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Abstract. In a bivariate Vector Autoregressive approach Blanchard and Quah [1989] used the
unemployment rate as a stationary indicator to disentangle the effects of permanent and tran-
sitory innovations to output. This paper examines the stability of their results with respect to
a wider class of time series models and the choice of the stationary variable. We take a Vector
Autoregressive Moving Average approach to allow for a more parsimonious representation of the
process. Furthermore, capacity utilization and the rate of inflation are used as alternative cyclical
indicators. It turns out that the decomposition is fairly stable, with the exception of the model
where we used the GNP-deflator as stationary variable. Finally, we discuss the interpretation of

permanent and transitory innovations as supply and demand innovations.

Zusammenfassung. In einer bivariaten Vektorautoregression haben Blanchard und Quah [1989]
die Arbeitslosenrate als stationire Variable verwendet, um die Auswirkungen von permanenten
und transitorischen Schocks zu trennen. Diese Arbeit untersucht die Stabilitit ihrer Ergebnisse
im Hinblick auf eine gréfiere Klasse von Zeitreihenmodellen und auf unterschiedliche stationire
Variablen. Um eine sparsame Darstellung des Prozesses zu erreichen, verwenden wir Vektor Au-
toregressive Moving Average Modelle. Als alternative Variablen wurden die Kapazititsauslastung
und der BIP-Deflator benutzt. Als Ergebnis 138t sich zusammenfassen, daB8 die Zerlegung stabil
ist, solange nicht der BIP-Deflator als stationare *‘ariable verwendet wird. Abschliefend wird die
Interpretation der permanenten und transitorischen Schocks als Angebot- und Nachfrageschocks

diskutiert.






1 Introduction

In business cycle literature different types of output decompositions into trend and cyclical
components are reported. The traditional approach characterizes the economy as growing
along a smooth deterministic trend from which it temporarily deviates in a cyclical way.
This approach has been criticized over the last couple of years. Building on the work of
Nelson and Plosser [1982] it is now a widely held view (see e.g. Campbell and Perron
[1991]) that real GNP is better characterized as a stochastic process with a unit root.

From this perspective, shocks to aggregate output have permanent effects.

To measure the long run persistence of real GNP and the relative importance of permanent
shocks, many authors use univariate Autoregressive Integrated Moving Average (ARIMA)
models or unobserved components ARIMA (UC-ARIMA) models (see Stock and Watson
[1988]). In this type of models all fluctuations are attributed to a single disturbance
that has a permanent effect just by application of the first difference filter on the time
series. Real world phenomena and economic theory, however, force one to reinterpret the
sources of output fluctuations in the light of more than one type of disturbance affecting
output. One possible way is to add transitory innovations influencing short run movements
in output. A first attempt to disentangle permanent and transitory components was
suggested by Beveridge and Nelson [1981]. Assuming perfectly correlated permanent and
transitory disturbances, they decomposed output into a nonstationary random walk and
stationary fluctuations. Since that assumption contradicts the more common notion of
low or zero correlation between innovations in trend and cycle components, alternative

types of decompositions were suggested by several authors.

One approach is to work with an unobserved components model and to assume a zero
correlation between disturbances. For this purpose one has to assume two distinct data
generating processes for the trend and cycle components of the time series. Clark [1987]
for instance used a local approximation to a linear trend to model the nonstationary
part of output and a pure autoregressive process to catch stationary fluctuations. The
shortcoming of these models are restrictions on the data generating processes needed for

identification, which confine the movement of both components.

Another more promising effort to identify disturbances is the use of additional information

contained in a cyclical indicator. Blanchard and Quah [1989] (BQ henceforth), Campbell



and Mankiw [1987b] and Evans [1989] developed bivariate models to decompose output.
Evans [1989] estimated a recursive vector autoregressive system including output and the
unemployment rate and used the Cholesky decomposition for identification. Campbell
and Mankiw [1987b] assumed the cyclical component to be that part of output contempo-
raneously correlated with the unemployment rate, while the trend component being the

uncorrelated part of GNP.

In contrast BQ assumed in a bivariate Vector Autoregressive system (VAR) two uncorre-
lated disturbances influencing the system in distinct ways. One of the disturbances results
in transitory output movements, whereas the other generates a permanent effect on out-
put. The choice of the second variable in the VAR depends on three characteristics. First,
it must be a stationary variable. Second, as Quah [1992] proofs, growth rates in output
must not be Granger causally prior to the second variable. This is a necessary condition
to achieve a unique decomposition of output. Third, and most important it should be a
fairly good cyclical indicator implying that more or less regular deviations of actual output

from potential output are reflected in the second variable.

Given the problems associated with univariate methods of detrending and the measure-
ment of persistence in output we find the approach of BQ very appealing. This paper
addresses the question, whether this kind of decomposition is robust against alternative
ways to approximate the data generating process and whether other cyclical indicators
cause substantial changes of their results. Another interesting aspect refers to the inter-
pretation of BQ that transitory and permanent innovations correspond to demand and
supply shocks. In particular the paper deals with the following issues: First, do the re-
sults depend on the limitation of using only VAR processes? Second, how important is
the choice of the unemployment rate as cyclical indicator? Third, we discuss critically the

interpretation of both innovations.

