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Abstract

We examine two major topics in the field of cryptocurrencies. On the one hand, we in-
vestigate possible long-run equilibrium relationships among ten major cryptocurrencies by
applying two different cointegration tests. This analysis aims at constructing cointegrated
portfolios that enable statistical arbitrage. Moreover, we find evidence for a connection
between market volatility and the spread used for trading. The results of the trading
strategies suggest that cointegrated portfolios based on the Johansen procedure generate
the highest abnormal log-returns, both in-sample and out-of-sample. Five out of six trading
strategies generate a positive overall profit and outperform a passive investment approach
out-of-sample.

The second part of the econometric analysis explores Granger causality between volatil-
ity and the spread. For this analysis, we implement two types of forecasting models for
Bitcoin volatility: the GARCH (generalized autoregressive conditional heteroskedasticity)
family using daily price data and the HAR (Heterogeneous AutoRegressive) model family
based on 5-min high-frequency data. In both categories, we also consider potential jumps
in the price series, as we found that price jumps play an important role in Bitcoin volatility
forecasts. The findings indicate that the realized GARCH model is the only GARCH model
that can compete against the HAR-RV (Heterogeneous Autoregressive Realized Volatility)
model in out-of-sample forecasting.
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1. Introduction

Cryptocurrencies, especially Bitcoin (BTC), have become very popular in recent years.

The market has been growing enormously, and more and more cryptocurrencies have

emerged. The total market capitalization has increased from USD 5.5 billion on 1st Jan

2015 to USD 2.2 trillion on 1st Jan 2022, which is almost a 40,000% increase (CoinMar-

ketCap, 2022). BTC with a market cap of USD 902 billion on 1st Jan 2022 was the first

cryptocurrency on the market and was developed by the pseudonymous Satoshi Nakamoto.

During the recent years, the crypto market has also become increasingly attractive for

research. Cryptocurrencies are known to be highly volatile financial assets that carry a high

risk of total loss. In the early days after introduction of Bitcoin, research concentrated on

whether it can be considered as money. Mittal (2012) argued that Bitcoin is not money and

rather resembles a commodity. Kubát (2015) investigated the same issue. He found that

Bitcoin has a significantly higher volatility than gold and the EUR-USD exchange rate, in

line with the findings of Mittal (2012). The bottom line is that the volatility of Bitcoin

is conspicuously higher than of many other typical assets and fiat currencies. Such highly

volatile financial assets have also aroused interest of hedge funds and portfolio managers,

which led to a strong incentive for modeling the volatility of BTC. Using Google Trends

data, Urquhart (2018) found that the realized volatility of BTC together with the trading

volume has a major impact on investor attention on the following day. Catania and Grassi

(2017) use a robust score driven filter for modeling the volatility of 606 cryptocurrencies.

They found that a model with time-varying skewness component has the best forecasting

performance.

In this project, we use crypto assets to construct trading strategies that are superior to

a “buy-and-hold” strategy and are also promising in an out-of-sample backtesting analysis.

Profitable trading strategies that also work during a bear market and in times with high

inflation rates are crucial in risk management and for hedging. Furthermore, we examine

a potential connection between market volatility and the presented trading strategies. Ni

et al. (2008) found a significant link between investors’ trading behavior and private volatil-

ity information in the option market. Likewise, Omane-Adjepong et al. (2019) find that
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three crypto markets violate the Efficient Market Hypothesis and that accurate volatility

forecasting can enhance optimal portfolio hedging. The authors also emphasize the impor-

tance of taking the high volatility persistence into account. Hence, the second objective is to

evaluate the forecasting performance of the volatility of BTC by estimating different types

of GARCH models with different distributions and the simple Heterogeneous Autoregres-

sive model of Realized Volatility (HAR-RV) by Corsi (2009) including several extensions.

Additionally, we focus on the incorporation of price jumps as jumps can account for a

substantial portion of the variation. The goal of this analysis is to answer the question

whether any GARCH model can compete with the HAR-RV type models, specifically the

more recent realized GARCH model. Modeling and especially accurate forecasting of the

volatility of an asset is also essential for many areas in business finance. The CME Group

launched options on Micro Bitcoin futures on 28th Mar 2022 (Group, 2022).

We discuss some of the related extant literature in the next section. Section 3 in-

troduces the data by providing some descriptive statistics and presenting relevant plots.

Section 4 covers the cointegration issue including the construction of cointegrated portfo-

lios that enable statistical arbitrage. Section 5 performs the volatility forecasting analysis

by estimating sevaral GARCH models and HAR-type models. Section 6 concludes and

summarizes the main results.

2. Literature review

The first section of this review explores the application of cointegration in finance, em-

phasizing its role in developing mean-reverting trading strategies for statistical arbitrage.

For instance, Yan and Wong (2022) consider pairs trading from a game-theoretical per-

spective and employ continuous-time vector error-correction models (VECM) to establish

statistical arbitrage strategies, including the consideration of ‘delayed’ cointegration. In a

comparison with a time-consistent dynamic pairs trading strategy based on the Markowitz

mean-variance (MV) criterion proposed by Chiu and Wong (2015), Yan and Wong (2022)

show that the non-Markovian strategy can yield additional abnormal returns when in-

sample data suggests a high-order vector autoregression (VAR). In the context of the crypto
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market, while the literature on cointegrating relationships is less extensive compared to tra-

ditional stocks, researchers and practitioners are increasingly investigating this domain due

to the market’s rapid growth and popularity. Sovbetov (2018) delves into the factors af-

fecting the prices of major cryptocurrencies, utilizing an error-correction model based on

the Autoregressive Distributed Lag (ARDL) method by Pesaran et al. (2001). His results

suggest that cryptomarket beta, trading volume, and volatility significantly influence prices

both in the long and short run. Adebola et al. (2019) study long-term interdependencies

between cryptocurrencies and the gold price, finding limited evidence of bivariate cointe-

grating relationships between gold and cryptocurrencies. Similarly, Tan et al. (2021) explore

fractional cointegration between the value at risk of altcoins and Bitcoin, revealing substan-

tial differences in findings between pre-crash and post-crash periods. The subsequent part

of this section discusses empirical work on modeling cryptocurrency volatility.

Researchers have employed various models to forecast volatility, such as GARCH mod-

els and stochastic volatility models. Cermak (2017) predicts declining volatility trends

for Bitcoin using a modified GARCH(1,1) model with macroeconomic variables, however

his prediction of volatility converging with fiat currencies did not materialize. Hou et al.

(2019) underscore the importance of considering jumps in Bitcoin’s volatility, advocating

the use of stochastic volatility models. Hung et al. (2020) propose jump-robust realized

measures for improved forecasting of realized GARCH models based on intraday data.

Bergsli et al. (2022) compare different GARCH models and the HAR-RV models, high-

lighting the superiority of the latter in forecasting Bitcoin’s volatility, especially because

of the usage of intraday data. Yu (2019) utilizes 5-minute high-frequency data to assess

five HAR models for one-step-ahead forecasts of Bitcoin’s realized volatility. His results

highlighted the significance of considering a leverage effect, with the HAR-RV model that

accounts for leverage performing better than the HAR-RV model that solely considers a

jump component. Similarly, Shen et al. (2020) expand the standard HAR-RV model by

introducing a novel specification and found it to be the most accurate forecasting model.

