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ABSTRACT

I consider a class of conditionally heteroskedastic models that comprises most linear
"ARCH"-type models found in the literature. This class is especially motivated by the fact
that two basic kinds of ARCH processes have been suggested in autocorrelated
circumstances: Engle (1982) explains conditional variance by lagged errors, Weiss (1984)
also by lagged observations. The general framework permits an evaluation of whether the
restrictions evolving from the Engle or the Weiss models are valid in practice. My
empirical example is a time series of 7000 observations of the Standard & Poor index
including the "lunes negro" crash. Evidence is collected from parametric estimation of the
outlined models and from an evaluation of descriptive fourth-moments estimates, for which
significance bounds are established by means of algebra and simulation.

ZUSAMMENFASSUNG

Ich betrachte eine Klasse bedingt heteroskedastischer Modelle, welche die meisten linearen
ARCH-Modelle der 6konometrischen Literatur umfasst. Diese Klasse wird besonders durch
die Tatsache motiviert, dass zwei grundlegende Formen von ARCH-Prozessen
vorgeschlagen wurden im Falle autokorrelierter Daten. Engle (1982) erkldrt bedingte
Varianz durch verzogerte Fehler, Weiss (1984) auch durch verzdgerte Beobachtungen. Das
allgemeine Rahmenwerk erlaubt eine Auswertung davon, ob die durch die Engle- oder
Weiss-Modelle auferlegten Restriktionen in der Praxis gelten. Mein empirisches Beispiel ist
eine Zeitreihe von 7000 Beobachtungen des Standard & Poor 500 Index, die den "lunes
negro"-Borsensturz enthdlt. Evidenz wird gesammelt sowohl aus Schétzungen im
parametrischen Kontext als auch durch deskriptive empirische vierte Momente, deren
Verteilung durch Simulation und Algebra approximiert wird.






1. Introduction

For some time now, scientific interest in serially correlated volatility has been soaring. This
interest is concentrating primarily on financial series where prediction of means is
notoriously unrewarding and hence structure, if any, is to be found through higher-
moments properties only. Let us take for example prices of common stocks or stock market
indicators. These series are well known to approximate random walks, hence their first
differences are unpredictable while forecasts on the series itself are provided by the latest
observation plus an eventual "drift constant”. A closer look at such series reveals, however,
that they show noteworthy temporal clusters of volatility. Changing conditional second
moments tend to invalidate the basic "random-walk model" in favor of the more general
"martingale" model.

The best known statistical model for the volatility-clustering phenomenon is Engle's (1982)
ARCH model, with ARCH standing for "autoregressive conditional heteroskedasticity".
The acronym stresses that the model is designed to parallel the central position that the AR
and more general Box-Jenkins models have in linear time series analysis. This paper
departs from the observation that this model is primarily a model for "white noise" data
without serial correlation structure "in means". Problems arising from the reconciliation of
linear structure with conditional volatility, already outlined in the original paper by Engle,
have been tackled in a slightly different way by Weiss (1984) and were taken up recently
by Bera et al. (1992).

This paper is organized as follows. Section 2 presents a conditionally heteroskedastic model
class which encompasses most linear ARCH models known from the literature. Conditions
for covariance stationarity are given. Section 3 is concerned with issues related to the
problem of estimating the parameters of structures as given in the previous section via
maximum likelihood. First analytical derivatives are given with respect to all parameters.
Section 4 reports the results from attempts to fit the more general ARCH model class to the
Standard & Poor 500 Index series. The findings appear to indicate that real-life ARCH
structures are richer than allowed by the restrictive classical ARCH models. Section 5
presents some simulation results related to the question under what conditions the more
general ARCH class generates strictly stationary solutions. Section 6 develops the tools for
evaluating fourth-cross-moment structures directly and applies them to the Standard & Poor
500 Index series. Section 7 concludes.

2. A more general ARCH model

The model class suggested here has the following form

E(&|l,) = h =a, + Zzaijgt-igt-j 2.1

ioj=l

with the index i running up to some finite bound R or to « and I, denoting an information
set containing all & for s<t. In contrast to linear time series analysis, this , is non-linear in
the sense that it contains e.g. information on & as well as on &;. In other words, the



expectations operator stands for conditional expectations per se and cannot be conceived in
the usual simplified manner as linear projection. Of course, expectation is still linear with
respect to the set of all cross-products, a property which will be exploited later. This model
class is similar to the AARCH and GAARCH models introduced by Bera et al. (1992) who
derive them, however, indirectly from a random coefficient structure.