The remainder of the paper is organized as follows. Section 2 presents a short model to
motivate the rate of capacity utilization and the rate of inflation as further candidates for
cyclical indicators. In section 3 we try to assess the sensitivity of the BQ-decomposition
by using various VARMA-models and alternative cyclical indicators. Section 4 discusses
the assumption of zero correlation between supply and demand shocks. The last section

gives a summary of our results and some conclusions.



2 A Model for Alternative Cyclical Indicators

An appropriate cyclical indicator is very important for the outcome of the BQ-decomposi-
tion. Thus different results may be achieved by replacing the second stationary vériable
in the bivariate system with an alternative one. According to the business cycle literature
starting with Burns and Mitchell [1946] a vast amount of variables can serve as an indicator
for the business cycle. However, to avoid a relapse into the 'Kepler stage’ of measurement
without theory (see Koopmans [1947], p. 186 fI.), we stick to the small scale model
presented in BQ.

The model generates short term fluctuations in output by means of Fischer-type wage
contracts in the labour market, i.e. nominal rigidities. A combination of productivity
disturbances, unexpected movements in the money stock and wage rigidity creates fluctu-

ations in output:

Yo = my—pita-b; (1)
Yy = ng+ 0 (2)
Pt = wg—6; (3)
wy = w|{Ei-1n =0}, (4)

where y;, m¢, p: and 0, represent the logs of output, money supply, the price level and the
level of productivity at time ¢, respectively. The log-level of full employment is character-

ized by 7 and the log of wages in period ¢ by w;.

The model includes a function for aggregate deniand, which depends on real balances and
one more variable reflecting a direct impact of productivity disturbances on aggregate
demand. Equation (2) is a constant returns to scale production function and shows that
aggregate supply depends in the short run on labour input and productivity disturbances.
Long run considerations would include the capital stock as a further explanatory variable
for the determination of aggregate supply. In this sense the model lacks a detailed expla-
nation of the nonstationary component of output fluctuations. However, the purpose of
the model is to derive a short term relation between innovations and endogenous variables

and therefore this weakness seems negligible. Price setting behavior is given in equation



(3). Firms follow a mark up rule. Equation (4) specifies the wage setting rule. Nomi-
nal wages are set one period in advance such that expected employment is equal to full
employment. Since nominal wages are fixed one period ahead, unexpected disturbances
eventually give rise to deviations of output from its potential level. The evolution of the
money stock and the level of productivity introduces dynamics and closes the model. It

is assumed that both variables follow a random walk.

my = mt_l-l—eff (5)

0t 09,5_1 + 6? f (6)

where e? and e are serially uncorrelated orthogonal demand and supply disturbances.
This small model offers three cyclical indicators that might be used to decompose output
into a transitory and permanent component. First of all, the rate of unemployment already
used by BQ. But there are two more variables, namely the rate of capacity utilization and

the rate of inflation.

As regards the second variable, the rate of capacity utilization is an appropriate measure
of the overall under- or overutilization of factors of production. It is based on the firm’s
own conception of the difference between its potential output and the actual realization
faced. Assuming a constant stock of capital in the short run, the capacity utilization is
defined as cap: = y: — ¥:, where ; represents potential output. Using this definition and
solving the system for output growth and capacity utilization gives the same reduced form

as in BQ:

Ay = ef —el 1 ta-(ef —e_)+el (M
caps = el —ael. (8)

Lagged and current realizations of demand and supply shocks determine output growth,
whereas capacity utilization depends only on current innovations. Equations (7) and (8)
show a striking feature of the model: Both variables are hit by both shocks within the same
period. Thus the standard Cholesky decomposition is no more applicable and one needs

to employ the identifying assumption of transitory and permanent effects of disturbances.



The third cyclical variable in the model is the rate of inflation Ap;. When looking at the
mark up equation (3), one can infer that the price level is determined by two nonstationary
variables: nominal wages and the level of productivity. Thus the price level itself will only
be stationary if there exists a cointegrating vector (1,—1). Otherwise the rate of inflation
will be the variable to focus on. The cyclical pattern of the inflation rate can be seen by

taking first differences of equation (3)

Apt = Awt + 6.': . (9)

Given a constant level of full employment 7, unemployment in period ¢ will cause a lower
nominal wage in period ¢ + 1, or correspondingly a negative growth rate of nominal wages.
On the other hand, if actual employment is above full employment, wages in the next
period have to rise in order to clear the labor market in advance. The cyclical movement
of wages is directly embodied in the rate of inflation. The procyclical behavior of prices is
also a common feature of models for aggregate supply and demand with nominal rigidities.
Dynamic IS-LM models with adaptive expectations as presented in Sargent [1987, p. 117
ff.] are a familiar representative. Since the solution of the model for output growth and
the rate of inflation does not allow current demand shocks to have an influence on the rate

of inflation a slightly modified version of (3)

P = wy — B, + bef (10)

has been used to derive the following reduced form:
Ay, = (1=bed +(1—a)el—(1- 2b)el | — ael_, (11)
Ap; = bel — el +(1—2b)ed | +ael_, , (12)

where both variables are determined by actual and lagged demand and supply distur-
bances. Therefore, one must again rely on the identifying assumption of transitory and

permanent impacts of the two innovations. The reduced forms (7)-(8) and (11)-(12) form



the theoretical ground for the analysis in the next section. Before going into a detailed
discussion of the consequences of these modifications we present some characteristics of

the data and the impact of several different estimation approaches.

3 Results

For estimation we use quarterly series of the log U.S. real gross national product (1982 =
100), the U.S. capacity utilization for the manufacturing sector, and the log GNP deflator
(1972=100) 1. The pattern of autocorrelations and cross-correlations for all the series is
given in tables 1 and 2. The autocorrelations are relatively high for the first few lags but
decline thereafter, most rapidly for annualized output growth. Only the rate of capacity

utilization and the rate of inflation show significant values even at lag 12.

The contemporaneous relationship between output and the other series appears to be
rather weak. Just capacity utilization is significantly correlated with output growth at
lag zero. The other variables show the highest correlation with output growth at lags 3
and 5, respectively. This indicates that output growth is a leading indicator for the rates
of unemployment and inflation rather than a coincident relation between those series at
quarterly frequency. Moreover, while the unemployment rate and capacity utilization show

the highest correlation around lag zero, both series are leading the inflation rate.

The results for statistical tests on stationarity are given in the appendix in tables Al to A4.
According to augmented Dickey-Fuller and Phillips-Perron tests output and prices follow
nonstationary stochastic processes, whereas the unemployment rate, capacity utilization,
and the rate of inflation are stationary. Although part of the statistical results may call
into question the stationarity of the unemployment rate, we believe this variable to be

stationary for theoretical reasons.?

The system comprises annualized quarterly growth rates of output and a stationary vari-

able (s;). BQ-decomposition works as follows: Starting with the original moving average

'Sources are NIPA for real GNP; Bureau of Labor Statistics No. 2096 and 2307; Fed.Res. Bulletin
various issues for capacity utilization; Balke and Gordon [1986] for the GNP deflator 1947-83, and IMF

Int.Fin.Stat. for 1984-87. The estimation period runs from 1950:2 through 1987:4
2In their basic variant BQ accounted for a shift in mean GNP growth in 73:4 and for a time trend in

unemployment rate. To facilitate comparability, we mirror their specification.



Table 1: Autocorrelations of the series

lag Ay ur cap Ap
1 0.36 0.94 0.91 0.64
2 0.24 0.80 0.75 0.59
3 -0.01 0.63 0.59 0.51
4 -0.11 0.48 0.43 0.40
5 -0.12 0.35 0.33 0.36
6 -0.06 0.26 0.29 0.29
7 -0.02 0.19 0.27 0.29
8 -0.07 0.12 0.27 0.33
9 -0.08 0.08 0.27 0.34
10 0.02 0.04 0.26 0.37
11 -0.02 0.00 0.22 0.27
12 -0.10 -0.03 0.17 0.32

representation of the bivariate process

z; = A(L)u;, where ;= (Ay,s;) (13)

estimated residuals u; are decomposed into innovations €; = Ay Lu, such that ¥, is the
identity matrix and the upper left element of the 2 x 2 - matrix A(1)* = A(1)A4p is equal to
zero. From that we obtain an unique alternative representation z; = A(L)Aoe: = A*(L)e;,

where z; is driven by uncorrelated transitory and permanent innovations.

3.1 The Vector Autoregressive Moving Average

BQ estimated a VAR for the vector (Ay;, ur;)’ with lag length 8. They argued that high

order VAR allows a well enough approximation for the moving average representation can



Table 2: Cross-correlations between variables

seriesl Ay ur cap
series2 ur cap Ap| Ap cap| Ap
lag®
-8 -0.21  0.13 0.00 | -0.16 0.07 | -0.03
-7 -0.24 0.16 -0.01]-0.15 0.06 | -0.05
-6 -0.24  0.19 -0.05{-0.13 0.04 | -0.06
-5 -0.26 0.22 -0.12 | -0.10 -0.01 | -0.09
-4 -0.33 0.30 -0.01|-0.08 -0.09|-0.12
-3 -0.37  0.42 -0.03 | -0.09 -0.23 | -0.11
-2 -0.33 045 0.04 {-0.11 -0.40 | -0.09
-1 -0.20 0.41 0.05|-0.13 -0.57 | -0.05
0 0.01 024 0.06-0.15 -0.70 | -0.01
0.26 -0.08 -0.03 |-0.14 -0.72|-0.05
040 -0.25 -0.11|-0.11 -0.65 | -0.13
042 -0.31 -0.20 | -0.03 -0.53 | -0.22
0.38 -0.30 -0.20 | 0.07 -0.41 | -0.32
0.30 -0.25 -0.30 | 0.18 -0.31|-0.43
0.24 -0.17 -0.20 | 0.26 -0.25|-0.48
0.20 -0.11 -0.10| 0.29 -0.22 | -0.47
0.16 -0.12 -0.03 | 0.32 -0.18 | -0.45

0 N O v s WY

a) Cross-correlation between series1(t) and series2(t-lag)



be obtained. It may be argued, however, that this approach completely neglects estimation
problems due to over-parameterization (see e.g. Judge et al. [1988] p. 776). The number
of available observations may be inadequate for obtaining precise estimates of the large
number of coefficients in the VAR. In fact only two significant parameter estimates appear
from lags 4 to 8. The computation of impulse response functions in BQ is mainly based
on insignificant estimates. The process also could be characterized as an VAR(3) without
much loss of information. In order to find a more parsimonious representation, we extend

the VAR class by fitting Vector Autoregressive Moving Average (VARMA) processes.

A look .at the auto- and cross-correlation functions in tables 1 and 2 indicates that the
bivariate process could be adequately characterized as low order VARMA (p,q)-process
(henceforth referred to as V(p,q)). Output growth Ay seems to follow a low order MA-
process, unemployment rate a low order AR-process. Cross-correlations also may be

captured sufficiently by a low order autoregressive specification.

For model selection we rely on information criteria and the ECCM-table (Tiao and Tsay
[1983]) 3. This approach is based on the significance values of partial autocorrelation ma-
trices estimated by iterated OLS. Under the assumption of a V(p,q)-process the procedure
provides consistent estimates for the autoregressive parameters. The autoregressive part is
estimated for all pairs (p,q) and subsequently the residual correlation matrices are tested

against zero. The idea is to find the process with lowest order that has clean residuals.

This procedure suggests a V(1,2) or a V(2,1)-model. Starting from a V(1,1)-model we
estimate various extended models and compare them by likelihood ratio tests and infor-
mation criteria, respectively. Results are shown in table 3. First of all, a V(1,1) is clearly
rejected by both V(1,2) and V(2,1). V(2,2) rejects both V(1,2) and V(2,1) and thus seems
to be the appropriate specification. Table 1 also contains the likelihood of several purely
autoregressive specifications. Note that also a V(3,0)-process may be a sufficient specifi-
cation. At least it has clearly better information criteria values than higher order VAR
specifications. However, since omission of significant lags leads to biased estimates, the
aim of the selection procedure is not necessarily to specify a process of lowest possible

order.

3For estimation of VARMA models and computation of ECCM tables we use SCA. All other computa-

tions were done in RATS



Table 3: Model Selection Criteria

~2*InL| AIC SIC | Q(20) | df
V(1,1) | -2527.7 | -18.586 | ~18.366 | 73.28 | 72
V(1,2) | -2540.1 | -18.618 | -18.319 | 60.30 | 68
V(1,3) -2548.5 | —18.630 | —18.250 | 65.93 | 64
V(2,1) -2545.3 | —-18.655 | -18.355 | 71.09 | 68
V(2,2) -2557.5 | —18.692 | -18.313 | 57.23 | 64
V(3,0) -2542.3 | —-18.624 | -18.325 | 61.93 | 68
V(5,0) -2548.0 | -18.569 | -18.109 | 54.23 | 60
V(8,0) -2562.9 | -18.496 | -17.797 | 46.15 | 48

Results of BQ-decompositions are presented for V(8,0), V(2,2), V(3,0), V(1,2) and V(2,1)
specifications. We find the residuals from different models - and accordingly the residual
Covariance matrices - to be highly correlated. This fact also holds for transformed shocks,
where correlations are given in tables 4a and 4b. Apparently various models generate

almost identical innovations.

To keep the exposition concise we concentrate in the following on the reaction of output
to demand and supply disturbances. Figures 1 and 2 show the dynamic effects of demand
and supply disturbances on output for different specifications (exact values for impulse
responses can be gathered from tables 5a and 5b). The vertical axis denotes the percentage
deviation of output after a one percent demand or supply shock hit the system. The

horizontal axis denotes time in quarters.

Similarity of results across different specifications also holds for impulse response curves.
Demand disturbances have a hump-shaped effect on output across all specifications peaking
after three quarters. The response of output vanishes after five years. Impulse response
curves differ among models only slightly in the magnitude of the peaks and in the speed

of decline.

10



Table 4: Correlation of shocks from VARMA(p,q) models
4a: Demand Shocks

V(8,0) | V(3,0 | V(2.1) | v(1,.2) | V(2,2)
V(8,0) | 1.00 94 94 95 93
V(3,0) 1.00 97 99 85
V(2,1) 1.00 97 87
V(1,2) 1.00 87

4b: Supply Shocks

V(8,0) | V(3,0) | V(2,1) | V(1,2) | V(2,2)
V(8,0) | 1.00 93 .90 94 .89
V(3,0) 1.00 96 99 85
V(2,1) 1.00 97 85
V(1,2) 1.00 87
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Table 5: Impulse responses for VARMA(p,q) models

5a: Demand Shocks

Quarter | V(8,0) | V(3,0) | V(1,2) | V(2,1) | V(2,2)
1 0.779 | 0.757 | 0.776 | 0.758 | 0.772
2 1.000 1.024 | 1.031 | 0.990 ; 0.903
3 1.115 1.143 1.168 | .1.081 0.928
4 1.060 | 1.072 | 1.111 1.003 { 0.909
8 0.655 | 0.419 | 0.454 | 0.391 | 0.601
12 0.262 | 0.119 | 0.099 ; 0.044 | 0.243
40 -0.001 | 0.0600 | 0.000 | 0.000 | 0.002

5b: Supply Shocks

Quarter | V(8,0) | V(3,0) | V(1,2) | V(2,1) | V(2,2)
1 0.072 | 0.261 | 0.213 | 0.226 | -0.116
2 -0.069 | 0.182 | 0.121 | 0.106 | -0.321
3 0.077 | 0.348 | 0.293 | .0.180 | -0.183
4 0.166 | 0.450 | 0.403 | 0.197 | -0.019
8 0.693 | 0.549 | 0.533 | 0.361 | 0.408
12 0.615 | 0.517 | 0.522 | 0.433 | 0.524
40 0.438 | 0.505 | 0.505 | 0.446 | 0.446
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Table 6: Impulse Responses for Stationary Variables %

Demand Shocks Supply Shocks

Quarters ur cap Ap ur cap Ap.
1 .996 (.06) 743 (.06) | .494 (.03) || .947 (.01) | .670 (.03) | .870 (.05)
2 1.284 (.07) | 1.109 (.07) | .667 (.05) || -.821 (.02) | .768 (.04) | 1.127 (.06)
3 1.431 (.08) | 1.203 (.08) | .814 (.06) || .109 (.02) | 1.051 (.05) | 1.346 (.07)
4 1.357 (.08) | 1.167 (.08) | .802 (.06) || .224 (.03) | 1.088 (.05) | 1.386 (.07)
8 .830 (.09) .635 (.09) | .280 (.08) || .900 (.06) | 1.301 (.03) | 1.503 (.06)
12 .328 (.06) 443 (.07) | .159 (.08) || .803 (.05) | .935 (.03) | 1.355 (.05)
20 -.166 (.05) 565 (.06) | .097 (.09) || .627 (.04) | .734 (.02) | 1.352 (.05)
40 -.134 (.04) | - .462 (.05) | .206 (.10) {| .573 (.04) | .635 (.01) | 1.380 (.05)
‘oo .000 (.04) .000 (.05) | .000 (.10) || .576 (.04) | .634 (.01) | 1.386 (.05)

a) Values in parentheses indicate asymptotic standard deviations according to Liitkepohl {1990].

Some differences arise for output response to supply disturbances. In the base case the effect
on outpuf peaks after eight quarters, then it decreases steadily and eventually stabilizes
after five years. However, for all other specifications impulse response curves exhibit no
peak. The long run effect is slightly stronger for the V(3,0) and V(1,2) specification.
Surprisingly the V(2,2) model generates a negative response of output to a positive supply
shock in the first three quarters. There is no clear cut economic interpretation of this

behavior.

3.2 Alternative cyclical indicators

We now turn to the use of alternative cyclical indicators and present the results for VAR(8)
specifications to facilitate the comparison with BQ. table 6 and figures 3 and 4 give the
response of output for models including the unemployment rate, the capacity utilization,

and the rate of inflation.

Demand disturbances give rise to a hump-shaped reaction of output. When peaking after

two quarters a more or less regularly decline takes place in the long run. The output

13



Table 7: Corr. Among Shocks for Different Variables

Demand Shocks Supply Shocks
ur | cap | Ap ur | cap | Ap
ur 1.00 ur | 1.00
cap | 0.67 | 1.00 cap | 0.44 | 1.00
Ap | 0.48 | 047 | 1.00 || Ap | 0.14 | 0.70 | 1.00

response to a demand shock tapers off for all systems after four to five years, showing
convincingly the non-persistence of this shock. Interestingly, capacity utilization as well

as the rate of inflation cause a smaller output reaction during the first two years.

Supply disturbances have a permanent effect on output by definition. Although, the degree
of persistence depends crucially on the cyclical indicator chosen. The contemporaneous
reaction of output to a supply shock is a big deal greater for the alternative variables and
the short run hump is more pronounced. The negative reaction of output to a positive
supply shock in the first quarter disappears completely when using alternative measures.
In the long run the persistence of a supply shock in output is essentially the same for
capacity utilization and the rate of unemployment. However, the rate of inflation generates
a completely different picture. Starting with the highest contemporaneous reaction, the
response peaks after seven quarters and levels off at a permanent increase of 1.4 %. Even
a two standard error confidence interval does not include the border line case of a random
walk for output, thus indicating a substantial and permanent overshooting response to a

supply shock.

In contrast to our results for various VARMA models, the innovations from VAR’s includ-
ing different stationary variables show just moderate correlations. Demand innovations
from models including the unemployment rate (henceforth UR-model) and the capacity
utilization (CAP-model) exhibit a higher correlation of 0.7 as compared to the model
including the inflation rate (A P-model). On the other hand for supply innovations corre-

lation is highest between the CAP-model and AP-model, whereas between the UR-model

14



and the AP-model it is not significantly different from zero.

Apart from the high persistence measure of the AP-model one more aspect strikes us
with doubt about its appropriateness. As Quah [1992] shows, a necessary condition for
application of the BQ-decomposition is that the stationary variable Granger-causes output
growth. This may not hold for the inflation rate in the AP-model. Tests for Granger
causality in VAR(8) models give the p-values of 0.001, 0.03, and 0.26 for the UR-model,
CAP-model, and the AP-model, respectively.

4 Interpretation of Structural Shocks

The economic interpretation of orthogonal disturbances directly hinges on theoretical as-
sumptions made before the decomposition of the Covariance matrix. In a recent paper,
Lippi and Reichlin [1993] showed that economic theory does not in general provide suffi-
cient structure to solve the problem of nonfundamental representations. This is a crucial
point“because for nonfundamental representations the ;dentiﬁcation of orthogonal distur-
bances is no more unique. However, the reduced form derived by BQ does not suffer from
this problem. The same holds for our model including the capacity utilization. On the
other hand, there might be some troubles as regards the reduced form (11)-(12) comprising
the rate of inflation. For this system the range of admissible parameter values for a and b,
the coefficients for the productivity shock in the demand equation and the monetary shock
in the price equation respectively, is restricted. A graphical illustration of the constraints
is given in figure 5. A value of a close to but smaller than one requires also a value for
b close to one. Lower values for a are compatible with a broad range of b-values. A fun-

damental representation can therefore be achieved for a couple of reasonable parameter

values.

Apart from the representation problem, the interpretation of permanent and transitory
innovations as demand and supply shocks is questionable. First, permanent income hy-

pothesis implies that intertemporal utility maximizing consumers will respond immediately
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to a permanent change in income by changing actual consumption expenditures. This will
give rise to a permanent shift of the demand curve. The comovement of aggregate demand
and productivity is contained in the BQ-model itself. Equation (1) shows the direct influ-
ence of productivity on aggregate demand. Depending on the magnitude of the parameter
a the demand curve shifts more or less outside in response to a positive productivity shock.
This suggests a further transformation of the innovations, such that demand shocks are
a weighted sum of (standardized) transitory and permanent innovations, whereas supply

shocks are attributed solely to permanent innovations.

Second, a response of monetary authorities to supply shocks also implies a correlation be-
tween supply and demand. For example, replacing the money equation (5) by
my = My + eff + Ae; introduces this kind of feedback into the model of BQ. From a
time series perspective an immediate monetary response shows up as correlation between

demand and supply shocks.

Both examples indicate that a permanent shock affects supply as well as demand curves.
Thus we cannot regard supply and demand shocks as being uncorrelated. How does
this affect the results and interpretation of the BQ-decomposition? We can show, that
alternative linear transformations of transitory and permanent innovations into supply
and demand shocks leave the total persistence measure of output unchanged. This can
be formally proven by using the multivariate framework developed in Lee et. al. [1992].
Consider just the first equation of the VAR describing Ay; = a(L)e;, where ¢; isa 2 x 1
vector of shocks and a(L) = (a1(L),az(L)) is a 1 x 2 matrix polynomial, accordingly. Lee.

et. al [1992] present a persistence measure Pp, for Ay, is given by

; _ o(DZca(l)

AY 7 4(0)Zca(0) (14)

Any transformation of the orthogonal residuals vy = B~ le; leads to Ay, = a(L)Bv; and
Covariance matrix £, = B~'X, B!, Plugging a(L)B and £, into (14) leaves P}, un-
changed. The above approach may be regarded as direct extension of the Campbell and

Mankiw [1987a] measure. For orthonormal shocks €; one arrives quickly at
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PRy = (a1(1)/a1(0))* + (a3(1)/a2(0))?, (15)

- where the two components on the right hand side correspond to the squared persistence
measure of Campbell and Mankiw. Note that the BQ decomposition sets a1(1) equal to

“Zero.

For correlated shocks the above persistence decomposition will involve a cross term. If
we leave supply shocks unchanged and construct demand shocks as a weighted sum of
permanent and transitory innovations, the cross term will offset any persistence of demand

shocks.

It may be of some interest to have a look at the relations between original residuals from
the VAR and orthogonal innovations. They are visualized in figure 6 for the unemployment
rate and capacity utilization. In the two-dimensional space spanned by the transformation
matrix Ag the angles between the particular innovations and residuals are given by the ar-
ccosines of their contemporaneous correlations. Since unemployment is a negative cyclical
indicator, we use the negative of unemployment residuals in figure 6. For the UR-model
transitory innovations correspond closely to original residuals from the Ay; equation of
the VAR system. This can be seen by the small angle between the vector representing
transitory innovations and the vector for Ay;. However, in the CAP-model transitory
innovations almost coincide with residuals from the cap; equation. This difference may
be due to lagged response of unemployment to the business cycle. Consequently transi-
tory innovations first will show up in the output equation of the UR-model. Then, as
figure 6 shows, the unemployment rate reacts to transitory innovations mainly through
lagged output changes. On the other hand capacity utilization seems to be a roughly
coincident cyclical indicator. Thus transitory shocks are associated with residuals of the
capacity equation in the CAP-model. We conclude that with respect to interpretation of

transformation matrices the CAP-model seems to be the more satisfactory approach.

Let us now return to the discussion of correlated demand and supply shocks. If we simply

regard demand shocks as the sum of transitory and permanent innovations, i.e. ¢ = 1
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in equation (1), then this shows up in figure 6 as the 45 degree line corresponding to
the vector labeled ’demand’. According to our hypothetical experiment residuals from
the unemployment equation are only weakly contemporaneously correlated with demand.
This view is in sharp contrast to an approach of Campbell and Mankiw [1987b]. The
authors regressed output growth on its own leads and lags and on the contemporaneous
unemployment rate. In their interpretation residuals of this equation reflect the change in
the (stochastic) trend component, while fitted values refer to the change in business cycle.
In fact, contemporaneous correlation between GNP growth and unemployment is close to
zero (see table 2). Thus neglecting lagged unemployment response to cyclical shocks leads

to an inappropriate model.

5 Conclusion

Summing up, the above results suggest a fairly high degree of robustness of the BQ-
decomposition with respect to the model specification. There is a simple statistical expla-
nation for the stability of the transformation. The cyclical indicators follow autoregressive
processes with a fairly high degree of inertia, whereas autocorrelation in GNP growth
dies out after two lags. The corresponding properties of the moving average polynomial
seem to be rather insensitive to the details of specification. Thus we conclude that the
decomposition will work fairly well, as long as a good cyclical indicator is chosen, which
then naturally exhibits high first order autocorrelation. Both the unemployment rate and
capacity utilization provide fairly good cyclical indicators. But aggregate price changes,
as used by Bayoumi and Eichengreen [1992], are not really suitable for the purpose of
extracting the business cycle component. That is not only reasonable in the light of an
instable output-inflation-trade off as stressed in Phillips-curve discussion. One glimpse at
figure 7 reveals that the inflation rate gives a meager image of the NBER dated peaks and
troughs. Moreover, the inflation rate does not Granger-cause output growth and therefore

does not fulfill theoretical preconditions for the BQ-decomposition.
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While the BQ-decomposition may be useful for the extraction of the cyclical component,
interpretation of permanent and transitory innovations as supply and demand shocks is
subject to some criticism. Several theoretical models give rise to a correlation between
unexpected changes in permanent income and a corresponding reaction of aggregate de-
mand. We suggest that supply shocks can be associated with permanent shocks but
demand shocks must be viewed as a weighted combination of transitory and permanent
innovations. This does neither affect the persistence measure nor the value of the BQ-

decomposition as a robust method to filter out the business cycle from an output series.
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5: Admissible Parameter Space for model (dy, dp)
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Figure 6:Transformation of shocks
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Table A.1l: Augmented Dickey-Fuller (Regression includes constant, trend,
lagged variables, and k lagged differences)

Series T k u t(u)a) I5) t(B)b) a T(a-l)c) t(a)d) s(u)
Y 167 1 .3719 2.69 .0004 2.55 .953 -7.98 =2.65 .01
DY 161 2 -.0001 -.02 .0000 .11 .356 -103.63* -6.50* .04
UR 163 2 .4153 3.53%* .0014 1.99 .927 =-11.83 =-3.58%* .32
CAP 160 4 -.0116 -.08 -.0074 -1.90 .870 =-20.82* -3.50* 1.87
P 165 3 .036 2.20 .0000 2.63 .993 -1.17 =-2.01 .01
DP 165 2 .000 -0.41 .0000 2.60 .668 =-54.79 -4.62 .01

a) the 0.05 one-sided critical value for 100 observations is 3.1l
(Dickey/Fuller 1981, table II)

b) the 0.05 one-sided critical value for 100 observations is 2.79
(Dickey/Fuller 1981, table III)

c) the 0.05 one-sided critical value for 100 observations is -20.7
(Fuller 1976, table 8.5.1.)

d) the 0.05 one-sided critical value for 100 observations is -3.45
(Fuller 1976, table 8.5.2.)

*) indicates rejection at the 5% level

Table A2: Augmented Dickey-Fuller Test (regressions include constant,
lagged level, and lagged differences)

Series T k u t(u)a) a T(a-1)b) T(a)c) s(u)
DY 161 2 -.0000 -.01 .3564 -103.62* -6,52% .04
UR 163 2 .2696 2.91* ,9533 -7.61 =-2,97* .32
CAP 160 4 -.0125 -.08 .9101 -14.38* -2.92* 1.88
DP 165 2 0.000 -0.34 .748 -41.64 -3.81 .01

a) the 0.05 one-sided critical value for 100 observations is 2.54
(Dickey/Fuller 1981, table II)

b) the 0.05 one-sided critical value for 100 observations is -13.7
(Fuller 1976, table 8.5.1.)

c) the 0.05 one-sided critical value for 100 observations is -2.89
(Fuller 1976, table 8.5.2.)

*) indicates rejection at the 5% level



Table A3: Phillips-Perron Test (regressions include constant, trend and lagged
variable)

Series 1 4 Z(tu)d B Z(tB)P a z(a)® z(ta)? z(F,)® 2(F3)f s(u)
Y 2 .2892 2.46 .0003 2.53 .963 -10.68 -2.42 18.16* 2.48 .01
Y 4 .2892 2.99 .0003 3.25% .963 -16.46 =2.96 13.07* 4.08 .01
Y 8 .2892 3.67* .0003 4.14* .963 -25.57% -3.65% 10.83* 6.46 .01
Y 10 .2892 3.89% .0003  4.42% .,963 -28.97* -3.87% 10.61* 7.33% .01
DY 2 =-.0002 -.05 .0000 .18  .362 -104.21* -8.67* 23.65* 35.70% .04
DY 4 -.0002 -.05 .0000 .17 .362 -110.93* -8.83* 24.69* 37.24* .04
DY 8 =-.0002 -.06 .0000 .19  .362 -96.44* -8,50*% 22.47* 33.96% .04
DY 10 =-.0002 -.06 .0000 .22 .362 -78.68* -8.15% 19.92% 30.21* .04
UR 2 .2762 3.08 .0005 1.59 .952 =20.59 -3.12 2.91  4.35 .44
UR 4 .2762 4.02* .0005 2.31 .,952 -34.77% -4.10% 5.40* 8.09* .44
UR 6 .2762 4.60* .0005 2.73  .952 =45.32% -4.70%*  7.20*% 10.79% .44
UR 10  .2762 5.19* .0005  3.16* .,952 =-57.60% -5.31% 9.28% 13.91* .44
CAP 2 -.0400 -.16 =-.0040 -1.64 .897 =-33.19% —-4.08*% 5.08* 7.62*% 2.27
CAP 4 =-.0400 -.14 -.0040 -2.11 .897 -49.00* -4.96* 7.87% 11.80* 2.27
CAP 8 =-.0400 -.13 -.0040 -2.33 .897 -57.33% -5.36% 9.30*% 13.95% 2.27
CAP 10 -.0400 =-.13 -.0040 -2.28 .897 =-55.31% -5.26% 8.96% 13.43*% 2.27
P 2 .027 1.20 .0000 1.65 .996 -1.05 =-0.89 45.97% 4.68 .01
P 4 .027 1.27 .0000 1.62 .996 -1.78 =-1.05 22.89% 2.66 .01
P 8 .027 1.56 .0000 1.84 .996 -3.66 =-1.42 10.42*% 1.92 .01
P 10 .027 1.72 .0000 1.99 .996 ~-4.75 -1.60 8.18* 1.97 .01
DP 2. .000 -.02 .0000 2.31 .558 =-60.91* —-6.38*% 11.97% 18.12% .01
DP 4 .000 -.02 .0000 2.42 .558 =-70.04* —6.70* 13.62% 20.56*% .01
DP 8 .000 -.02 .0000 2.78 .558 -101.16*% ~7.72* 19.03% 28.63* .01
DP 10

.000 -.02 .0000 3.01 .558 -122.45*% ~8.37* 22.66* 34.06%* .01

a) the 0.05 one-sided critical value for 100 observations is 3.11
(Dickey/Fuller 1981, table II)

b) the 0.05 one-sided critical value for 100 observations is 2.79
(Dickey/Fuller 1981, table III)

c) the 0.05 one-sided critical value for 100 observations is -20.7
(Fuller 1976, table 8.5.1.)

d) the 0.05 one-sided critical value for 100 observations is -3.45
(Fuller 1976, table 8.5.2.)

e) the 0.05 critical F-value for 100 observations is 4.88
(Dickey/Fuller 1981, table V)

f) the 0.05 critical F-value for 100 observations is 6.49
(Dickey/Fuller 1981, table VI)

*) indicates rejection at the 5% level



Table A4:

Series T
UR 165
UR 165
UR 165
UR 165
CAP 164
CAP 164
CAP 164
CAP 164
DP 167
DP 167
DP 167
DP 167

a) the 0.05 one-sided critical

[

2
4
6
10
2
4
8

10
2

o

8
10

u

.2287
.2287
.2287
.2287
~-.0419
-.0419
-.0419
-.0419
.000
.000
.000
.000

Z(tu)a)

-.27
=-1.47
-2.12
-2.73*

-.17

-.14

-.13

-.13

.01
.01
.01
.01

(Dickey/Fuller 1981, table II)

b) the 0.05 one-sided critical

(Fuller 1976, table 8.5.1.)

c) the 0.05 one-sided critical

(Fuller 1976, table 8.5.2.)
*) indicates rejection at the 5% level

a

.9613
.9613
.9613
.9613
.9133
.9133
.9133
.9133
.614
.614
.614
.614

value

value

value

Phillips/Perron Test (regressions
and lagged variable)

Z(a)b)

-14.51%*
~23.40%*
~29.95%*
=37.42%*
-26.80%*
-38.75%*
-44.69%
-43.11%*
-50.26%*
-57.19*
-91.66%*
118.71%*

include constant

Z(ta)c)

-2.76

-3.47%*
-3.92%*
-4.37*
-3.76*
-4.48%*
-4.80*
-4.72%*
-5.73*
-6.00%*
-7.25%
~-8.12%*

s(u)

.44
.44
.44
.44
2.27
2.27
2.27
2.27
.01
.01
.01
.01

for 100 observations is 2.54

for 100 observations is =-13.7

for 100 observations is -2.89