Additionally, they demonstrate that HAR models with structural breaks outperform those

without structural breaks across various forecasting horizons. Additionally, researchers

4



have explored machine learning techniques to enhance volatility forecasts. Bouri et al.

(2021) employ random forests to evaluate the impact of the US-China trade war on Bit-

coin volatility forecasts, with improved performance by including relevant external factors.

Aras (2021) applies a meta-learning strategy based on support vector machines, outper-

forming traditional GARCH-type models. D Amato et al. (2022) utilize deep learning

techniques to predict cryptocurrency volatility by relying on two different neural networks

and a Self-Exciting Threshold AutoRegressive (SETAR) model. Their results indicate that

the recurrent Jordan Neural Network outperforms the Non-Linear Autoregressive Neural

Network and the SETAR model in terms of the mean square error (MSE).

3. The data

We analyze cointegrated relationships among ten major cryptocurrencies. Daily price

data have been downloaded from Yahoo Finance. The full data set contains over two and

half years of price data from 31st Dec 2019 until 31st Jul 2022. The training data that

is used for estimating the cointegrating vectors and in-sample evaluation is based on the

sample period from 31st Dec 2019 until 29th Apr 2022 consisting of 851 days; the test period

for out-of-sample evaluation uses the last three months of the data set from 30th Apr 2022

until 31st Jul 2022. Table 1 presents some descriptive statistics of all cryptocurrencies

under investigation. We use adjusted closing prices in levels rather than logs, as these

admit an easier interpretation. All cryptocurrencies have rather large standard deviations

in comparison to their means, which is a characteristic of high volatility. This observation

makes the modeling and forecasting of volatility attractive (see section 5 for Bitcoin). With

a market capitalization of $ 734.59 billion, BTC is by far the dominating cryptocurrency in

the market, followed by ETH with $ 339.51 billion. The total market capitalization of the

ten considered cryptocurrencies amounts to a total of $ 1.233 trillion as of 29th Apr 2022,

which is almost equivalent to the GDP of Spain in 2020 (Worldbank, 2022).

Figure 1 visualizes the daily logarithmic prices (log-prices) of the training period for

all ten cryptocurrencies. All time series follow a similar pattern, which suggests the ex-

istence of a common stochastic trend and hence a possible long-term relationship across
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Table 1
Descriptive Statistics of all ten cryptocurrencies (Training period)

Symbol Name Min Max Mean Std Market cap

BTC Bitcoin 4,970.79 67,566.83 30,919.50 18,764.50 734.59B
ETH Ethereum 110.61 4,812.09 1,740.47 1,426.85 339.51B
BNB Binance Coin 9.39 675.68 229.22 213.02 64.18B
ADA Cardano 0.02 2.97 0.83 0.78 27.16B
XRP Ripple 0.14 1.84 0.59 0.38 29.41B
DOGE Dogecoin 0.002 0.68 0.11 0.13 17.91B
LTC Litecoin 30.93 386.45 120.50 69.17 7.04B
BCH Bitcoin Cash 152.22 1,542.43 422.95 205.79 5.61B
XLM Stellar 0.03 0.73 0.22 0.15 4.41B
XMR Monero 33.01 483.58 170.15 90.31 4.00B

Notes: Market capitalization as of 29th Apr 2022 obtained from coinmarketcap.com, denoting 109 (1 billion)
US$

Fig. 1. Log prices of cryptocurrencies
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the cryptocurrencies. To identify any potential cointegrating relationships two different

cointegration tests are applied and discussed in section 4. Another noteworthy aspect is

the correlation structure across returns. The level of correlation among returns of stock

prices differs substantially from return correlations among cryptocurrencies. Pollet and

Wilson (2010) found an average correlation of just 0.237 among the 500 largest stock pairs

in the market from 1963 to 2006. In our data, however, there are five crypto pairs with a

return correlation in excess of 0.8, which issue will be taken up in creating mean-reverting

portfolios in section 4. Even the average correlation of the log-returns is in the upper range

at 0.634. The log-returns of Dogecoin pairs have the lowest correlation.

For modeling the volatility of BTC (section 5), we use daily and intraday price data

downloaded from the cryptocurrency exchange Bitstamp. The full data set contains six

years of price data (1st Apr 2015 to 31st Mar 2021). For estimating the models and in-

sample evaluation, we use training data for the sample period from 1st Apr 2015 until 31st

Mar 2020 and an out-of-sample evaluation that covers the last year of the data set from

1st Apr 2020 until 31st Mar 2021 (COVID-19 crisis period). Figure 2 visualizes the daily

log-returns of BTC for the whole sample and provides evidence for volatility clustering.

There are remarkably many extreme values. The maximum daily log-return is 0.24, but

the minimum is -0.49, which indicates that negative returns can be more severe. Specific

statistical tools, such as normal Q-Q plots (not shown for brevity), confirm that the daily

log-returns do not follow a normal distribution, as there is a lot of weight in the tails. The

measured excess kurtosis may speak for the usage of a heavy-tailed distribution such as

Student t when estimating GARCH models, although the marginal distribution implied by

GARCH models is leptokurtic even with a normal conditional distribution (Engle (1982)).

In the following, the realized variance based on 5-min high-frequency data and its stylized

facts are analyzed.

Table 2 provides some descriptive statistics of the realized variance of BTC, the full

sample subdivided into the training period and the test sample. The data suggest that the

mean and the median of all subsamples are nearly equal. Moreover, not very surprisingly

the realized variance for any subgroup is non-Gaussian, which is visible through the excess
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Fig. 2. Daily Log-returns of BTC

Table 2
Descriptive Statistics of the Realized Variance

Full sample Training period Test period

count 2192 1827 365
mean 0.0021 0.0022 0.0017
std 0.0043 0.0046 0.0026
min 0.00003 0.00003 0.00003
25% 0.0005 0.0005 0.0005
50% 0.0009 0.0009 0.0009
75% 0.0021 0.0022 0.0018
max 0.1066 0.1066 0.0297
skewness 10.4957 10.2992 5.4818
kurtosis 189.8533 177.8116 48.0258
Jarque-Bera (p-value) < 0.0001 < 0.0001 < 0.0001
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Fig. 3. Realized Variance of BTC

kurtosis and the positive skewness. The realized variance of Bitcoin follows a leptokurtic

and right-skewed distribution.

Figure 3 indicates that there are huge peaks occasionally. These extreme values occur

in particular at the beginning of the COVID-19 crisis, which led to considerable fear in the

market and hence much volatility. An additional explanation for these extreme values could

be the presence of price jumps so it makes sense to have a look at the jump variation too.

The discontinuous variation of the realized variance can be estimated with any estimator

that consistently estimates the integrated variance of the quadratic variation in the presence

of jumps. Simply speaking, it is just defined as the difference of the realized variance and

a jump-robust realized measure. Section 5.1 provides more details on these estimators.

Figure 4 shows that there are indeed many days with a relatively high jump variation.

To detect significant jumps in the price process of Bitcoin the JO Jump test by Jiang and

Oomen (2008) is performed. Section 5 provides further details on this test. Lastly, we want

to investigate whether the realized variance of BTC follows a log-normal distribution as it

is the case with many other assets. For this analysis we looked at the Q-Q-Plot and the

corresponding density of the logarithmic realized variance of the full sample, of the first

three years of the sample (1st Apr 2015 to 31st Mar 2018) and of the last three years (1st

Apr 2018 to 31st Mar 2021).
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Fig. 4. Jump Variation of BTC

Our investigation insinuates that the Gaussian distribution is a rather crude approxima-

tion for the realized variance. There is too much weight in the tails. In the first three years,

the evidence against the log-normality property is even stronger, whereas the log-normality

property holds better for 2018–2021. The density looks more symmetric and the tails are

thinner. In summary, the results suggest that there are more extreme values of the realized

variance in the first three years than in the last three years. The realized variance may

be time-varying. This is also in line with Figure 4, as the realized variance in the second

sub-period contains less outliers except at the beginning of the COVID-19 crisis.