In order that (2.1) should make sense, it must obey certain restrictions. In particular, the
following assumptions warrant that 7, is a well-defined conditional variance process:

ASSUMPTION 1: g9 > 0

ASSUMPTION 2: The array B, for convenience formed from the coefficients a;; in such a
way that

bi; = ayi
bij = a;l2 fori > j (2.2)
bU = b]l fori <j

is non-negative definite in the sense that all finite-dimensional square symmetric
submatrices are non-negative definite.

These assumptions warrant that 4, is strictly positive whatever the values in the sequence of
past &, s<t are. Weakening assumption 1 to o>0 would allow for an eventual degeneration
of the errors process.

Whereas Assumptions 1-2 guarantee that the definition makes sense, they do not establish
that there is a stationary solution to (2.1). To that aim, we need the following condition:

ASSUMPTION 3a: The roots of the polynomials in the sequence of characteristic polynomials
formed by the diagonal elements of B are bounded away from the unit circle, i.e. the
modulus of any root is greater than 1+ 6 for some 6> 0.

ASSUMPTION 3b: The sum X g; = a converges.

It is well known that instead of these two conditions one could require simply that Za;;
converge to a limit smaller than one. Together with the following description of the
stochastic process &, this assumption is crucial for the existence of a covariance-stationary
solution.

ASSUMPTION 4: The conditional distribution of &, is symmetric in the sense that

E (g|l,.1) =0 for all ¢ (2.3)



ASSUMPTION 5: The conditional distribution of &, given /,_; is normal.

Even though Assumptions 1-4 would generally suffice to establish the following results
together with some more general regularity condition, I will assume for the moment that
Assumptions 1-5 hold in order to facilitate the presentation.

THEOREM 1: Under the Assumptions 1-5, (2.1) has a covariance-stationary solution

Proof: This is perhaps most easily proved if Engle's (1982,p.1005) idea is adopted. First
we assume that there is an upper bound to the indices in (2.1), say R. Then we stack the
elements of concern into an R(R+1)/2-vector in the following way

'—
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The vector containing the main diagonal is followed by the elements of the first
subdiagonal, then the second subdiagonal etc. Then we can re-write (2.1) as

EW,|1,.1) = ay + Mw,

with ay' = (ay,0,...,0) and with M constructed as follows
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Apart from the first row, M contains a sub-diagonal (R-1)x(R-1) identity matrix filled to
the right margin with zeros, then a row of zeros, then another (R-2)x(R-2) identity matrix,
then a row of zeros etc. until a row with a single 1 and then a zero finishes the diagram.
The remainder is filled with zeros. Clearly, the asymptotic solution
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remains valid. Moreover, this solution represents a covariance-stationary solution if and
only if the roots of the characteristic polynomial formed just by the g;; lie outside the unit
circle. It is easily seen from the above matrix by expanding along the first row that the
remaining g;; (i>j) do not affect this property, i.e. the eigenvalues of M are entirely
determined by the a;; elements. Assumption 4 is crucial as otherwise the rows R+1,2R,...
would not necessarily be zero.

Now suppose R—»c. Then we can approximate the behavior of w, by that of finitely-
structured wg, arbitrarily well and, using Assumption 3, stationarity is established in
analogy to the linear autoregressive model. -

Note in particular that stationarity is unaffected by off-diagonal elements in B. Off-
diagonals in B are, however, severely restricted by non-negative definiteness and hence the
diagonal of B typically dominates the array. Whereas Assumptions 1-4 are more or less
minimal conditions for covariance stationarity, strict stationarity may hold in more general
circumstances. Nelson (1990) has shown that conditional normality allows for strictly
stationary solutions of certain models of type (2.1) not only for a=1 in Assumption 3b but
also for slightly larger values. A similar behavior was found by Kunst (1993) for certain
bivariate ARCH structures. In those cases, naturally unconditional variances do not exist.

" Nelson also shows that for other conditional distributions (2.3) is not even sufficient to
guarantee a strictly stationary solution. An extension to higher-order GARCH models is
provided by Bougerol and Picard (1992).

The model class (2.1) comprises most linear heteroskedastic models presented in the
literature, in detail:

1] The ARCH model by Engle (1982) with only finitely many a;; different from 0.
Definiteness is warranted by g;; > 0 as B is a diagonal matrix.

2] The GARCH model by Bollerslev (1986) has infinitely many non-zero a; which are,
however, finitely parameterized by a ratio of lag polynomials. Again, all off-diagonals are
0 and definiteness is easily checked by the diagonal elements. It is worth noting that
positiveness of all non-zero polynomial coefficients is not necessary for Assumption 2 to
hold but is usually assumed for simplicity or for numerical reasons.

3] The univariate version of the time series ARCH model suggested by Kunst and Polasek
(1993) to model interest rates assumes that e, is the innovations process from a linear time
series model for the data process y,. If then A, depends on lagged observations instead of
squared innovations as in

R
h=a,+> a(y,-un’ 2.4
i=1



with x denoting the possibly non-zero mean of the data process, substitution of the linear
time series model into y, immediately renders the basic form (2.1). If all g¢; > 0, then B is
again n.n.d. because the transformation from the innovations €, has been linear.

4] The (slightly simplified) ARMA-ARCH model by Weiss (1984) essentially merges the
previous ! models into

R s
hz =4 +Zai (yt-i ‘,u)z +Zcigt2—i (2-5)
i=1 i=]

Definiteness is ensured by a; > 0, ¢; > 0 because it is an amalgam of the previous models.
It is maybe more interesting that stationarity conditions in (2.5) depend on the properties of
the linear time series process. There is some kind of trade-off in the sense that more linear
dependence can be tolerated if c;+...+cg is sufficiently smaller than 1. Theoretically,
some non-negativity conditions could be relaxed but this does not appear to have any
empirical impact.

3. Estimation issues

Here and in the following I will assume that R<. Of course, this is not the only way to
define a finite parameterization for estimation purposes and the possibility of models with
infinite-dimensional arrays B which depend on a finite parameter set - such as GARCH
models - should be considered. For the time being, however, I will assume that a finite
matrix gives a reasonable approximation to the possibly infinite-dimensional B.

Although all ARCH likelihoods can be expressed in the simple way outlined by Engle
(1982, p.990)

t=1 3.1
-, =1 logh + & /h,
straightforward numerical optimization of (3.1) can be time-consuming. If & has to be
estimated from some time-series model for an observed process y,, h, becomes a
complicated function of lags of y, and all parameters, i.e. the ARCH parameters of (2.1) as
well as the parameters of the linear time-series model. Moreover, all stability and
admissibility restrictions are non-linear inequality constraints that make estimation even
more cumbersome.

An important simplification can be obtained if the information matrix is block-diagonal in
the sense that there is no interaction between parameters of the linear time series model ©
and ®, = (ag, @11, 921, G2, ...)' of (2.1). In that case, solution of the ML problem can be
decomposed into iterative steps of solving for either ®; (i=1,2) separately, conditional on

1 Historically, of course, Kunst and Polasek (1993) used a simplified version of Weiss' older model and not
the other way round.



the most recent parameters of the other ®; (i=2,1). Engle (1982, Theorem 4) stated some
sufficient conditions for this property which he calls symmetry and regularity. (2.1) is
Engle-regular in the sense that A, is bounded away from zero by gy > 0 and that certain
expectations of 4, derivatives exist. (2.1) is, however, not Engle-symmetric. Nonetheless,
Bera et al. (1992) showed that block-diagonality of the information matrix evolves from
symmetry in a much wider sense. In short, A,(g,,€,.1,...) is Bera-symmetric if changing of
all €, to -€, yields the same value while 4,(.) is Engle-symmetric if this property holds for
any change of individual € to -&;.

Computer time can further be shortened by analytically evaluating scores i.e. derivatives of
I, with respect to the parameters. Before proceeding to that point, I would like to suggest a
re-parameterization of (2.1) in order to replace the complicated admissibility restrictions
into non-negativity constraints. Once this has been done, parameters can be replaced by
their squares and estimation can be conducted without further constraints.

It is known from linear algebra that any symmetric non-negative definite RXR-matrix B
can be decomposed into B=LDL' where L is a lower triangular matrix with a unit diagonal
and D is a diagonal matrix with positive elements and maybe some zeros on that diagonal
(Banachiewicz decomposition). Similarly, any LDL' obeying to these restrictions defines a
n.n.d. matrix B and thus instead of being concerned with the R(R+1)/2 parameters on and
below the diagonal in B - which are equivalent to ay;,851,473,...,dgg in (2.1) - we can
look at the sub-diagonal elements of L, say l5q,/31,137,...,/g p-1, and at the R elements on
the D diagonal. The n.n.d. constraint has been transformed into a simple non-negativity
constraint on the D elements dy,...,dg and the whole model can be re-written as

h, = g,{'LDL'g, ; (3.2)

with & = (g,...,6.g+1). Further assuming this € to be a linear autoregressive
transformation of the observed variable vector y, of length R+S, say, A, can also be
written in observed variables

h, = y,.;'C'LDL'C y, (3.3)

with C being an Rx(R+S)-matrix with its i-th row containing the autoregressive coefficients
(1,£4,...,Cs.p) flanked by i-1 zeros to the left and filled up with R-i+1 zeros to the right.
Hence, the derivative with respect to g; (i=1,...,5-1) is

P, _ 2y,,'CLDLy, (3.4)

i

For technical reasons, the r.h.s. R-vector y,;; has been trimmed from the end while the
L.h.s vector y,; contains R+S elements. Note that for L=I the original ARCH case
(Engle, p.995) is recovered immediately.

(3.4) is an important factor in the derivative of the likelihood with respect to ;. In detail,
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and substitution of (3.4) into (3.5) yields the required scores.

Derivatives with respect to the ARCH parameters are more straightforward as €, does not
depend on them. In detail,

%:(ZRZI..S .)2 g St S &
od, o od,  od 2h, A, (3.6)

J=i i i

which can be adjusted easily if the unrestricted +|d;| is taken as parameter of concern
instead of d;. Similarly,
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3.7

The analytical derivatives (3.4)-(3.7) certainly save computing time without any loss of
precision. A recent study by Calzolari and Fiorentini (1992) sheds some doubt, however,
on the relative advantages of iterative optimization as the block-diagonality of the
information matrix does not match an exact property of finite-sample Hessians.
Nonetheless, in the presence of more lavish parameterization, some precision would be
worth trading for lots of computing time.

4. An example: Standard & Poor's Index

A nice long series for an evaluation of conditionally heteroskedastic models is the Standard
and Poor's Index S&P. Daily observations during the time period from July 2nd, 1962 to
December 31st, 1990 permit a sample of 7168. Figure 1a shows a time series graph of the
series after taking logarithms and Figure 1b shows its first differences. 2 In the linear time
series framework, S&P comes close to a random walk. In a sample of 7168, however, even
an R? of 0.05 indicates statistical rejection of the pure random walk model. In particular,
the differences show significant first- and fifth-order autocorrelation, the latter order
corresponding to a frequency of five trading days or a week. In contrast, conditional
heteroskedasticity within the series is strong, with GARCH(1,1) models yielding parameter
estimates close to the so-called IGARCH boundary where error variances become infinite
even if conditional Gaussianity holds. The rather large sample should allow to give some
insight on whether the more general approach suggested in (2.1) is justified relative to the
original ARCH model and whether e.g. restrictions as in the Weiss model hold if the
standard ARCH appears insufficient.

2 All subsequent analysis is related to these first log differences which are therefore simply called "the S&P
Index series”.



First, a linear first-order autoregression was tried on the differenced series y, which was
amalgamated with a conditionally heteroskedastic structure of type (2.1) with an upper
matrix bound of R=2. The following parameter estimates were obtained by straightforward
optimization of the likelihood.

y, = .00014 + .185y,1 + &
4.1
h =.000019 +.490&; ,+.126¢, &, ,+.426¢.,

According to the estimated Hessian matrix, all 6 parameters are significant at 1 % and,
though the standard ARCH structure dominates, .126 represents a noteworthy off-diagonal
element.

The next model estimated was a second-order autoregression with a (2.1) structure with
R=3 superimposed. The same algorithm needed approximately 10 hours on a PC-486 to
converge. The estimated structure was

y; = .00016 + .177 y,.1 - .026 y,» + &
4.2)
h =.000019+.218¢; ,+.214¢, ¢, ,+.362¢_, +

+.496¢, £, ,-.056 £, ,6,,+.354 &,

These coefficients are all significant. The third entry of the diagonal matrix in the re-
parameterized form, however, turned out to be insignificant. Hence, the above model
contains 9 parameters. The restriction d3=0 was corroborated by restricted re-estimation.

For R=4 and R=S5, convergence could only be achieved after imposing zero restrictions.
However, R=5 is an interesting specification as it accommodates for day-of-the-week
effects which are particularly notable from the autocorrelation function of squared returns.
After some trial and error, the following model was found to have satisfactory properties
with respect to numerical convergence. This restricted model explains current volatility by
one linear combination of previous errors and some previous squared errors. It can be
interpreted as showing five "factors": the linear combination which does not correspond to
the linear part of the model; and four distinct Engle-ARCH-type lags.

VST OY T 0V 0 TPV s TPy T PY, s TE,
h =a,+d (&  +1¢_, +1,¢, +1,6 4 +151£t—5)2 + 4.3)

+dz€f—2 +d353—3 +d4gf_4 +d53f—5

Parameter estimates for (4.3) are given in Table 1 (penultimate column). For unrestricted
models, estimation yielded unsatisfactory results. The iteration process became increasingly
lengthy and failed to converge or converged to unstable solutions with many insignificant
coefficients. A reason for this behavior could be found in identification problems. If d; is
insignificant, all /; are no more identified and should be set at zero before conducting
estimation.



In summary, neither the restriction suggested by the Engle-ARCH model nor the other
extreme (2.4) were supported. Off-diagonal elements were significant and their size was
considerable. The decay versus the south-west (or north-east) corner of B is much slower
than would be prescribed by (2.4).

To check on the stability of (4.3) with respect to time-heterogeneity, (4.3) was re-estimated
for subsamples. The selection of subsamples was inspired by Hauser and Kunst (1993) who
worked with the same data: a first subsample covers the early years until 1968 which year,
however, was excluded because of its irregularities; a second subsample lasts from 1969
through 1978, i.e. the following decade; a third subsample starts in 1979 and ends in 1986,
i.e. the year before the "Black Monday" crash. Table 1 gives estimates for these
subsamples and for the whole sample according to model (4.3). Also the results from
estimating the same models under the restriction l,;=I5;=I4;=I5;=0 are provided, i.e.
from estimating a pure Engle-type ARCH(5) model.

Assuming all regularity conditions to hold, the likelihood ratios for testing the restricted
Engle-ARCH model against the more general form (4.3) is x2-distributed with 4 degrees of
freedom. The restriction is rejected for the whole sample and for the early years but not for
the other two subsamples. This means that rejection of the Engle-ARCH model is primarily
rooted in the early years and in the crash year 1987. Estimation of subsamples around 1987
enhanced this conclusion (but these results are probably not very interesting on their own
and therefore not reported). For the years 1969-1978, unrestricted estimation resulted in an
unsatisfactory model which did not meet stationarity conditions. Except for the general
structure identified from the time range 1979-86 which, however, violated covariance-
stationarity boundaries only slightly, all other estimated models are stationary.

Although many coefficient estimates differ quite a lot among subsamples, some features
were remarkably stable. Firstly, in the lag pattern of the ARCH coefficients, d; typically
dominates (exception 1979-1986) and dj4 is the least significant in many specifications.
Secondly, l,; <0 in all cases while ¢ >0, implying that the time series factor in (4.3) is
not the same as the series itself and hence the data cannot be described by a structure such
as (2.4). In summary, structure is weak in the Standard & Poor 500 Index - this is not
surprising and not very new either - but the little structure that was found can be explained
by neither of the two simplified models, i.e. the Engle-ARCH and the (2.4) model, though
the Engle-ARCH may be the less detrimental simplification.

Let me return shortly to the fact that the stationarity conditions were not met in two cases.
In the next section, the feature of strict stationarity - as opposed to covariance stationarity -
is treated and it is shown that it typically requires less stringent conditions. Hence, the
model estimated for 1979-1986 is probably still strictly stationary (while the estimated
model for 1969-1978 would probably be too far away from the stationarity boundary to
meet even more liberal conditions). Simulations of these structures, however, reveal that
the behavior implied by these variance-free strictly stationary processes is not reflected in
the Standard & Poor 500 Index. Therefore non-stationary structures - in the sense of
covariance stationarity - should be seen as implausible models and as indicating a flaw in
the specification of (4.3).
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5. Strict stationarity in ARCH generalizations

Whereas conditions for covariance stationarity typically come in the shape of eigenvalue
restrictions such as Assumption 3a - e.g. compare Theorem 2 of Engle (1982) or
Proposition 1 of Bera et al. (1992) - conditions for strict stationarity are rooted in
evaluations of the spectral radius and critically depend on distributional assumptions.
Except for very simple cases - see Nelson (1990) - such evaluations do not lead to closed-
form conditions. In practice, all results for higher-order models, including the condition on
top Lyapunov coefficients by Bougerol and Picard (1992) are accessible through numerical
simulation only.

In this section we report results from Monte Carlo simulations of the very simple non-
Engle ARCH model

=@y, +¢&

yt t-1 t , (5. 1)
g ~N(O,1+ay_))

For ¢=0, this model is Engle-ARCH and the boundary of the strict stationarity region is

given by Nelson's Theorem 6 as a=3.562... This means that the ARCH process

g, ~ N(0,1+3.565)

is strictly stationary even though its marginal distribution certainly does not possess any
useful moments. This known boundary was then used to gauge our simulation experiment.
Out of 1000 replications of this borderline process of length 1000, 80 replications
transgressed the value of 1010 in absolute value. This was taken as a criterion for process
stability although, of course, such a criterion necessarily admits errors of two types.
Firstly, the theoretical process can be stable whereas the high but finite value is
transgressed. Secondly, divergence of the theoretical process may be felt only after more
than 1000 observations.

The resulting boundary curve is shown in Figure 2. Note that stationarity of the entire
system is critically affected by the ARCH part in such a way that stable processes can
evolve from apparently explosive autoregressions. A related process - the "trend-stationary
random walk" - has been reported by Sampson (1990). Trajectories of processes in this
upper lobe of the stationarity area show a curious behavior, phases of rapid expansion
being accompanied by an increase in volatility which eventually leads to an abrupt end of
the expansionary phase by hitting upon some smaller number by chance, whereupon the
expansion starts anew. We feel, however, that these processes are not of genuine empirical
significance.

The graph is symmetric around the abscissa. Note that, for ¢T1, the a boundary shifts left
only slowly and a=2 describes a perfectly admissible model for a random walk. The
estimates reported in the last section, however, point to the central region of the graph
where the boundary is almost vertical. In this region, the simulated model is close to the
Engle-ARCH model. The Engle-ARCH model has B diagonal in our notation whereas the
simulated AR-ARCH has Toeplitz B with geometrically decaying off-diagonals. The
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estimates in Section 3, however, point to only slow decay in B. What can Figure 2 tell
about this situation?

The case ¢=1 provides a reasonable upper limit to the slowness of decay in fourth-order
characteristics. Figure 2 shows that the accumulated process (1-B)-ly is stationary if y is
white noise with such fourth-order characteristics. It follows that y itself is also stationary
for the empirically obtained ARCH parameters. We do not explicitly claim that the extreme
case of non-decaying fourth moments is supported by the data but the implications of such
a feature would certainly be interesting. Such a model would imply that the index under
investigation is stationary (or trend-stationary) and that this property is warranted by its
extreme reaction to volatility shocks.

The strict stationarity properties of the general model (2.1) with an upper bound of R=2
was also investigated by simulation experiments. The two most interesting results from
these experiments appears to be that, firstly, with increasing ARCH lag order, the area
between the strictly-stationary and the covariance-stationary boundaries shrinks, and,
secondly, this area grows if off-diagonal g;; are present as compared with the classical
Engle-ARCH model.

6. A direct look at fourth-moments structures

The discrimination problem between traditional Engle-ARCH models and other models in
our more general ARCH class can be supported by some evaluation of descriptive measures
such as empirical fourth-order cross moments. The principal distinction between Engle-type
ARCH models and more general ARCH-type models is that correctly specified Engle-
ARCH models only allow for correlation among squared errors whereas e.g. Weiss-ARCH
models assume non-zero moments of the form

q(,j)=E(g/s,_¢,_;), i,j>0 (5.1

One problem with an empirical evaluation of their sample counterparts

T
T D EE_E,., (5.2)

t=max(i+1,j+1)

is that their distribution depends on the ARCH parameters, even if the process is white
noise and even if the conditional distribution is correctly specified as normal. Treatment of
these empirical moments builds on the higher-order moments results by Engle (1982,
-Theorem 1 and its constructive proof). In detail, assuming a first-order ARCH process

El—lgf =a,+a,&, : (5-3)

Engle (p.1004) states that for

2r L 20r-1)

w! =¥,y L) (5.4)
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one has
E_ w)=(I+A+A%+ +A*Nb+A"w, _, (5.5)
with
[ n n n-1 n n-1 ]
p.a P, ?) a,a, P, n-1 a, 4,
A= 150} 45a,a 45aa,
0 0 0 3a} 6a,a,
| 0 0 0 0 a, ]
(5.6)
p.a
b=| p.=]]2j-1
sa Il
a,

These formulae are always valid but the limit only makes sense if unconditional moments
exist, which amounts to a rather stringent condition on a;. Second-order moments exist as
long as a; <1; for fourth-order moments, this boundary reduces to 3-1/2, for sixth order to
15-13 and for eighth order (which we shall need further onward) to 105-"4 (=0.312). Now,
for the moment assuming all moment conditions to be satisfied, the "unconditional" limit
amounts to

Ew,)=(I-A)"b G.7)

First, we focus on the q(i,/) cross-moments with i=1. For conditionally normal
distributions, their expectation is clearly 0. Their variance then equals their uncentered
second-order moments, hence

Eg‘:g?—lgtz—j = E(Et-lg?)gf—lgf—j =

=3E(a, +a,&;,)’ gtz—lgf—j =

=3a;Ee, ¢, , +6a,a,E¢} &} +3alEs] 6] ; = (5.8)

=3a;E(E,_ &, )&, + 6a,0,E(E,_ &) )& +

+ 3a12E(Et_jgf_1 )3,2_].

Plugging in first conditional and then unconditional moments from (5.5) and (5.7), the
variance of ¢(1,j) can be calculated. The same track can be used for ¢(i,/) with i#1. Note
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that the solution in principle requires moments up the order of 12, however, due to the
triangular structure of A, these are not needed for the evaluation of those moments
appearing in (5.8). The variance of the coefficient ¢(1,1), which is non-zero in population,
can be calculated directly.

Once the variance of the theoretical ¢(i,j) is available, significance bounds for their sample
counterparts can be calculated based on their square roots. The martingale central limit
theorem by Billingsley (1961) warrants asymptotic convergence of the sample moments to
normality. A comparison between the theoretical fractiles evolving from calculations and
Monte Carlo fractiles (1000 replications) is given in Table 2. It is seen that the asymptotic
approximation is rather accurate and can serve as a reliable indicator for practical purposes.

What happens if the lag order of the ARCH process exceeds 1? Certainly the outlined
strategy still works but the involved formulae quickly become unwieldy. One may hope
that the sum of coefficients gives some indication about the strength of heteroskedasticity
and that higher-order ARCH processes behave "similarly" to first-order processes with a,
equal to this sum. This conjecture can be corroborated via simulations. Two experiments in
this direction are worth reporting.

Firstly, I simulated a fifth-order Engle-type ARCH model with a;=a,=a3=a5=0.1 and
a4=0 which provides a reasonable approximation to the volatility of some daily financial
series (not too much unlike some ARCH structures found for time segments of the S&P
returns) and entails a coefficient sum of 0.4. Empirical fractiles for trajectories of 10000
observations from this process were compared with those from a first-order ARCH with
a1=0.4. For j=1 and for j >3, the correspondence turned out to be extremely satisfactory.
For j=2 and j=3, however, the ARCH(l) model produced much wider confidence
intervals. These wider confidence intervals are typical for ARCH models with infinite
eighth moments which may provide a possible explanation as higher-moment condition are
less binding for higher-order ARCH processes with similar coefficient sums. Hence, the
generated ARCH(S) model probably has finite eighth moment, unlike the ARCH(1) process
with a;=0.4. It is, however, difficult to corroborate this presumption analytically.

What happens if the eighth-order condition is violated? As long as the condition holds,
empirical moments should converge to a normal distribution with mean zero and variance
T-'4 times the variance of ¢(i,j). If it fails, probably convergence at a slower rate still
obtains but limit laws typically do not have finite moments of order two or even smaller
order. The Monte Carlo simulations reported here shed some light on the behavior of
finite-sample distributions of ¢(i,/) in these cases which, maybe unfortunately, are of
practical importance. ’

The second experiment concerns pseudo-data generated on the basis of the last column of
Table 1, i.e. the estimated coefficients for a fifth-order AR-ARCH model for the S&P
returns series. The simulated fractiles appear as dashed lines in Figure 3. Due to the
complicated coefficients lag pattern, the ¢g(l,) do not decrease monotonously with
increasing j. However, percentiles seem to be symmetrical around the symmetry axis of
j=1, i.e. the only cross-moment which is not zero for the Engle-ARCH model.
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The significance bounds obtained from this simulation experiment were then contrasted
with the estimated values for g(1,j) from the S&P returns themselves. If the Engle-ARCH
model were true, all of these values would have to be zero in population and insignificant
in sample. Figure 3 shows the more interesting estimates for j>1 (g(1,1) typically distorts
the picture). Only 5 out of 20 empirical moments fall into the 90% significance bounds.
Violation of bounds, however, is not so conspicuous that it would render the classical
ARCH model useless. Violation of bounds is far more noticeable for j <0 which, however,
is not the subject of this paper. The apparition of significantly non-zero ¢(1,/) with j<O0
could, of course, also be due to a misspecification of the structure at positive j but it
appears to be too strong to be explained away that easily and is a potential topic for future
research. These moments may be closer related to ARCH-in-mean effects.

A caveat of the analysis is that the pseudo-data have been generated without specifically
taking into account that they are a residual series. The pattern shown in Figure 3, however,
is robust against any endeavors of respecifying the residual series and was narrowly
replicated by using residuals from simple linear AR models etc. Moreover, the effect of
simulating a residual series appears to make the test procedure shown even more
conservative. Anyway, the frequent violation of confidence bounds in Figure 3 cannot be
explained away along these lines.

Experiments with ¢(i,) for i=2,3,... have also been conducted and, in summary,
corroborate the findings from i=1. Simulated significance bounds are typically violated and
the ARCH specification must be rejected on these grounds but the evidence against the
ARCH null is not overwhelming, which corresponds well to the likelihood-ratio test for the
whole sample provided by Table 1.

7. Summary and conclusion

Both descriptive moments statistics and parametric models have indicated more or less
convincingly that fourth-moments structures in financial series may be more complicated
than would be prescribed by the traditional ARCH model. Within the limits of this paper, I
restricted attention to cross-moments structures of the form E(g¢,_¢,_;), i.e. to the

explanation of volatility by preceding cross-terms. Two points have been neglected
intentionally which may deserve further investigation.

Firstly, the analysis is strictly limited to Gaussian assumptions. It is well known that
innovations in financial time series are typically not conditionally Gaussian but slightly
conditionally leptokurtic (compare Baillie and Bollerslev, 1989). Non-normality could
affect some of the parametric model results, probably the validity of the chi-square
approximation to the likelihood-ratio test, and most certainly the percentiles of the moments
estimates.

Secondly, higher-order moments of different form were neglected. Engle's ARCH model
can be seen as the first important attempt to parameterize fourth-order cross structures such
as E(g¢”,). The GARCH model by Bollerslev (1986) does the same but uses the rational

function approximation in place of the previously used polynomial approximation. The
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later-developed models by Weiss (1984) and Bera et al. (1992) aim at modeling mixed
moments such as E(&¢,_¢&,_ ;). Other generalizations such as "ARCH in mean" are

concerned with cross-moments of order three and this track is very much at the center of
research at the moment (compare Engle and Lee, 1993). There is an ample field for
parameterizations of all kinds of higher-order cross moments and, maybe even more
important, empirical findings of these higher-order structures may not be independent of
one another. In other words, allowing for non-zero third-order moments may change some
of the properties of the models treated in this paper, and these effects have also been
neglected.

Finally, it should be pointed out that these two caveats are interrelated in the sense that
additional structure can be searched for by deviating from the assumption of Gaussianity or
by sticking to that assumption and parameterizing higher-moments structures. The two
paths are probably alternatives and the second one has recently proved to be more fruitful.
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TABLE 1: Coefficient estimates from general ARCH model (4.3) and from Engle-ARCH
model for Standard & Poor 500 Index series based on subsamples

1962-1967 1969-1978 1979-1986 1962-1990
Vd, .601 627 500 504 175 175 529 533
Vd, 218 103 1.200 211 424 120 342 .087
Vd; .183 .008 473 286  .731 .860 254 176
Vd, 002 224 007 286 .58l 027 355 541
Vds 172 370 617 521 075 .098 246 .294
I -.220 -514 -.805 -.568
I3 .383 -.263 352 361
Ia1 197 447 -.013 -.110
Isy 218 746 117 252

Vag .00311 .00023 .00000 .00522 .00066 .00002 .00392 .00163
B .00023 .00035 .00001 .00010 .00043 .00043 .00021 .00031

01 197 .170 295 .302 .094 .094 .191 .194
o) .045 .063 -.098 -.103 .002 .002 -.062 -.060
P3 -.003 .012 .039 047 -.016 -.016 -.022 -.016
04 -.041 -.026 .022 .023 -.020 -.021 .027 .026
Ps .028 041 -.037 -.037 .008 .007 .015 .014

2a;; 573 591 2.567 734 1.112 795 796 702
-2¢0 13202 13183 21751 21746 17102 17102 61573 61559
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FIGURE 1b
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FIGURE 2.
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