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Abstract
In the recent years many countries were hit by a series of macroeconomic shocks, 
most notably as a consequence of the COVID-19 pandemic and Russia’s invasion 
in Ukraine, raising inflation rates to multi-decade highs and suspending well-doc-
umented macroeconomic relationships. To capture these tail events, we propose a 
mixed-frequency Bayesian vector autoregressive (BVAR) model with Student t-dis-
tributed innovations or with stochastic volatility. Whereas inflation, industrial pro-
duction, as well as oil and gas prices are available at monthly frequencies, real gross 
domestic product (GDP) is observed at a quarterly frequency. Thus, we apply a 
mixed-frequency setup using the forward-filtering–backward-sampling algorithm to 
generate monthly real GDP growth rates. We forecast inflation in those euro area 
countries that extensively import energy from Russia and therefore have been heav-
ily exposed to the recent oil and gas price shocks. To measure the forecast perfor-
mance of the mixed-frequency BVAR model, we compare our inflation forecasts 
with those generated by a battery of competing inflation forecasting models. The 
proposed BVAR models dominate the competition for all countries in terms of the 
log predictive density score.
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1 Introduction

The COVID-19 pandemic, resulting supply side disruptions, the quick and sud-
den economic recovery and, subsequently, the energy price shock following Rus-
sia’s invasion of Ukraine had unforeseen consequences on inflation dynamics and 
has posed major challenges for inflation forecasting. Evidence has emerged that 
parameter estimation in time series models widely used for macroeconomic fore-
casting has become more difficult due to the COVID-19 shock and its aftermath.

For euro area inflation, Bobeica and Hartwig (2023) document that parame-
ter estimates of Bayesian vector autoregressions (BVAR) were strongly affected. 
They propose to use a fat-tailed distribution for the error terms. To improve the 
accuracy of euro area inflation forecasts, they also recommend estimating larger 
models with a tighter prior (compared to standard BVAR specifications) and 
including off-model information for forecasts, such as information from the ECB 
Survey of Professional Forecasters (see also Krüger et  al. 2017; Banbura et  al. 
2021).

Other work addressing the recent tail events focuses on the US economy, such as 
Lenza and Primiceri (2022); Carriero et al. (2024) and Schorfheide and Song (2021). 
More specifically, Lenza and Primiceri (2022) modify the innovation variance for 
the pandemic period. They exploit the fact that we know the exact timing of the 
increase in the innovations’ variance during the COVID-19 period (March and sub-
sequent months in 2020). Whereas this might be true for the pandemic, it is harder 
to disentangle the exact timing of the heterogeneous effects of rising energy prices 
on inflation rates in different countries. Countries have faced differing dependencies 
on energy supply from Russia, and governments have been implementing different 
policies to mitigate rapidly rising prices. For the period after May 2020, the authors 
simply assume that the residual variance will decay at a monthly rate of 20%.

Carriero et  al. (2024) suggest allowing for Student-t distributed innovations 
and outliers in a vector autorregressive (VAR) model with stochastic volatility. 
Extreme observations are viewed as outliers that are characterized by transitory 
increases in volatility, in which case it may be desirable to reduce their influence 
on model estimates. Their model augments the standard stochastic volatility spec-
ification with an outlier state. For the treatment of fat-tailed errors in stochastic 
volatility, they use t-distributed innovations. Antolin-Diaz et al. (2021) also allow 
for short-lived outliers that do not lead to a persistent rise in the stochastic vola-
tility process in a dynamic factor model for nowcasting US GDP.

Alternatively, Schorfheide and Song (2021) consider a mixed-frequency VAR 
to generate macroeconomic forecasts for the US during COVID-19. The recom-
mendation is to exclude extreme observations during a few months of the pan-
demic to improve the forecasting performance. However, this assumes that the 
timing of outliers is known ex-ante and does not address the subsequent period 
of uncertainty properly. Furthermore, Clark et al. (2023) apply Bayesian machine 
learning techniques to account for possible non-linearity. The authors demon-
strate that Bayesian regression trees have strong forecasting properties in both the 
overall level and in the tails.
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In this paper, we consider a small-scale Bayesian VAR framework with different 
error variance specifications to forecast inflation in turbulent times for selected Euro-
pean countries. Working with the most recent inflation data, our experience is simi-
lar to the evidence described in the above-mentioned literature. Forecasting inflation 
using VAR models based on longer historical time series until the year 2019 (pre-
COVID-19) results in a rapid decay of inflation rates down to rates observed before 
the recent sharp increase. By contrast, estimating VARs (with Gaussian errors) with 
the full 2004 to 2023 data set can result in non-stable (explosive) inflation forecasts. 
Both results are implausible and unsatisfactory.

Therefore, we explore two different specifications for volatility. First, we choose 
an approach of forecasting post-pandemic inflation that is closely related to that of 
Bobeica and Hartwig (2023) using t-distributed disturbances. However, we consider 
a monthly instead of the quarterly frequency in order to use timelier and finer infor-
mation on inflation dynamics. Thus, employing (quarterly) gross domestic product 
(GDP) results in a mixed-frequency problem. Further, we use the gas price as an 
additional energy variable. Second, we consider models with stochastic volatility 
to capture extreme events. It is a well-known fact that Bayesian VARs with time-
varying volatility often provide better point and density forecasts of macroeconomic 
variables than models with homoscedastic errors terms; see, e.g., Clark (2011) and 
Clark and Ravazzolo (2015). Specifically, we consider the error terms to be gener-
ated by a factor stochastic volatility model as proposed in Kastner (2019).

We include data on inflation, industrial production, and GDP from six euro area 
countries, namely Austria, Belgium, Finland, Germany, Italy, and Slovakia, which 
depend strongly on natural gas imports from Russia. To capture exogenous shocks 
affecting inflation we do not only include the oil price but also the gas price. We 
consider monthly observations from February 2004 to February 2024, with GDP 
only observed at a quarterly frequency, while the other data are available at monthly 
frequencies. Our underlying econometric model is a vector autoregressive model 
relying on monthly variables. That is, also for GDP the underlying model applies 
monthly growth rates (see, for instance Proietti and Giovannelli (2021), for frequen-
tist monthly GDP estimates). To perform parameter estimation this article follows a 
Bayesian approach. In working with Student-t distributed noise terms we mainly fol-
low Bobeica and Hartwig (2023), but—in contrast to them—we apply a Minnesota 
type prior to the autoregressive parameter matrices. The same prior for the autore-
gressive matrices is also applied in the case of stochastic volatility. In addition, we 
have to account for mixed sampling frequencies. We adapt forward-filtering–back-
ward-sampling, as proposed in Frühwirth-Schnatter (1994), to obtain samples from 
the posterior distribution of the unobserved monthly GDP growth rates.

We conduct a comprehensive empirical analysis including the period of sharp 
inflation increases and decreases between mid-2021 and early-2024 in the six euro 
area countries, which we consider the “turbulent times” in this paper. We find that 
the proposed variant of a mixed-frequency Bayesian VAR with fat-tailed errors 
and the alternative variant with stochastic volatility provide better out-of-sample 
point and density forecast accuracies than a battery of popular competing inflation 
forecasting models. The competing models include a univariate version of the pro-
posed model, a version of the Bayesian VAR model with only monthly variables, 
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disregarding GDP, a univariate autoregressive model, and homoscedastic and het-
eroscedastic versions of an unobserved components model. To evaluate the inflation 
forecasts we employ traditional measures, such as the mean absolute error and the 
root mean squared error, as well as log predictive density scores.

This article is organized as follows: Section 2 briefly describes the VAR model. 
Section  3 introduces the mixed-frequency problem. Then, Sect.  4 describes our 
Bayesian approach, in particular, the priors. Details are provided in a separate 
appendix. Section 5 discusses the performance of different models and then presents 
inflation forecasts and an impulse response analysis for six European countries. The 
last section concludes.

2  The model

In this article we jointly model industrial production, IPt , inflation, Inflt , the 
real gross domestic product, GDPt , the gas price, pgas,t , and the oil price, 
poil,t , by using a vector autoregressive (VAR) model of order p. We con-
sider data at a monthly frequency, and index t denotes the time index. For 
each country, we stack the variables into the five-dimensional column vector 
yt =

(
Δ ln IPt, Inflt,Δ lnGDPt,Δ ln pgas,t,Δ ln poil,t

)⊤
∈ ℝ

k̃ where k̃ = 5 . Then we 
get1

In the following we assume that the growth rates of the oil and the gas prices are not 
affected by Δ ln IPt , Inflt , Δ lnGDPt and therefore set the corresponding elements of 
Aj to zero (see also Eq. (11) in Appendix A). In this article the noise term �t either 
follows a Student-t distribution (Case 1), or is generated by a stochastic volatility 
model (Case 2).

Case 1 Following Bobeica and Hartwig (2023), the noise term �t follows an iid 
multivariate Student-t distribution with mean zero, covariance matrix � , where 
0 < � < ∞ , and � degrees of freedom. From Bayesian literature (see, e.g., Geweke 
1993; Bobeica and Hartwig 2023) a Student-t distributed noise term �t with � 
degrees of freedom can be obtained by drawing �t from a multivariate normal with 
mean zero and covariance matrix �t ∶= �t� , where �t is sampled from an inverse 
Gamma distribution IG

(
�

2
,
�

2

)
.

(1)yt = a +

p∑

j=1

Ajyt−j + �t .

1 In this article we apply the following notation: Δxt denotes xt − xt−1 and Δ ln xt abbreviates 
ln xt − ln xt−1 (that is, growth rates are calculated as logarithmic growth rates). For vectors and matrices 
we use boldface. If not otherwise stated, the vectors considered are column vectors. 0a×b and 1a×b stands 
for a × b matrix of zeros and ones and 0a is used to abbreviate 0a×1 . ⊗ denotes the Kronecker product 
and In the identity matrix of dimension n × n . vec(M) vectorizes the matrix M , while vech(M) vectorizes 
the lower triangular part of a symmetric matrix M . N(⋅, ⋅) , IG(⋅, ⋅) , and W(⋅, ⋅) denotes the multivariate 
normal, the inverse Gamma, and the Wishart distribution, respectively. U

(
𝜈, �̄�

)
 abbreviates a uniform dis-

tribution on the interval [𝜈, �̄�] . ∝ stands for proportional to.
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Case 2 Alternatively, we consider the noise terms �t to be generated by a factor 
stochastic volatility model as proposed in Kastner (2019). That is, for a k̃ × k̃-dimen-
sional matrix �t we assume

where � is a k̃ × r-loading matrix, r is the number of volatility factors 
Vt = diag

(
exp(h1t),… , exp(hrt)

)
∈ ℝ

r×r , �Ut = diag
(
exp(hr+1t), … exp(hr+k̃t)

)

∈ ℝ
k̃×k̃ , and each hjt , j = 1,… , k̃ + r , follows a stable first order autoregressive pro-

cess with normally distributed noise terms. Then, �t = �
1∕2
t �t , where �t follows a k̃

-dimensional standard normal distribution.
The parameter vector � collects all the parameters of the VAR considered in (1), 

that is a , and the vectorized parameter matrices Aj , j = 1,… , p . For t-distributed 
innovations it also contains vech(�) , �1,… , �T , as well as � , while for the stochas-
tic volatility model it contains all the parameters of the factor stochastic volatility 
models defined in Kastner (2019). We choose p such that the autocorrelations of the 
residuals are insignificant, i.e., p = 4.

The VAR system defined in (1) results in the matrix polynomial 
a(z) = Ik −A1z −⋯ −Apz

p , z ∈ ℂ . We assume that the stability condition (the 
determinant of a(z) ≠ 0 , for all |z| ≤ 1 ) is met. Let L denote the lag operator. Then, 
yt = a(L)−1�t , t ∈ ℤ , provides us with the unique (weakly) stationary (and causal) 
solution of (1) (see, e.g., Deistler and Scherrer 2018, Theorem 4.4).

In addition, we conducted a panel VAR analysis. However, the forecasting perfor-
mance turned out to be better in the country-by-country setup. That is why we focus, 
in the main text, on the country-specific VARs.

3  Data and mixed‑frequency

We use industrial production, inflation and real gross domestic product for the six 
countries Austria, Belgium, Finland, Germany, Italy, and Slovakia. The selected 
countries are all part of the European Economic and Monetary Union (EMU) and 
also depend strongly on gas imports (from Russia).2 Thus, they are particularly vul-
nerable to gas price shocks and natural candidates for analyzing oil and gas price 
shocks as potential drivers of (energy) inflation. We do not consider, for instance, 
countries like Portugal or Spain that import little or zero natural gas from Russia. 
The inflation rates of the Baltic countries may have been affected much more by 
the Russian invasion in Ukraine due to a generally broader economic interaction 
with Russia, Belarus and Ukraine and are therefore also not considered. France and 
the Netherlands are not in the country list, as the former extensively implemented 

(2)�t = �Vt�
⊤ + �Ut ,

2 For estimates of the number and diversity of gas supply sources, see, for instance, the European Union 
Agency for the Cooperation of Energy Regulators, https:// aegis. acer. europa. eu/ chest/ datai tems/ 214/ view, 
last accessed 29.11.2023.

https://aegis.acer.europa.eu/chest/dataitems/214/view
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anti-inflationary measures while the latter changed its method of calculating infla-
tion3 during the course of the year 2023 (June 2023).4

While industrial production, inflation, and GDP are obviously country-specific, 
we use international price quotations for Brent oil as well as for TTF gas, thereby 
implicitly neglecting minor differences in country-specific wholesale prices. Indus-
trial production and GDP are published seasonally adjusted, while the harmonized 
index of consumer prices (HICP) is not. Instead of seasonally adjusting the HICP 
and using month-over-month percentage changes, we work with price changes on 
a year-over-year basis (annual inflation), which effectively acts as some sort of sea-
sonal adjustment. All variables measured in prices are denominated in Euro with the 
exception of the oil price, which is originally measured in US Dollar and then con-
verted to Euro using the US Dollar/Euro exchange rate. The inflation rate is meas-
ured in percent.

Further, we apply the following data transformations: we calculate month-over-
month logarithmic growth rates for industrial production, oil and gas prices, and 
quarter-over-quarter growth rates for GDP. That is, we get the transformed variables 
Δ ln IPt , Δ ln pgas,t , Δ ln poil,t observed on a monthly basis, and lnGDPq − lnGDPq−1 , 
observed on a quarterly basis, where q, q + 1,… denotes a quarterly time scale. For 
final estimation we consider the period February 2004 to February 2024. The start-
ing date of our sample is determined by the availability of gas prices.5 The data, its 
sources and transformations are summarized in Table 1.

Observational scheme Equation (1) describes the data generating process for yt 
on a monthly basis. The variables observed at a monthly frequency are called fast 
variables, yft  , while the variable GDP growth observed at a quarterly frequency is 
called a slow variable, ys

t
 , with the sampling rate of the slow variable being three. In 

the data described above the growth rate of industrial production, Δ ln IPt , inflation, 
Inflt , the change of the gas price, Δ ln pgas,t , and the change of the oil price, Δ ln poil,t , 

Table 1  Included variables

t represents monthly frequency, q represents quarterly frequency. Note that inflation is calculated as the 
year-over-year growth rate of the harmonized index of consumer prices (HICP). For oil and gas prices as 
well as the exchange rate we use monthly averages of daily quotes

Variable Abbreviation Transformation Source Dataset or code

Industrial production IPt Δ ln IPt Eurostat sts_inpr_m

HICP inflation rate Inflt Eurostat prc_hicp_manr

Real gross domestic product GDPq Δ lnGDPq Eurostat namq_10_gdp

TTF NL natural gas future pgas,t Δ ln pgas,t Refinitiv Eikon TRNLTTD

Brent oil price in Euro poil,t Δ ln poil,t Refinitiv Eikon OILBREN/USEURSP
US Dollar/Euro exchange rate Refinitiv Eikon USEURSP

3 Switching from including only new energy contracts to a method that reflects all (new and existing) 
contracts.
4 See, for instance, Armendariz et al. (2023).
5 Our transformations ensure stationarity, which is confirmed by unit root tests.
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are observed at a monthly basis and are therefore fast variables. By contrast, GDP is 
observed at a quarterly rate and is a slow variable. Monthly real GDP growth rates 
Δ lnGDPt are not observed. Note that GDP is a flow variable, such that the quarterly 
growth rate is 

∑2

j=0
y3,t−j =

∑2

j=0
Δ lnGDPt−j = lnGDPt − lnGDPt−3 . This vari-

able is observed for some t ∈ 3ℤ + tj , where tj ∈ {0, 1, 2} , depending on the starting 
month of the monthly series. To simplify the notation we consider the case where 
tj = 0 in the following.

Let YT collect all high-frequency data, that is yt , t = 1,… , T  , and the ini-
tial values y0,… , y0−p+1 . Y

obs

T
 denotes the data observed, that is yft  , for t ∈ ℤ , and 

lnGDPt − lnGDPt−3 , for t ∈ 3ℤ . Finally, Ymiss

T
 collects non-observed elements of 

YT , and it will be estimated by means of Bayesian methods given the data observed 
Y

obs

T
 . See Appendix B.1 for more details.

4  Bayesian analysis

By the Bayes theorem

where �
(
�,Ymiss

T
|Yobs

T

)
 is the joint posterior density of the parameter � and the miss-

ing observations Ymiss

T
 . f

(
Y

obs

T
|Ymiss

T
,�
)
 is the (conditional) likelihood (see also Eq. 

(14) in the Appendix). With a slight abuse of notation, the non-observed high-fre-
quency observations contained in yt , t = 1,… , T  (in our application the monthly 
growth rates of GDP), are replaced by the corresponding samples Ymiss

T
 . �

(
Y

miss

T
|�
)
 

and �(�) denote the priors of the missing observations and the model parameters, 
respectively.

4.1  Priors

Prior for the covariance matrix � , Case 1 – t-distributed innovations: We follow the 
literature and commence from an inverse Wishart prior with positive definite scale 
matrix S0Σ and degrees of freedom parameter n0Σ.

Prior for the covariance matrix � , Case 2 – stochastic volatility: Also for the 
parameters of the stochastic volatility model priors have to be specified (see Kast-
ner 2019, Section 2.2). Here we use the default values suggested by the factor-
stochvol package (see Hosszejni and Kastner 2021).

Priors for the parameters a , Al , l = 1,… , p : We stack the non-restricted ele-
ments of a and Al , l = 1,… , p , into the column vector � . For � we consider a Min-
nesota type prior (based on works of Litterman, see, e.g., Kilian and Lütkepohl 
2017, p. 155). For the intercept terms a we apply a normal prior with mean param-
eter b0a and covariance matrix B0a . Next, we consider the non-zero elements of the 
matrices Al , l = 1,… , p . Elements of these matrices are abbreviated by A�j,l , while 
their prior means are b�j,l . By collecting terms we get the vector of mean parameters 

(3)�
(
�,Ymiss

T
|Yobs

T

)
∝ f

(
Y

obs

T
|Ymiss

T
,�
)
�
(
Y

miss

T
|�
)
�(�) ,
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b0� . If not otherwise stated for A�j,l we set the prior means b�j,l equal to zero. The 
prior variances of A�j,l are

where �0 is the prior standard deviation of A��,1 . The parameter �0 , 0 < 𝜓0 < 1 , 
results in a shrinkage to zero prior of the off-diagonal elements of the autoregres-
sive matrices. Finally, the hyper-parameters 𝜎0,y,j > 0 , j = 1,… , k̃ , are introduced. 
By collecting terms we get the diagonal matrix of prior variances B0�.

Different values for b��,1 have been proposed in literature (see, e.g., Kilian and Lüt-
kepohl 2017; Geweke et al. 2011; Koop and Korobilis 2021). For example, b��,1 = 1 , 
𝜄 = 1,… , k̃ , which implies that we a-priori assume the process follows a random 
walk, or b��,1 = 0 for stationary time series, etc. In the following, for � = 1, 2, 4, 5 we 
set b��,1 (approximately) equal to the first order sample autocorrelation of the corre-
sponding coordinate of yt , while for the slow variable (i.e., the growth rate of GDP) 
we set the corresponding b33,1 = 0 . Here we use the 2004 to 2019 subsample. Since 
�0,y,j does not depend on � we consider independent priors on � and � . That is, 
�(�) = �(�,�) = �(�)�(�).

Prior for � and � (in the case of t-distributed noise terms): We follow Bobeica and 
Hartwig (2023) and impose �t ∼ IG

(
�

2
,
�

2

)
 and 𝜈 ∼ U

(
𝜈, �̄�

)
.

In our empirical analysis we apply the following priors: n0Σ = 25 . S0Σ = n0Σ�̂
OLS , 

where �̂OLS denotes the estimate of covariance � following from OLS residuals for 
Case 1, where t-distributed innovations are used. For the model with stochastic 
volatility (Case 2) the default values suggested by the factorstochvol pack-
age (see Hosszejni and Kastner 2021) are applied, where the number of common 
volatility factors is set to r = 1 . b0a = 05 , covariance matrix B0a = 1000 I5 , �0 = 5 
and �0 = 0.7 . For �0,y,j we use the sample standard deviation of the data observed 
yj,t (for the slow variables this estimate is based on approximately T/N observations). 
Finally, � = 2 , and �̄� = 50.

In our Bayesian sampler we consider M = M0 +M1 sampling steps, where M0 
is the number of burn-in steps. To abbreviate individual samples we use m. In our 
analysis we apply M0 = 2000 and M1 = 8000 . For convergence and mixing of our 
Markov Chain Monte Carlo (MCMC) sampler see Appendix B.2.

5  Results

5.1  Forecast evaluation

In this section we compare the inflation forecasting performance of the models 
described in Table 2. As argued above we are confident that the Bayesian VAR 
model with either stochastic volatility or with t-distributed disturbances predicts 
inflation well in turbulent times. The models including GDP, M.5.t and M.5.sv, 

(4)B�j,l =

{
(�0∕l)

2 if � = j ,

(�0�0�0,y,�∕(l�0,y,j))
2 if � ≠ j ,
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are mixed-frequency models applying the estimation procedure described in 
Appendix B.1. All models except for the univariate autoregressive model, M.1.ar, 
and the unobserved component model, M.1.uc (see Stock and Watson 2007), are 
estimated by means of Bayesian methods. We consider these two simple models 
to include standard classical (frequentist) benchmarks. For the univariate autore-
gressive model M.1.ar the parameters are estimated by means of ordinary least 
squares and the lag order (from 1 to 12) is determined by the best forecast perfor-
mance. In addition we consider the unobserved component model with stochas-
tic volatility, M.1.ucsv, which is a popular model for inflation forecasting (Chan 
2013; Kroese and Chan 2014, see Appendix C for a short description of the unob-
served component models).

Our dataset  of monthly observations of inflation spans the period from Feb-
ruary 2004 to February 2024. The beginning of the out-of-sample (evaluation) 
forecasting period is July 2021, and the end of the data sample is February 2024, 
i.e., L = 32 observations. First we estimate the models with the data ranging from 
February 2004 to June 2021 ( T0 ). Based on these estimates we compute one- to 
six-steps ahead forecasts, i.e., forecasts for July 2021 to December 2021. Then we 
expand the estimation sample by one observation (i.e., we use data from Febru-
ary 2004 to July 2021) and, again, generate one- to six-steps ahead forecasts, i.e., 
from August 2021 to January 2022. The estimation-forecast procedure is repeated 
until the end of the total sample, February 2024 ( T = T0 + L ). Finally, we evalu-
ate the forecasts using different performance criteria. Note that towards the end 
of the sample the forecasting horizon decreases from six to one when evaluating 
the forecasts. Let Înflt+h|t be the h−step ahead (inflation) point forecast for time 
t + h , conditional on the information available at time t (note that h = 1,… , 6 ). To 
obtain Bayesian point forecasts, the sample median is applied.

To evaluate and compare inflation forecasts we employ traditional loss meas-
ures, such as the mean absolute error, MAE, and the root mean squared error, 

Table 2  Models considered to forecast inflation ( Inflt)

Model Variables ( �
�
) Volatility model Estimation

M.5.sv IPt , Inflt , GDPt , pgas,t , poil,t Stochastic volatility Bayesian
M.5.t IPt , Inflt , GDPt , pgas,t , poil,t Student t-distributed noise 

terms
Bayesian

M.4.sv IPt , Inflt , pgas,t , poil,t Stochastic volatility Bayesian
M.4.t IPt , Inflt , pgas,t , poil,t Student t-distributed noise 

terms
Bayesian

M.1.sv Inflt Stochastic volatility Bayesian
M.1.t Inflt Student t-distributed noise 

terms
Bayesian

M.1.ucsv Inflt Stochastic volatility Bayesian
M.1.ar Inflt White noise Ordinary least squares
M.1.uc Inflt White noise Maximum likelihood
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RMSE, as well as the log predictive density score, LPDS, that takes into account 
the whole predictive distribution. We consider MAE and RMSE for each forecast 
horizon separately, h = 1,… , 6

as well as their aggregated level

where

and L = 32 , h = 6 , Nf = hL −
h(h−1)

2
.

We obtain the log predictive density score (see, e.g., Gneiting and Raftery 2007; 
Martin et al. 2024) to compare forecasts of the models estimated by Bayesian meth-
ods, i.e., M.5.sv, M.5.t, M.4.sv, M.4.t, M.1.sv, M.1.t, and M.1.ucsv. The log predic-
tive density score for the variable inflation and forecast horizons h = 1,… , 6 , is 
defined as follows

where �
(
InflT0+�+h|y1,… , yT0+� ,�

)
 is the conditional predictive density, and 

�
(
�|y1,… , yT0+�

)
 is the posterior density.

By the state space structure of our mixed-frequency Bayesian VAR, the condi-
tionally optimal Kalman mixture approximation proposed in Bitto and Frühwirth-
Schnatter (2019) can be applied to approximate the h−step ahead predictive density 
of the variable inflation, that is, of �

(
InflT0+�+h|y1,… , yT0+�

)
 . From the Bayesian 

sampler we obtain the posterior samples �(m) , m = 1,… ,M . Conditional on �(m) 

(5)

MAET0,h
=

1

L − h + 1

L−h∑

�=0

|||ÎnflT0+�+h|T0+� − InflT0+�+h
|||

RMSET0,h
=

√√√√ 1

L − h + 1

L−h∑

�=0

(
ÎnflT0+�+h|T0+� − InflT0+�+h

)2

(6)

MAET0
=

1

Nf

L−1∑

�=0

h
�∑

i=1

|||ÎnflT0+�+i|T0+� − InflT0+�+i
|||

RMSET0
=

√√√√ 1

Nf

L−1∑

�=0

h
�∑

i=1

(
ÎnflT0+�+i|T0+� − InflT0+�+i

)2

(7)h
�
=

{
h, � < L − h

L − �, � ≥ L − h

(8)

LPDST0,h ∶=

L−h∑

�=0

log�
(
InflT0+�+h|y1,… , yT0+�

)
, where

log�
(
InflT0+�+h|y1,… , yT0+�

)
= log∫ �

(
InflT0+�+h|y1,… , yT0+� ,�

)
�
(
�|y1,… , yT0+�

)
d� ,
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the conditional h−step ahead predictive density for the variable InflT0+�+h , that is, 
�
(
InflT0+�+h|y1,… , yT0+� ,�

)
 , is a normal density with mean �

(
InflT0+�+h, (m)

)
 and 

variance �2
(
InflT0+�+h, (m)

)
 , where both terms are obtained by running the Kalman 

filter.6 This allows to approximate the LPDS by means of

where fN
(
x|�, �2

)
 denotes the normal density with mean � and variance �2 . We esti-

mate log predictive density scores LPDST0,h for the forecasting horizons h = 1,… , 6 
separately. In addition we compute an aggregate measure by summing the separate 
density scores, i.e., LPDST0,agg =

∑6

h=1
LPDST0,h.

Figure 1 presents results on the forecast performance of inflation with respect to 
the log predictive density score (LPDS), MAE, and RMSE for Austria, Belgium, 
Germany, Finland, Italy, and Slovakia for the models presented in Table  2. We 
observe two main findings. First, the LPDS is largest (i.e., forecast accuracy is best) 
for five-variable models (M.5.sv and M.5.t), it is smaller for four-variable models 
(M.4.sv and M.4.t) and it is smallest for (univariate) one-variable models (M.1.sv, 
M.1.t, and M.1.ucsv). Second, when the forecast performance is measured by MAE 
and RMSE then the best forecast accuracy, except for Germany and Finland, occurs 
for five-variable and one-variable models. In more detail, for Germany only one-
variable models perform best while for Finland the best performing models are one-
variable and four-variable models.7 When evaluating the performance of the autore-
gressive model M.1.ar recall that the lag length of the AR model itself was already 
determined by its forecast performance. Note in addition that the worst perform-
ing model with respect to LPDS is the M.1.t model, while the worst performing 
model with respect to MAE and RMSE is the four-variable model (M.4.sv or M.4.t) 
except for Italy8. Finally note that—although the four-variable models perform rela-
tively well with respect to LPDS—the MAE and RMSE of these models are quite 
large, in particular for Austria, Belgium, Finland, and Slovakia. We claim that the 
main source of these large forecasting errors is the relation inferred between infla-
tion and industrial production. The strong variation of the growth rate of industrial 
production results in volatile inflation forecasts and in high forecasting errors. When 
including GDP this effect is not observed anymore, and the forecasts as well as the 
impulse responses become less volatile.

(9)

LPDST0,h ≈

L−h∑

�=0

[
log

1

M

M∑

m=1

�
(
InflT0+�+h|y1,… , yT0+� ,�

(m)
)
]
,

=

L−h∑

�=0

[
log

1

M

M∑

m=1

fN
(
InflT0+�+h|�

(
InflT0+�+h, (m)

)
, �2

(
InflT0+�+h, (m)

))
]
,

6 In particular, by means of first two equations in (22) (see Appendix B.1) and a selector matrix SInflt , 

which picks inflation out of the vector xT0+�+h|T0+� we get �
(
InflT0+�+h, (m)

)
= SInfltx

(m)

T0+�+h|T0+�
 and 

𝜎2
(
InflT0+�+h, (m)

)
= SInflt�

(m)

T0+�+h|T0+�
S⊤

Inflt
 . For both, the model with Student-t distributed innovations 

as well as for the stochastic volatility model we get a normal distribution.
7 In the case of Italy the four-variable model performs best for the 3-month forecast horizon.
8 In the case of Italy, the largest MAE and RMSE are observed for the M.1.ucsv model.
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The violin plots in Fig.  2 summarize the distribution of the forecast errors, 
Înflt − Inflt , of the various models for Austria. Results presented in this figure 
are complementary to the results presented in Fig. 1 (mainly, aggregate MAE) 
as they provide insight about the distribution of forecast errors in contrast to 
a single summary statistic, and in addition give an idea about under- or over-
estimation of inflation, which is not captured by the MAE. With the exception 
of the four-variable models the distribution of the forecast errors is rather simi-
lar across models. Densities are mostly highest for forecast errors just below 
zero. Negative forecast errors, that is, an underestimation of inflation, are 
observed more often than positive ones in our evaluation sample. The two unob-
served components models show a tendency towards a bimodal forecast error 
distribution.

Fig. 1  Forecast accuracy. The figure shows inflation forecast accuracies of different models for Austria, 
Belgium, Germany, Finland, Italy, and Slovakia based on the  out-of-sample period from July 2021 to 
February 2024. We present performance measures for 1, 3, and 6 months ahead as well as aggregate per-
formance measures. The first block shows the LPDS (log predictive density score), the second block the 
MAE and the third block the RMSE. The aggregate LPDS is the sum of the LPDS for 1, 2, … , 6 months. 
The estimation sample starts in February 2004. The Bayesian forecasts are based on 8000 samples and 
2000 burn-in steps. The colour coding is to be read per row, per country. The best forecast is blue, the 
worst forecast is red, the median forecast is yellow (colour figure online)
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5.2  Forecasts

This section presents the inflation forecasts for the six countries considered. 
Figure  3 presents inflation forecasts of the (country-by-country) BVAR models 
M.5.sv for Austria, Belgium, Germany, Finland, Italy, and Slovakia for the period 
June 2023 to January 2026, i.e., for 32 months ahead. The solid black lines are 
posterior median estimates based on 8000 MCMC samples, and the four types of 
blue areas represent the 90%, 60%, 50%, and 30% forecasting intervals, respec-
tively. As the realized values of inflation span until February 2024, we can thus 
observe how well (or not) inflation is forecasted. Note that for Austria and Slova-
kia the 9-months ahead forecasts are inside the 90% forecasting intervals, while 
for Finland and Italy none of the inflation forecasts are within the 90% forecasting 
intervals.

Austria, Germany, and Italy behave very similarly regarding past and fore-
casted inflation rates. With respect to the realized values we observe in the case 
of Italy a sharpe decline of inflation, namely from approximately 8% in June 2023 
to approximately 0.5% in February 2024. The highest inflation rates are observed 
in the fourth quarter of 2022 reaching rates between 11.6% (in Germany and 

Fig. 2  Inflation forecast errors for Austria. The violin plot (two-sided kernel density plots) summarizes 
the distribution of the forecast errors (i.e., forecasted inflation minus observed inflation) of all included 
models over all horizons ( h = 1,… , 6 ). The scale of the vertical axis is limited to ± 10 to exclude 
extreme forecast errors (in the case of M.4.sv and M.4.t models)
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Austria) and 12.6% (in Italy). Also the forecasts with regard to the level of infla-
tion at the end of the forecasting horizon as well as the forecasting intervals are 
very much alike.

Belgium, Finland and Slovakia are different with respect to past as well as 
forecasted inflation rates. The strong increase as well as the sharp decrease of the 

Fig. 3  Inflation forecasts and forecasting intervals. The figure shows inflation forecasts and forecasting 
intervals for 32  months ahead for Austria, Belgium, Germany, Finland, Italy, and Slovakia from June 
2023 to January 2026. The estimation sample is February 2004 to May 2023. The forecasts are based on 
8000 samples and 2000 burn-in steps
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Belgium inflation rate might be affected by Belgium HICP measurement.9 The fore-
cast for Belgium first declines below the 2% inflation target of the European Central 

Fig. 4  Inflation forecasts and forecasting intervals for Austria. The figure shows inflation forecasts and 
forecasting intervals for Austria for six different starting points (July 2021, January and July 2022, Janu-
ary and July 2023, as well as January 2024). The estimation sample ranges from February 2004 to the 
month previous to the indicated starting points. The forecasts are based on 8000 samples and 2000 burn-
in steps

9 Note, that in Belgium only new energy contracts are included in HICP measurement and not all con-
tracts (existing and new) (see, e.g., Jonckheere 2022).



 Empirica

Bank (ECB) and then approaches this target from below. Finland stands out with 
comparably low inflation rates. This does not come as a surprise taking into account 
that gas in Finland is used almost entirely by the industrial sector10 (e.g., pulp pro-
duction) and only very marginally by households.11 The inflation development in 
Slovakia is different, because its peak is the largest and occurs later than in other 
countries. Also the forecast stands out, as it has much broader forecasting intervals 
with generally higher inflation rates.

Figure 4 presents six snapshots of two-years ahead inflation forecasts for Austria 
with forecasts starting at six different time points, namely at July 2021, January and 
July 2022, January and July 2023, as well as January 2024. In all six cases inflation 
is forecasted to decline and the inflation forecasts decrease faster when the starting 
points of inflation forecasts are part of the more turbulent time period when inflation 
in Austria was highest (July 2022 and January 2023). We also observe that the fore-
casting intervals are largest during more turbulent times suggesting larger forecast 
uncertainty.

5.3  Impulse responses

Figures  5 and  6 present impulse response functions of inflation with respect 
to a (positive) one-standard-deviation shock in the oil price change (i.e., about 
10%) and with respect to a (positive) one-standard-deviation shock in the gas 
price change (i.e., about 16%) over 24 months for model M.5.sv. Estimates are 
obtained using the generalized impulse response analysis for vector autoregres-
sive models as presented in Pesaran and Shin (1998).12 Note that the calculation 
of the generalized impulse response function requires estimates of the covar-
iance matrix �t , which is time dependent for a model with stochastic volatil-
ity. When applying the stochastic volatility model we use the samples �(m) and 
the samples �(m)

t  to obtain the generalized impulse response function. The time 
point used is June 2023.13 The solid black lines are median estimates and the 
four types of blue areas represent 90%, 60%, 50% and 30% credible intervals. 
We observe a positive though small impact of an increase in the oil price on 
inflation for all six countries, with inflation first increasing and then gradually 
decreasing. The inflation impulse responses peak in all countries in the first year 
(after the shock), and the earliest inflation peaks occur for Germany and Fin-
land, while the latest one occurs for Slovakia. Finally, the largest uncertainty 
(in terms of the width of the credible intervals) can be observed for Slovakia. In 
principle, the effects implied by a shock in the gas price are similar to the ones 
implied by a shock in the oil price, only smaller. We observe a positive impact 
of an increase in the gas price on inflation. The effect is largest for Slovakia 

10 See, for instance, Vaden et al. (2022).
11 According to Eurostat the HICP weight of gas consumption (i.e. by Finish households) is zero.
12 This approach does not require orthogonalization of shocks and is invariant to the ordering of the vari-
ables in the VAR.
13 For the stochastic volatility model the impulse responses depend on time. We show them for June 
2023. The ones for February 2024 (last month) are rather similar.
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although surrounded also by the highest uncertainty. Note that the recently 
observed increases in inflation are much larger than the shocks of one standard 
deviation applied in the impulse response functions shown in Figs. 5 and 6. The 
prices of oil and gas rose by over 40% during the most turbulent times, while 
the shocks assumed in the impulse response functions are around 10% and 16%, 
respectively. 

Fig. 5  Generalized impulse responses of inflation with respect to the oil price. The figure shows general-
ized impulse response functions of inflation (in %) with respect to a one-standard-deviation shock in the 
oil price (i.e., ≈ 10%), for Austria, Belgium, Germany, Finland, Italy, and Slovakia for 24 months. We 
apply samples of the covariance matrix �(m)

t  for the time point June 2023
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6  Conclusions

A series of macroeconomic shocks hit many countries between the years 2020 
and 2022, primarily triggered by the COVID-19 pandemic and Russia’s inva-
sion in Ukraine, which raised inflation rates across Europe to multi-decade highs 
and put well-documented relationships among macroeconomic variables under 

Fig. 6  Generalized impulse responses of inflation with respect to the gas price. The figure shows general-
ized impulse response functions of inflation (in %) with respect to a one-standard-deviation shock in the 
gas price (i.e., ≈ 16%), for Austria, Belgium, Germany, Finland, Italy, and Slovakia for 24 months. We 
apply samples of the covariance matrix �(m)

t  for the time point June 2023
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scrutiny. In particular, inflation forecasting became much more difficult. We pro-
pose a mixed-frequency Bayesian vector autoregressive model and, accounting 
for the recent tail events, we assume Student-t distributed innovations or, alterna-
tively, stochastic volatility. We include the variables inflation, industrial produc-
tion, gross domestic product, oil and gas prices. We forecast inflation in selected 
euro area countries, which have been heavily exposed to energy supply from Rus-
sia and, thus, to the recent oil and gas price shocks.

We compare the forecast performance of our model with the forecast perfor-
mance of several competing models of inflation in the out-of-sample period from 
July 2021 to February 2024. In the out-of-sample forecast evaluation it turns out 
that with respect to log predictive density scores the mixed-frequency BVAR 
models dominate the competing models. When the forecast performance is meas-
ured by MAE and RMSE, then the best forecast accuracy, except for Germany 
and Finland, occurs again for mixed-frequency BVAR models, though univariate 
models are strong competitors. Against pre-COVID-19 evidence (see, e.g., Koop 
and Korobilis 2019), BVAR forecasts in a panel set-up are strongly dominated 
by country-specific BVAR models, which might be due to the described country 
heterogeneity. Our results rather support the recent emphasis on fat-tailed noise 
terms for inflation modeling in the post-pandemic world as well as the vast evi-
dence that stochastic volatility is pivotal for inflation forecasting.

In our forecasting exercise, we present inflation forecasts starting in June 2023, a 
time of still high inflation in most countries, until January 2026. For Austria, Ger-
many, Finland, and Italy inflation forecasts behave similarly, they slowly decrease to 
rates between approximately 2.5% and 3% in January 2026. The inflation trajectory 
for Belgium is different, since it falls below 2% and, afterwards, converges smoothly 
towards levels close to the European Central Bank’s 2% inflation target. Finally, the 
inflation forecast for Slovakia exhibits the highest uncertainty. When forecasting 
inflation for Austria in different points in time, we demonstrate that the highest fore-
casting uncertainty occurs in the most turbulent time periods.

The methodology developed in this article can be extended in several ways: First, 
one can split up HICP inflation into its components. Separate modeling of these 
components allows to infer shocks of oil and gas prices on these components of 
inflation. For example, the transmission of oil and gas prices on the energy com-
ponent is of particular interest. Second, instead of a reduced form VAR one may 
consider a structural VAR, with the goal to identify structural shocks and to model 
the instantaneous effects, e.g., of energy prices on inflation in more detail. Third, the 
structural stability of the relationship between the variables considered can be fur-
ther investigated, for example, whether there are significant changes in the relation-
ship between energy prices and inflation during turbulent times.

A The panel model

This Appendix considers a panel VAR. Due to the forecasting performance of the 
panel model, country specific models are considered in the main text. To get the 
country specific analogs of the panel model (10) simply set n = 1.
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We consider a panel vector autoregressive (VAR) model of order p as a start-
ing point (in this section we mainly follow Lütkepohl 2006; Kilian and Lütkepohl 
2017):

The time series dimension is t = 1,… , T  , while i = 1,… , n denotes the cross-sec-
tional dimension. The variables yit ∈ ℝ

k , the intercept terms are allowed to be coun-
try dependent, ai , i = 1,… , n , while the autoregressive matrices Ay,j are the same 
for all countries i = 1,… , n . The noise terms are �it ∈ ℝ

k , i = 1,… , n . In addition, 
we include common variables yct ∈ ℝ

kc . In the empirical application discussed in 
Sect. 5, k = 3 and kc = 2 . The vector yit contains growth rates in industrial produc-
tion, inflation and the monthly GDP growth rate. The common variables are the 
growth rates in the oil and gas prices.

Let yt ∶=
(
y⊤
1t
,… , y⊤

nt
, y⊤

ct

)⊤
∈ ℝ

nk+kc , a ∶=
(
a⊤
1
,… , a⊤

n
, a⊤

c

)⊤
∈ ℝ

nk+kc , and 
�t ∶= 

(
�⊤
1t
,… , �⊤

nt
, �⊤

ct

)⊤
∈ ℝ

nk+kc.14 Then we describe the country models includ-
ing the common variables by one joint VAR system, that is

where Ayc,j is a kn × kc matrix. In (11) we imposed the simplifying assumption that 
yit , i = 1,… , n , do not Granger cause yct . The noise term �t follows an iid multivari-
ate Student-t distribution with mean zero and covariance matrix � and � degrees of 
freedom. By following, e.g., Geweke (1993), by means of sampling from a normal 
with mean zero and covariance matrix �t = �t� , where 0 < � < ∞ and 
�t ∼ IG

(
�

2
,
�

2

)
 , we obtain samples from a multivariate t-distribution. In addition, we 

also consider stochastic volatility ( Kastner 2019).
The VAR system defined in (11) results in the polynomial 

a(z) = Ik −A1z −⋯ −Apz
p , z ∈ ℂ . We assume that the stability condition (the 

determinant of a(z) ≠ 0 , for all |z| ≤ 1 ) is met. Let L denote the lag operator. Then, 
yt = a(L)−1�t , t ∈ ℤ , provides us with the unique stationary (and causal) solution of 
(1) (see, e.g., Deistler and Scherrer 2018, Theorem 4.4).

Let � be obtained by stacking a1,… , an, ac and 
Ay,1,Ayc,1,… ,Ay,p,Ayc,p,Ac,1,… ,Ac,p column wise. By means of 
Zit ∶= (y⊤

it−1
, y⊤

ct−1
,… , y⊤

it−p
, y⊤

ct−p
)⊤ ∈ ℝ

(k+kc)p , Zct ∶= (y⊤
ct−1

,… , y⊤
ct−p

)⊤ ∈ ℝ
kcp , 

and

(10)yit = ai +

p∑

j=1

Ay,jyit−j + �it .

(11)
yt =a +

p∑

j=1

( (
In ⊗ Ay,j

)
Ayc,j

0 Ac,j

)

���������������������������

Aj∈ℝ
(nk+kc)×(nk+kc)

yt−j + �t ,

14 In the main text, n = 1 , k = 3 , kc = 2 , and k̃ = nk + kc = 5.
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we get

For Case 1, where the noise terms are t-distirubuted, let 
� ∶=

(
� ⊤ , vech(�)⊤ , 𝜆1,… , 𝜆T , 𝜈

)⊤ denote the vector of model parameters, while 
yT abbreviates y1,… , yT . Since �t|�t is iid normally distributed, the complete likeli-
hood (conditional on �1,… , �T ) is

and  where |�t| denotes the determinant of the matrix �t and �((y0,… , y0−p+1)|�) 
denotes the density of the (unobserved) initial values.

For Case 2 (stochastic volatility), � contains the augmented parameters � , �t , and 
all the parameters of the stochastic volatility model. In this case the likelihood also 
follows from the first two rows in (14), but �t follows from the Bayesian stochastic 
volatility sampler.

B Bayesian sampling

The posterior distribution and the priors were already defined in Sect. 4. To obtain 
samples from the joint posterior distribution �

(
�,Ymiss

T
|Yobs

T

)
 we apply the follow-

ing Algorithm 1 for the Case of Student-t distributed noise terms, which except for 
Sampling Step 3, is mainly based on Bobeica and Hartwig (2023). For stochastic 
volatility we apply Algorithm 2:

(12)

Zt ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ik 0 … 0 0 Z⊤

1t
⊗ Ik 0

⋱ ⋮ ⋮

⋱ ⋮ ⋮

Ik 0 Z⊤

nt
⊗ Ik 0

Ikc 0kc×k(k+kc)p Z⊤

ct
⊗ Ikc

�����

∈ℝkc×k
2
c p

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ ℝ
(kn+kc)×(nk+kc+kp(kc+k)+k

2
c
p) ,

(13)

⎛
⎜
⎜
⎜
⎝

y1t
⋮

ynt
yct

⎞
⎟
⎟
⎟
⎠

⏟⏟⏟

yt∈ℝ
kn+kc

= Zt
⏟⏟⏟

∈ℝ(kn+kc)×(nk+kc+kp(kc+k)+k
2
c p)

�
⏟⏟⏟

∈ℝnk+kc+kp(kc+k)+k
2
c p

+

⎛
⎜
⎜
⎜
⎝

�1t
⋮

�nt
�ct

⎞
⎟
⎟
⎟
⎠

⏟⏟⏟

�t∈ℝ
kn+kc

, t = 1,… , T .

(14)

f
�
yT , (y0,… , y0−p+1)��

�
= g

�
yT �(y0,… , y0−p+1),�

�
𝜋
�
(y0,… , y0−p+1)��

�
, where

g
�
yT �(y0,… , y0−p+1),�

�
=

T�

t=1

1
√
(2𝜋)(kn+kc)��t�

exp
�
1

2

�
yt − Zt�

�⊤
�
−1
t

�
yt − Zt�

��
,

where �t = 𝜆t� ,
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Algorithm 1 (MCMC estimation) Choose starting values for �(0) , �(0) and Ymiss,(0)

T
 , 

�
(0)

1
,… , �

(0)

T
 , and �(0) . For m = 1,… ,M0 +M1 we draw from the conditional poste-

rior distributions: 

(1) Sample �(m) from �
(
�|�(m−1), �

(m−1)

1
,… , �

(m−1)

T
,Yobs

T
,Y

miss,(m−1)

T

)
.

(2) Sample �(m) from �
(
�|�(m), �

(m−1)

1
,… , �

(m−1)

T
,Yobs

T
,Y

miss,(m−1)

T

)
.

(3) Sample Ymiss,(m)

T
 from �

(
Y

miss

T
|�(m),�(m), �

(m−1)

1
,… , �

(m−1)

T
,Yobs

T

)
.

(4) Sample �(m)
1

,… , �
(m)

T
 from �

(
�t|�(m),�(m),Yobs

T
,Y

miss,(m)

T

)
.

(5) Sample �(m) from �
(
�|�(m),�(m), �

(m)

1
,… , �

(m)

T
,Yobs

T
,Y

miss,(m)

T

)
.

We discard the first M0 draws (burn-in), which results in M1 draws from the posterior 
distribution. Let M = M0 +M1.

Initialization: To start the sampler we have to choose �(0) , �(0) and Ymiss,(0)

T
 , and 

�
(0)

1
,… , �

(0)

T
 , and �(0) . Let N denote the sampling rate, in our case N = 3 since GDP 

is observed on a quarterly basis while the other variables are observed on a monthly 
frequency. In this article we first obtain the missing monthly GDP growth rates by 
Δ lnGDP

(0)

i,s
 , for s = t − 2, t − 1, t , t ∈ Nℤ , by means of Δ lnGDPi,q∕3 (the observed 

quarterly growth rates of country i, i = 1,… , n ). This provides us with y(0)t  , 
t = 1,… , T  . For the initial values y(0)

s
 , s = p − 1,… , 0 , we simply use y(0)

s
= y

(0)

1
 . By 

stacking y(0)
s

 , s = p − 1,… , 0 , we get x0 . By that we get Ymiss,(0)

T
 and Y(0)

T
 . Y(m)

T
 follows 

from Ymiss,(m)

T
 and Yobs

T
 . Hence, we write Y(m)

T
 in the following to simplify the nota-

tion. We use y(0)t  , t = 1,… , T  , and apply ordinary least squares estimation to obtain 
�(0) . The corresponding residuals are used to calculate �(0) . Then we use the condi-
tional density described in Sampling Step 4 to sample �̃�

(0)
t  , that is 

�̃�
(0)
t ∼ 𝜋

(
𝜆t|�(0),�(0),Y

(0)

T

)
 , and obtain 𝜆(0)t =

1
∑T

s=1
�̃�
(0)
s

�̃�
(0)
t  , t = 1,… , T  . Finally we 

sample �(0) as will be described in Sampling Step 5.
Note that the priors of � and � are conditional independent given 

� ∶=
(
𝜆1,… , 𝜆T

)⊤ . Hence, � and � can be sampled as, e.g., demonstrated in Kilian 
and Lütkepohl (2017)[Section 5.2.5]:

Sampling from �
(
�|�(m−1),�(m−1),Y

(m−1)

T

)
 : The variance covariance matrix � 

can be sampled from the conjugate inverted Wishart posterior with shape parameter 
n� = n0Σ + T  and scale parameter matrix �0Σ + T�̂ . The matrix 
�� ∶=

1

T

∑T

t=1

1

𝜆
(m−1)
t

��t��
⊤

t
 and �̂t , t = 1,… , T  , denote the residuals obtained from the 

current sample of � (see, e.g., Kilian and Lütkepohl 2017, Chapter 5.5.2).
Sampling from  �

(
�|�(m),�(m−1),Y

(m−1)

T

)
 : Note that conditionally on � , � , and 

the data, � can be obtained by means of a Gibbs sampling step. That is, � is sampled 
from a multivariate normal distribution (see, e.g., Koop and Korobilis 2021, Eq. (9))
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In the current Sampling Step 2, �(m)
t = �

(m−1)
t �

(m) , t = 1,… , T  . Since Zt and yt con-
tain unobserved monthly GDP growth rates, the corresponding index follows from 
the last sample of the missing observations, namely Ymiss,(m−1)

T
.

Sampling from �
(
Y

miss

T
|�(m),�(m), �

(m−1)

1
,… , �

(m−1)

T
,Yobs

T

)
 : To get samples of the 

monthly gross domestic product and all initial values we augment the forward-filter-
ing–backward-sampling algorithm proposed in Frühwirth-Schnatter (1994). More 
details are provided in Appendix B.1.

Sampling from �
(
�t|�(m),�(m),Y

(m)

T

)
 : We follow Bobeica and Hartwig (2023)

[Eq. (9)] and sample �t from an

 distribution. Since new values of the missing observations are sampled in Sampling 
Step 3, Z(m)

t
 and y(m)t  contain the sampling index (m).

Sampling of  �(m) : from �
(
�|�(m),�(m), �

(m)

1
,… , �

(m)

T
,Y

(m)

T

)
 . Following Chan et al. 

(2014) and Bobeica and Hartwig (2023)[Eq. (10)], the conditional posterior density 
of the degrees of freedom parameter

 where Γ(⋅) denotes the Euler Gamma function, 1𝜈∈[𝜈,�̄�] an indicator function. By 
using (16) and a random walk on � , that is ln �new = ln �old + 0.5� , where � is stand-
ard normal, samples of � can be obtained by means of the Metropolis Hastings 
algorithm.

Regarding the model with noise terms generated by a stochastic volatility model, 
let �(m)

sv
 denote the parameters of the stochastic volatility model defined in Kastner 

(2019).

Algorithm 2 (MCMC estimation) Choose starting values for �(0) , �(0)
t  , and Ymiss,(0)

T
 . 

For m = 1,… ,M0 +M1 we draw from the conditional posterior distributions: 

(15)

�|�(m),Y
(m−1)

T
∼N

(
bT𝛼 ,BT𝛼

)
, where

BT𝛼 =

(
B−1
0𝛼

+

T∑

t=1

(
Z(m−1)
t

)⊤
(
�
(m)
t

)−1

Z(m−1)
t

)−1

,

bT𝛼 = BT𝛼

(
B−1
0𝛼
b0𝛼 +

T∑

t=1

(
Z(m−1)
t

)⊤
(
�
(m)
t

)−1

y
(m−1)
t

)
.

IG

(
𝜈(m−1) + kc + nk

2
,
1

2

(
𝜈(m−1) +

(
y
(m)
t − Z(m)

t
�(m)

)⊤ (
�
(m)

)−1(
y
(m)
t − Z(m)

t
�(m)

)))

(16)

𝜋

(
𝜈|�(m),�(m),�(m),Y

(m)

T

)
= 𝜋

(
𝜈|�(m)

)

∝

𝜈

2

T𝜈∕2

Γ

(
𝜈

2

)T

(
T∏

t=1

𝜆
(m)
t

)−
𝜈

2
+1

exp

(
−
𝜈

2

T∑

t=1

1

𝜆
(m)
t

)
1𝜈∈[𝜈,�̄�] ,
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(1) Sample �(m)
sv

 and �(m)
t  from �

(
�(m)
sv

,�
(m)
t |�(m−1),Yobs

T
,Y

miss,(m−1)

T

)
.

(2) Sample �(m) from �
(
�|�(m)

t ,Yobs

T
,Y

miss,(m−1)

T

)
.

(3) Sample Ymiss,(m)

T
 from �

(
Y

miss

T
|�(m),�

(m)
t ,Yobs

T

)
.

We discard the first M0 draws (burn-in), which results in M1 draws from the posterior 
distribution. Let M = M0 +M1.

Sampling Step  1 is fully implemented in the factorstochvol-package of 
Hosszejni and Kastner (2021). In the case where only inflation is modeled ( k = 1 , 
kc = 0 ) the stochvol-package implemented in Kastner (2016) is applied.

Sampling Step 2 in Algorithm 2 is the same as in Algorithm 1, where �(m)
t  are 

samples from the sampler implemented by Hosszejni and Kastner (2021). When 
applying sampling Step 3 of Algorithm 2 we do not observe convergence of the sam-
pler. In particular, larger volatility values also result in draws of �(m) which further 
on yields very extreme draws of Ymiss,(m)

T
 . This effect builds up and results in a sam-

pler which does not converge. Given the plausible assumption that monthly gross 
domestic product does not fluctuate too much compared to the quarterly variance 
of GDP, we imposed a prior on the variance of the samples of the monthly GDP 
growth rates. In more detail, given the sample variance of quarterly GDP growth 
rates, �̂

(
Δ lnGDPq

)
 , and the sample variance of our monthly GDP variables, that is 

�̂
(
y3t

)
 , we demand for

Then samples of Ymiss,(m)

T
 follow from Step 3 of Algorithm 1 and rejection sampling. 

Note that with Ymiss,(m)

T
 derived by linear interpolation, �̂

(
y3t

)
≈ �̂

(
Δ lnGDPq

)
 . 

Hence, by the argument that monthly GDP does not fluctuate too much in relation 
to quarterly fluctuations, the prior imposed on Ymiss,(m)

T
 is not very restrictive, but it 

turned out that this step was necessary to obtain convergence.

B.1 Forward‑filtering–backward‑sampling

To obtain the missing values of the monthly GDP growth rate variable and samples 
of the initial values (and therefore Ymiss,(m)

T
 ) we apply forward-filtering–backward-

sampling proposed in Frühwirth-Schnatter (1994). First, we write our auto-regres-
sive model (11) in state space form. We call this system the high-frequency system 
in the following, since all coordinates of yt are assumed to be observed for t ∈ ℤ , 
i.e. at monthly frequency. In the empirical data we observe a quarterly growth rate 
of GDP, e.g., for the first quarter, where the monthly GDP growth rate for January 
directly follows from the quarterly GDP growth rate (from January to March) minus 
the monthly growth rates sampled first for March and then for February, while the 
monthly GDP growth rates for March and February follow from samples obtained 

�̂
(
y3t

)
− �̂

(
Δ lnGDPq

)

�̂
(
Δ lnGDPq

) ≤ 1.25 .
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by means of forward-filtering–backward-sampling, which will be obtained in this 
section. To simplify the notation we skip the sampling index (m). First, we express 
the high-frequency model in state-space form:

To cope with missing observations, we consider wit , wct and wt , while N denotes the 
sampling rate. In our application N = 3 and

wit =
(
Δ ln IPit, Inflit, lnGDPit − lnGDPi,t−3

)⊤ , i = 1,… , n , wct = yct =(
Δ ln pgas,t,Δ ln poil,t

)⊤ , and wt ∶=
(
w⊤

1t
,… ,w⊤

nT
,w⊤

ct

)⊤ . Let w+
t
= wt for t ∈ Nℤ , 

while for t ∉ Nℤ the missing observations are replaced by a normally distributed 
random variable with mean zero and covariance matrix Rt = QtQ

⊤

t
 (see also Seong 

et al. 2013). The information sets generated by wt and w+
t
 are denoted by Yt (the �-

field generated by ys ∶ 0 < s ≤ t ) and Y+

t
 (the �-field generated by w+

s
∶ 0 < s ≤ t ), 

(17)
yt = Syxt

xt+1 = Fxt+1 +G�t , �t ∼ N
(
0nk+kc ,�t

)
, where

(18)

�t =

�
𝜆t� , 𝜆t sampled from inverse gamma distribution

following from the stochastic volatility model (see Eq. (2))
,

Siy ∶=
�
Ik 0k×k(p−1)

�

�������������
[k×kp]

,

Scy of dimension kc × kcp is obtained conformingly. Then,

Sy ∶=

�
0nk×1 In ⊗ Siy 0

0kc×1 0 Scy

�
∈ ℝ

nk+kc×1+nkp+kcp ,

F ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 01×nkp 01×nkc
e1p ⊗ a1
e1p ⊗ a2

⋮

e1p ⊗ an
�������

∈ℝkpn×1

In ⊗

⎛
⎜
⎜
⎜
⎝

Ayy,1 ⋯ … Ayy,p

Ik 0 …

0 ⋱ 0 …

⋱ 0 Ik 0

⎞
⎟
⎟
⎟
⎠

�����������������������������������

∈ℝknp×knp

1n ⊗

⎛
⎜
⎜
⎜
⎝

Ayc,1 … Ayc,p

0 …

0 …

0

⎞
⎟
⎟
⎟
⎠

�������������������������������

∈ℝknp×kcp

e1p ⊗ ac
�����
[kcp×1]

0kc×k ⋯ ⋯ 0kc×k

⎛
⎜
⎜
⎜
⎝

Ac,1 … … Ac,p

Ikc 0 …

0 ⋱ 0 …

⋱ 0 Ikc 0kc×kc

⎞
⎟
⎟
⎟
⎠

���������������������������

∈ℝkcp×kcp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

xt =
�
1, y⊤

1t
,… , y⊤

1t−p+1
, y⊤

2t
,… , y⊤

2t−p+1
,… , y⊤

nt
,… , y⊤

nt−p+1
, y⊤

ct
,… , y⊤

ct−p+1

�⊤

∈ ℝ
(nk+kc)p+1

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

01×nk 01×kc
In ⊗

�
e1p ⊗ Ik

�

�����������������
[nkp×nk]

0nkp×kc

0kcp×nk e1p ⊗ Ikc
�����
[kcp×kc]

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�����������������������������������������
[npk+pkc+1×nk+kc]

, and e1p = (1, 0,… , 0)⊤

�������������
[p×1]

.
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respectively.15 This results in the following state space form, where we consider one 
slow flow variable (GDP). For each country i the monthly GDP growth rate is con-
tained in the third coordinate of yit.16 Let us introduce the following notation:

Recall that those coordinates of yt observed every period are called the fast variables, 
while the coordinates only observed at Nℤ , N > 1 , are called the slow variables. 
Define xt|T ∶= �

(
xit|Y+

T

)
 , �t|T ∶= ℂov

(
xtx

⊤
t
|Y+

T

)
 and �t,t−1|T ∶= ℂov

(
xtx

⊤
t−1

|Y+

T

)
 , 

� denotes the model parameters (for the Kalman filter as well as the Kalman 
smoother, see, e.g., Shumway and Stoffer 1982; Deistler and Scherrer 2018). Let

(19)
w+

t
= Htxt +Qt�t , �t ∼ N

(
0nk+kc , Ink+kc

)

xt+1 = Fxt+1 +G�t , �t ∼ N
(
0nk+kc ,�t

)
, where

(20)

Hit = Hobs: =

(

Ik−1 0k−1×k2 0k−1×k(p−k−1)+1
01×k−1 11×k ⊗ e⊤1k 01×k(p−k−1)+1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[k×kp]

for t ∈ Nℤ and e1k = (1, 0,… , 0)⊤ ∈ ℝk×1

Hit = Hnotobs: =

(

Ik−1 0k−1×k(p−1)+1
01×k−1 01×k(p−1)+1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[k×kp]

for t ∉ Nℤ

Hct of dimension kc × kcp is obtained conformingly

Ht =

(

In ⊗Hit 0
0 Hct

)

Qit = 0[k×k] for t ∈ Nℤ , Qit =
(

0k×k−1 ekk
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
[k×k]

for t ∉ Nℤ

where ekk = (0,… , 0, 1)⊤ ∈ ℝk×1.

Note that Qct of dimension kc × kcis obtained conformingly; in our applicationQct = 02×2.

Qt =

(

In ⊗Qit 0
0 Qct

)

.

15 If a slow stock variable was considered, the subsequent steps to obtain a sampling distribution for yt 
could be adapted in a straightforward way. In the following we mainly focus on our application, where 
one slow flow variable is considered.
16 Matrices Hit and Qit are constructed for the case when only one slow variable is considered, namely 
GDP growth. This (flow) variable is the third coordinate of wit.
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where � (⋅) denotes a variance. The system is started at some x1|0 =
(
1, x0

)⊤ and 
�1|0 = diag

(
1, 1⊤

pnk+pkc

)
 , such that w+

1|0 = H1z1|0 and �1|0 = H1�1|0H
⊤

1
+ Q̃1Q̃

⊤

1
 . 

Note that for variables which cannot be observed, denoted w+,notobs

jt
 , �(w+,notobs

jt
) = 0 , 

� (w
+,notobs

jt
− w

+,notobs

jt|t−1 ) = � (w
+,notobs

jt
) = 1 , and ℂov(w+,notobs

jt
, yit) = 0 , for all i ≠ j and 

all t, where ℂov(⋅, ⋅) denotes the covariance matrix. For those time points where 
w+

t
= wt we get � (wt − wt|t−1) = Ht�t|t−1H

⊤

t
 . In the following forecasts we consider 

wt+h (and not w+

t+h
 ), where Ht+h =

(
In ⊗Hobs 0

0 Hct

)
 for all h > 0 . The h-step ahead 

forecasts, h ≥ 1 , follow from

Note that xt|t = �
(
xt|Y+

t

)
 and �t|t = �

(
xt − xt|t

)
= �

(
xt − �

(
xt|Y+

t

))
.

For the fast variables we get xjt|t = �
(
xjt|Y+

t

)
= xjt = wjt , that is the conditional 

expectation is the actual observation of the variable j, while for the slow variables 
we get xjt|t = �

(
xjt|Y+

t

)
 which is obtained by the above recursions. The lagged 

coordinates contained in xt follow from these terms in a deterministic way. Only 
those elements of �t|t referring to covariances of slow variables are non-zero. 
This directly follows from the properties of conditional expectation. In addition,

(21)

Kt ∶ = F�t|t−1H
⊤

t
�
−1

t|t−1 ,

�t+1|t = �
(
xt+1 − xt+1|t

)
= F�t|t−1F

⊤
+G�G⊤

−Kt�t|t−1K
⊤

t
,

xt+1|t = Fxt|t−1 +Kt

(
w+

t
− w+

t|t−1

)
,

w+

t+1|t = Ht+1xt+1|t ,

�t+1|t = �

(
w+

t+1
− w+

t+1|t

)
= Ht+1�t+1|tH

⊤

t+1
+Qt+1IQ

⊤

t+1
,

(22)

xt+h|t =Fxt+h−1|t ,

�t+h|t =�
(
xt+h − xt+h|t

)
= F�t+h−1|tF

⊤
+G�G⊤ ,

wt+h|t =Ht+hxt+h|t ,

�t+h|t =�
(
wt+h − wt+h|t

)
= Ht+h�t+h|tH

⊤

t+h

such that for h = 0we get

xt|t =xt|t−1 +�t|t−1H
⊤

t
�
−1
t|t−1

(
w+

t
− w+

t|t−1

)
,

�t|t =�
(
xt − xt|t

)
= �t|t−1 −�t|t−1H

⊤

t
�
−1
t|t−1Ht�t|t−1 .

(23)

xt|t = xt|t−1 +�t|t−1H
⊤

t
�
−1
t|t−1

(
w+

t
− w+

t|t−1

)

= xt|t−1 +�t|t−1H
⊤

t

(
Ht�t|t−1H

⊤

t

)−1(
w+

t
− w+

t|t−1

)

=

(
1,w+

1t
,w+

2t
, x3t|t−1,w

+

4t
,w+

5t
, x6t|t−1,… ,w+

(n−1)k+1,t
,w+

(n−1)k+2,t
, xnk,t|t−1,w

+

c1t
,w+

c2t

)⊤

=
(
1, y1t, y2t, x3t|t−1, y4t, y5t, x6t|t−1,… , y(n−1)k+1,t, y(n−1)k+2,t, xnk,t|t−1, yc1t, yc2t

)⊤
.
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For those coordinates where wjt is an observed fast variable, the conditional expec-
tation given the past and the current observations is simply yjt (this follows again 
from the properties of conditional expectation). The variables xjt|t−1 ( = �

(
xjt|Y+

t

)
 

as mentioned before) follow from the above recursion (23). The Kalman-smoothing 
equations for t = T − 1,… , 2, 1 are

Since xjt|t = xjt for the fast variables, also xjT|t = xjt and the corresponding variance 
terms in �t|T are zero. Since xjt|t = xjT|t the rows of Bt+1 referring to fast variables 
have to be zero.

Assuming that the noise terms conditional on x0 are normally distributed, it fol-
lows from Frühwirth-Schnatter (1994) or Frühwirth-Schnatter (2006)[p.  419] that 
the missing values can be recursively drawn from a (degenerated) normal distri-
bution with mean vector x̄t|T and covariance matrix �̄t|T , t = T , T − 1,… , 1, 0 . In 
the following we slightly adapt the proof of Frühwirth-Schnatter (1994) to sam-
ple yt = Syxt ; Sy is a nk + kc × 1 + nkp + kcp selector matrix (see also (17)) where 
SyS

⊤

y
= Ink+kc.

17

By the Bayes theorem we get

For t ∉ Nℤ + 1 , the last density �
(
xt|Y+

t
,�
)
 is a normal density with mean vector 

xt|t and covariance matrix �t|t . The density �
(
Syxt+1|xt,�

)
= �

(
yt+1|xt,�

)
 is a nor-

mal density with mean vector SyFxt and covariance matrix SyG�tG
⊤S⊤

y
 . Since xt+1 

contains yt+1, yt,… , yt−p+2 , 
[
xt+1

]
(1+(nk+kc)∶1+p(nk+kc))

 deterministically follows from 
[
xt
]
(2∶1+(p−1)(nk+kc))

 . Hence, xt+1 follows a singular normal distribution with mean 
vector Fxt and covariance matrix G�tG

⊤ . From the appendix in Frühwirth-Schnat-
ter (1994) we know that by “completing the square” in the corresponding state space 
model we arrive at a normal distribution with a mean vector of the form 
x̄t|T =

(
I − Bt+1F

)
xt|t + Bt+1xt+1 and a covariance matrix of the form 

P̄t|T =
(
I − Bt+1F

)
�t|t . For our application this result and the relationship between 

xt and yt,… , yt−N+1 shows that yt follows a normal distribution with mean vector ȳt|T 
and covariance matrix SyP̄t|TS

⊤

y
 . Hence, for t ∉ Nℤ + 1 , samples of yt follow from:

(24)

Bt+1 = �t|t−1
(
F⊤

−H⊤

t
K⊤

t

)
�

−1
t+1|t

xt|T = xt|t + Bt+1

(
xt+1|T − xt+1|t

)

�t|T = �t|t + Bt+1

(
�t+1|T −�t+1|t

)
B⊤

t+1
.

(25)�
(
xt|yt+1,… , yT ,Y

+

t
,�
)
∝ �

(
Syxt+1|xt,�

)
�
(
xt|Y+

t
,�
)

17 To simplify notation we often do not distinguish between samples obtained by means of (26) and the 
random variables yt.
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where in our application xt directly follows from yt,… , yt−N+1.
By plugging in terms obtained above and additional calculations we get

Thus, for those periods t where t ∉ Nℤ + 1 , samples of yt follow from (26). Since 
�t|t is a sparse matrix, we sample from a singular normal distribution.

Finally, for t ∈ Nℤ + 1 , yt+1,… , yt+N−1 and w+

t+N−1
= wt+N−1 allow to calculate yjt 

by means of yjt = wj,t+N−1 − yjt+1 −⋯ − yjt+N−1 for all slow coordinates j. Hence, in 
formal terms in this case the conditional distribution of yt|yt+1,… yT ,Y

+

t
 is a Dirac 

distribution with point mass on the observed fast variables and 
yjt = wj,t+N−1 − yjt+1 −⋯ − yjt+N−1 for the slow coordinates j. Hence, for the periods 
t ∈ Nℤ + 1 and slow variables with index j (that is, for the first month of the corre-
sponding quarter in our application), we get xjt|T = �

(

xjt|�+
T , xt+1, xt+2,…

)

=
y+j,t+N−1 − yj,t+1 −⋯ − yj,t+N−1 , for those periods t = s + 1 , t ∈ Nℤ , after s where 
ws = w+

s
 . The variance of this term is zero. The lagged coordinates contained in xt 

follow from these terms in a deterministic way.
For our application this implies: We observe a quarterly growth rate of GDP, e.g., 

for the first quarter. The monthly GDP growth rates for March and February follow 
from samples obtained by means of (26). The monthly GDP for January directly 
follows from the quarterly GDP growth rate (from January to March) minus the 
monthly growth rates sampled first for March and then for February.

B.2 Convergence and mixing

This section analyzes the convergence and mixing properties of our Bayesian 
sampler for the models with five variables. We consider the M1 posterior draws 
�
(m)

j
 , m = M0 + 1,… ,M , M = M0 +M1 , for each country i = 1,… , n . In the fol-

lowing M0 = 2000 and M1 = 8000.

(26)

yt|yt+1,… , yT ,Y
+

T
∼ N

(
ȳt|T , SyP̄t|TS

⊤

y

)
, where

ȳt|T = Sy
(
I − Bt+1F

)
xt|t + Bt+1S

T
y
yt+1

= Syxt|t + SyBt+1S
⊤

y

(
yt+1 − SyFxt|t

)
= Syxt|t + SyBt+1S

⊤

y

(
yt+1 − Syxt+1|t

)
,

P̄t|T =
(
I − Bt+1F

)
�t|t ,

Bt+1 = �t|tF
⊤
(
Ft�t|tF

⊤
+G�tG

⊤
)−1

,

(27)

P̄t|T =
(
I − Bt+1F

)
�t|t = �t|t − Bt+1F�t|t

= �t|t −�t|tF
⊤
(
Ft�t|tF

⊤
+G�tG

⊤
)−1

���������������������������������

=�−1
t+1|tby (22)

F�t|t

= �t|t −�t|tF
⊤
�

−1
t+1|t�t+1|t�

−1⊤
t+1|tF�

⊤

t|t

= �t|t − Bt+1�t+1|tB
⊤

t+1
= �t|t − Bt+1�

(
xt+1 − xt+1|t

)
B⊤

t+1
.
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Mixing of the Chain: To investigate the mixing behavior of the chain we derive 
the effective sample size M̂eff

j
 as, e.g., defined in Gelman et  al. (2013)[Chap-

ter 11.5]; here the coda package in R was applied.
Table  3 presents the average effective sample sizes (i.e., we take the sample 

mean of the effective sample sizes obtained for the corresponding parameters 
contained in � , vech(�) , etc.). In the Case 1, where the noise terms follow a t-dis-
tribution, we consider the parameter subvectors � , vech(�) , � , and � . For �t gener-
ated by a stochastic volatility model (Case 2) we consider the parameter subvec-
tor � and samples of the volatility matrix �t at t = T  (to keep the amount of 
MCMC output to be stored low we only store the last value of the volatility pro-
cess 

(
vech

(
�t

))
t=0,1,…,T

 ). For some parameters the effective sample size is larger 
than M1 which can be explained by the estimation of the long run covariance 
matrix to obtain M̂eff

j
 . In both cases we observe for the parameters � , the volatil-

ity parameters, and � , that the average effective sample size is larger than 700 
based on 8000 MCMC draws. Only for � the effective sample size remained rela-
tively low, which can be explained by the relatively high persistence of the sam-
ples of �t . When applying the stochastic volatility model we observe that the 
average effective sample size is at least 5000.

Convergence: Since the main focus of this paper is on forecasting, we run the 
Bayesian sampler with different seeds and compare all the fan charts ( = distribu-
tions of Bayesian point forecasts) for the inflation forecasts by means of visual 
inspection. Here we observed that the fan charts strongly overlap also for differ-
ent seeds. Therefore, we can conclude that the Bayesian sampler has sufficient 
convergence and mixing behaviour.

C Unobserved components model with stochastic volatility

We use the unobserved components model with stochastic volatility described in 
Kroese and Chan (2014) as one of the benchmark models in the forecast evaluation. 
The observable variable, in our case Inflt , depends on the unobserved component, �t , 
and a stochastic volatility term,

Table 3  Average effective 
sample size M̂eff

j

Case 1: Case 2:

t-distributed noise stochastic vol.

� � � � � �
T

Austria 1163 2012 101 1962 6261 7297
Belgium 719 1959 92 1962 5087 7023
Germany 864 2060 101 1820 5611 6824
Finland 1034 2030 120 1962 6134 6829
Italy 843 1998 67 2051 8048 7906
Slovakia 1096 2001 159 1962 5258 6918
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where �t ∼ iid N(0, 1) . The unobserved component and log-volatility, h̃t , both follow 
a random walk, that is

where ut ∼ iid N(0,�2
�
) and 𝜈t ∼ iid N(0,𝜔2

h̃
) . The state equations are initialized with 

�1 ∼ N(�0,V�) and h̃1 ∼ N(h̃0,Vh̃) , where 𝜏1 = h̃1 = 0 and V𝜏 = Vh̃ = 9 . We assume 
independent inverse-gamma priors for �2

�
 and 𝜔2

h̃
 , namely

with �̃�𝜏 = �̃�h̃ = 10 and �̃�𝜏 = 0.252(�̃�𝜏 − 1) and �̃�h̃ = 0.22(�̃�h̃ − 1) . The stochastic 
volatility model is estimated by auxiliary mixture sampling, where the appropri-
ate Gaussian mixture is chosen as proposed by Kim et al. (1998). We use the code 
UCSV.R of Kroese and Chan (2014) to obtain 10,000 posterior draws after a burn-in 
of 2000 draws for each estimation. For further details see Kroese and Chan (2014).
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