4. Cointegration

The portfolio constructions that we use are linear combinations of individual cryptocur-

rencies. The I(1) property of many financial time series is well established in the literature

(see Alexander (1999)). A variable is said to be I(1) (or first-order integrated) if it is non-

stationary but its first difference is stationary. Whereas some researchers claim that the

variance of speculative prices is infinite (see Mandelbrot (1963)), and this may be particu-

larly relevant for the highly volatile cryptocurrencies, we keep a finite variance as a technical

assumption, well aware that the statistical properties of many time series procedures are

no longer guaranteed if the condition of finite variance is violated.
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Stationary combinations of I(1) variables are of special interest, and this is the prop-

erty of cointegration that has been introduced by Granger (1981). To empirically establish

the cointegration property and to estimate the stationary linear combinations, various pro-

cedures are available. The simplest and oldest one is the EG-2 procedure by Engle and

Granger (1987). This method is now known to be inefficient and it can be regarded as

outdated. Another shortcoming is the fact that EG–2 is difficult to generalize to more than

two I(1) variables. The other method that we consider is the efficient maximum-likelihood

procedure by Johansen (1988).

4.1. Testing for cointegration

The EG-2 procedure proceeds as follows. Consider two first-order integrated variables

X and Y . Estimate the simple cointegrating regression Yt = β0 + β1Xt + εt by OLS to get

estimates of β0 and of β1. Run a unit-root test on the residuals ε̂t = Yt − β̂0 − β̂1Xt =

Yt− β̂
′
Xt

1. For n regressors we can write ε̂t = Yt− β̂′Xt
2. If it rejects, the errors εt can be

seen as I(0). ε̂t can also be interpreted as the error-correction term (ECT), when estimating

an error-correction model.

We use the most commonly used unit-root test, i.e. the (augmented) Dickey-Fuller test

by Dickey and Fuller (1979). In this test, differenced variables are regressed on p lagged

differences, on deterministic variables, and on a lagged level term. The t–value of the

coefficient of the lagged term defines the test statistic. The constant p is often found

via information criteria such as AIC. The null hypothesis of the Dickey-Fuller test is the

existence of a unit root. With regard to deterministic parts, there exist three variants, the

DF0, the DFµ, and the DFτ test. For a summary overview of differences across the three

types, we refer to Dickey and Fuller (1979). For DF0 and DFµ, the null is an I(1) process,

i.e. a generalized random walk.

In a preliminary step, both X and Y are tested by DFτ for unit roots, and ∆X and

∆Y are tested by DFµ. If the level tests do not reject and the tests in differences reject,

1Here, β and Xt are of dimension (2× 1).
2Here, β is an ((n+1)× 1) vector (including the intercept), and Xt is another ((n+1)× 1) vector of n

I(1) regressors extended by one.
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both X and Y can be viewed as I(1). In this case, Y is regressed on X, and the residuals

are subjected to a DF0 test, which can be seen as the second step of EG-2. In this step,

the original DF significance points are invalid and correct significance points tabulated in

Phillips and Ouliaris (1990) should be used.

The Johansen procedure for testing and estimation of cointegrated systems considers

a multivariate VAR(p) model. This VAR(p) model can be written as a VAR(p − 1) in

differences with an additional ECT β′Xt−1. In this form, it is also called a vector error-

correction model (VECM).

∆Xt = δ +αβ′Xt−1 + Γ1∆Xt−1 + . . .+ Γp∆Xt−p+1 + εt,
3

where β′Xt−1 is stationary and αβ′ is called the impact matrix Π which is an n×n–matrix

of rank r. According to this rank r, there are three cases:

1. If r = 0 then Π is a zero matrix and there is no cointegration in the system which

implies that the VAR(p) model is really a VAR(p− 1) model for differences ∆X

2. If Π has full rank (r = n) and is non-singular then X is already stable

3. If the rank r ofΠ fulfills 0 < r < n, then there are r linearly independent cointegrating

vectors βj , j = 1, . . . , r, such that β′
jX is stationary.

β contains dynamic equilibrium conditions, and the loading matrix α describes how

the components of ∆X react to deviations from these conditions. To identify the rank

r of the impact matrix Π and hence the number of cointegrating vectors, the trace test

of the Johansen procedure is used. Here, we choose the 5% significance level to estimate

the error-correction model given r = r0. This is a so-called reduced rank regression and

requires solving the canonical correlation eigenvalue problem. For details see Johansen

(1988), Johansen (1991), Johansen (1995).

3Here, Xt is again a (n × j) matrix, α and β are of dimension (n × r), where r is the number of
cointegrating relationships.
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4.2. Trading the spread

In this section, we briefly describe the implementation of trading strategies exploiting

cointegrating relationships among cryptocurrencies. The presented strategies are very sim-

ilar to a market neutral pairs trading strategy where the spread of two cointegrated stocks

is traded and a trader short sells the overvalued stock and takes a long position in the

undervalued stock. Pairs trading and also our trading strategies only work if the spread

is mean-reverting such that it is necessary to have a long run equilibrium. Gatev et al.

(2006) adopted such an investment strategy for different stock pairs. Their results suggest

that pairs trading yields average annualized excess returns of approximately 11%. Likewise,

Tokat and Hayrullahoğlu (2022) apply pairs trading to a portfolio of 45 pairs. They find an

average annual return of 15% with an average Sharpe ratio of 1.43 after considering trans-

action costs. The trading design of our investment strategy here works as follows. In line

with Leung and Nguyen (2018) we create a cointegrated portfolio of different cryptocurren-

cies but in contrast to them we use ten cryptocurrencies instead of just four. The first step

is to find potential cointegrating vectors that guarantee a mean-reverting spread. For this

purpose, the Johansen procedure and the Engle-Granger two-step procedure are used. We

first apply them to each BTC pair, then we construct a portfolio of all ten cryptocurrencies

and apply them again. Although EG-2 is known to be inefficient, we still use it here as

a benchmark due to its simplicity. For EG–2 with more than five explanatory variables,

MacKinnon (2010) provides critical values.

On the other hand, we want to compare the performance of an investment strategy

based on the EG-2 and on the Johansen procedure. Among other authors, Alexander

(1999) emphasized the importance of a thorough out-of-sample performance evaluation

when applying statistical arbitrage investment strategies. Therefore, we split the sample

into a training period and a test period. After finding potential cointegrating vectors,

two (or more) different spreads are obtained depending on the rank of the impact matrix.

spreadEG
t denotes the spread of the EG-2 and spreadJ,1t naming the spread as a result of

the Johansen procedure for the first cointegrating vector, spreadJ,2t is based on the second

vector and so on. For the optimal threshold that determines the level for buying or selling
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the spread, there exist many suggestions in the literature. The optimal threshold is defined

as the one that maximizes the overall profit. For a discussion we refer to Song and Zhang

(2013), Ngo and Pham (2016), and Liu et al. (2020), for instance. In general, the trading

strategy for in-sample evaluation works as follows:

� Long the spread if spreadit ≤ µ− τ for i ∈ {EG, J1, J2, . . .}

� Unwind a long position at the first date when spreadit ≥ µ for i ∈ {EG, J1, J2, . . .}

� Short the spread if spreadit ≥ µ+ τ for i ∈ {EG, J1, J2, . . .}

� Unwind a short position at the first date when spreadit ≤ µ for i ∈ {EG, J1, J2, . . .}

� If there is any open position until the end, the position is closed at the last trading

day.

Note that µ is the mean of the spread and τ the threshold. ‘Long the spread’ has the

same meaning as buying one unit of the spread, which requires purchasing every cryptocur-

rency with a positive sign and short selling the cryptocurrencies with a negative sign as

indicated by the corresponding cointegrating vector. To unwind a long position, it is nec-

essary to sell the cryptocurrencies with a positive sign and buy back all cryptocurrencies

with a negative sign. ‘Short the spread’ just means short selling one unit of the spread

where one needs to short sell the cryptocurrencies with a positive sign and buy the cryp-

tocurrencies with a negative sign. Unwinding a short position requires buying back the

short cryptocurrency with a positive sign and selling the cryptocurrencies with a negative

sign. It should be noted that short selling only happens if one long or short the spread, as

defined before, but not when the position is closed since the cryptocurrencies are already in

the inventory. Furthermore, in this paper we use two different thresholds for the in-sample

trading strategy, i.e. τ ∈ {σ, τ∗}, where σ denotes the standard deviation of the spread

and τ∗ the optimal threshold based on a parametric approach. Generally, the total profit

is simply the number of trades times the profit of each trade. The number of trades can

be estimated if the distribution of spreadit for i ∈ {EG, J1, J2, . . .} is known. For the case

of spreadEG
t this may often be approximately normal. Nevertheless, the distribution of
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spreadJ,1t , spreadJ,2t , . . . is unknown. For estimating the best fitting distribution and the

corresponding optimal parameters, we use the Fitter package in Python, which minimizes

the sum of squared errors.

After this analysis, it is possible to estimate the number of trades. Let ψi(.) denote the

estimated CDF of spreadit for i ∈ {EG, J1, J2, . . .}. Then the number of trades is roughly

given by

N ∗ [P(spreadit < µ− τ) + P(spreadit > spreadµ+ τ)] = 851 ∗ [ψi(τ) + (1− ψi(τ))], (1)

for i ∈ {EG, J1, J2, . . .}, where N is the number of trading days. Furthermore, the profit

of each trade is approximately τ . As a result, the optimal threshold solves a simple maxi-

mization problem, formally

τ∗ = argmaxτ{851 ∗ τ ∗ [ψi(τ) + (1− ψi(τ))]} for i ∈ {EG, J1, J2, . . .}. (2)

One shortcoming of this approach is that equation (1) does not exactly describe the number

of profit realizations since a profit is only realized if the spread crosses the mean after it

reaches the upper or lower threshold. Nevertheless, if the spread is mean-reverting due

to cointegrated time series it will always converge to equilibrium after it deviates from

the mean by |τ |. Therefore, equation (2) holds approximately for calculating the optimal

threshold τ∗. For simplicity we assume that it is only possible to long or short one unit of

the spread. Finally, we compare the trading strategies with both thresholds when investing

$ 1,000 at the beginning with a passive trading strategy where $ 1,000 are equally invested

in all ten cryptocurrencies (i.e., $ 100 per cryptocurrency) at the start then sold at the end

of the period. As already mentioned, it is crucial that the trading strategies are subject

to an out-of-sample backtesting analysis. For backtesting, we use a time interval of three

months where we introduce two different trading strategies. For both strategies we use the

same cointegrating vectors estimated from the training data. If there really exists a long-

term relationship we expect that the ECT is also stationary when using the same coefficient

vector but the log-prices of the test period. Since the future and hence the price data of
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Table 3
Dickey-Fuller test results

levels DFτ differences DFµ

Variable test statistic test statistic

BTC -1.416 -13.5199
ETH -1.2534 -8.6162
BNB -1.5050 -7.4993
ADA -0.4915 -13.1993
XRP -2.2439 -29.9345
DOGE -1.1167 -15.5711
LTC -1.5778 -10.8248
BCH -1.4857 -7.8711
XLM -1.3145 -30.4498
XMR -2.1101 -13.248

critical value 1% -3.970 -3.438
critical value 5% -3.416 -2.865

the test period are assumed to be unknown it is not possible to calculate the mean and the

standard deviation of the test data. To overcome this issue, we employ a rolling window

approach with two different window sizes: A long window with the same length as the test

period, which reacts slowly to a sudden significant fall or increase of the spread, and a

short window with a length of ten days, which is able to adjust fast to abrupt behavior

of the spread. To accomplish this, we extend the out-of-sample data at the start with

the last three months (ten days) of the training data for calculating the 90-day (10-day)

moving average and the 90-day (10-day) rolling standard deviation. This approach allows

for calculating the moving average and the rolling upper and lower threshold for each single

day in the test period as time goes by. A difference to the in-sample evaluation is that the

mean and both thresholds are time-varying. This implies in symbols τ ∈ {σt(10), σt(90)},

because with this backtesting approach it is not possible to estimate the distribution of

the test sample like it is done in-sample. Again, all out-of-sample trading strategies are

compared to a passive investment strategy in the same way as described for the in-sample

evaluation.
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Table 4
EG-2 unit root test results (pairs and portfolio)

pairs test statistic

BTC-ETH -1.7321
BTC-BNB -1.9864
BTC-ADA -2.0167
BTC-XRP -2.8475
BTC-DOGE -1.9706
BTC-LTC -2.1886
BTC-BCH -1.5833
BTC-XLM -2.9836
BTC-XMR -2.834
critical value 1% -3.96
critical value 5% -3.37

portfolio

spreadEG
t -5.7634

critical value 1% -6.00
critical value 5% -5.47

Note: Critical values follow MacKinnon (2010).

4.3. Empirical results

Table 3 indicates that all variables follow non-stationary processes with a unit root.

We use the DFτ specification for all variables as we assume that all cryptocurrencies are

trending. It is crucial that all variables are I(1) to be able to apply cointegration tests.

Dickey-Fuller test results for first differences—here the DFµ variant is used as growth rates

do not trend—are shown in the right part of Table 3: the null hypothesis is now generally

rejected at the 1% significance level. This means that all variables are integrated of order

one, I(1).

The results of EG-2 in Table 4 are surprising, as no pair is cointegrated at a reasonable

significance level. A portfolio containing more than two and maybe even all cryptocurren-

cies, however, may still have a long-run relationship. To consider all ten cryptocurrencies,

we run the following regression:

BTCt = β0 + β1ETHt + β2BNBt + β3ADAt + β4XRPt + β5DOGEt

+β6LTCt + β7BCHt + β8XLMt + β9XMRt + εt (3)
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Estimating this regression enables calculating the spread that can be used for statistical

arbitrage. The spread is given by

spreadEG
t = BTCt − 6.8297− 0.2034ETHt − 0.1130BNBt − 0.0684ADAt

+0.1231XRPt + 0.0667DOGEt − 0.8213LTCt + 0.5001BCHt

−0.1459XLMt − 0.1016XMRt (4)

If there is cointegration in the system, the spread as defined in equation (4) should be

stationary. Applying the Dickey-Fuller test yields the bottom row of Table 4. Whereas

EG-2 does not find any cointegrating relationship for any Bitcoin pair, the test for mul-

tiple regression residuals suggests that the portfolio containing all ten cryptocurrencies is

cointegrated at the 5% significance level. Figure 5 shows the time series of spreadEG
t . For

our purposes, we omit the intercept of the cointegrating vector in the construction of the

spread, as it cannot affect its stationarity.

Equation (4) informs that to long one unit of the spread one needs to buy 1, 0.1231,

0.0667 and 0.5001 units of BTC, XRP, DOGE and BCH, respectively. In addition, it is

necessary to short sell 0.2034, 0.1130, 0.0684, 0.8213, 0.1459 and 0.1016 shares of ETH,

BNB, ADA, LTC, XLM and XMR, respectively. Shorting one unit of the spread works the

other way around. In contrast to classical stocks, it is feasible to buy fractional shares up

to eight decimal places of a crypto asset.

We now consider the results of the Johansen procedure. In contrast to EG-2 there is

cointegration for some cases. With a 5% (10%) significance level, the null of no-cointegration

is rejected three (five) times. As convened above, we generally go for a 5% significance level,

whereupon we conclude that the three cryptocurrencies pairs BTC-BNB, BTC-XRP and

BTC-DOGE are cointegrated. The BTC-DOGE relationship is rather surprising, as the

log-returns of Bitcoin have the lowest correlation with the log-returns of DOGE. For the

optimal VAR lag order, we adopted the optimum of 5 found by AIC and FPE. The stricter

criteria BIC and HQIC would have selected an optimum of only 1.

The trace test rejects H0 : r = 0 at the 1% significance level and H0 : r ≤ 1 at the
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Table 5
Johansen test results (pairs)

Variables pair H0 Test statistic

BTC-ETH r ≤ 1 1.7348
r = 0 14.2598*

BTC-BNB r ≤ 1 5.1611**
r = 0 20.9306***

BTC-ADA r ≤ 1 2.1820
r = 0 14.0817*

BTC-XRP r ≤ 1 1.8931
r = 0 20.009***

BTC-DOGE r ≤ 1 3.2619*
r = 0 16.1165**

BTC-LTC r ≤ 1 0.969
r = 0 10.1242

BTC-BCH r ≤ 1 0.6756
r = 0 12.8733

BTC-XLM r ≤ 1 1.7671
r = 0 11.087

BTC-XMR r ≤ 1 1.8913
r = 0 11.255

Notes: The VAR lag order is chosen by minimizing the AIC for lags up to 10. Critical
values are 2.7055, 3.8415, 6.6349 for H0 : r ≤ 1 and 13.4294, 15.4943, 19.9349 for
H0 : r = 0, in both cases at 10%, 5%, 1% significance.

Table 6
Johansen test results (portfolio)

critical value
H0 Test statistic 10% 5% 1%

r ≤ 3 113.224 120.367 125.618 135.982
r ≤ 2 157.392 153.634 159.529 171.09
r ≤ 1 207.712 190.871 197.377 210.037
r = 0 274.497 232.103 239.247 253.253

Notes: Critical values are based on MacKinnon et al. (1999)
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Table 7
Cointegrating vectors (Johansen procedure)

βJ,1 βJ,2
BTC 1.0000 0.0000
ETH 0.0000 1.0000
BNB -0.5311*** 1.8189***
ADA -0.5807* -0.9590
XRP 0.0266 0.3268
DOGE 0.4241 -0.8650*
LTC -1.0504*** -5.4176***
BCH 0.2079 3.8990***
XLM 0.9163*** 3.2049***
XMR -0.2590 -2.3504***

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. The
values for BTC and ETH are restricted and are not tested.

5% significance level, but H0 : r ≤ 2 is only rejected at the 10% significance level, which

we consider as insufficient evidence. In summary, we conclude that the rank of the impact

matrix is 2, so we estimate a VECM with a cointegrating rank of r0 = 2. Table 7 shows

both significant cointegrating vectors. In βJ,1 there are only four significant coefficients,

namely BNB, ADA, LTC and XLM, while ADA is only significant at the 10% level. βJ,2

has a more desirable outcome with only two insignificant parameters (ADA and XRP).

LTC and BCH represent the largest entries (in absolute terms) of the second vector and

are highly significant.

Figure 5 shows the time series of all error-correction terms, which should be stationary

and represent the three spreads.

It is immediately apparent that all spreads fluctuate around zero and that spreadJ,2t has

the highest standard deviation. A stationary time series with high variance is pleasant, as a

high standard deviation yields higher average returns. Figure 5 confirms that the residuals

of equation (4) look indeed stationary even the standard deviation compared to spreadJ,2t

is relatively low. The time series of spreadJ,1t in Figure 5 also looks stationary with a

slightly higher variation but there was a huge deviation from the long-run equilibrium at

the beginning of the year 2021. This may have been caused by the fast increase of the BTC

price, which peaked at around $ 50,000 in March 2021, as βJ,1 puts the greatest weight
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Fig. 5. Time series of all Spreads

on BTC with one unit. By contrast, the start of the COVID-19 crisis did not result in a

significant disequilibrium.

ECT 2 shows a similar picture since the time series of spreadJ,2t fluctuates around zero.

Again, at the start of the year 2021 the cryptocurrencies were in disequilibrium. However,

the spread converges back to its long-run equilibrium relatively fast, which indicates a long-

term relationship between the variables. βJ,2 puts zero weight on BTC by construction.

The exclusion of any BTC-ETH interaction may be also responsible for the better fit of the

ECT based on the EG-2 for two reasons. First, the return correlation matrix (not shown

for brevity) insinuates that Bitcoin forms a group of closely related assets with Ethereum,

Litecoin and Bitcoin Cash. This is why the cointegrating vectors may depend strongly

on the BTC-ETH, BTC-LTC and BTC-BCH interaction. While βJ,1 and βJ,2 exclude the

BTC-ETH relationship by definition, βEG allows any interaction. Second, the Johansen

trace test rejects the null of no-cointegration between BTC and ETH at least at the 10%

significance level indicating the importance of the BTC-ETH interaction.

Table 8 provides the estimates of the loading matrix α. The adjustment parameters in

ECT1 are all positive while in ECT2 the parameters are all negative (except for XMR).

The coefficients are rather small, however, which implies a slow speed of adjustment. Since

ten variables are involved in the VECM, the interpretation of the parameters is complex.
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Table 8
Loading matrix

ECT1 ECT2
BTC 0.0133** -0.0077***
ETH 0.0202*** -0.0088***
BNB 0.0401*** -0.0100***
ADA 0.0344 -0.0094**
XRP 0.0049 -0.0058
DOGE 0.0263** -0.0044
LTC 0.0147* -0.0051
BCH 0.0116 -0.0099***
XLM 0.0055 -0.0177***
XMR 0.0203*** 0.0013

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Table 9
Optimal thresholds

spread Estimated CDF τ∗

spreadEG
t ψEG(.) = N(µ = 6.8297, σ = 0.0733) 0.055

spreadJ,1t ψJ,1(.) = LN(µ = 0.5561, σ = 0.3869) 0.209

spreadJ,2t ψJ,2(.) = t3.0768(µ = 0.0351, σ = 0.3889) 0.37

When considering the significance in ECT1 we found that only BTC, ETH, BNB, DOGE,

LTC and XMR are significant at the 10% significance level, which means that only these

variables adjust to deviations from the long-run equilibrium. In ECT2, the loading coef-

ficients significant at 5% include BTC, ETH, BNB, ADA, BCH and XLM, which means

that these variables react to the error-correction term. The variables with a true α = 0

are weakly exogenous for the cointegrating vector as defined by Engle et al. (1983), which

implies that Ripple (XRP) is the only exogenous variable.

Table 9 shows distribution estimates for spreadit for i ∈ {EG, J1, J2}. Three different

specifications achieve the best fit: a normal distribution for spreadEG
t ; a log-normal distri-

bution for spreadJ,1t ; and a t–distribution for spreadJ,2t . Now it is possible to solve equation

(2) for each CDF to obtain the theoretical optimal threshold.

For the further analysis, we use the following notation for the sake of simplicity:

� Trading strategy 1: Use spreadEG
t with τ = σ

� Trading strategy 2: Use spreadEG
t with τ = τ∗
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Table 10
Summary of all trading strategies (In-sample: 2019/12/31-2022/04/29)

Trading strategy
Strategy 1 2 3 4 5 6

Total return realizations 25 26 9 10 17 28
Total transactions 50 52 18 20 34 56
Largest log-return 15.02% 15.00% 60.22% 55.18 % 162.41% 139.54%
Lowest log-return 7.72% 4.18% 16.33% 11.50% 26.56% -1.56%
Average log-return 11.11% 9.18% 32.81% 29.87% 87.90% 64.84%
Total log-return 277.83% 238.66% 295.31% 298.74% 1,494.37% 1,815.42%

� Trading strategy 3: Use spreadJ,1t with τ = σ

� Trading strategy 4: Use spreadJ,1t with τ = τ∗

� Trading strategy 5: Use spreadJ,2t with τ = σ

� Trading strategy 6: Use spreadJ,2t with τ = τ∗

� Trading strategy 7: Passive investing approach

We note that both spreads based on the Johansen procedure have a much higher stan-

dard deviation than the spread of the EG-2 (see Table 9). Since the profit for two subsequent

trades equals approximately τ it can be conjectured that spreadJ,1t and spreadJ,2t have a

higher average return. Moreover, spreadEG
t and spreadJ,2t seem to have a higher speed

of mean reversion than spreadJ,1t resulting in more mean-crossings and thus more trades.

When looking at the optimal thresholds in Table 9 and comparing them to the standard

deviations of the spreads it is discernable that τ∗ of all spreads is smaller than σ leading to

more profit realizations. Table 10 summarizes the most important key data.

As expected, trading strategies 3 and 4 result in fewer return realizations due to the

slow mean reversion. A return realization occurs after unwinding a long/short position that

is why two transactions in total (long/short the spread and unwind long/short position) are

needed. Nevertheless, the overall returns of both strategies are higher than the total return

of trading strategy 1 and 2 according to spreadEG
t , even though strategies 1 and 2 lead to

almost three times as many transactions than strategies 3 and 4. Another outcome that

stands out is the clear superiority of trading strategies 5 and 6. We conjecture that the main
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Fig. 6. Cumulative returns – All trading strategies (In-sample)

driver of this dominance is the fast mean-reverting spreadJ,2t and its relatively high standard

deviation. Even though the average return of strategy 5 is around 20 percent points larger

than of strategy 6, the significantly more transactions of strategy 6 predominate yielding a

higher overall return. On the one hand, both trading strategies resting upon the Johansen

approach with the theoretical optimal threshold outperform the strategies where σ is used

as threshold. On the other hand, the mean-reverting portfolio constructed with spreadEG
t

and τ = τ∗ has a weaker performance than strategy 1 where just the standard deviation

is used. Because of this result the effect of the usage of τ∗ is ambiguous but because of

the superiority in two out of three cases we assume that estimating the distribution of

the spread still makes sense for calculating the optimal threshold. Finally, the next plot

illustrates the time series of the cumulative returns of all six trading strategies and the

passive investment approach.

Figure 6 shows that trading strategies 5 and 6 are clearly superior to all other strategies.

Moreover, we found that if all cryptocurrencies bought at the beginning were sold at almost

any time point during 2021, the passive investment strategy would be superior to all trading

strategies except both strategies generated by spreadJ,2t . This is a strong result as it suggests

that the risk associated with trading has no remarkable advantage over a long-term passive

investing strategy. However, due to the crypto bear market starting at the beginning of
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Table 11
Summary of all trading strategies (In-sample)

Strategy Final wealth

Trading strategy 1 $3,778.31
Trading strategy 2 $3,386.56
Trading strategy 3 $3,953.14
Trading strategy 4 $3,987.43
Trading strategy 5 $15,943.67
Trading strategy 6 $19,154.22
Trading strategy 7 $3,789.56

2022 strategy 7 becomes less attractive ex post and approaches a similar level as trading

strategies 3 and 4. Figure 6 indicates that trading strategies 3 and 4 outperform the

passive investment strategy, while both strategies constructed by spreadEG
t generate less

profit than strategy 7. Table 11 summarizes the final wealth of all strategies including the

$1,000 investment at the beginning. Trading strategy 6 with a final wealth of $19,154.22

is second to none and yields a five-time higher final wealth than the passive investing

strategy. Whether the superiority of the strategies generated by spreadJ,2t is also present

out-of-sample, appear in the next section.

As before, for simplicity the further analysis considers the following notation:

� Trading strategy 1: Use spreadEG
t with τ = σt(90)

� Trading strategy 2: Use spreadEG
t with τ = σt(10)

� Trading strategy 3: Use spreadJ,1t with τ = σt(90)

� Trading strategy 4: Use spreadJ,1t with τ = σt(10)

� Trading strategy 5: Use spreadJ,2t with τ = σt(90)

� Trading strategy 6: Use spreadJ,2t with τ = σt(10)

� Trading strategy 7: Passive investing approach

First of all, it is immediately apparent that the process of all three spreads has the same

pattern. Until the mid of June 2022, the spread is more or less mean-reverting followed
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Table 12
Summary of all trading strategies (Out-of-sample: 2022/04/30-2022/07/31)

Trading strategy
Strategy 1 2 3 4 5 6

Total return realizations 4 12 5 10 3 11
Total transactions 8 17 10 17 6 16
Largest log-return 7.74% 6.44% 8.76% 8.76% 40.43% 39.42%
Lowest log-return -21.01% -31.45% -20.95% -18.09% -39.43 -119.34%
Average log-return -0.34% 0.24% 0.97% 0.50% 7.84% 5.13%
Total log-return -1.37% 2.84% 4.86% 5.04% 23.51% 56.44%
Final wealth in $ 986.29 1028.46 1048.62 1050.44 1235.12 1564.36

Final wealth for Trading strategy 7: $ 552.77

by a huge downward movement. This suggests that during this time interval something

happened causing a disequilibrium of the cryptocurrencies. As it is the case in-sample the

mean-reversion of spreadJ,1t is very slow leading to a continuing downward movement, while

in July 2022 spreadEG
t fluctuates at a relatively constant level and spreadJ,2t even slowly

converges back to its long-run equilibrium at the end of the period indicating the best mean-

reversion. Another explanation for the better mean-reverting property of spreadJ,2t are the

findings of Table 8 since the more significant and negative loading parameters lead to an

adjustment to return to the long-run equilibrium after the disequilibrium. Furthermore,

all trading strategies with a 90-days rolling window generate a loss at the end of the test

period by unwinding the last long position because of the significant deviation from the

long-run equilibrium. Using a shorter window size results in significantly more transactions

than the longer 90-days window.

Table 12 summarizes the key facts of all out-of-sample trading strategies. All trading

strategies except strategy 1 produce a positive return at the end of the period. Strategies

with a shorter window size seem to outperform trading strategies with a 90-day window

length. Just as in the in-sample evaluation, trading strategy 2 based on spreadEG
t yields

the lowest positive total log-returns. Likewise, trading strategy 6 based on spreadJ,2t yields

the highest total return with 56.44% despite a loss of more than 100%. This outcome

could provide evidence that a good in-sample trading performance with a cointegrated

cryptocurrency portfolio is also a good indicator for a promising out-of-sample performance.

This can be pinned down by the fact that regardless of the window size both trading
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Fig. 7. Cumulative returns (Out-of-sample)

strategies based on spreadJ,2t outperform all other trading strategies. In any case, the main

takeaway of the out-of-sample backtesting analysis is that the strategies with the 10-days

window length are superior to the strategies with a window size of three months by resulting

in a considerable higher total return. When comparing the first two trading strategies one

can see that using a short window generates a positive profit while using the 90-days window

leads to a loss. Figure 7 compares the cumulative returns of all six trading strategies to

the passive investment approach.

All trading strategies yield a higher total return than the passive investment approach

because of the crypto bear market during 2022. These results suggest that cointegrated

cryptocurrency portfolios can be useful for hedging against a downtrend market. As already

implied by Table 12, strategy 6 is by far the best performing trading strategy. In addition,

trading strategy 5 tends to outperform the first four trading strategies and even strategy 6 at

the beginning of July but the costly unwinding of the last long position leads to a huge loss

and hence a weaker performance than trading strategy 6. However, the bottom line is that

the superiority of trading strategy 6 based on spreadJ,2t is also prevailing out-of-sample.

Figure 7 (see also Table 12) shows that trading strategy 1 and the passive investment

strategy result in a loss while the other strategies yield positive profits. To relate this

outcome to the high inflation rates in Europe and the US nowadays, these findings indicate
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that statistical arbitrage strategies based on cointegrated cryptocurrency portfolios are

indeed a profitable shield against high inflation rates. Considering an annual inflation of

10% for simplicity, it is necessary to generate a final wealth of at least $1, 000 ∗ (1.1)
3
12 =

$1, 024.11 after the three months test period, which can be achieved with five out of six

statistical arbitrage strategies.

4.4. Volatility and the spread

In this section we investigate the impact of market volatility on the spread that is used

for statistical arbitrage. The time series of the three spreads show that there are huge

spikes occasionally, which may be caused by high volatility in the market. This becomes

especially apparent when looking at spreadJ,1t and spreadJ,2t . As a proxy for the overall

volatility in the cryptocurrency market we use the Crypto Volatility Index (CVI), which

is the counterpart to the well-known CBOE Volatility Index (VIX). Figure 8 shows the

CVI during the in-sample period. It indicates that there are three excessive spikes caused

by, among other things, the start of the COVID-19 pandemic. Both episodes of a strong

disequilibrium of spreadJ,1t and spreadJ,2t are periods of high market volatility implied by

the CVI. This suggests that there may be a connection between the spread and market

volatility.

Fig. 8. Crypto Volatility Index
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In order to find empirical evidence for a potential relatedness between volatility and the

spread we apply a simple Granger causality test (see Granger (1969)). Usually, Granger

causality is tested via a restriction test in a VAR. For the following analysis we estimate

three bivariate VAR models to test for Granger causality between the CVI and each indi-

vidual spread. To ensure a stable VAR it is necessary that each variable is I(0). spreadEG
t ,

spreadJ,1t and spreadJ,2t are covariance stationary by definition, so the only critical variable

is CVI. For CVI, the DFµ test rejects the null of a unit root at the 5% significance level

indicating that CVI is covariance stationary, resulting in stable VAR models.

Table 13
Granger causality test results

H0 p-value Conclusion VAR lag order

CVI does not Granger cause spreadEG
t 0.4265 Not reject 1

CVI does not Granger cause spreadJ,1t 0.0256 Reject 5

CVI does not Granger cause spreadJ,2t 0.2531 Not reject 8

Notes: The VAR lag order is chosen by minimizing the AIC for lags up to 10

The results of Table 13 suggest that there is only one case where the CVI Granger

causes the spread. Whereas this appears to be a weak result for a strong connection between

volatility and the spread used for establishing the trading strategies, the CVI is only a noisy

proxy for the overall cryptocurrency market volatility and not a reliable indicator for the

volatility of the three cointegrated portfolios based on just ten specific cryptocurrencies.

Nevertheless, we found evidence that the CVI granger cause spreadJ,1t implying that the

CVI is useful in forecasting spreadJ,1t . Thus, there is evidence that the volatility of each

individual cryptocurrency in the portfolio helps to generate a more accurate forecast for

the spread. Hence, the incorporation of volatility for statistical arbitrage strategies leads

to a better out-of-sample performance especially due to the high volatile crypto market.

On the basis of this conjecture, the next section deals with a rigorous volatility analysis of

the most popular cryptocurrency BTC. In addition, we make out-of-sample one-step ahead

volatility forecasts and consider potential price jumps. The same analysis can be applied

to the other nine cryptocurrencies.
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5. Volatility modeling

Understanding the sources and the dynamics of volatility in financial markets is crucial

in risk management, portfolio allocation, derivative pricing and other related fields. In this

section, we introduce two kinds of volatility models, which are used for estimating and

forecasting the volatility of BTC in the period from 1st Apr 2015 until 31st Mar 2021. On

the one hand, we use different types of GARCH models including the standard GARCH

model, the EGARCH, the GJR-GARCH and the more recent realized GARCH model. On

the other hand, six different HAR-RV models are also estimated.

5.1. Theoretical framework

This subsection discusses the methodology of the four GARCH models and of the HAR-

type models.

Generalized autoregressive conditional heteroskedasticity (GARCH) models of order p

and q as proposed by Bollerslev (1986) are used for modeling the conditional variance. They

allow for a high persistence in the process. In the following only the simple case p = q = 1

is considered, which reduces the process to

rt = µt + σtzt,

σ2t = ω + α1r
2
t−1 + β1σ

2
t−1,

where rt denotes the observed log-returns of Bitcoin and µt the conditional mean. zt is a

standardized i.i.d. error term with E[zt] = 0 and V[zt] = 1, formally zt ∼ i.i.d.(0, 1). In

the following analysis zt is specified as following either a normal distribution or a Student’s

t-distribution. σt is a conditionally deterministic function depending on the history of the

process. To ensure stability it must hold that α1 + β1 < 1.

The exponential GARCH (EGARCH) model is an asymmetric GARCH model intro-

duced by Nelson (1991) that considers leverage effects between positive and negative shocks.
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The conditional variance in the EGARCH(1,1) model is given by

log(σ2t ) = ω + α1zt−1 + γ1(|zt−1| − E[|zt−1|]) + β1 log(σ
2
t−1),

where α1 describes the sign effect and γ1 captures the magnitude of zt. An advantage of

the EGARCH model is that, because of the exponential functional form, the model does

not need any constraints on coefficient parameters, it is always defined.

The GJR-GARCH model introduced by Glosten et al. (1993) is another modification

of the standard GARCH model. It is also an asymmetric model that values positive and

negative shocks of the conditional variance differently. Using the indicator function I(.),

the conditional variance of the GJR-GARCH(1,1) is given by

σ2t = ω + α1r
2
t−1 + γ1r

2
t−1Irt−1<0 + β1σ

2
t−1,

where γ1 covers the leverage effect.

The realized GARCH model by Hansen et al. (2012) exploits realized measures of volatil-

ity by including a measurement equation. The measurement equation links the observed

realized measure to the latent volatility of the returns (Hansen et al. (2012)). The real-

ized GARCH model also accounts for leverage effects. This asymmetric reaction to shocks

is a useful property when modeling the conditional variance of stock returns because, as

pointed out by Black (1976), positive and negative news may affect future volatility asym-

metrically. The following analysis uses the realized GARCH(1,1) model with a log-linear

specification suggested by Hansen et al. (2012). Formally, the model is described by the

following GARCH and measurement equation:

log(σ2t ) = ω + α1 log(xt−1) + β1 log(σ
2
t−1)

log(xt) = ξ + δ log(σ2t ) + τ(zt) + ut, ut ∼ N(0, λ) (5)

τ(zt) = η1zt+η2(z
2
t −1) in equation (5) serves as leverage function and is a simple quadratic

function on the basis of Hermite polynomials.
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In contrast to the standard GARCH(1,1) model the first lag of the squared return is

replaced with the first lag of a realized measure xt. The volatility process is stable as long

as β1 + δα1 ∈ (−1, 1). For more details, see Hansen et al. (2012). In this project, we use

two realized measures, i.e. xt ∈ {RVt,MedRVt}. The realized variance (RV) in period t is

defined as

RVt =

N∑
i=1

r2t,i, (6)

which sums up N squared returns over the entire day. rt,i = log(pt,i) − log(pt,i−1), where

pt,i denotes the ith closing price in period t. Furthermore, N = 1/∆, where ∆ denotes the

sampling frequency. For calculating RV, we use 5-min high-frequency data as suggested

by Andersen et al. (2008). The second realized measure is the median realized variance

(MedRV) estimator introduced by Andersen et al. (2012) that is robust to price jumps and

to the presence of zero intraday returns in finite samples. The estimator is defined by the

following formula:

MedRVt =
π

6− 4
√
3 + π

(
N

N − 2

)N−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2 (7)

Using high-frequency data and measuring the realized variance ex-post has become a pop-

ular research field in the early 2000s. One of the most popular estimators for the ex-post

variance of an asset is the realized variance estimator. Modeling the RV was challenging

in the beginning, as it is difficult to account for the long-memory property of the ex-post

measure of the return variance with simple ARIMA models. One solution to overcome this

issue is to use so-called autoregressive fractionally integrated moving average (ARFIMA)

models, which handle the long memory of time series by generalizing the integer differenc-

ing order d of ARIMA models to real-valued differences. A disadvantage of such models is

that they are difficult to estimate; especially the estimation of d is a demanding task.

Corsi (2009) developed the first simple long-memory model for estimating and forecast-

ing the realized ex-post variance. The Heterogeneous Autoregressive model of Realized

Volatility (HAR-RV) is based on the Heterogeneous Market Hypothesis by Müller et al.

(1997) who claim that agents have heterogeneous preferences in terms of the time horizon
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of their investment decisions. On the one hand, there are dealers and market makers who

trade on a daily basis; on the other hand, there are insurance companies and pension funds

that trade at a lower frequency. Agents react to new information differently and as a result

create volatility. In detail, Corsi (2009) assumes that the daily realized volatility depends

on the last daily, weekly and monthly realized volatility caused by short-term, medium-

term and long-term investors, respectively. Many extensions of the model have emerged

and were intensively discussed in the literature. As a next step, the theoretical framework

of the simple HAR-RV model is described.

Let pt denote the logarithmic price of Bitcoin in period t. Then the diffusion process is

given by the following stochastic differential equation

dpt = µtdt+ σtdWt, (8)

where µt describes a drift with a finite and continuous variation process, σt is a cadlág

stochastic volatility process independent of Wt, and Wt denotes a standard Brownian mo-

tion. The integrated variance (IV) which is equivalent to the quadratic variation (QV) of

this process for one trading day is then defined by

QVt = IVt =

∫ t

t−1
σ2sds

It can be shown that the integrated variance can be consistently estimated using the realized

variance (RV) if the number of squared intraday returns goes to infinity, which is equivalent

to ∆ → 0. Formally,

plimN→∞RVt = IVt = QVt.

This simple framework, however, does not incorporate any jumps in the price process,

whereas Hung et al. (2020) found that Bitcoin is very prone to jumps. For this reason, as a

next step we consider a jump-diffusion model that was introduced by Merton (1976). Now
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the jump-diffusion process is a Brownian semimartingale given by

dpt = µtdt+ σtdWt + κtdqt, (9)

where qt is a Poisson process counting the number of jumps in the process and κt measures

the magnitude of the corresponding discrete jumps. The quadratic variation of this process

has now two components, namely

QVt = IVt + JVt,

where
∑

t−1<s≤t κ
2
s is the jump variation (JV) or discontinuous variation which is simply

the sum of squared jump sizes for a given period. Even though the quadratic variation now

has two components the realized variance estimator is still consistent. When the sample

points within period t approach infinity

plimN→∞RVt = QVt = IVt + JVt.

As a result, RVt contains the continuous variation and the discontinuous variation of the

jumps in the price process. One may be interested in estimating just the continuous part

IVt of the process. Barndorff-Nielsen and Shephard (2004) introduced the realized bipower

variation estimator given by

BVt = µ−2
1

N∑
i=2

|rt,i−1||rt,i|, (10)

where

µp = E(|Z|p) = 2p/2
Γ((1 + p)/2)

Γ(1/2)
(11)

Z ∼ N(0, 1), p ≥ 0, and Γ(.) denotes the Gamma function. In particular, it follows that

µ1 =
√
2/π. The authors show that, in the presence of jumps, plimN→∞BVt = IVt. Con-

sequently, the difference between the realized variance and the realized bipower variation
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consistently measures the jump variation (JV), which means in mathematical terms

plimN→∞(RVt −BVt) = JVt = Σt−1<s≤tκ
2
s

Of course, any other consistent estimator of the integrated variance in the presence of jumps

can be used. The MedRV estimator is an alternative to the realized bipower variation

estimator, as it was shown by Andersen et al. (2012) that, in the presence of jumps,

plimN→∞(MedRVt) = IVt.

In the following, we also use this newer jump robust estimator when estimating the dis-

continuous part of the realized variance. To ensure the positivity of the jump variation we

apply the max-function and define the discontinuous jump variation as

JVt = max {RVt −MedRVt, 0}

This would imply that there is a non-negative jump variation every day, which is not

plausible since there should be significant and insignificant jumps in the price process. To

detect significant price jumps the JO Jump test by Jiang and Oomen (2008) is performed to

test for the presence of jumps in the high-frequency price series of Bitcoin. Theodosiou and

Zikes (2011) compared several tests for jumps in the price series and they found that the

JO jump test has the highest power among all other tests considered at a 5-min sampling

frequency. In addition, the swap variance test by Jiang and Oomen (2008) also performs

well in the presence of zero intraday returns because of the usage of the integrated sixticity

in the denominator of the test statistic (Theodosiou and Zikes (2011)). