)�t(− exp(−𝜌Et+1)) = − exp

[
−𝜌et − 𝜌�⊤

t

(
�t

(
Rt+1

)
− 1NRft+1

)
+

𝜌2

2
�⊤
t
�t(Rt+1)�t

]
.

(7)�∗
t

�
xt
�
=

⎛⎜⎜⎜⎜⎜⎝

1

�

�
�t

�
Rt+1

��−1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Bt

⎞⎟⎟⎟⎟⎟⎠

−1

�
�t

�
Rt+1

�
− Rft1N

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

bt

.
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The remaining wealth 𝜙ft = et − 1⊤
N
�∗
t
∈ ℝ is invested into the risk-free asset. In 

case when a risk-free asset is not available, we can establish the following result:10

From (7) and (8) we conclude:

Observation 1 (i) The optimal strategies �∗
t
 and �+

t
 exist and are unique. The opti-

mal �∗
t
 does not depend on the initial wealth et . The total amount invested into risky 

assets �∗⊤
t

1N depends on yt ∈ ℝ
Nky (or xt ∈ ℝ

Nk ). The amount invested into the risk-
free asset follows from 𝜙ft = et − �∗⊤

t
1N . Given that �∗⊤

t
1N ≥ et , for the problem 

without risk-free asset we get �ft = 0 and �+⊤
t

1N = et.
(ii) Suppose that Assumption 1 holds, then �∗

it
 is affine in yt and the strategy is 

ACB. If the conditional expectation of the returns remains affine also for a subvector 
of yit , for example the observed characteristics xit , then this strategy is also ACBOV.

(iii) Since the weights depend on yit , i = 1,… ,N , the investment weights are—in 
general—not of the structure described in (4).

Equations  (1),(7) and the assumption of an unrestricted covariance matrix � 
show that the optimal investments into a risky asset i depend on y1t,… , yNt . We 
get dependence on yit only in the case of a diagonal covariance matrix. Hence, our 
assumption on the covariance matrix implies that in general the optimal investment 
strategy cannot by supported by the reduction strategy (4).

This is an important difference to Koijen and Yogo (2019), where a factor struc-
ture for the covariance matrix is assumed. Then, the Woodbury matrix identity and 
some algebra (see Koijen and Yogo 2019, equation(A.6)) allow to derive an opti-
mal strategy which is affine in yit . Based on some empirical literature (see, e.g., 
Barigozzi and Brownlees 2019, who demonstrate that after adjusting for factors 
some correlation (some network effects) are present) we decided to work with an 
unrestricted covariance matrix. The result discussed in this paragraph also remains 
valid for the CARA case with shrinkage as well as for the CRRA approximation 
provided in Section 5.11

4.2  CARA utility and shrinkage

Let us now analyze the general case with or without short selling and apply a shrink-
age procedure. By maximizing expected utility (6), we get:

(8)�+
t

�
xt
�
=
1

𝜌
�t

�
Rt+1

�−1
⎛
⎜⎜⎜⎝
�t

�
Rt+1

�
−

𝜌
�

1

𝜌
1⊤
N
�t

�
Rt+1

�−1
�t

�
Rt+1

�
− et

�

1⊤
N
�t

�
Rt+1

�−1
1N

1N

⎞
⎟⎟⎟⎠
.

10 For details, see Supplementary Material S.5.1.
11 Supplementary Material S.1.1 introduces trading cost. Supplementary Material S.5.2 shows that that 
in this case optimal strategies are path dependent and therefore neither ACB nor ACBOV.
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Observation 2 (i) In sample, good performance in terms of the certainty equivalent 
(see equation  (19) presented later) and the Sharpe ratio for our empirical data set 
(see Section A) is observed. (ii) The out-of-sample performance is quite poor. The 
reason for this is that especially without short selling constraints the optimal strategy 
�∗
t
= B−1

t
bt is very risky (see also Table 8 in Supplementary Material S.3.2).

Figure  1 plots realized returns Rpt+1 for �∗
t
 , the parametric policy �♯

t  and the 
1/N-strategy �1∕N

t  [since et = 1 , �♯
t = w

♯
t  and �1∕N

t = w
1∕N
t  ; w♯

ft
= w

1∕N

ft
= 0 ]. Note 

that the vertical axes have different scales and the variation in the returns becomes 
very large with �∗

t
 . In our empirical data set, this results in poor out-of-sample per-

formance. To circumvent this problem, we augment the optimization problem by a 
shrinkage device. In terms of econometrics, we consider a ridge regression 
problem12,

while in terms of finance we add an object close to a quadratic cost term. Although 
also a cost function as described in Section S.1.1 can be used as some kind of pun-
ishment function, we want to exclude path-dependence [as discussed in Supplemen-
tary Material  S.5.2] and shrink �t or the weights wt toward some specific values 
�̆t or weights w̆t , respectively. This is close in spirit to approaches like Black and 
Litterman (1992) that anchor an optimization in some pre-specified portfolio. This 
portfolio could be an 1/N-portfolio as in our empirical example. But it could also be 
the market portfolio motivated by CAPM equilibrium considerations or a long-term 
strategic allocation specific to an (institutional) investor.

Hence, we consider a positive definite N × N matrix Ct and the punishment term 
−

1

2

(
�t − �̌t

)⊤
Ct

(
�t − �̌t

)
 . With �̌t = w̌t = 0N×1 , we shrink to zero, while with 

�̌t = et
1

N
1N×1 shrink toward the 1/N-portfolio.

By using transformed expected utility (6), the (possible) short sell-
ing constraints �it ≥ 0 , and the shrinkage device, we get b0t ∶= �et , 
bt ∶= 𝜌

(
�t

(
Rt+1

)
− 1NRft+1

)⊤ , Bt ∶=
�2

2
�t(Rt+1 − 1NRft+1) =

�2

2
�t(Rt+1) , and the 

Lagrangian

Let �t ∶=
(
𝜆1t,… , 𝜆Nt

)⊤ . Taking first partial derivatives with respect to �t and �t , 
we get the Kuhn–Tucker conditions

L(�t, 𝜆1t,… , 𝜆nt) = b0t + bt�t −
1

2
�⊤
t
Bt�t +

n∑
i=1

𝜆it𝜙it −
1

2

(
�t − �̌t

)⊤
Ct

(
�t − �̌t

)
.

12 Ridge regression was proposed to consider multi-colinearity in regression problems and has become 
more prominent as a shrinkage device in more recent machine learning literature (see, e.g., Hastie et al. 
2009, Chapter 3.4) or Nagel (2021) for applications in asset pricing models. We applied a quadratic pun-
ishment term because of its trace-ability. “Linear punishment” can be included by working with �1-dis-
tance. This corresponds to the LASSO, where optimal weights can be obtained by applying least angle 
regression (see Hastie et  al. 2009). A mixture of linear and quadratic punishment terms results in the 
elastic net, see Zou and Hastie (2005) and Chapter  3.4 in Hastie et  al. (2009). To obtain closed-form 
solutions, we proceed with the ridge regression.



Extending the demand system approach to asset pricing  

�ft = et −
∑N

i=1
�it in the case a risk-free asset is traded. The second-order condi-

tions are satisfied by the quadratic structure of the optimization problem (see, e.g., 
Simon and Blume 1994, Chapter 19.3). If no short selling constraints are binding or 
if we consider an optimization problem without short selling constraints, we obtain 
�t = 0N and

Let Ct be equal to cpIN , then (11) yields

Observe that the optimal investments �♭
t
∈ ℝ

N do not depend on the wealth level et , 

𝜙♭
ft
= et −

∑N

i=1
𝜙♭
it
 . For cp = 0 , we arrive at an optimization problem without shrink-

age (where �♭
t
= �∗

t
 ), while the larger cp the more we shrink toward �̌t = etw̌t . To 

see this, for large cp , the terms multiplied by cp become the dominating terms. 

Hence, for large cp , �
♭
t
≈

1

𝜌

(
cpIn

)−1(
𝜌cp�̌t

)
= �̌t . Summing up, we get

Proposition 1 (Asset Demand with CARA Preferences). Suppose that Assump-
tions 1 and 2 hold. Consider an investor with CARA preferences and cp ≥ 0 . Then, 
if no short selling constraints are present or if the short selling constraints are not 
binding, the optimal shrinkage strategy provided in (12) is ACB.

If the conditional expectation of the returns remains affine also for a subvec-
tor of yit , for example, the observed characteristics xit , then the optimal strategy is 
ACBOB.

Panel (b) of Figure 1 plots the realized returns when applying �♭
t
 with cp = 0.2 

and shrinkage to the 1/N-portfolio; since et = 1 we get �̆t =
1

N
et1N =

1

N
1N . When 

looking at the scale of the ordinate, we observe that the variation in the returns 

(9)
𝜕L(�t,�t)

𝜕�⊤
t

=bt − Bt�t + �t − Ct

(
�t − �̌t

)
= 0N ,

(10)

�L(�t,�t)

��it
=�it = 0 , i = 1,… ,N , and the complementary slackness conditions

0 = �it
�L(�t,�t)

��it
= �it�it , i = 1,… ,N .

(11)�∗
t
=
(
Bt + Ct

)−1(
bt + Ct�̌t

)
.

(12)
𝜙♭
t
∶=

1

𝜌

(
�t

((
Rt+1 − Rft+11n

)(
Rt+1 − Rft+11n

)⊤
)

+cpIn
)−1

(
�t

(
Rt+1 − Rft+11n

)
+ 𝜌cp 𝜙

t

)
.
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Rpt decreases a lot. In the case of binding short selling constraints, the system of 
inequalities (9) can be transformed to a linear programming problem. However, we 
observed that due to a high number of assets the optimal weights under short sell-
ing constraints can hardly be obtained by applying standard linear programming 
methods.

Hence, we applied numerical tools to obtain the optimal investments 𝜙♭,≥0
it

 
described by (9). Here the MATLAB function fminsearch is used, where we 
start the optimization routine from max{0,𝜙♭

it
} , i = 1,… ,N.

5  Constant relative risk aversion

Let us now focus on constant relative risk aversion (CRRA). First, this section dem-
onstrates potential pitfalls arising from parametric portfolio policies (that is, apply-
ing (4)) and a Bernoulli utility function defined in ℝ>0 . For CRRA, the Bernoulli 
utility function is v(x) ∶= x1−�

1−�
 for 𝛾 > 0 , � ≠ 1 and ln x for � = 1 . The domain � of 

v(x) is the positive half-line ℝ>0 . Given Assumption 1 and the second-order condi-
tion [see (S-4) in the Supplementary Material], expected utility is strictly concave in 
� . However, for CRRA preferences in a simple binary model, examples can be con-
structed where the portfolio returns Rpt do not remain in the domain 𝔻 = ℝ>0 or 
where for a concave utility function, the first derivative always stays positive (or 
negative), such that only a supremum exists. Hence, no optimal � ∈ ℝ

k exists in 
these cases, see equation (S-4) and Gehrig et al. (2018)]. Therefore, we obtain

Observation 3 For an investor with CRRA preferences, an optimal � ∈ ℝ
k solving 

the parametric portfolio optimization problem (S-3) need not exist.

In the next steps, we investigate whether Observation 3 is also relevant for real-
world data. To do this, let us now apply the parametric portfolio policy approach 
in its original version of Brandt et al. (2009) to US stocks that are particularly rel-
evant for institutional investors, namely S&P 500 stocks; [see Section  7.1 and 
Appendix A]. Our observations cover the time span from 04/1979 to 12/2013, which 
amounts to T = 415 and N = 100.

Consider for example the strategy defined in (4). Since relative risk aversion is 
only defined on the domain of positive gross returns, we need to check the under-
lying data and potentially develop a strategy of how to deal with negative gross 
returns.

In order to analyze whether negative portfolio returns are observed in the 
underlying empirical data, we pick some � ∈ ℝ

3 and check whether Rpt+1 becomes 
negative. And indeed, it turns out that in all the cases considered we observe neg-
ative Rpt+1 for large � (in absolute terms), one large coordinate of � turned out to 
be sufficient for negative gross returns.

As demonstrated and discussed in more detail in Supplementary Material S.4, 
we extend the domain to the real line by applying the utility function
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where 𝜓R > 0 . With (13), we apply v
(
etRpt+1

)
 for all Rpt+1 ≥ �R . At Rpt+1 = �R , 

we get v♭
(
et𝜓R

)
= v

(
et𝜓R

)
=
(
v
(
et𝜓R

)
− v�

(
et𝜓R

))
+ v�

(
et𝜓R

)
et𝜓R . Observe 

that v�
♭

(
et𝜓R

)
= v�

(
et𝜓R

)
 is equal to the slope of the line described by (

etv
(
�R

)
− 1 ⋅ v�

(
et�R

))
+ 1 ⋅ v�

(
et�R

)
Rpt+1.

Using these insights, we consider the optimization problem (3), where prefer-
ences are described by the approximate CRRA utility function v♭ . We assume that 
a risk-free asset and N risky assets are traded; the portfolio weights are wt = �t∕et 
for the investments in the risky securities and wft = �ft∕et for the risk-free asset. 
Hence, n = N + 1.

By a Taylor series approximation of expected utility at wft = 1 and 
wt =

(
w1t,… ,wnt

)⊤
= 0N , we obtain

In the following optimization problem, we also allow for short selling constraints, 
more specifically wit ≥ 0 . (see also Koijen and Yogo 2019, for a model with 
log-utility).

In our empirical data (see Sect.  A for more details), especially, the out-
of-sample performance of the approximately optimal strategy wt = A

−1
t
�t is 

very poor and very risky. Hence, similar to Sect.  4 we proceed with a shrink-
age device. We consider a positive definite N × N matrix Ct and the term 
−

1

2

(
wt − w̌t

)⊤
Ct

(
wt − w̌t

)
 , where with w̌t = 0N×1 we shrink to zero, while with 

w̌t =
1

N
1N×1 shrink toward the 1/N portfolio 13.

 By using the expected utility approximation (14), the short selling constraints 
and the shrinkage device, we get the Lagrangian

(13)

v♭
(
etRpt+1

)
∶=

{
v
(
etRpt+1

)
, forRpt+1 ≥ 𝜓R,(

v
(
et𝜓R

)
− v�

(
et𝜓R

))
+ v�

(
et𝜓R

)
etRpt+1 , for Rpt+1 < 𝜓R,

(14)

�t

(
v♭(Et+1)

)
= �t

(
v♭(etRpt+1)

)
= �t

(
v♭(et

(
Rft+1 + wt

(
Rt+1 − Rft+11N

))
)
)

≈ v♭
(
et+1Rft+1

)
�������������

=∶𝛼0t

+ etv
�
♭
(etRft+1)�t

(
Rt+1 − Rft+11N

)
���������������������������������������������

=∶�t

wt

−
1

2
w⊤

t

(
−v��

♭

(
et+1Rft+1

)
e2
t
�t

((
Rt+1 − Rft+11N

)(
Rt+1 − Rft+11N

)⊤
))

���������������������������������������������������������������������������������������������������
∶=At

wt .

L(wt, 𝜆1t,… , 𝜆Nt) = 𝛼0 + �twt −
1

2
w⊤

t
Atwt +

N∑
i=1

𝜆itwit −
1

2

(
wt − w̌t

)⊤
Ct

(
wt − w̌t

)
.

13 Stabilizing conditions on the weights on wit , i = 1,… ,N , can be included. That is, w ≤
∑N

i=1
wit ≤ w̄ . 

This results on two further inequality constraints which can be included in a straightforward way. This is 
also implemented in our MATLAB code. By using these constraints, only the out-of-sample performance 
remains poor [without shrinkage].
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Taking first partial derivatives with respect to wt and �t , we get the Kuhn–Tucker 
conditions

The second-order conditions are satisfied by the quadratic structure of the optimiza-
tion problem. If no short selling constraints are binding or if we consider an optimi-
zation problem without short selling constraints, we obtain �t = 0N and

Let MAPR(et+1Rft+1) denote the relative Arrow–Pratt measure evaluated at et+1Rft+1 . 

Since Rft+1 ≥ 1 and usually close to one, we get Rft+1

MAPR(et+1Rft+1)
≈

1

MAPR(etRft+1)
 . In realistic 

scenarios, ΨR can be chosen such that et+1Rft+1 > ΨR > 0 . In this case, we Taylor 

expand at the classical CRRA branch of the Bernoulli utility function v♭ , that is, x
1−�

1−�
.

In the following, let Ct be a diagonal matrix such that 

Ct =
(
−v��

♭

(
et+1Rft+1

)
e2
t

)
cpIN , where IN denotes the N-dimensional identity matrix 

and cp ≥ 0 . Recall that v′′
♭
≤ 0 and v��

♭
(x) < 0 for x > Ψ . Then, the approximation 

Rft+1

MAPR(et+1Rft+1)
≈

1

MAPR(et+1Rft+1)
 and (17) result in

Hence, we get

(15)
𝜕L(wt,�t)

𝜕w⊤
t

=�t −Atwt + �t − Ct

(
wt − w̌t

)
= 0N ,

(16)

�L(wt,�t)

��it
=wit = 0 , i = 1,… ,N , and the complementary slackness conditions

0 = �it
�L(wt,�t)

��it
= �itwit , i = 1,… ,N .

(17)

wt =
(
At + Ct

)−1(
�t + Ctw̌t

)

=
(
At + Ct

)−1
(
�t +

etRft+1v
�
♭
(etRft+1)

etRft+1v
�
♭
(etRft+1)

Ctw̌t

)
.

(18)

1

𝛾

�
�t

��
Rt+1 − Rft+11N

��
Rt+1 − Rft+11N

�⊤
�
+ cpIN

�−1
�
�t

�
Rt+1 − Rft+11N

�
+

1

etRft+1v
�
♭
(etRft+1)

Ctw̌t

�

=
1

𝛾

�
�t

��
Rt+1 − Rft+11N

��
Rt+1 − Rft+11N

�⊤
�
+ cpIN

�−1
⎛⎜⎜⎜⎝
�t

�
Rt+1 − Rft+11N

�
+

�
−v��

♭

�
et+1Rft+1

�
e2
t

�

etRft+1v
�
♭
(etRft+1)

cpIN w̌t

⎞
⎟⎟⎟⎠

≈
1

𝛾

⎛⎜⎜⎜⎜⎝
�t

��
Rt+1 − Rft+11N

��
Rt+1 − Rft+11N

�⊤
�
+ cpIN

�����������������������������������������������������������������������������
Bt

⎞⎟⎟⎟⎟⎠

−1

�
�t

�
Rt+1 − Rft+11N

�
+ 𝛾cpw̌t

�
=∶ w♭

t
.
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Proposition 2 (Asset Demand with CRRA-Preferences). (i) Suppose that Assump-
tion 1 holds, cp ≥ 0 and either �t is positive definite or cp > 0 . Consider an investor 
maximizing expected utility with Bernoulli utility function v♭(⋅) . Then, if no short 
selling constraints are present or if the short selling constraints are not binding, the 
optimal shrinkage strategy (18) is ACB.

(ii) If the conditional expectation of the returns remains affine also for a subvec-
tor of yit , for example, the observed characteristics xit , then the optimal strategy is 
also ACBOV.

(iii) If the term Bt is diagonal, the weights only depend on xit ; the optimal strategy 
can be supported by a reduction strategy described by (4).

Note that a diagonal Bt and the equality w♭
it
= w̄it + �⊤ xit are still a strong require-

ments. Having derived demand functions under different preference specifications, 
we will next analyze the implications for equilibrium asset pricing.

6  Equilibrium

Koijen and Yogo (2019) prove the existence of a (unique) equilibrium price vector 
in the economy they consider. Recall, in Koijen and Yogo (2019) all agents are log-
utility investors, where heterogeneity in the characteristics as well as in the param-
eters related to these characteristics can be present. Short selling constraints are 
given for all agents; the main results relate to cases where these constraints are not 
binding.

Related to this issue, we consider J > 0 agents either with CARA or CRRA 
preferences (also the risk aversion parameters can be different). Asset demand for 
agent j is given �♭♭,j

t  , where �♭♭,j
t = w

♭,j
t E

j

t for CRRA preferences and �♭♭,j
t = �

♭,j
t  for 

CARA preferences. In contrast with Koijen and Yogo (2019), we assume that yit 
only contains endogenous variables which are affine in Pit . No higher-order terms 
such as (PitSit)

v , v > 1 are included. Market clearing demands for PitSit =
∑J

j=1
𝜙♭♭,j
it

 , 
i = 1,… ,N . Since �♭♭,j

t  is affine in Pt if no short selling constraints are present or 
binding, we determine a unique equilibrium price vector 14.

 Hence, we get

14 Since market clearing conditions are affine linear in the prices, finding an equilibrium price vector 
corresponds to solving N linear equation. By contrast, Koijen and Yogo (2019) allow for higher-order 
terms (PitSit)

v , v > 1 . Due to short selling constraints, lower and upper bounds for the strategies can be 
obtained in a straightforward way which also allows to apply Brouwer’s fixed point theorem on a com-
pact strategy space. Since we also consider the case without short selling constraints, we do not obtain a 
compact set which would allow us to proceed with standard fixed point arguments.
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Table 1  CARA Investment Strategies

Abbreviation Investment Strategy

�♭
t

optimal strategy with naive covariance estimator with shrinkage

�♭
t,LW

optimal strategy with Ledoit and Wolf (2004) covariance estimator with shrinkage

�♭,≥0
t

optimal strategy with naive covariance estimator, without short-selling,

with shrinkage

�
♭,≥0
t,LW

optimal strategy with Ledoit and Wolf (2004) covariance estimator,

without short-selling, with shrinkage

�
1∕N
t

1/N-portfolio as e.g. considered in DeMiguel et al. (2009)

�
♯
t

parametric portfolio policy

�
♯,≥0
t

parametric portfolio policy without short-selling

Fig. 1  Returns Rpt+1 against t, calibration period t = 1,… , 200 , T = 416 , N = 100 and n = 101 . � = 0.5 
and CARA utility. Subfigure (a) applies �∗

t
 [that is �♭

t
 with cp = 0 ] where the Ledoit and Wolf (2004) 

estimator is used to obtain an estimate of the covariance matrix, That is, �♭
t
 obtained in (12) where the 

shrinkage parameter cp = 0 . Scaling of vertical axis [−400, 800] , (b) applies �∗
t
 obtained in (1) where the 

Ledoit and Wolf (2004) estimator is used to obtain the covariance matrix, shrinkage parameter cp = 0.2 . 
Scaling of vertical axis [−10, 15] , (c) parametric portfolio policy, scaling of vertical axis [−100, 200] , (d) 
1/N-strategy, scaling of vertical axis [0.75, 1.2]
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Proposition 3 (Market Equilibrium). Consider an economy with J > 0 investors. 
Each investor j is either a CARA or CRRA (in more detail, w♭

t
 is applied) expected 

utility maximizer. Suppose that Assumption 1 holds and cjp ≥ 0 . Suppose that either 
no short selling constraints are present or no short selling constraint is binding.

For each CRRA utility maximizer, either �t is positive definite or cp > 0 . For each 
CARA utility maximizer Assumption 2 holds.

Suppose that yj
it
 (or observable subvector xj

it
 ) only contains endogenous variables 

which are affine functions of Pit . Then a unique equilibrium price vector exits.

Remark 2 Note that the optimal strategies for the CARA (see �∗
t

(
xt
)
 in (7) and 

the CRRA (see w♭
b
 with cp = 0 in (18)) are nested in model considered in Proposi-

tion 3. Hence, we obtain equilibrium also for models without shrinkage (i.e., cjp = 0 , 
j = 1,… , J).

Equipped with this theoretical foundations, we can now evaluate the empirical 
performance of the demand systems approach for both preference classes in the next 
section.

7  Empirical results

7.1  Comparison of strategies for the CARA case

Let us now compare investment strategies at the hand of US stock prices. Specifi-
cally, we consider the following strategies:

While the optimal strategies exploit second moments, the parametric portfolio 
strategies estimate optimal portfolio weights directly as a function of the charac-
teristics without estimating variances and covariances. The 1

N
-strategy corresponds 

to a simple investment heuristic that abstracts from any information about second 
moments or any other characteristics. Supplementary Material S.3.2 describes how 
the conditional expectations �t

(
Rit+1

)
 [including the characteristics xit ] and vari-

ances �t

(
Rit+1

)
 are estimated. In contrast with Koijen and Yogo (2019) (but follow-

ing a large finance literature), we run predictive regressions to estimate �t

(
Rit+1

)
.

Our sample consists of N = 100 S&P stocks with monthly data from April 1979 
to December 2013 (for more details on the data see Appendix A). The 100 firms 
considered were traded continuously during this time span. We decided to work with 
these 100 firms to avoid further problems and effects arising from missing data (e.g., 
how to treat missing data in the estimation of the covariance matrix 15).

15 As pointed out by the referee, our results are expected to contain some survivor-ship bias (see, e.g., 
Carpenter and Lynch 1999; Carhart et al. 2015). In our analysis, we claim that all the biases for various 
strategies considered are approximately the same, such that comparisons of the performance measures 
presented in the article still make sense.
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The wealth invested per period is et = 1 . Since our main focus is on the risky 
assets and to exclude impacts arising from changes in the risk-free rate, we assume a 
constant risk-free rate of Rft = 1.001.

The k = k� = 3 macro-variables � it of the parametric policy are:

• �it,1 is the natural logarithm ( ln ) of one plus the firm’s book-to-market ratio,
• �it,2 is the natural logarithm of the firm’s market equity,
• �it,3 is a momentum variable obtained from the compound returns from the peri-

ods t − 13 to t − 2.

As already stated in Section 3, we assume that the standardized � it provides us with 
a stationary process of observed characteristics xit . In particular, xit is the subvector 
of yit used to obtained the amounts invested �♭

t
 . In addition, in the empirical imple-

mentation we work with constant, i.e., not time-varying, model parameters. This of 
course simplifies the econometric analysis. In addition, by this assumption we inves-
tigate whether our relatively simple shrinkage strategies can already improve over 
1/N or parametric strategies when working with constant model parameters.

The observations from t = 1,… , 200 are used to estimate the model parameters 
(training sample).

For in-sample and out-of-sample comparisons, we use the observations 
t = 1,… , 200 and t = 201,… , 415 , respectively 16.

In addition, we consider the 1/N-portfolio as e.g. considered in DeMiguel et al. 
(2009); this portfolio is denoted �1∕N

t  . In the case short selling constraints we apply 
the notation �♭,≥0

t
 for the optimal strategy (including shrinkage) and �♯,≥0

t  for the 
parametric policy.

We are particularly interested in the performance of the optimal investment strat-
egy relative to the characteristics-based portfolio choice. Hence, we do not calculate 
some distance measure investigating the closeness of the weights or some param-
eters of the parametric policy and some optimal strategy, but directly use (esti-
mates of) expected utility for comparison. In particular, we translate utility num-
bers to monetary units and use the certainty equivalent. For the exponential utility 
function u(x) = −e�x , the certainty equivalent C  is the (smallest) value x where 
�
(
u(Et+1)

)
= u(x) . We estimate the certainty equivalent by means of

where �
�
 is the set of time points used for the evaluation of the strategy and T

�
 is the 

number of time points contained in this set. 17

 In addition to estimates of the certainty equivalent, we calculated (estimates of) 
the Sharpe ratio by the average excess returns over the sample standard deviation of 

(19)Ĉ = u−1
(
�̂
(
u(Et+1)

))
= u−1

(
1

T
�

∑
t∈�

�

u(Et+1)

)
,

16 It is insightful to compare both, simulated and empirical data; results with simulated data are provided 
in Supplementary Material S.3.
17 In Tables   2 and   3, the set �

�
= {1,… , 200} (in sample) or �

�
= {201,… , 415} (out of sample) 

where t = 1,… , 200 is used for parameter estimation.
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Table 2  CARA Utility (In Sample): Investment strategies defined in Table 1. Empirical data. Training 
sample t = 1,… , 200 , Evaluation in sample; t = 1,… , 200 . Shrinkage parameter cp = 0.2

� = 0.25 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.3997 1.4014 1.3137 1.3148 1.0153 -34.2976 1.0153

ŝd

(
Ĉ

)
0.0380 0.0382 0.0356 0.0349 0.0023 2.11E+04 0.0023

mean(Et) 1.4657 1.4683 1.3728 1.3724 1.0156 3.0080 1.0156
sd(Et) 0.7234 0.7286 0.6926 0.6845 0.0420 11.5086 0.0420
Sharpe ratio 0.6424 0.6414 0.5368 0.5426 0.3465 0.1744 0.3466
mean(wit < 0) 0.1888 0.1888 0.0000 0.0000 0.0000 0.4837 0.0000

sd
(
wit < 0

)
0.0477 0.0479 0.0000 0.0000 0.0000 0.0290 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.4443 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0262 0.0000

� = 0.5 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.2023 1.2031 1.1350 1.1410 1.0151 0.3416 1.0151

ŝd

(
Ĉ

)
0.0153 0.0153 0.0133 0.0129 0.0018 0.3325 0.0018

mean(Et) 1.2373 1.2386 1.1601 1.1655 1.0156 1.3093 1.0156
sd(Et) 0.3722 0.3748 0.3148 0.3128 0.0420 1.6562 0.0420
Sharpe ratio 0.6350 0.6339 0.5259 0.5055 0.3465 0.1861 0.3466
mean(wit < 0) 0.1832 0.1816 0.0000 0.0000 0.0000 0.4806 0.0000

sd
(
wit < 0

)
0.0478 0.0479 0.0000 0.0000 0.0000 0.0291 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.2514 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0190 0.0000

� = 1 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.1035 1.1039 1.0725 1.0702 1.0147 1.0016 1.0147

ŝd

(
Ĉ

)
0.0049 0.0049 0.0041 0.0042 0.0011 0.0143 0.0011

mean(Et) 1.1231 1.1238 1.0860 1.0839 1.0156 1.1076 1.0156
sd(Et) 0.1966 0.1980 0.1643 0.1655 0.0420 0.4494 0.0420
Sharpe ratio 0.6211 0.6201 0.5013 0.5176 0.3465 0.2371 0.3466
mean(wit < 0) 0.1687 0.1693 0.0000 0.0000 0.0000 0.4799 0.0000

sd
(
wit < 0

)
0.0477 0.0476 0.0000 0.0000 0.0000 0.0339 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0325 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0071 0.0000

� = 2 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0539 1.0541 1.0342 1.0350 1.0138 1.0213 1.0138

ŝd

(
Ĉ

)
0.0010 0.0010 0.0008 0.0008 0.0004 0.0015 0.0004

mean(Et) 1.0660 1.0663 1.0419 1.0428 1.0156 1.0459 1.0156
sd(Et) 0.1089 0.1096 0.0870 0.0878 0.0420 0.1548 0.0420
Sharpe ratio 0.5970 0.5961 0.4767 0.4695 0.3465 0.2899 0.3465
mean(wit < 0) 0.1469 0.1463 0.0000 0.0000 0.0000 0.4558 0.0000

sd
(
wit < 0

)
0.0442 0.0445 0.0000 0.0000 0.0000 0.0378 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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the excess returns (when using the corresponding evaluation sample). For the opti-
mal strategies provided in (12) and (18) for the CARA and the CRRA case, respec-
tively, the tuning hyper-parameter cp has to be specified. We already know e.g. from 
Observation 1 that for cp = 0 the performance is poor and the strategy is very risky. 
To choose cp , we used a (coarse) gird 0,  0.0.1,  0.2,  0.3,  0.4,  0.5,  1 and evaluate 
the performance of the shrinkage strategy. It turned out that shrinkage to 1/N with 
cp = 0.2 performs quite well in our out-of-sample data set.

Tables 2 and  3 present the results for the CARA utility case for different levels of 
constant absolute risk aversion, spanning the ranges from 0.25, 0.5, 1,2 to 5.18

These tables show estimates of the certainty equivalent Ĉ  and its standard devia-
tion, the average wealth obtained, mean(Et) , and its standard deviation, the Sharpe 
Ratio, and the proportions of weights < 0 and < −1 . The average gross return in for-
mal term mean(Rpt)=

mean(Et+1)
et

 . Since et = 1 , we get mean(Rpt) = mean(Et) and 
mean(rpt) = mean(Et) − 1 . Hence, only mean(Et) is presented.

In-sample results: By considering the estimates of the certainty equivalents 
Ĉ  , we observe that the optimal strategies �♭

t
 show the best performance. Due to 

short selling constraints, we obtained �♭,≥0
t

< �♭
t
 . The difference caused by work-

ing with different estimation methods of the covariance matrix is small. The per-
formance of the parametric policy �♯

t  is poor for low degrees of risk aversion, but 
becomes closer to the performance of the optimal strategy for � ≥ 1 . By impos-
ing short selling constraints �♯,≥0

t  is almost equal to the results with 1/N-portfolio 
(our optimization routine is started with w̄i = 1∕N and � = 0 ; differences in the 
numbers between �♯,≥0

t  and �1∕N
t  are only observable when looking at further dig-

its after the comma). Supplementary Material S.3 provides results for simulated 

Table 2  (continued)

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 5 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0234 1.0235 1.0149 1.0143 1.0109 1.0036 1.0109

ŝd

(
Ĉ

)
2.80E-5 2.81E-5 2.16E-5 2.13E-5 2.17E-5 2.80E-5 2.17E-5

mean(Et) 1.0318 1.0319 1.0199 1.0191 1.0156 1.0130 1.0156
sd(Et) 0.0564 0.0567 0.0440 0.0429 0.0420 0.0630 0.0420
Sharpe ratio 0.5453 0.5444 0.4210 0.4299 0.3465 0.1903 0.3465
mean(wit < 0) 0.0973 0.0990 0.0000 0.0000 0.0000 0.3755 0.0000

sd
(
wit < 0

)
0.0376 0.0362 0.0000 0.0000 0.0000 0.0459 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

18 We span the range of parameters that have been applied in different research environments in the 
experimental lab such as Goeree et al. (2002), Harrison and Rutström (2008), in the field experiments 
Tanaka et al. (2010), or in macroeconomic studies such as Hansen (1982).
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Table 3  CARA Utility (Out of Sample): Investment strategies defined in Table 1. Empirical data. Train-
ing sample t = 1,… , 200 , evaluation out of sample; t = 201,… , 415 . shrinkage parameter cp = 0.2

� = 0.25 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.1418 1.1376 0.9996 0.9925 1.0107 -28.7653 1.0107

ŝd

(
Ĉ

)
0.0724 0.0743 0.1278 0.1308 0.0024 4.61E+03 0.0024

mean(Et) 1.3547 1.3588 1.4290 1.4325 1.0109 4.4794 1.0109
sd(Et) 1.3359 1.3624 1.8231 1.8443 0.0445 20.0580 0.0445
Sharpe ratio 0.2648 0.2626 0.2348 0.2340 0.2231 0.1734 0.2232
mean(wit < 0) 0.3300 0.3284 0.0000 0.0000 0.0000 0.4534 0.0000
sd
(
wit < 0

)
0.0474 0.0482 0.0000 0.0000 0.0000 0.0280 0.0000

mean
(
wit < −1

)
0.0268 0.0268 0.0000 0.0000 0.0000 0.4232 0.0000

sd
(
wit < −1

)
0.0174 0.0172 0.0000 0.0000 0.0000 0.0271 0.0000

� = 0.5 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0706 1.0683 1.0125 1.0332 1.0104 0.0316 1.0104

ŝd

(
Ĉ

)
0.0288 0.0295 0.0436 0.0322 0.0018 0.2771 0.0018

mean(Et) 1.1805 1.1825 1.1571 1.1469 1.0109 1.5106 1.0109
sd(Et) 0.6779 0.6911 0.7165 0.6544 0.0445 2.8799 0.0445
Sharpe ratio 0.2648 0.2627 0.2229 0.2179 0.2231 0.1770 0.2232
mean(wit < 0) 0.3253 0.3234 0.0000 0.0000 0.0000 0.4501 0.0000
sd
(
wit < 0

)
0.0477 0.0478 0.0000 0.0000 0.0000 0.0276 0.0000

mean
(
wit < −1

)
0.0029 0.0030 0.0000 0.0000 0.0000 0.2669 0.0000

sd
(
wit < −1

)
0.0046 0.0046 0.0000 0.0000 0.0000 0.0220 0.0000

� = 1 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0348 1.0336 1.0165 1.0274 1.0099 0.9376 1.0099

ŝd

(
Ĉ

)
0.0091 0.0094 0.0104 0.0093 0.0011 0.0185 0.0011

mean(Et) 1.0934 1.0944 1.0786 1.0830 1.0109 1.1399 1.0109
sd(Et) 0.3489 0.3556 0.3471 0.3332 0.0445 0.7083 0.0445
Sharpe ratio 0.2649 0.2628 0.2460 0.2236 0.2231 0.1961 0.2232
mean(wit < 0) 0.3156 0.3133 0.0000 0.0000 0.0000 0.4412 0.0000
sd
(
wit < 0

)
0.0479 0.0470 0.0000 0.0000 0.0000 0.0198 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0349 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0091 0.0000

� = 2 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0167 1.0160 1.0087 1.0099 1.0089 1.0027 1.0089

ŝd

(
Ĉ

)
0.0018 0.0019 0.0019 0.0019 0.0004 0.0021 0.0004

mean(Et) 1.0499 1.0504 1.0404 1.0411 1.0109 1.0527 1.0109
sd(Et) 0.1846 0.1879 0.1739 0.1732 0.0445 0.2432 0.0445
Sharpe ratio 0.2648 0.2627 0.2313 0.2267 0.2231 0.2124 0.2231
mean(wit < 0) 0.2963 0.2932 0.0000 0.0000 0.0000 0.4240 0.0000
sd
(
wit < 0

)
0.0476 0.0470 0.0000 0.0000 0.0000 0.0227 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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data, where we observe that in the case the true parameter values are known, the 
optimal strategies show superior performance.

Out-of-sample results are then presented in Table 3. In this case, our optimal 
shrinkage strategies still have in almost all cases a slightly higher (estimate of 
the) certainty equivalent. For � = 5 , we observe the highest certainty equivalent 
for the 1/N-strategy. For � ≥ 2 , the performance of the strategies considered is 
quite similar.

Finally, both tables present the proportion of the portfolio weights smaller than 
zero and the proportion of weights smaller than −1 . Note that especially for para-
metric portfolio policies with 𝜌 < 1 , the proportion of weights smaller than minus 
one is very high.

As expected, the in-sample performance is better than the out-of-sample 
performance (compare the estimates of the certainty equivalents Ĉ  in Tables  2 
and   3). At least parts of this difference can be attributed to the in-sample and 
out-of-sample forecast of the conditions means �t(Rit+1) , which are equal to the 
fitted values in a linear regression of the returns on the variables xit . We calcu-
lated the in-sample and the out-of-sample coefficient of determination R2 , where 
we observe that approximately 2.1% of the variation in the returns Rit can be 
explained by xit in-sample, while out of sample we get R2 =−3.31%. This has a 
first-order effect since �̂t(Rit+1) directly enters into the optimal shrinkage strat-
egy (12), but also has a second-order effect via the estimation of the covariance 
matrix �t . Note that the total effect, even if returns and characteristics are jointly 
stationary (see Assumption 1), also contains a sampling effect.19

Summing up, we get

Table 3  (continued)

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 5 �♭
t

�♭
t,LW

�♭,≥0
t

�
♭,≥0
t,LW

�
1∕N
t �

♯
t �

♯,≥0
t

Ĉ 1.0049 1.0045 1.0039 1.0040 1.0057 0.9933 1.0057

ŝd

(
Ĉ

)
4.67E-5 4.79E-5 4.17E-5 4.13E-5 2.22E-5 4.86E-5 2.22E-5

mean(Et) 1.0238 1.0239 1.0196 1.0188 1.0109 1.0169 1.0109
sd(Et) 0.0863 0.0877 0.0787 0.0744 0.0445 0.1070 0.0445
Sharpe ratio 0.2636 0.2616 0.2389 0.2363 0.2231 0.1483 0.2231
mean(wit < 0) 0.2418 0.2426 0.0000 0.0000 0.0000 0.3809 0.0000
sd
(
wit < 0

)
0.0478 0.0479 0.0000 0.0000 0.0000 0.0520 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 We thank the anonymous reviewer for that remark.
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Observation 4 (i) In sample: Not surprisingly, the optimal shrinkage strategy shows 
the best performance, followed by the 1

N
-strategy and the parametric strategy. For 

larger � , the performances of the alternative strategies as measured by the certainty 
equivalent perform quite similarly.

(ii) Out of sample: The optimal shrinkage strategies show the best performance 
followed by the 1/N-strategy. Only for a large degree of absolute risk aversion, the 
performances of the strategies considered are roughly the same across strategies.

(iii) For small values of absolute risk aversion parametric portfolio policies imply 
a large amount of short selling in and out of sample.

(iv) In sample, the informational content contained in the variance–covariance 
matrix relative to the 1/N-portfolio, as measured by the certainty equivalent, is 
decreasing the in level of absolute risk aversion. It is particularly high for risk aver-
sion below 1. It is always negative for parametric portfolio policies.

7.2  Comparison of strategies for the CRRA case

The approximately optimal investment weights w♭
t
∈ ℝ

N do not depend on the 
wealth level et , wft = 1 −

∑N

i=1
wit . For cp = 0 , we arrive at an optimization problem 

without shrinkage, while the larger cp the more we shrink toward w̌t . To implement 
(18), the conditional expectations �t

(
Rt+1 − Rft+11N

)
 and 

�t

((
Rt+1 − Rft+11N

)(
Rt+1 − Rft+11N

)⊤
)
 can be estimated in the same way as we 

did it in the CARA case.
Numerical tools are used to obtain the optimal weights w♭,≥0

t  in the case of short 
selling constraints. The certainty equivalent for v♭(x) is obtained by replacing the 
Bernoulli utility function u(x) by v♭(x) in (19).

Table 4  CRRA investment strategies

Abbreviation Investment strategy

w♭
t

approximately optimal strategy with naive covariance estimator with shrinkage

w♭
t,LW

approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator

with shrinkage

w
♭,≥0
t

approximately optimal strategy with naive covariance estimator, without short-selling,

with shrinkage

w
♭,≥0
t,LW

approximately optimal strategy with Ledoit and Wolf (2004) covariance estimator,

without short-selling, with shrinkage

w
1∕N
t

1/N-portfolio as e.g. considered in DeMiguel et al. (2009)

w
♯
t

parametric portfolio policy

w
♯,≥0
t

parametric portfolio policy without short-selling
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Table 5  Approximate CRRA Utility (In Sample): Strategies defined in Table  4. Empirical data. Training 
sample t = 1,… , 200 . Evaluation in sample; t = 1,… , 200 . Shrinkage parameter cp = 0.2

� = 0.25 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.1656 1.1668 1.0340 1.0227 1.0153 1.0519 1.0153

ŝd

(
Ĉ

)
0.1335 0.1332 0.0031 0.0020 0.0022 0.0128 0.0022

mean(Et) 1.4138 1.4160 1.0344 1.0229 1.0156 1.0594 1.0156
sd(Et) 0.6464 0.6509 0.0584 0.0385 0.0420 0.2329 0.0420
Sharpe Ratio 0.6387 0.6376 0.5717 0.5694 0.3465 0.2507 0.3465
mean(wit < 0) 0.1882 0.1881 0.0000 0.4546 0.0000 0.4546 0.0000
sd
(
wit < 0

)
0.0478 0.0479 0.0000 0.0297 0.0000 0.0297 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 0.5 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 0.6065 0.6131 1.0157 1.0320 1.0151 1.0434 1.0151

ŝd

(
Ĉ

)
0.2460 0.2443 0.0012 0.0020 0.0015 0.0091 0.0015

mean(Et) 1.2110 1.2120 1.0160 1.0328 1.0156 1.0592 1.0156
sd(Et) 0.3331 0.3354 0.0324 0.0561 0.0420 0.2321 0.0420
Sharpe Ratio 0.6303 0.6293 0.4622 0.5673 0.3465 0.2510 0.3465
mean(wit < 0) 0.1813 0.1799 0.0000 0.0000 0.0000 0.4552 0.0000
sd
(
wit < 0

)
0.0478 0.0481 0.0000 0.0000 0.0000 0.0297 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 1 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0934 1.0937 1.0130 1.0287 1.0147 1.0341 1.0147

ŝd

(
Ĉ

)
0.0142 0.0142 0.0017 0.0036 0.0030 0.0193 0.0030

mean(Et) 1.1095 1.1101 1.0132 1.0300 1.0156 1.0650 1.0156
sd(Et) 0.1765 0.1776 0.0236 0.0509 0.0420 0.2354 0.0420
Sharpe Ratio 0.6150 0.6140 0.5186 0.5698 0.3465 0.2720 0.3465
mean(wit < 0) 0.1653 0.1652 0.0000 0.0000 0.0000 0.4575 0.0000
sd
(
wit < 0

)
0.0476 0.0466 0.0000 0.0000 0.0000 0.0351 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 2 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0490 1.0491 1.0082 1.0216 1.0138 1.0233 1.0138

ŝd

(
Ĉ

)
0.0078 0.0078 0.0011 0.0029 0.0031 0.0113 0.0031

mean(Et) 1.0588 1.0591 1.0084 1.0232 1.0156 1.0447 1.0156
sd(Et) 0.0982 0.0988 0.0163 0.0404 0.0420 0.1430 0.0420
Sharpe Ratio 0.5885 0.5876 0.4574 0.5499 0.3465 0.3059 0.3465
mean(wit < 0) 0.1416 0.1418 0.0000 0.0000 0.0000 0.4377 0.0000
sd
(
wit < 0

)
0.0428 0.0438 0.0000 0.0000 0.0000 0.0334 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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For cp = 0 , in our empirical data �t and At result in w♭
it
 of large absolute value, 

where (18) results in poor performance. This problem can be expected, since the 
weights obtained in (18) are derived in a similar way as the investments �∗

t
 . A 

second driver of larger portfolio weights is the parameter of relative risk aversion 
� . The smaller � , the larger the weights w♭

t
 in absolute value for any cp ≥ 0 . Note 

that in contrast with the CARA case, our solutions for the CRRA case (with or 
without short selling constraints) are based on the Taylor series approximation 
(14) around w = 0N×1 . If the weights w♭

it
 are quite far away from the approxima-

tion point of the Taylor series, the approximation quality can become poor.
Our shrinkage device also dampens this effect.
Table 4 presents the investment strategies to be compared in the following.
In Tables 5 and 6, we observe that for small � the weights following from (18) 

become quite large and the performance measured in terms of the certainty equiv-
alent becomes poor (not only out of sample but also in sample). Surprisingly, 
this effect is stronger for � = 0.5 than for 0.25. Some certainty equivalent samples 
become quite negative, and the sample standard deviation of the certainty equiva-
lents becomes high.

By contrast, when finding an optimal � in the case of parametric portfolio poli-
cies, no approximation of the expected utility function is used. Hence, also for 
small � the performance of the parametric portfolio approach is quite satisfac-
tory. By comparing the estimates of the certainty equivalents with the paramet-
ric approach to the approximately optimal strategy described in (18), we observe 
that the parametric approach outperforms the approximately optimal approach for 
� = 0.5 . This holds for an in- and an out-of-sample comparisons without short 
selling constraints. By imposing short selling constraints, the optimal approach 
slightly dominates the 1/N and the parametric policy.

Using the Sharpe ratio also verifies this result. We observe that when increas-
ing the degree of risk aversion ( � ≥ 1 ) optimal strategies based on (18) in terms 
of the points estimate of the certainty equivalent dominate the other strategies. 

Table 5  (continued)

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000

� = 5 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0214 1.0214 1.0056 1.0109 1.0108 1.0031 1.0108

ŝd

(
Ĉ

)
0.0173 0.0173 0.0028 0.0084 0.0139 0.0171 0.0139

mean(Et) 1.0284 1.0285 1.0059 1.0128 1.0156 1.0124 1.0156
sd(Et) 0.0514 0.0517 0.0104 0.0277 0.0420 0.0631 0.0420
Sharpe Ratio 0.5325 0.5316 0.4668 0.4275 0.3465 0.1801 0.3465
mean(wit < 0) 0.0870 0.0875 0.0000 0.0000 0.0000 0.3777 0.0000
sd
(
wit < 0

)
0.0346 0.0341 0.0000 0.0000 0.0000 0.0454 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 6  Approximate CRRA Utility (Out of Sample): Strategies defined in Table   4. Empirical data. 
Training sample t = 1,… , 200 . Evaluation out of sample; t = 201,… , 415 . Shrinkage parameter cp = 0.2

� = 0.25 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 0.7703 0.7563 1.0177 1.0127 1.0107 1.0582 1.0107

ŝd

(
Ĉ

)
0.1521 0.1560 0.0036 0.0025 0.0023 0.0208 0.0023

mean(Et) 1.2135 1.2152 1.0183 1.0130 1.0109 1.0797 1.0109
sd(Et) 0.7643 0.7751 0.0701 0.0495 0.0445 0.4032 0.0445
Sharpe Ratio 0.2780 0.2764 0.2462 0.2433 0.2231 0.1952 0.2231
mean(wit < 0) 0.3265 0.3249 0.0000 0.4350 0.0000 0.4350 0.0000
sd
(
wit < 0

)
0.0461 0.0465 0.0000 0.0240 0.0000 0.0240 0.0000

mean
(
wit < −1

)
0.0045 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0050 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000

� = 0.5 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 0.3829 0.3223 1.0112 1.0165 1.0104 0.9783 1.0104

ŝd

(
Ĉ

)
0.1698 0.1701 0.0014 0.0023 0.0015 0.0385 0.0015

mean(Et) 1.1097 1.1105 1.0117 1.0176 1.0109 1.0794 1.0109
sd(Et) 0.3912 0.3966 0.0412 0.0678 0.0445 0.4012 0.0445
Sharpe Ratio 0.2777 0.2761 0.2590 0.2455 0.2231 0.1954 0.2231
mean(wit < 0) 0.3190 0.3166 0.0000 0.0000 0.0000 0.4353 0.0000
sd
(
wit < 0

)
0.0461 0.0458 0.0000 0.0000 0.0000 0.0238 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 1 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0365 1.0363 1.0068 1.0151 1.0099 1.0035 1.0099

ŝd

(
Ĉ

)
0.0149 0.0152 0.0020 0.0043 0.0031 0.0315 0.0031

mean(Et) 1.0577 1.0581 1.0072 1.0170 1.0109 1.0777 1.0109
sd(Et) 0.2048 0.2075 0.0298 0.0632 0.0445 0.3727 0.0445
Sharpe Ratio 0.2771 0.2754 0.2088 0.2532 0.2231 0.2058 0.2232
mean(wit < 0) 0.3024 0.2993 0.0000 0.0000 0.0000 0.4318 0.0000
sd
(
wit < 0

)
0.0444 0.0439 0.0000 0.0000 0.0000 0.0223 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� = 2 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0194 1.0192 1.0062 1.0122 1.0089 1.0033 1.0089

ŝd

(
Ĉ

)
0.0080 0.0081 0.0014 0.0038 0.0031 0.0162 0.0032

mean(Et) 1.0318 1.0320 1.0066 1.0152 1.0109 1.0500 1.0109
sd(Et) 0.1118 0.1131 0.0208 0.0556 0.0445 0.2277 0.0445
Sharpe Ratio 0.2753 0.2737 0.2682 0.2553 0.2231 0.2152 0.2232
mean(wit < 0) 0.2688 0.2680 0.0000 0.0000 0.0000 0.4222 0.0000
sd
(
wit < 0

)
0.0409 0.0398 0.0000 0.0000 0.0000 0.0214 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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In this case, the results without constraints are slightly above the results with 
constraints.

The results for w♯,≥0 are very close the results for the 1/N-strategy.

Observation 5 (i) In sample: Similar to the CARA case, the optimal shrinkage strat-
egy shows the best performance for � ≥ 1 . The performances of the alternative strat-
egies as measured by the certainty equivalent perform quite similarly.

(ii) Out of sample: The 1/N-strategy shows the best performance for � ≤ 0.5 . For 
a very small � , the best performance with the parametric policy is observed. For 
� ≥ 1 , the best performance is achieved with the optimal shrinkage strategy; how-
ever, the performances for the strategies considered are roughly the same across 
strategies.

(iii) Similar to the CARA case, for small values of risk aversion parametric port-
folio policies imply a large amount of short selling in and out of sample.

8  Conclusions

Theory-guided reduction techniques prove particularly helpful for machine learning 
applications as forcefully argued by Nagel (2021).20 Such techniques are extremely 
valuable under conditions that are challenging for the determination of optimal port-
folios either because utility frontiers are rather flat or even exhibit multiple optima. 
Not only in such cases our new shrinkage facility renders portfolio strategies less 
risky and improves performance when applied to empirical data. In contrast with 

Table 6  (continued)

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0073 0.0000 0.0000

� = 5 w♭
t

w♭
t,LW w

♭,≥0
t w

♭,≥0
t,LW

w
1∕N
t w

♯
t w

♯,≥0
t

Ĉ 1.0081 1.0080 1.0032 1.0068 1.0057 0.9921 1.0057

ŝd

(
Ĉ

)
0.0169 0.0171 0.0033 0.0103 0.0137 0.0292 0.0137

mean(Et) 1.0162 1.0162 1.0035 1.0101 1.0109 1.0162 1.0109
sd(Et) 0.0564 0.0569 0.0116 0.0359 0.0445 0.1064 0.0445
Sharpe Ratio 0.2694 0.2679 0.2164 0.2524 0.2231 0.1432 0.2231
mean(wit < 0) 0.1882 0.1907 0.0000 0.0000 0.0000 0.3807 0.0000
sd
(
wit < 0

)
0.0358 0.0359 0.0000 0.0000 0.0000 0.0522 0.0000

mean
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

sd
(
wit < −1

)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 In the words of Nagel (2021), we provide “an analytical framework that allows to inject a limited 
amount of economic reasoning when we set up ML [machine learning] tools to tackle asset pricing prob-
lems." Nagel (2021)[p. 63].
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a bulk of methods proposed in the literature, we do not shrink (some of) the model 
parameters but shrink the portfolio weights toward some a-priori specified strategy.

We test our approach in simulation exercises on data for the S&P 500, the US 
market for large caps.21 For the scenario when parameters actually can be estimated 
directly, we observe that the simple optimal shrinkage strategy proposed in this arti-
cle outperforms the parametric portfolio approach of Brandt et al. (2009), and the 
1/N-strategy, for most levels of absolute and relative risk aversion. Only for CRRA 
preferences with very low levels of risk aversion, the other strategies are superior. 
For higher degrees of risk aversion, the performances of the strategies considered 
are quite similar.

The demand systems approach to asset pricing introduced by Koijen and Yogo 
(2019) lends itself to numerous applications, such as the intermediary asset pricing 
theory of He and Krishnamurthy (2013) or asset pricing with frictions more gen-
erally. In this article, our shrinkage approach also augments the demand systems 
approach to CARA and CRRA expected utility. We consider the cases with and 
without short selling constraints and show the existence of equilibrium.

Another aspect of the demand system approach is its relation to the BSV char-
acteristics-based parametric portfolio approach (see Brandt et  al. 2009 ) that has 
received a lot of interest from empirical researchers because it provides an attractive 
reduction technique to an otherwise complex optimization problem. From the results 
obtained in this article, we observe that parametric portfolio strategies can be opti-
mal under rather strong assumptions.

While our work, as a first step, has focused on a quasi-static analysis and evalua-
tion, a promising route for future research would seem as the next step to consist in a 
dynamic implementation of optimal shrinkage strategies, allowing for time depend-
ence and tuning of the shrinkage parameter. Alternatively different shrinkage portfo-
lios can be investigated. For example, does it make sense to shrink toward the risk-
free asset in risky periods, etc. In the current implementation, the model parameters 
are estimated in the training sample and not adapted in the evaluation sample. It is 
tempting to experiment with rolling windows or more sophisticated dynamic models 
in order to improve out-of-sample performance.

Appendix: Empirical data

In the study, we use the characteristics and returns of all 100 firms that are continu-
ously a member of the S&P 500 firms in the time span from 04/1979 to 12/2013. 
The three characteristics are closely based on Brandt et al. (2009). Market equity, 
meit , is the natural logarithm of the number of shares outstanding (Compustat item 
cshoq for the primary issue—priusa) times the closing price (prccq). Book-to-Mar-
ket, btmit , is the natural logarithm of (1 + book equity / market equity), where book 
equity is measured as Shareholders’ Equity (seq) and is used six months after the 

21 In related work Gehrig et al. (2018), similar evidence extends to CRSP-data for low enough risk aver-
sion.
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close of the fiscal year to ensure availability of the data. Momentum, momit , is the 
cumulative return over the time period t-13 to t-2, expressed as monthly average. 
Hence, we get k = 3 and xit =

(
meit, btmit,momit

)⊤ . To be included in the estima-
tion, a firm must fulfill three conditions at the portfolio formation. It must be a 
continuous constituent of the S&P 500 (ticker i0003), must have data for all three 
characteristics, and needs to have return data (trt1m) over the following month. The 
number of included firms N is always equal to 100. All characteristics xit are cross-
sectionally standardized, resulting in x̃it.

Table  7 provides correlation coefficients; the first-order autocorrelations of the 
variables xit,j are 0.9621, 0.9706 and 0.8638. To further investigate the relationship 
between the returns and the variables x̃it , we estimated the pooled model

where the noise terms are—in a first step—assumed to be exogenous. The ordinary 
least squares estimates are

â = 0.1471 , �b = (0.0104,−0.0021,−0.1178)⊤ , where the corresponding p-values 
for b are all < 0.01.

That is, the linear relationship between rit+1 and x̃it is significant for x̃it,1 and x̃it,2 on 
a 5% significance level. Since the variables x̃it are at least partially jointly determined 
with the returns, the assumption of exogenous regressors is a strong one. Therefore, 
we estimated the panel regression model (20) by means of instrumental variables, 
where we assumed that the noise term uit is uncorrelated with x̃is , s < t . Based on 
this assumption, we estimate b by using x̃it−1 as instruments and obtained the two-
stage least squares estimates âIV = 0.1495 and �bIV = (0.0111,−0.0020,−0.1214)⊤ ; 
all p-values are < 0.001.
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(20)rit = a + b⊤ x̃it + uit ,

Table 7  Pearson correlation 
coefficients for S&P 500 data

rit x̃it,1 x̃it,2 x̃it,3

rit 1.0000 0.0005 -0.0029 −0.0065
x̃it,1 0.0005 1.0000 −0.4846 −0.4724
x̃it,2 −0.0029 -0.4846 1.0000 −0.4906
x̃it,3 −0.0065 -0.4724 -0.4906 1.0000
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