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Inflation Forecasting in Turbulent Times

Martin Ertl Ines Fortin Jaroslava Hlouskova Sebastian P. Koch

Robert M. Kunst Leopold Sögner*

Abstract

Recently, many countries were hit by a series of macroeconomic shocks, most notably as a con-

sequence of the COVID-19 pandemic and Russia’s invasion in Ukraine, raising inflation rates

to multi-decade highs and suspending well-documented macroeconomic relationships. To cap-

ture these tail events, we propose a mixed-frequency Bayesian vector autoregressive (BVAR)

model with t-distributed innovations or with stochastic volatility. While inflation, industrial

production, oil and gas prices are available at monthly frequencies, real gross domestic product

(GDP) is observed at a quarterly frequency. Thus, we apply a mixed-frequency framework us-

ing the forward-filtering-backward-sampling algorithm to generate monthly real GDP growth

rates. We forecast inflation in those euro area countries which extensively import energy from

Russia and therefore have been heavily exposed to the recent oil and gas price shocks. To

measure the forecast performance of our mixed-frequency BVAR model, we compare these in-

flation forecasts with those generated by a battery of competing inflation forecasting models.

The proposed BVAR models dominate the competition for all countries in terms of the log

predictive density score.

Keywords: Bayesian VAR, mixed-frequency, forward-filtering-backward-sampling, inflation fore-
casting

JEL classification: C5, E3
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1 Introduction

The COVID-19 pandemic, resulting supply side disruptions, the quick economic recovery, and the

energy price shock following Russia’s invasion of Ukraine had unforeseen consequences on inflation

dynamics and have posed major challenges for inflation forecasting. Evidence has emerged that

parameter estimation in time series models widely used for macroeconomic forecasting has become

more difficult due to the COVID-19 shock and its aftermath.

For euro area inflation, Bobeica and Hartwig (2023) document that parameter estimates of

Bayesian vector autoregressions (BVAR) were strongly affected. They propose to use a fat-tailed

distribution for the error terms. To improve the accuracy of euro area inflation forecasts, they

also recommend estimating larger models with a tighter prior (compared to standard BVAR

specifications) and including off-model information for forecasts, such as information from the

ECB Survey of Professional Forecasters (see also Krüger et al., 2017; Banbura et al., 2021).

Other work addressing the recent tail events focuses on the US economy, such as Lenza and

Primiceri (2022), Carriero et al. (2022) and Schorfheide and Song (2021). More specifically, Lenza

and Primiceri (2022) modify the innovation variance for the pandemic period. They exploit the

fact that we know the exact timing of the increase in the innovations’ variance during the COVID-

19 period (March and subsequent months in 2020). Whereas this might be true for the pandemic,

it is harder to disentangle the exact timing of the heterogeneous effects of rising energy prices on

inflation rates in different countries. Countries have faced differing dependencies on energy supply

from Russia, and governments have been implementing different policies to mitigate rapidly rising

prices. For the period after May 2020, the authors simply assume that the residual variance will

decay at a monthly rate of 20%.

Carriero et al. (2022) suggest allowing for Student-t distributed innovations and outliers in a

vector autorregressive (VAR) model with stochastic volatility. Extreme observations are viewed

as outliers that are characterized by transitory increases in volatility, in which case it may be

desirable to reduce their influence on model estimates. Their model augments the standard

stochastic volatility specification with an outlier state. For the treatment of fat-tailed errors in

stochastic volatility, they use t-distributed innovations. Antolin-Diaz et al. (2021) also allow for

short-lived outliers that do not lead to a persistent rise in the stochastic volatility process in a

dynamic factor model for nowcasting US GDP.

Alternatively, Schorfheide and Song (2021) reconsider a mixed-frequency VAR to generate

macroeconomic forecasts for the US during COVID-19. The recommendation is to exclude ex-

treme observations during a few months of the pandemic to improve the forecasting performance.

However, this assumes that the timing of outliers is known ex-ante and does not address the

subsequent period of uncertainty properly. Furthermore, Clark et al. (2023) apply Bayesian ma-

chine learning techniques to account for possible non-linearity. The authors demonstrate that

Bayesian regression trees have strong forecasting properties in both the overall level and in the
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tails, respectively.

In this paper, we consider a small-scale Bayesian VAR framework with different error variance

specifications to forecast inflation in turbulent times for selected European countries. Working

with the most recent inflation data, our experience is similar to the evidence described in the

above-mentioned literature. Forecasting inflation using VAR models based on longer historical

time series until the year 2019 (pre-COVID-19) results in a rapid decay of inflation rates down

to rates observed before the recent sharp increase. By contrast, estimating VARs (with Gaussian

errors) with the full 2004 to 2023 data set can result in non-stable (explosive) inflation forecasts.

Both results are implausible and unsatisfactory.

Therefore, we explore two different specifications of volatility. First, we choose an approach

of forecasting post-pandemic inflation that is closely related to that of Bobeica and Hartwig

(2023) using t-distributed disturbances. However, we consider a monthly instead of the quarterly

frequency in order to use timelier and finer information on inflation dynamics. Thus, employing

(quarterly) gross domestic product (GDP) results in a mixed-frequency problem. Further, we

use the gas price as an additional energy variable. Second, we consider models with stochastic

volatility to capture extreme events. It is a well-known fact that Bayesian VARs with time-

varying volatility often provide better point and density forecasts of macroeconomic variables

than models with homoscedastic errors terms; see, e.g., Clark (2011) and Clark and Ravazzolo

(2015). Specifically, we consider the error terms to be generated by a factor stochastic volatility

model as proposed in Kastner (2019).

We include data on inflation, industrial production, and GDP from six euro area countries,

namely Austria, Belgium, Finland, Germany, Italy, and Slovakia, which depend strongly on nat-

ural gas imports from Russia. To capture exogenous shocks affecting inflation we do not only

include the oil price but also the gas price. We consider monthly observations from February

2004 to February 2024, with GDP only observed at a quarterly frequency, while the other data

are available at monthly frequencies. Our underlying econometric model is a vector autoregres-

sive model relying on monthly variables. That is, also for GDP the underlying model applies

monthly growth rates (see, for instance Proietti and Giovannelli, 2021, for frequentist monthly

GDP estimates). To perform parameter estimation this article follows a Bayesian approach. In

working with Student-t distributed noise terms we mainly follow Bobeica and Hartwig (2023),

but – in contrast to them – we apply a Minnesota type prior to the autoregressive parameter

matrices. The same prior for the autoregressive matrices is also applied in the case of stochastic

volatility. In addition, we have to account for mixed sampling frequencies. We adapt forward-

filtering-backward-sampling, as proposed in Frühwirth-Schnatter (1994), to obtain samples from

the posterior distribution of the unobserved monthly GDP growth rates.

We conduct a comprehensive empirical analysis including the period of sharp inflation increases

and decreases between mid-2021 and early-2024 in the six euro area countries, which we consider

the “turbulent times” in this paper. We find that the proposed variant of a mixed-frequency
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Bayesian VAR with fat-tailed errors and the alternative variant with stochastic volatility provide

better out-of-sample point and density forecast accuracies than a battery of popular competing

inflation forecasting models. The competing models include a univariate version of the proposed

model, a version of the Bayesian VAR model with only monthly variables, disregarding GDP, a

univariate autoregressive model, and homoscedastic and heteroscedastic versions of an unobserved

components model. To evaluate the inflation forecasts we employ traditional measures, such as

the mean absolute error and the root mean squared error, as well as log predictive density scores.

This article is organized as follows: Section 2 briefly describes the VAR model. Section 3

introduces the mixed-frequency problem. Then, Section 4 describes our Bayesian approach, in

particular, the priors. Details are provided in a separate appendix. Section 5 discusses the

performance of different models and then presents forecasts and an impulse response analysis for

six European countries. The last section concludes.

2 The Model

In this article we jointly model industrial production, IPt, inflation, Inflt, the real gross domestic

product, GDPt, the gas price, pgas,t, and the oil price, poil,t, by using a vector autoregressive

(VAR) model of order p. We consider data at a monthly frequency, and index t denotes the

time index. For each country, we stack the variables into the five-dimensional column vector

yt = (∆ ln IPt, Inflt,∆ lnGDPt,∆ ln pgas,t,∆ ln poil,t)
⊤ ∈ Rk̃ where k̃ = 5. Then we get1

yt = a+

p∑
j=1

Ajyt−j + εt . (1)

In the following we assume that the growth rates of the oil and the gas prices are not affected

by ∆ ln IPt, Inflt, ∆ lnGDPt and therefore set the corresponding elements of Aj to zero (see

also Equation (11) in Appendix A). In this article the noise term εt either follows a Student-t

distribution (Case 1), or is generated by a stochastic volatility model (Case 2).

Case 1: Following Bobeica and Hartwig (2023), the noise term εt follows an iid multivariate

Student-t distribution with mean zero, covariance matrix Σ, where 0 < Σ < ∞, and ν degrees

of freedom. From Bayesian literature (see, e.g., Geweke, 1993; Bobeica and Hartwig, 2023) a

Student-t distributed noise term εt with ν degrees of freedom can be obtained by drawing εt from

1In this article we apply the following notation: ∆xt denotes xt − xt−1 and ∆ lnxt abbreviates lnxt − lnxt−1

(that is, growth rates are calculated as logarithmic growth rates). For vectors and matrices we use boldface. If not
otherwise stated, the vectors considered are column vectors. 0a×b and 1a×b stands for a×b matrix of zeros and ones
and 0a is used to abbreviate 0a×1. ⊗ denotes the Kronecker product and In the identity matrix of dimension n×n.
vec(M) vectorizes the matrix M, while vech(M) vectorizes the lower triangular part of a symmetric matrix M.
N (·, ·), IG (·, ·), and W (·, ·) denotes the multivariate normal, the inverse Gamma, and the Wishart distribution,
respectively. U (ν, ν̄) abbreviates a uniform distribution on the interval [ν, ν̄]. ∝ stands for proportional to.
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a multivariate normal with mean zero and covariance matrix Σt := λtΣ, where λt is sampled

from an inverse Gamma distribution IG
(
ν
2 ,

ν
2

)
.

Case 2: Alternatively, we consider the noise terms εt to be generated by a factor stochastic

volatility model as proposed in Kastner (2019). That is, for a k̃ × k̃-dimensional matrix Σt we

assume

Σt = ΛVtΛ
⊤ +ΣUt , (2)

where Λ is a k̃ × r-loading matrix, r is the number of volatility factors Vt = diag (exp(h1t), . . . ,

exp(hrt)) ∈ Rr×r, ΣUt = diag (exp(hr+1t), . . . exp(hr+k̃t)
)
∈ Rk̃×k̃, and each hjt, j = 1, . . . , k̃+r,

follows a stable first order autoregressive process with normally distributed noise terms. Then,

εt = Σ
1/2
t ηt, where ηt follows a k̃-dimensional standard normal distribution.

The parameter vector θ collects all the parameters of the VAR considered in (1), that is a,

and the vectorized parameter matrices Aj , j = 1, . . . , p. For t-distributed innovations it also

contains vech (Σ), λ1, . . . , λT , as well as ν, while for the stochastic volatility model it contains all

the parameters of the factor stochastic volatility models defined in Kastner (2019). We choose p

such that the autocorrelations of the residuals are insignificant, i.e., p = 4.

The VAR system defined in (1) results in the matrix polynomial a(z) = Ik−A1z−· · ·−Apz
p,

z ∈ C. We assume that the stability condition (the determinant of a(z) ̸= 0, for all |z| ≤ 1) is met.

Let L denote the lag operator. Then, yt = a(L)−1εt, t ∈ Z, provides us with the unique (weakly)

stationary (and causal) solution of (1) (see, e.g., Deistler and Scherrer, 2018, Theorem 4.4).

In addition, we conducted a panel VAR analysis. However, the forecasting performance turned

out to be better in the country-by-country setup. That is why we focus in the main text on the

country-specific VARs.

3 Data and mixed-frequency

We use industrial production, inflation and real gross domestic product for the six countries

Austria, Belgium, Finland, Germany, Italy, and Slovakia. The selected countries are all part of

the European Economic and Monetary Union (EMU) and also depend strongly on gas imports

(from Russia).2 Thus, they are particularly vulnerable to gas price shocks and natural candidates

for analyzing oil and gas price shocks as potential drivers of (energy) inflation. We do not consider,

for instance, countries like Portugal or Spain that import little or zero natural gas from Russia.

The inflation rates of the Baltic countries may have been affected much more by the Russian

invasion in Ukraine due to a generally broader economic interaction with Russia, Belarus and

Ukraine and are therefore also not considered. France and the Netherlands are not in the country

2For estimates of the number and diversity of gas supply sources, see, for instance, the European Union Agency
for the Cooperation of Energy Regulators, https://aegis.acer.europa.eu/chest/dataitems/214/view, last accessed
29.11.2023.
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list, as the former extensively implemented anti-inflationary measures while the latter changed its

method of calculating inflation3 during the course of the year 2023 (June 2023).4

While industrial production, inflation, and GDP are obviously country-specific, we use inter-

national price quotations for Brent oil as well as for TTF gas, thereby implicitly neglecting minor

differences in country-specific wholesale prices. Industrial production and GDP are published

seasonally adjusted while the harmonized index of consumer prices (HICP) is not. Instead of

seasonally adjusting the HICP and using month-over-month percentage changes, we opt to work

with price changes on a year-over-year basis (annual inflation), which effectively acts as some

sort of seasonal adjustment. All variables measured in prices are denominated in Euro with the

exception of the oil price, which is originally measured in US Dollar and then converted to Euro

using the US Dollar/Euro exchange rate. The inflation rate is measured in percent.

Further, we apply the following data transformations: we calculate month-over-month loga-

rithmic growth rates for industrial production, oil and gas prices, and quarter-over-quarter growth

rates for GDP. That is, we get the transformed variables ∆ ln IPt, ∆ ln pgas,t, ∆ ln poil,t observed

on a monthly basis, and lnGDPq − lnGDPq−1, observed on a quarterly basis, where q, q + 1, . . .

denotes a quarterly time scale. For final estimation we consider the period February 2004 to

February 2024. The starting date of our sample is determined by the availability of gas prices.5

The data, its sources and transformations are summarized in Table 1.

Variable Abbreviation Transformation Source Dataset or Code
Industrial production IPt ∆ ln IPt Eurostat sts inpr m

HICP inflation rate Inflt Eurostat prc hicp manr

Real gross domestic product GDPq ∆ lnGDPq Eurostat namq 10 gdp

TTF NL natural gas future pgas,t ∆ ln pgas,t Refinitiv Eikon TRNLTTD

Brent oil price in Euro poil,t ∆ ln poil,t Refinitiv Eikon OILBREN/USEURSP
US Dollar/Euro exchange rate Refinitiv Eikon USEURSP

Table 1: Included variables.
t represents monthly frequency, q represents quarterly frequency. Note that inflation is calculated
as the year-over-year growth rate of the Harmonized Index of Consumer Prices (HICP). For oil
and gas prices as well as the exchange rate we use monthly averages of daily quotes.

Observational Scheme: Equation (1) describes the data generating process for yt on a monthly

basis. The variables observed at a monthly frequency are called fast variables, yf
t , while the

variable GDP growth observed at a quarterly frequency is called a slow variable, yst , with the

sampling rate of the slow variable being three. In the data described above the growth rate

of industrial production, ∆ ln IPt, inflation, Inflt, the change of the gas price, ∆ ln pgas,t, and

the change of the oil price, ∆ ln poil,t, are observed at a monthly basis and are therefore fast

variables. By contrast, GDP is observed at a quarterly rate and is a slow variable. Monthly real

3Switching from including only new energy contracts to a method that reflects all (new and existing) contracts.
4See, for instance, Armendariz et al. (2023).
5Our transformations ensure stationarity, which is confirmed by unit root tests.
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GDP growth rates ∆ lnGDPt are not observed. Note that GDP is a flow variable, such that the

quarterly growth rate is
∑2

j=0 y3,t−j =
∑2

j=0∆ lnGDPt−j = lnGDPt − lnGDPt−3. This variable

is observed for some t ∈ 3Z + tj , where tj ∈ {0, 1, 2}, depending on the starting month of the

monthly series. To simplify the notation we consider the case where tj = 0 in the following.

Let YT collect all high-frequency data, that is yt, t = 1, . . . , T , and the initial values y0, . . . ,

y0−p+1. Y obs
T denotes the data observed, that is yf

t , for t ∈ Z, and lnGDPt − lnGDPt−3, for

t ∈ 3Z. Finally, Y miss
T collects non-observed elements of YT , and it will be estimated by means

of Bayesian methods given the data observed Y obs
T . See Appendix B.1 for more details.

4 Bayesian Analysis

By the Bayes theorem

π
(
θ,Y miss

T |Y obs
T

)
∝ f

(
Y obs
T |Y miss

T ,θ
)
π
(
Y miss
T |θ

)
π (θ) , (3)

where π
(
θ,Y miss

T |Y obs
T

)
is the joint posterior density of the parameter θ and the missing ob-

servations Y miss
T . f

(
Y obs
T |Y miss

T ,θ
)
is the (conditional) likelihood (see also Equation (14) in

the Appendix). With a slight abuse of notation, the non-observed high-frequency observations

contained in yt, t = 1, . . . , T (in our application the monthly growth rates of GDP), are replaced

by the corresponding samples Y miss
T . π

(
Y miss
T |θ

)
and π (θ) denote the priors of the missing

observations and the model parameters, respectively.

Priors

Prior for the covariance matrix Σ, Case 1 – t-distributed innovations: We follow the literature

and commence from an inverse Wishart prior with positive definite scale matrix S0Σ and degrees

of freedom parameter n0Σ.

Prior for the covariance matrix Σ, Case 2 – stochastic volatility: Also for the parameters of the

stochastic volatility model priors have to be specified (see Kastner, 2019, Section 2.2). Here we

use the default values suggested by the factorstochvol package (see Hosszejni and Kastner,

2021).

Priors for the parameters a, Al, l = 1, . . . , p: We stack the non-restricted elements of a and Al,

l = 1, . . . , p, into the column vector α. For α we consider a Minnesota type prior (based on

works of Litterman, see, e.g., Kilian and Lütkepohl, 2017, p. 155): For the intercept terms a we

apply a normal prior with mean parameter b0a and covariance matrix B0a. Next, we consider the

non-zero elements of the matrices Al, l = 1, . . . , p. Elements of these matrices are abbreviated by

Aιj,l, while their prior means are bιj,l. By collecting terms we get the vector of mean parameters

b0α. If not otherwise stated for Aιj,l we set the prior means bιj,l equal to zero. The prior variances
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of Aιj,l are

Bιj,l =

(γ0/l)
2 if ι = j ,

(γ0ψ0σ0,y,ι/(lσ0,y,j))
2 if ι ̸= j ,

(4)

where γ0 is the prior standard deviation of Aιι,1. The parameter ψ0, 0 < ψ0 < 1, results in a

shrinkage to zero prior of the off-diagonal elements of the autoregressive matrices. Finally, the

hyper-parameters σ0,y,j > 0, j = 1, . . . , k̃, are introduced. By collecting terms we get the diagonal

matrix of prior variances B0α.

Different values for bιι,1 have been proposed in literature (see, e.g., Kilian and Lütkepohl,

2017; Geweke et al., 2011; Koop and Korobilis, 2021). For example, bιι,1 = 1, ι = 1, . . . , k̃, which

implies that we a-priori assume the process follows a random walk, or bιι,1 = 0 for stationary

time series, etc. In the following, for ι = 1, 2, 4, 5 we set bιι,1 (approximately) equal to the first

order sample autocorrelation of the corresponding coordinate of yt, while for the slow variable

(i.e., the growth rate of GDP) we set the corresponding b33,1 = 0. Here we used the 2004 to 2019

subsample. Since σ0,y,j does not depend on Σ we consider independent priors on α and Σ. That

is, π (θ) = π (α,Σ) = π (α)π (Σ).

Prior on λ and ν (in the case of t-distributed noise terms): We follow Bobeica and Hartwig

(2023) and impose λt ∼ IG
(
ν
2 ,

ν
2

)
and ν ∼ U (ν, ν̄).

In our empirical analysis we apply the following priors: n0Σ = 25. S0Σ = n0ΣΣ̂
OLS , where

Σ̂OLS denotes the estimate of covariance Σ following from OLS residuals for Case 1 where t-

distributed innovations are used. For the model with stochastic volatility (Case 2) the default

values suggested by the factorstochvol package (see Hosszejni and Kastner, 2021) are applied,

where the number of common volatility factors is set to r = 1. b0a = 05, covariance matrix

B0a = 1000 I5, γ0 = 5 and ψ0 = 0.7. For σ0,y,j we use the sample standard deviation of the data

observed yj,t (for the slow variables this estimate is based on approximately T/N observations).

Finally, ν = 2, and ν̄ = 50.

In our Bayesian sampler we considerM =M0+M1 sampling steps, whereM0 is the number of

burn-in steps. To abbreviate individual samples we use m. In our analysis we apply M0 = 2, 000

and M1 = 8, 000. For convergence and mixing of our Markov Chain Monte Carlo (MCMC)

sampler see Appendix B.2.
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5 Results

5.1 Forecast evaluation

In this section we compare the inflation forecasting performance of the models described in Table 2.

As argued above we are confident that the Bayesian VAR model with either stochastic volatility

or with t-distributed disturbances predicts inflation well in turbulent times. The models including

GDP,M.5.t andM.5.sv, are mixed-frequency models applying the estimation procedure described

in Appendix B.1. All models except for the univariate autoregressive model, M.1.ar, and the

unobserved component model, M.1.uc (see Stock and Watson, 2007), are estimated by means of

Bayesian methods. We consider these two simple models to include standard classical (frequentist)

benchmarks. For the univariate autoregressive model M.1.ar the parameters are estimated by

means of ordinary least squares and the lag order (from 1 to 12) is determined by the best forecast

performance. In addition we consider the unobserved component model with stochastic volatility,

M.1.ucsv, which is a popular model for inflation forecasting (Chan, 2013; Kroese et al., 2014, see

Appendix C for a short description of the unobserved component models).

Model Variables (yt) Volatility Model Estimation

M.5.sv IPt, Inflt, GDPt, pgas,t, poil,t stochastic volatility Bayesian
M.5.t IPt, Inflt, GDPt, pgas,t, poil,t t-distributed noise terms Bayesian
M.4.sv IPt, Inflt, pgas,t, poil,t stochastic volatility Bayesian
M.4.t IPt, Inflt, pgas,t, poil,t t-distributed noise terms Bayesian
M.1.sv Inflt stochastic volatility Bayesian
M.1.t Inflt t-distributed noise terms Bayesian
M.1.ucsv Inflt stochastic volatility Bayesian
M.1.ar Inflt white noise Ordinary least squares
M.1.uc Inflt white noise Maximum likelihood

Table 2: Models considered to forecast inflation (Inflt).

Our dataset on monthly observations of inflation spans the period from February 2004 to

February 2024. The beginning of the out-of-sample (evaluation) forecasting period is July 2021,

and the end of the data sample is February 2024, i.e., L = 32 observations. First we estimate the

models with the data ranging from February 2004 to June 2021 (T0). Based on these estimates

we compute one- to six-steps ahead forecasts, i.e., forecasts for July 2021 to December 2021.

Then we expand the estimation sample by one observation (i.e., we use data from February 2004

to July 2021) and, again, generate one- to six-steps ahead forecasts, i.e., from August 2021 to

January 2022. The estimation-forecast procedure is repeated until the end of the total sample,

February 2024 (T = T0 + L). Finally, we evaluate the forecasts using different performance

criteria. Note that towards the end of the sample the forecasting horizon decreases from six to

one when evaluating the forecasts. Let Înflt+h|t be the h−step ahead (inflation) point forecast

for time t + h, conditional on the information available at time t (note that h = 1, . . . , 6). To
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obtain Bayesian point forecasts, the sample median is applied.

To evaluate and compare inflation forecasts we employ traditional loss measures, such as

the mean absolute error, MAE, and the root mean squared error, RMSE, as well as the log

predictive density score, LPDS, that takes into account the whole predictive distribution. We

consider MAE and RMSE for each forecast horizon separately, h = 1, . . . , 6

MAET0,h =
1

L− h+ 1

L−h∑
ℓ=0

∣∣∣ÎnflT0+ℓ+h|T0+ℓ − InflT0+ℓ+h

∣∣∣
RMSET0,h =

√√√√ 1

L− h+ 1

L−h∑
ℓ=0

(
ÎnflT0+ℓ+h|T0+ℓ − InflT0+ℓ+h

)2
(5)

as well as their aggregated level

MAET0 =
1

Nf

L−1∑
ℓ=0

hℓ∑
i=1

∣∣∣ÎnflT0+ℓ+i|T0+ℓ − InflT0+ℓ+i

∣∣∣
RMSET0 =

√√√√ 1

Nf

L−1∑
ℓ=0

hℓ∑
i=1

(
ÎnflT0+ℓ+i|T0+ℓ − InflT0+ℓ+i

)2
(6)

where

hℓ =

{
h, ℓ < L− h

L− ℓ, ℓ ≥ L− h
(7)

and L = 32, h = 6, Nf = hL− h(h−1)
2 .

We obtain the log predictive density score (see, e.g., Gneiting and Raftery, 2007; Martin

et al., 2024) to compare forecasts of the models estimated by Bayesian methods, i.e., M.5.sv,

M.5.t, M.4.sv, M.4.t, M.1.sv, M.1.t, and M.1.ucsv. The log predictive density score for the

variable inflation and forecast horizons h = 1, . . . , 6, is defined as follows

LPDST0,h :=

L−h∑
ℓ=0

log π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ

)
, where

log π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ

)
= log

∫
π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ,θ

)
π (θ|y1, . . . ,yT0+ℓ) dθ , (8)

where π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ,θ

)
is the conditional predictive density, and π (θ|y1, . . . ,yT0+ℓ)

is the posterior density.

By the state space structure of our mixed-frequency Bayesian VAR, the conditionally opti-

mal Kalman mixture approximation proposed in Bitto and Frühwirth-Schnatter (2019) can be

applied to approximate the h−step ahead predictive density of the variable inflation, that is,

of π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ

)
. From the Bayesian sampler we obtain the posterior samples
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θ(m), m = 1, . . . ,M . Conditional on θ(m) the conditional h−step ahead predictive density for

the variable InflT0+ℓ+h, that is, π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ,θ

)
, is a normal density with mean

µ
(
InflT0+ℓ+h, (m)

)
and variance σ2

(
InflT0+ℓ+h, (m)

)
, where both terms are obtained by running

the Kalman filter.6 This allows to approximate the LPDS by means of

LPDST0,h ≈
L−h∑
ℓ=0

[
log

1

M

M∑
m=1

π
(
InflT0+ℓ+h|y1, . . . ,yT0+ℓ,θ

(m)
)]

,

=

L−h∑
ℓ=0

[
log

1

M

M∑
m=1

fN
(
InflT0+ℓ+h|µ

(
InflT0+ℓ+h, (m)

)
, σ2

(
InflT0+ℓ+h, (m)

))]
, (9)

where fN
(
x|µ, σ2

)
denotes the normal density with mean µ and variance σ2. We estimate

log predictive density scores LPDST0,h for the forecasting horizons h = 1, . . . , 6 separately.

In addition we compute an aggregate measure by summing the separate density scores, i.e.,

LPDST0,agg =
∑6

h=1 LPDST0,h.

Figure 1 presents results on the forecast performance of inflation with respect to the log

predictive density score (LPDS), MAE, and RMSE for Austria, Belgium, Germany, Finland,

Italy, and Slovakia for the models presented in Table 2. We observe two main findings. First, the

LPDS is largest (i.e., forecast accuracy is best) for five-variable models (M.5.sv and M.5.t), it is

smaller for four-variable models (M.4.sv and M.4.t) and it is smallest for (univariate) one-variable

models (M.1.sv, M.1.t, and M.1.ucsv). Second, when the forecast performance is measured by

MAE and RMSE then the best forecast accuracy, except for Germany and Finland, occurs for five-

variable and one-variable models. In more detail, for Germany only one-variable models perform

best while for Finland the best performing models are one-variable and four-variable models.7

When evaluating the performance of the autoregressive model M.1.ar recall that the lag length of

the AR model itself was already determined by their forecast performance. Note in addition that

the worst performing model with respect to LPDS is the M.1.t model, while the worst performing

model with respect to MAE and RMSE is the four-variable model (M.4.sv or M.4.t) except

for Italy8. Finally note that – although the four-variable models perform relatively well with

respect to LPDS – the MAE and RMSE of these models are quite large, in particular for Austria,

Belgium, Finland, and Slovakia. We claim that the main source of these large forecasting errors

is the relation inferred between inflation and industrial production. The strong variation of the

growth rate of industrial production results in volatile inflation forecasts and in high forecasting

errors. When including GDP this effect is not observed anymore, the forecasts as well as the

impulse responses become less volatile.

6In particular, by means of first two equations in (22) (see Appendix B.1) and a selector matrix SInflt ,

which picks inflation out of the vector xT0+ℓ+h|T0+ℓ we get µ
(
InflT0+ℓ+h, (m)

)
= SInfltx

(m)

T0+ℓ+h|T0+ℓ and

σ2 (InflT0+ℓ+h, (m)) = SInfltΠ
(m)

T0+ℓ+h|T0+ℓS
⊤
Inflt . For both, the model with Student-t distributed innovations

as well as for the stochastic volatility model we get a normal distribution.
7In the case of Italy the four-variable model performs best for the 3-month forecast horizon.
8In the case of Italy, the largest MAE and RMSE are observed for the M.1.ucsv model.
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Austria Belgium

Germany Finland

Italy Slovakia

Figure 1: Forecast accuracy.
The figure shows inflation forecast accuracies of different models for Austria, Belgium, Germany,
Finland, Italy, and Slovakia based on out-of-sample period from July 2021 to February 2024. We
present performance measures for 1, 3, and 6 months ahead as well as aggregate performance
measures. The first block shows the LPDS (log predictive density score), the second block the
MAE and the third block the RMSE. The aggregate LPDS is the sum of the LPDS for 1, 2, . . .,
6 months. The estimation sample starts in February 2004. The Bayesian forecasts are based on
8,000 samples and 2,000 burn-in steps. The colour coding is to be read per row, per country. The
best forecast is blue, the worst forecast is red, the median forecast is yellow.

The violin plots in Figure 2 summarize the distribution of the forecast errors, Înflt−Inflt, of
the various models for Austria. Results presented in this figure are complementary to the results

presented in Figure 1 (mainly, aggregate MAE) as they provide insight about the distribution

of forecast errors in contrast to a single summary statistic, and in addition give an idea about

under- or over-estimation of inflation, which is not captured by the MAE. With the exception

of the four-variable models the distribution of the forecast errors is rather similar across models.
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Figure 2: Inflation forecasts errors for Austria.
The violin plot (two-sided kernel density plots) summarizes the distribution of the forecast errors
(i.e., forecasted inflation minus observed inflation) of all included models over all horizons (h =
1, . . . , 6). The scale of the vertical axis was limited to ±10 to exclude extreme forecast errors (in
the case of M.4.sv and M.4.t models).

Densities are mostly highest for forecast errors just below zero. Negative forecast errors, that

is, an underestimation of inflation, are observed more often than positive ones in our evaluation

sample. The two unobserved components models show a tendency towards a bimodal forecast

error distribution.

5.2 Forecasts

This section presents the inflation forecasts for the six countries considered. Figure 3 presents

inflation forecasts of the (country-by-country) BVAR models M.5.sv for Austria, Belgium, Ger-

many, Finland, Italy, and Slovakia for the period June 2023 to January 2026, i.e., for 32 months

ahead. The solid black lines are posterior median estimates based on 8,000 MCMC samples,

and the four types of blue areas represent the 90%, 60%, 50%, and 30% forecasting intervals,

respectively. As the realized values of inflation span until February 2024, we can thus observe

13



how well (or not) inflation was forecasted. Note that for Austria and Slovakia the nine-months

ahead forecasts are inside the 90% forecasting intervals, while for Finland and Italy none of the

inflation forecasts are within the 90% forecasting intervals.

Austria, Germany, and Italy behave very similarly regarding past and forecasted inflation

rates. With respect to the realized values we observe in the case of Italy a sharpe decline of

inflation, namely from approximately 8% in June 2023 to approximately 0.5% in February 2024.

The highest inflation rates are observed in the fourth quarter of 2022 reaching rates between

11.6% (in Germany and Austria) and 12.6% (in Italy). Also the forecasts with regard to the level

of inflation at the end of the forecasting horizon as well as the forecasting intervals are very much

alike.

Belgium, Finland and Slovakia are different with respect to past as well as forecasted inflation

rates. The strong increase as well as the sharp decrease of the Belgium inflation rate might be

affected by Belgium HICP measurement.9 The forecast for Belgium first declines below the 2%

inflation target of the European Central Bank (ECB) and then approaches this target from below.

Finland stands out with comparably low inflation rates. This does not come as a surprise taking

into account that gas in Finland is used almost entirely by the industrial sector10 (e.g., pulp

production) and only very marginally by households.11 The inflation development in Slovakia is

different, because its peak is the largest and occurs later than in other countries. Also the forecast

stands out, as it has much broader forecasting intervals with generally higher inflation rates.

Figure 4 presents six snapshots of two-years ahead inflation forecasts for Austria with forecasts

starting at six different time points, namely at July 2021, January and July 2022, January and

July 2023, as well as January 2024. In all six cases inflation is forecasted to decline and the

inflation forecasts decrease faster when the starting points of inflation forecasts are part of the

more turbulent time period when inflation in Austria was highest (July 2022 and January 2023).

We also observe that the forecasting intervals are largest during more turbulent times suggesting

larger forecast uncertainty.

5.3 Impulse responses

Figures 5 and 6 present impulse response functions of inflation with respect to a (positive) one-

standard-deviation shock in the oil price change (i.e., about 10%) and with respect to a (positive)

one-standard-deviation shock in the gas price change (i.e., about 16%) over 24 months for model

M.5.sv. Estimates are obtained using the generalized impulse response analysis for vector au-

toregressive models as presented in Pesaran and Shin (1998).12 Note that the calculation of the

9Note, that in Belgium only new energy contracts are included in HICP measurement and not all contracts
(existing and new) (see, e.g., Jonckheere, 2022).

10See, for instance, Vaden et al. (2022).
11According to Eurostat the HICP weight of gas consumption (i.e. by Finish households) is zero.
12This approach does not require orthogonalization of shocks and is invariant to the ordering of the variables in

the VAR.

14



generalized impulse response function requires estimates of the covariance matrix Σt, which is

time dependent for a model with stochastic volatility. When applying the stochastic volatility

model we use the samples α(m) and the samples Σ
(m)
t to obtain the generalized impulse response

function. The time point used is June 2023.13 The solid black lines are again median estimates

and the four types of blue areas represent 90%, 60%, 50% and 30% credible intervals. We observe

a positive though small impact of an increase in the oil price on inflation for all six countries, with

inflation first increasing and then gradually decreasing. The inflation impulse responses peak in

all countries in the first year (after the shock), and the earliest inflation peaks occur for Germany

and Finland, while the latest one occurs for Slovakia. Finally, the largest uncertainty (in terms of

the width of the credible intervals) can be observed for Slovakia. In principle, the effects implied

by a shock in the gas price are similar to the ones implied by a shock in the oil price, only smaller.

We observe a positive impact of an increase in the gas price on inflation. The effect is largest for

Slovakia although surrounded also by the highest uncertainty. Note that the recently observed

increases in inflation are much larger than the shocks of one standard deviation applied in the

impulse response functions shown in Figures 5 and 6. The prices of oil and gas rose by over 40%

during the most turbulent times, while the shocks assumed in the impulse response functions are

around 10% and 16%, respectively.

13For the stochastic volatility model the impulse responses depend on time. We show them for June 2023. The
ones for February 2024 (last month) are rather similar.
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Italy Slovakia
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Figure 3: Inflation forecasts and forecasting intervals.
The figure shows inflation forecasts and forecasting intervals for 32 months ahead for Austria,
Belgium, Germany, Finland, Italy, and Slovakia from June 2023 to January 2026. The estimation
sample is February 2004 to May 2023. The forecasts are based on 8,000 samples, 2,000 burn-in
steps.
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Figure 4: Inflation forecasts and forecasting intervals for Austria.
The figure shows inflation forecasts and forecasting intervals for Austria for six different starting
points (July 2021, January and July 2022, January and July 2023, as well as January 2024). The
estimation sample ranges from February 2004 to the month previous to the indicated starting
points. The forecasts are based on 8,000 samples, 2,000 burn-in steps.
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Figure 5: Generalized impulse responses of inflation with respect to the oil price.
The figure shows generalized impulse response functions of inflation (in %) with respect to a one-
standard-deviation shock in the oil price (i.e., ≈ 10%), for Austria, Belgium, Germany, Finland,

Italy, and Slovakia for 24 months. We apply samples of the covariance matrix Σ
(m)
t for the time

point June 2023.
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Figure 6: Generalized impulse responses of inflation with respect to the gas price.
The figure shows generalized impulse response functions of inflation (in %) with respect to a one-
standard-deviation shock in the gas price (i.e., ≈ 16%), for Austria, Belgium, Germany, Finland,

Italy, and Slovakia for 24 months. We apply samples of the covariance matrix Σ
(m)
t for the time

point June 2023.
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6 Conclusions

A series of macroeconomic shocks hit many countries between the years 2020 and 2022, primarily

triggered by the COVID-19 pandemic and Russia’s invasion in Ukraine, which raised inflation

rates across Europe to multi-decade highs and put well-documented relationships among macroe-

conomic variables under scrutiny. In particular, inflation forecasting became much more difficult.

We propose a mixed-frequency Bayesian vector autoregressive model and, accounting for the recent

tail events, we assume Student-t distributed innovations or, alternatively, stochastic volatility. We

include the variables inflation, industrial production, gross domestic product, oil and gas prices.

We forecast inflation in selected euro area countries, which have been heavily exposed to energy

supply from Russia and, thus, to the recent oil and gas price shocks.

We compare the forecast performance of our model with the forecast performance of several

competing models of inflation in the out-of-sample period from July 2021 to February 2024. In the

out-of-sample forecast evaluation it turns out that with respect to log predictive density scores the

mixed-frequency BVAR models dominate the competing models. When the forecast performance

is measured by MAE and RMSE, then the best forecast accuracy, except for Germany and Finland,

occurs again for mixed-frequency BVAR models, though univariate models are strong competitors.

Against pre-COVID-19 evidence (see, e.g., Koop and Korobilis, 2019), BVAR forecasts in a panel

set-up are strongly dominated by our country-specific BVAR models, which might be due to the

described country heterogeneity. Our results rather support the recent emphasis on fat-tailed

noise terms for inflation modeling in the post-pandemic world as well as the vast evidence that

stochastic volatility is pivotal for inflation forecasting.

In our forecasting exercise, we present inflation forecasts starting in June 2023, a time of still

high inflation in most countries, until January 2026. For Austria, Germany, Finland, and Italy

inflation forecasts behave similarly, they slowly decrease to rates between approximately 2.5%

and 3% in January 2026. The inflation trajectory for Belgium is different, since it falls below

2% and, afterwards, convergences smoothly towards levels close to the European Central Bank’s

2% inflation target. Finally, the inflation forecast for Slovakia exhibits the highest uncertainty.

When forecasting inflation for Austria in different points in time, we demonstrate that the highest

forecasting uncertainty occurs in the most turbulent time periods.

The methodology developed in this article can be extended in several ways: First, one can split

up HICP inflation into its components. Separate modeling of these components allows to infer

shocks of oil and gas prices on these components of inflation. For example, the transmission of

oil and gas prices on the energy component is of particular interest. Second, instead of a reduced

form VAR one may consider a structural VAR, with the goal to identify structural shocks and

to model the instantaneous effects, e.g., of energy prices on inflation in more detail. Third, the

structural stability of the relationship between the variables considered can be further investigated,

for example, whether there are significant changes in the relationship between energy prices and
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inflation during turbulent times.
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A The Panel Model

This Appendix considers a panel VAR. Due to the forecasting performance of the panel model,
country specific models are considered in the main text. To get the country specific analogs of
the panel model (10) simply set n = 1.

We consider a panel vector autoregressive (VAR) model of order p as a starting point (in this
section we mainly follow Lütkepohl, 2006; Kilian and Lütkepohl, 2017):

yit = ai +

p∑
j=1

Ay,jyit−j + εit . (10)

The time series dimension is t = 1, . . . , T , while i = 1, . . . , n denotes the cross-sectional dimension.
The variables yit ∈ Rk, the intercept terms are allowed to be country dependent, ai, i = 1, . . . , n,
while the autoregressive matrices Ay,j are the same for all countries i = 1, . . . , n. The noise terms
are εit ∈ Rk, i = 1, . . . , n. In addition, we include common variables yct ∈ Rkc . In the empirical
application discussed in Section 5, k = 3 and kc = 2. The vector yit contains growth rates in
industrial production, inflation and the monthly GDP growth rate. The common variables are
the growth rates in the oil and gas prices.

Let yt :=
(
y⊤
1t, . . . ,y

⊤
nt,y

⊤
ct

)⊤ ∈ Rnk+kc , a :=
(
a⊤1 , . . . ,a

⊤
n ,a

⊤
c

)⊤ ∈ Rnk+kc , and εt :=
(
ε⊤1t, . . . ,

ε⊤nt, ε
⊤
ct

)⊤ ∈ Rnk+kc .14 Then we describe the country models including the common variables by
one joint VAR system, that is

yt = a+

p∑
j=1

(
(In ⊗Ay,j) Ayc,j

0 Ac,j

)
︸ ︷︷ ︸

Aj∈R(nk+kc)×(nk+kc)

yt−j + εt , (11)

where Ayc,j is a kn × kc matrix. In (11) we imposed the simplifying assumption that yit, i =
1, . . . , n, do not Granger cause yct. The noise term εt follows an iid multivariate Student-t
distribution with mean zero and covariance matrix Σ and ν degrees of freedom. By following,
e.g., Geweke (1993), by means of sampling from a normal with mean zero and covariance matrix
Σt = λtΣ, where 0 < Σ < ∞ and λt ∼ IG

(
ν
2 ,

ν
2

)
, we obtain samples from a multivariate

t-distribution. In addition, we also consider stochastic volatility (Kastner, 2019).
The VAR system defined in (11) results in the polynomial a(z) = Ik−A1z−· · ·−Apz

p, z ∈ C.
We assume that the stability condition (the determinant of a(z) ̸= 0, for all |z| ≤ 1) is met. Let
L denote the lag operator. Then, yt = a(L)−1εt, t ∈ Z, provides us with the unique stationary
(and causal) solution of (1) (see, e.g., Deistler and Scherrer, 2018, Theorem 4.4).

Let α be obtained by stacking a1, . . . ,an,ac and Ay,1,Ayc,1, . . . ,Ay,p,Ayc,p,Ac,1, . . . ,Ac,p col-
umn wise. By means of Zit := (y⊤

it−1,y
⊤
ct−1, . . . ,y

⊤
it−p,y

⊤
ct−p)

⊤ ∈ R(k+kc)p, Zct := (y⊤
ct−1, . . . ,y

⊤
ct−p)

⊤ ∈

14In the main text, n = 1, k = 3, kc = 2, and k̃ = nk + kc = 5.
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Rkcp, and

Zt :=



Ik 0 . . . 0 0 Z⊤
1t ⊗ Ik 0

. . .
...

...
. . .

...
...

Ik 0 Z⊤
nt ⊗ Ik 0

Ikc 0kc×k(k+kc)p Z⊤
ct ⊗ Ikc︸ ︷︷ ︸

∈Rkc×k2cp


∈ R(kn+kc)×(nk+kc+kp(kc+k)+k2cp) ,

(12)

we get
y1t
...

ynt

yct


︸ ︷︷ ︸
yt∈Rkn+kc

= Zt︸︷︷︸
∈R(kn+kc)×(nk+kc+kp(kc+k)+k2cp)

α︸︷︷︸
∈Rnk+kc+kp(kc+k)+k2cp

+


ε1t
...

εnt
εct


︸ ︷︷ ︸
εt∈Rkn+kc

, t = 1, . . . , T . (13)

For Case 1, where the noise terms are t-distirubuted, let θ :=
(
α⊤, vech(Σ)⊤, λ1, . . . , λT , ν

)⊤
denote the vector of model parameters, while yT abbreviates y1, . . . ,yT . Since εt|λt is iid normally
distributed, the complete likelihood (conditional on λ1, . . . , λT ) is

f
(
yT , (y0, . . . ,y0−p+1)|θ

)
= g

(
yT |(y0, . . . ,y0−p+1),θ

)
π ((y0, . . . ,y0−p+1)|θ) , where

g
(
yT |(y0, . . . ,y0−p+1),θ

)
=

T∏
t=1

1√
(2π)(kn+kc)|Σt|

exp

(
1

2
(yt − Ztα)⊤ Σ−1

t (yt − Ztα)

)
,

where Σt = λtΣ . (14)

where |Σt| denotes the determinant of the matrix Σt and π((y0, . . . ,y0−p+1)|θ) denotes the
density of the (unobserved) initial values.

For Case 2 (stochastic volatility), θ contains the augmented parameters α, Σt, and all the
parameters of the stochastic volatility model. In this case the likelihood also follows from the first
two rows in (14), but Σt follows from the Bayesian stochastic volatility sampler.

B Bayesian Sampling

The posterior distribution and the priors were already defined in Section 4. To obtain samples
from the joint posterior distribution π

(
θ,Y miss

T |Y obs
T

)
we apply the following Algorithm 1 for

the Case of Student-t distributed noise terms, which except for Sampling Step 3, is mainly based
on Bobeica and Hartwig (2023). For stochastic volatility we apply Algorithm 2:

Algorithm 1 (MCMC estimation). Choose starting values for α(0), Σ(0) and Y
miss,(0)
T ,

λ
(0)
1 , . . . , λ

(0)
T , and ν(0). For m = 1, . . . ,M0 + M1 we draw from the conditional posterior dis-

tributions:

(1) Sample Σ(m) from π
(
Σ|α(m−1), λ

(m−1)
1 , . . . , λ

(m−1)
T ,Y obs

T ,Y
miss,(m−1)
T

)
.

23



(2) Sample α(m) from π
(
α|Σ(m), λ

(m−1)
1 , . . . , λ

(m−1)
T ,Y obs

T ,Y
miss,(m−1)
T

)
.

(3) Sample Y
miss,(m)
T from π

(
Y miss
T |α(m),Σ(m), λ

(m−1)
1 , . . . , λ

(m−1)
T ,Y obs

T

)
.

(4) Sample λ
(m)
1 , . . . , λ

(m)
T from π

(
λt|α(m),Σ(m),Y obs

T ,Y
miss,(m)
T

)
.

(5) Sample ν(m) from π
(
ν|α(m),Σ(m), λ

(m)
1 , . . . , λ

(m)
T ,Y obs

T ,Y
miss,(m)
T

)
.

We discard the firstM0 draws (burn-in), which results inM1 draws from the posterior distribution.
Let M =M0 +M1.

Initialization: To start the sampler we have to chooseα(0),Σ(0) and Y
miss,(0)
T , and λ

(0)
1 , . . . , λ

(0)
T ,

and ν(0). Let N denote the sampling rate, in our case N = 3 since GDP is observed on a quarterly
basis while the other variables are observed on a monthly frequency. In this article we first obtain

the missing monthly GDP growth rates by ∆ lnGDP
(0)
i,s , for s = t− 2, t− 1, t, t ∈ NZ, by means

of ∆ lnGDPi,q/3 (the observed quarterly growth rates of country i, i = 1, . . . , n). This provides

us with y
(0)
t , t = 1, . . . , T . For the initial values y

(0)
s , s = p− 1, . . . , 0, we simply use y

(0)
s = y

(0)
1 .

By stacking y
(0)
s , s = p − 1, . . . , 0, we get x0. By that we get Y

miss,(0)
T and Y

(0)
T . Y

(m)
T follows

from Y
miss,(m)
T and Y obs

T . Hence, we write Y
(m)
T in the following to simplify the notation. We use

y
(0)
t , t = 1, . . . , T , and apply ordinary least squares estimation to obtain α(0). The corresponding

residuals are used to calculate Σ(0). Then we use the conditional density described in Sampling

Step 4 to sample λ̃
(0)
t , that is λ̃

(0)
t ∼ π

(
λt|α(0),Σ(0),Y

(0)
T

)
, and obtain λ

(0)
t = 1∑T

s=1 λ̃
(0)
s

λ̃
(0)
t ,

t = 1, . . . , T . Finally we sample ν(0) as will be described in Sampling Step 5.
Note that the priors of α and Σ are conditional independent given λ := (λ1, . . . , λT )

⊤. Hence,
α and Σ can be sampled as, e.g., demonstrated in Kilian and Lütkepohl (2017)[Section 5.2.5]:

Sampling from π
(
Σ|α(m−1),λ(m−1),Y

(m−1)
T

)
: The variance covariance matrix Σ can be sam-

pled from the conjugate inverted Wishart posterior with shape parameter nπ = n0Σ+T and scale
parameter matrix Σ0Σ + T Σ̂. The matrix Σ̂ := 1

T

∑T
t=1

1

λ
(m−1)
t

ε̂tε̂
⊤
t and ε̂t, t = 1, . . . , T , de-

note the residuals obtained from the current sample of α (see, e.g., Kilian and Lütkepohl, 2017,
Chapter 5.5.2).

Sampling from π
(
α|Σ(m),λ(m−1),Y

(m−1)
T

)
: Note that conditionally on Σ, λ, and the data,

α can be obtained by means of a Gibbs sampling step. That is, α is sampled from a multivariate
normal distribution (see, e.g., Koop and Korobilis, 2021, Equation (9))

α|Σ(m),Y
(m−1)
T ∼ N (bTα,BTα) , where

BTα =

(
B−1

0α +
T∑
t=1

(
Z
(m−1)
t

)⊤ (
Σ

(m)
t

)−1
Z
(m−1)
t

)−1

,

bTα = BTα

(
B−1

0αb0α +
T∑
t=1

(
Z
(m−1)
t

)⊤ (
Σ

(m)
t

)−1
y
(m−1)
t

)
. (15)

In the current Sampling Step 2, Σ
(m)
t = λ

(m−1)
t Σ(m), t = 1, . . . , T . Since Zt and yt contain

unobserved monthly GDP growth rates, the corresponding index follows from the last sample of

24



the missing observations, namely Y
miss,(m−1)
T .

Sampling from π
(
Y miss
T |α(m),Σ(m), λ

(m−1)
1 , . . . , λ

(m−1)
T ,Y obs

T

)
: To get samples of the monthly

gross domestic product and all initial values we augment the forward-filtering-backward-sampling
algorithm proposed in Frühwirth-Schnatter (1994). More details are provided in Appendix B.1.

Sampling from π
(
λt|α(m),Σ(m),Y

(m)
T

)
: We follow Bobeica and Hartwig (2023)[Equation (9)]

and sample λt from an

IG
(
ν(m−1) + kc + nk

2
,
1

2

(
ν(m−1) +

(
y
(m)
t − Z

(m)
t α(m)

)⊤ (
Σ(m)

)−1 (
y
(m)
t − Z

(m)
t α(m)

)))

distribution. Since new values of the missing observations are sampled in Sampling Step 3, Z
(m)
t

and y
(m)
t contain the sampling index (m).

Sampling of ν(m): from π
(
ν|α(m),Σ(m), λ

(m)
1 , . . . , λ

(m)
T ,Y

(m)
T

)
. Following Chan and Hsiao

(2014) and Bobeica and Hartwig (2023)[Equation (10)], the conditional posterior density of the
degrees of freedom parameter

π
(
ν|α(m),Σ(m),λ(m),Y (m)

T

)
= π

(
ν|λ(m)

)
∝

ν
2
Tν/2

Γ
(
ν
2

)T
(

T∏
t=1

λ
(m)
t

)− ν
2
+1

exp

(
−ν

2

T∑
t=1

1

λ
(m)
t

)
1ν∈[ν,ν̄] , (16)

where Γ(·) denotes the Euler Gamma function, 1ν∈[ν,ν̄] an indicator function. By using (16) and

a random walk on ν, that is ln νnew = ln νold + 0.5ζ, where ζ is standard normal, samples of ν
can be obtained by means of the Metropolis Hastings algorithm.

Regarding the model with noise terms generated by a stochastic volatility model, let θ
(m)
sv

denote the parameters of the stochastic volatility model defined in Kastner (2019).

Algorithm 2 (MCMC estimation). Choose starting values for α(0), Σ
(0)
t , and Y

miss,(0)
T . For

m = 1, . . . ,M0 +M1 we draw from the conditional posterior distributions:

(1) Sample θ
(m)
sv and Σ

(m)
t from π

(
θ
(m)
sv ,Σ

(m)
t |α(m−1),Y obs

T ,Y
miss,(m−1)
T

)
.

(2) Sample α(m) from π
(
α|Σ(m)

t ,Y obs
T ,Y

miss,(m−1)
T

)
.

(3) Sample Y
miss,(m)
T from π

(
Y miss
T |α(m),Σ

(m)
t ,Y obs

T

)
.

We discard the firstM0 draws (burn-in), which results inM1 draws from the posterior distribution.
Let M =M0 +M1.

Sampling Step 1 is fully implemented in the factorstochvol-package of Hosszejni and Kastner
(2021). In the case where only inflation is modeled (k = 1, kc = 0) the stochvol-package
implemented in Kastner (2016) is applied.

Sampling Step 2 in Algorithm 2 is the same as in Algorithm 1, where Σ
(m)
t are samples from

the sampler implemented by Hosszejni and Kastner (2021). When applying sampling Step 3 of
Algorithm 2 we do not observe convergence of the sampler. In particular, larger volatility values

also result in draws of α(m) which further on yields very extreme draws of Y
miss,(m)
T . This effect

builds up and results in a sampler which does not converge. Given the plausible assumption that
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monthly gross domestic product does not fluctuate too much compared to the quarterly variance
of GDP, we imposed a prior on the variance of the samples of the monthly GDP growth rates. In
more detail, given the sample variance of quarterly GDP growth rates, V̂ (∆ lnGDPq), and the

sample variance of our monthly GDP variables, that is V̂ (y3t), we demand for

V̂ (y3t)− V̂ (∆ lnGDPq)

V̂ (∆ lnGDPq)
≤ 1.25 .

Then samples of Y
miss,(m)
T follow from Step 3 of Algorithm 1 and rejection sampling. Note that

with Y
miss,(m)
T derived by linear interpolation, V̂ (y3t) ≈ V̂ (∆ lnGDPq). Hence, by the argument

that monthly GDP does not fluctuate too much in relation to quarterly fluctuations, the prior

imposed on Y
miss,(m)
T is not very restrictive, but it turned out that this step was necessary to

obtain convergence.
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B.1 Forward-Filtering-Backward-Sampling

To obtain the missing values of the monthly GDP growth rate variable and samples of the ini-

tial values (and therefore Y
miss,(m)
T ) we apply forward-filtering-backward-sampling proposed in

Frühwirth-Schnatter (1994). First, we write our auto-regressive model (11) in state space form.
We call this system the high-frequency system in the following, since all coordinates of yt are
assumed to be observed for t ∈ Z, i.e. at monthly frequency. In the empirical data we observe
a quarterly growth rate of GDP, e.g., for the first quarter, where the monthly GDP growth rate
for January directly follows from the quarterly GDP growth rate (from January to March) minus
the monthly growth rates sampled first for March and then for February, while the monthly GDP
growth rates for March and February follow from samples obtained by means of forward-filtering-
backward-sampling, which will be obtained in this section. To simplify the notation we skip the
sampling index (m). First, we express the high-frequency model in state-space form:
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yt = Syxt

xt+1 = Fxt+1 +Gεt , εt ∼ N (0nk+kc ,Σt) , where (17)

Σt =

{
λtΣ , λt sampled from inverse gamma distribution

following from the stochastic volatility model (see equation (2))
,

Siy :=
(
Ik 0k×k(p−1)

)︸ ︷︷ ︸
[k×kp]

,

Scy of dimension kc × kcp is obtained conformingly. Then,

Sy :=

(
0nk×1 In ⊗ Siy 0
0kc×1 0 Scy

)
∈ Rnk+kc×1+nkp+kcp ,

F :=



1 01×nkp 01×nkc

e1p ⊗ a1
e1p ⊗ a2

...
e1p ⊗ an︸ ︷︷ ︸
∈Rkpn×1

In ⊗


Ayy,1 · · · . . . Ayy,p

Ik 0 . . .

0
. . . 0 . . .

. . . 0 Ik 0


︸ ︷︷ ︸

∈Rknp×knp

1n ⊗


Ayc,1 . . . Ayc,p

0 . . .
0 . . .
0


︸ ︷︷ ︸

∈Rknp×kcp

e1p ⊗ ac︸ ︷︷ ︸
[kcp×1]

0kc×k · · · · · · 0kc×k


Ac,1 . . . . . . Ac,p

Ikc 0 . . .

0
. . . 0 . . .

. . . 0 Ikc 0kc×kc


︸ ︷︷ ︸

∈Rkcp×kcp



,

xt =
(
1,y⊤

1t, . . . ,y
⊤
1t−p+1,y

⊤
2t, . . . ,y

⊤
2t−p+1, . . . ,y

⊤
nt, . . . ,y

⊤
nt−p+1,y

⊤
ct, . . . ,y

⊤
ct−p+1

)⊤
∈ R(nk+kc)p+1

G =


01×nk 01×kc

In ⊗ (e1p ⊗ Ik)︸ ︷︷ ︸
[nkp×nk]

0nkp×kc

0kcp×nk e1p ⊗ Ikc︸ ︷︷ ︸
[kcp×kc]


︸ ︷︷ ︸

[npk+pkc+1×nk+kc]

, and e1p = (1, 0, . . . , 0)⊤︸ ︷︷ ︸
[p×1]

. (18)

To cope with missing observations, we consider wit, wct and wt, while N denotes the sam-
pling rate. In our application N = 3 and wit = (∆ ln IPit, Inflit, lnGDPit − lnGDPi,t−3)

⊤,

i = 1, . . . , n, wct = yct =
(
∆ ln pgas,t,∆ ln poil,t

)⊤
, and wt :=

(
w⊤

1t, . . . ,w
⊤
nT ,w

⊤
ct

)⊤
. Let w+

t = wt

for t ∈ NZ, while for t /∈ NZ the missing observations are replaced by a normally distributed
random variable with mean zero and covariance matrix Rt = QtQ

⊤
t (see also Seong et al., 2013).

The information sets generated by wt and w+
t are denoted by Yt (the σ-field generated by

ys : 0 < s ≤ t) and Y +
t (the σ-field generated by w+

s : 0 < s ≤ t), respectively.15 This

15If a slow stock variable was considered, the subsequent steps to obtain a sampling distribution for yt could be
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results in the following state space form, where we consider one slow flow variable (GDP). For
each country i the monthly GDP growth rate is contained in the third coordinate of yit.

16 Let us
introduce the following notation:

w+
t = Htxt +Qtηt , ηt ∼ N (0nk+kc , Ink+kc)

xt+1 = Fxt+1 +Gεt , εt ∼ N (0nk+kc ,Σt) , where (19)

Hit = Hobs :=

(
Ik−1 0k−1×k2 0k−1×k(p−k−1)+1

01×k−1 11×k ⊗ e⊤1k 01×k(p−k−1)+1

)
︸ ︷︷ ︸

[k×kp]

for t ∈ NZ and e1k = (1, 0, . . . , 0)⊤ ∈ Rk×1

Hit = Hnotobs :=

(
Ik−1 0k−1×k(p−1)+1

01×k−1 01×k(p−1)+1

)
︸ ︷︷ ︸

[k×kp]

for t /∈ NZ

Hct of dimension kc × kcp is obtained conformingly

Ht =

(
In ⊗Hit 0

0 Hct

)
Qit = 0[k×k] for t ∈ NZ , Qit = (0k×k−1 ekk)︸ ︷︷ ︸

[k×k]

for t /∈ NZ

where ekk = (0, . . . , 0, 1)⊤ ∈ Rk×1.

Note that Qct of dimension kc × kc is obtained conformingly; in our application Qct = 02×2.

Qt =

(
In ⊗Qit 0

0 Qct

)
. (20)

Recall that those coordinates of yt observed every period are called the fast variables, while the
coordinates only observed at NZ, N > 1, are called the slow variables. Define xt|T := E

(
xit|Y +

T

)
,

Πt|T := Cov
(
xtx

⊤
t |Y +

T

)
and Πt,t−1|T := Cov

(
xtx

⊤
t−1|Y

+
T

)
, θ denotes the model parameters (for

the Kalman filter as well as the Kalman smoother, see, e.g., Shumway and Stoffer, 1982; Deistler
and Scherrer, 2018). Let

Kt := FΠt|t−1H
⊤
t Σ

−1
t|t−1 ,

Πt+1|t = V
(
xt+1 − xt+1|t

)
= FΠt|t−1F

⊤ +GΣG⊤ −KtΣt|t−1K
⊤
t ,

xt+1|t = Fxt|t−1 +Kt

(
w+

t −w+
t|t−1

)
,

w+
t+1|t = Ht+1xt+1|t ,

Σt+1|t = V
(
w+

t+1 −w+
t+1|t

)
= Ht+1Πt+1|tH

⊤
t+1 +Qt+1IQ

⊤
t+1 , (21)

where V(·) denotes a variance. The system is started at some x1|0 = (1,x0)
⊤ and Π1|0 =

diag
(
1,1⊤pnk+pkc

)
, such that w+

1|0 = H1z1|0 and Σ1|0 = H1Π1|0H
⊤
1 + Q̃1Q̃

⊤
1 . Note that for

adapted in a straightforward way. In the following we mainly focus on our application, where one slow flow variable
is considered.

16Matrices Hit and Qit are constructed for the case when only one slow variable is considered, namely GDP
growth. This (flow) variable is the third coordinate of wit.
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variables which cannot be observed, denoted w+,notobs
jt , E(w+,notobs

jt ) = 0, V(w+,notobs
jt −w+,notobs

jt|t−1 ) =

V(w+,notobs
jt ) = 1, and Cov(w+,notobs

jt , yit) = 0, for all i ̸= j and all t, where Cov(·, ·) denotes the

covariance matrix. For those time points where w+
t = wt we get V(wt −wt|t−1) = HtΠt|t−1H

⊤
t .

In the following forecasts we consider wt+h (and not w+
t+h), where Ht+h =

(
In ⊗Hobs 0

0 Hct

)
for all h > 0. The h-step ahead forecasts, h ≥ 1, follow from

xt+h|t = Fxt+h−1|t ,

Πt+h|t = V
(
xt+h − xt+h|t

)
= FΠt+h−1|tF

⊤ +GΣG⊤ ,

wt+h|t = Ht+hxt+h|t ,

Σt+h|t = V
(
wt+h −wt+h|t

)
= Ht+hΠt+h|tH

⊤
t+h

such that for h = 0 we get

xt|t = xt|t−1 +Πt|t−1H
⊤
t Σ

−1
t|t−1

(
w+

t −w+
t|t−1

)
,

Πt|t = V
(
xt − xt|t

)
= Πt|t−1 −Πt|t−1H

⊤
t Σ

−1
t|t−1HtΠt|t−1 . (22)

Note that xt|t = E
(
xt|Y +

t

)
and Πt|t = V

(
xt − xt|t

)
= V

(
xt − E

(
xt|Y +

t

))
. For the fast vari-

ables we get xjt|t = E
(
xjt|Y

+
t

)
= xjt = wjt, that is the conditional expectation is the actual

observation of the variable j, while for the slow variables we get xjt|t = E
(
xjt|Y

+
t

)
which is

obtained by the above recursions. The lagged coordinates contained in xt follow from these terms
in a deterministic way. Only those elements of Πt|t referring to covariances of slow variables are
non-zero. This directly follows from the properties of conditional expectation. In addition,

xt|t = xt|t−1 +Πt|t−1H
⊤
t Σ

−1
t|t−1

(
w+

t −w+
t|t−1

)
= xt|t−1 +Πt|t−1H

⊤
t

(
HtΠt|t−1H

⊤
t

)−1 (
w+

t −w+
t|t−1

)
=
(
1, w+

1t, w
+
2t, x3t|t−1, w

+
4t, w

+
5t, x6t|t−1, . . . , w

+
(n−1)k+1,t, w

+
(n−1)∗k+2,t, xnk,t|t−1, w

+
c1t, w

+
c2t

)⊤
=
(
1, y1t, y2t, x3t|t−1, y4t, y5t, x6t|t−1, . . . , y(n−1)k+1,t, y(n−1)∗k+2,t, xnk,t|t−1, yc1t, yc2t

)⊤
. (23)

For those coordinates where wjt is an observed fast variable, the conditional expectation given
the past and the current observations is simply yjt (this follows again from the properties of

conditional expectation). The variables xjt|t−1 (= E
(
xjt|Y

+
t

)
as mentioned before) follow from

the above recursion (23). The Kalman-smoothing equations for t = T − 1, . . . , 2, 1 are

Bt+1 = Πt|t−1

(
F⊤ −H⊤

t K
⊤
t

)
Π−1

t+1|t

xt|T = xt|t +Bt+1

(
xt+1|T − xt+1|t

)
Πt|T = Πt|t +Bt+1

(
Πt+1|T −Πt+1|t

)
B⊤

t+1 . (24)

Since xjt|t = xjt for the fast variables, also xjT |t = xjt and the corresponding variance terms in
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Πt|T are zero. Since xjt|t = xjT |t the rows of Bt+1 referring to fast variables have to be zero.
Assuming that the noise terms conditional on x0 are normally distributed, it follows from

Frühwirth-Schnatter (1994) or Frühwirth-Schnatter (2006)[p. 419] that the missing values can be
recursively drawn from a (degenerated) normal distribution with mean vector x̄t|T and covariance
matrix Π̄t|T , t = T, T − 1, . . . , 1, 0. In the following we slightly adapt the proof of Frühwirth-
Schnatter (1994) to sample yt = Syxt; Sy is a nk + kc × 1 + nkp + kcp selector matrix (see also
(17)) where SyS

⊤
y = Ink+kc .

17 By the Bayes theorem we get

π
(
xt|yt+1, . . . ,yT ,Y

+
t ,θ

)
∝ π (Syxt+1|xt,θ)π

(
xt|Y +

t ,θ
)

(25)

For t /∈ NZ + 1, the last density π
(
xt|Y +

t ,θ
)
is a normal density with mean vector xt|t and

covariance matrix Πt|t. The density π (Syxt+1|xt,θ) = π (yt+1|xt,θ) is a normal density with

mean vector SyFxt and covariance matrix SyGΣtG
⊤S⊤

y . Since xt+1 contains yt+1,yt, . . . ,yt−p+2,
[xt+1](1+(nk+kc):1+p(nk+kc))

deterministically follows from [xt](2:1+(p−1)(nk+kc))
. Hence, xt+1 follows

a singular normal distribution with mean vector Fxt and covariance matrix GΣtG
⊤. From

the appendix in Frühwirth-Schnatter (1994) we know that by “completing the square” in the
corresponding state space model we arrive at a normal distribution with a mean vector of the form
x̄t|T = (I−Bt+1F)xt|t +Bt+1xt+1 and a covariance matrix of the form P̄t|T = (I−Bt+1F)Πt|t.
For our application this result and the relationship between xt and yt, . . . ,yt−N+1 shows that yt

follows a normal distribution with mean vector ȳt|T and covariance matrix SyP̄t|TS
⊤
y . Hence, for

t /∈ NZ+ 1, samples of yt follow from:

yt|yt+1, . . . ,yT ,Y
+
T ∼ N

(
ȳt|T ,SyP̄t|TS

⊤
y

)
, where

ȳt|T = Sy (I−Bt+1F)xt|t +Bt+1S
T
y yt+1

= Syxt|t + SyBt+1S
⊤
y

(
yt+1 − SyFxt|t

)
= Syxt|t + SyBt+1S

⊤
y

(
yt+1 − Syxt+1|t

)
,

P̄t|T = (I−Bt+1F)Πt|t ,

Bt+1 = Πt|tF
⊤
(
FtΠt|tF

⊤ +GΣtG
⊤
)−1

, (26)

where in our application xt directly follows from yt, . . . ,yt−N+1. By plugging in terms obtained
above and additional calculations we get

P̄t|T = (I−Bt+1F)Πt|t = Πt|t −Bt+1FΠt|t

= Πt|t −Πt|tF
⊤
(
FtΠt|tF

⊤ +GΣtG
⊤
)−1

︸ ︷︷ ︸
=Π−1

t+1|tby (22)

FΠt|t

= Πt|t −Πt|tF
⊤Π−1

t+1|tΠt+1|tΠ
−1⊤
t+1|tFΠ⊤

t|t

= Πt|t −Bt+1Πt+1|tB
⊤
t+1 = Πt|t −Bt+1V

(
xt+1 − xt+1|t

)
B⊤

t+1 . (27)

Thus, for those periods t where t /∈ NZ+1, samples of yt follow from (26). Since Πt|t is a sparse
matrix, we sample from a singular normal distribution.

Finally, for t ∈ NZ + 1, yt+1, . . . ,yt+N−1 and w+
t+N−1 = wt+N−1 allow to calculate yjt by

17To simplify notation we often do not distinguish between samples obtained by means of (26) and the random
variables yt.
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means of yjt = wj,t+N−1−yjt+1−· · ·−yjt+N−1 for all slow coordinates j. Hence, in formal terms in
this case the conditional distribution of yt|yt+1, . . .yT ,Y

+
t is a Dirac distribution with point mass

on the observed fast variables and yjt = wj,t+N−1−yjt+1−· · ·−yjt+N−1 for the slow coordinates
j. Hence, for the periods t ∈ NZ+ 1 and slow variables with index j (that is, for the first month

of the corresponding quarter in our application), we get xjt|T = E
(
xjt|Y

+
T ,xt+1,xt+2, . . .

)
=

y+j,t+N−1 − yj,t+1 − · · · − yj,t+N−1, for those periods t = s + 1, t ∈ NZ, after s where ws = w+
s .

The variance of this term is zero. The lagged coordinates contained in xt follow from these terms
in a deterministic way.

For our application this implies: We observe a quarterly growth rate of GDP, e.g., for the first
quarter. The monthly GDP growth rates for March and February follow from samples obtained
by means of (26). The monthly GDP for January directly follows from the quarterly GDP growth
rate (from January to March) minus the monthly growth rates sampled first for March and then
for February.

B.2 Convergence and Mixing

This section analyzes the convergence and mixing properties of our Bayesian sampler for the

models with five variables. We consider the M1 posterior draws θ
(m)
j , m = M0 + 1, . . . ,M ,

M =M0 +M1, for each country i = 1, . . . , n. In the following M0 = 2, 000 and M1 = 8, 000.
Mixing of the Chain: To investigate the mixing behavior of the chain we derive the effective

sample size M̂ eff
j as, e.g., defined in Gelman et al. (2013)[Chapter 11.5]; here the coda package

in R was applied.
Table 3 presents the average effective sample sizes (i.e., we take the sample mean of the

effective sample sizes obtained for the corresponding parameters contained in α, vech(Σ), etc.).
In the Case 1, where the noise terms follow a t-distribution, we consider the parameter subvectors
α, vech(Σ), λ, and ν. For εt generated by a stochastic volatility model (Case 2) we consider
the parameter subvector α and samples of the volatility matrix Σt at t = T (too keep the
amount of MCMC output to be stored low we only store the last value of the volatility process
(vech (Σt))t=0,1,...,T ). For some parameters the effective sample size is larger than M1 which can

be explained by the estimation of the long run covariance matrix to obtain M̂ eff
j . In both cases

we observe for the parameters α, the volatility parameters, and ν, that the average effective
sample size is larger than 700 based on 8,000 MCMC draws. Only for λ the effective sample size
remained relatively low, which can be explained by the relatively high persistence of the samples
of λt. When applying the stochastic volatility model we observe that the average effective sample
size is at least 5,000.

Convergence: Since the main focus of this paper is on forecasting, we run the Bayesian sampler
with different seeds and compare all the fan charts (= distributions of Bayesian point forecasts)
for the inflation forecasts by means of visual inspection. Here we observed that the fan charts
strongly overlap also for different seeds. Therefore, we can conclude that the Bayesian sampler
has sufficient convergence and mixing behaviour.

C Unobserved components model with stochastic volatility

We use the unobserved components model with stochastic volatility described in Kroese et al.
(2014) as one of the benchmark models in the forecast evaluation. The observable variable, in our
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Case 1: Case 2:
t-distributed noise stochastic vol.
α Σ λ ν α ΣT

Austria 1163 2012 101 1962 6261 7297
Belgium 719 1959 92 1962 5087 7023
Germany 864 2060 101 1820 5611 6824
Finland 1034 2030 120 1962 6134 6829
Italy 843 1998 67 2051 8048 7906

Slovakia 1096 2001 159 1962 5258 6918

Table 3: Average effective sample size M̂ eff
j .

case Inflt, depends on the unobserved component, τt, and a stochastic volatility term,

Inflt = τt + eh̃t/2ϵt, (28)

where ϵt ∼ iid N(0, 1). The unobserved component and log-volatility, h̃t, both follow a random
walk, that is

τt = τt−1 + ut,

h̃t = h̃t−1 + νt, (29)

where ut ∼ iid N(0, ω2
τ ) and νt ∼ iid N(0, ω2

h̃
). The state equations are initialized with τ1 ∼

N(τ0, Vτ ) and h̃1 ∼ N(h̃0, Vh̃), where τ1 = h̃1 = 0 and Vτ = Vh̃ = 9. We assume independent
inverse-gamma priors for ω2

τ and ω2
h̃
, namely

ω2
τ ∼ IG(α̃τ , λ̃τ ) ,

ω2
h ∼ IG(α̃h̃, λ̃h), (30)

with α̃τ = α̃h̃ = 10 and λ̃τ = 0.252(α̃τ −1) and λ̃h̃ = 0.22(α̃h̃−1). The stochastic volatility model
is estimated by auxiliary mixture sampling, where the appropriate Gaussian mixture is chosen as
proposed by Kim et al. (1998). We use the code UCSV.R of Kroese et al. (2014) to obtain 10,000
posterior draws after a burn-in of 2,000 draws for each estimation. For further details see Kroese
et al. (2014).
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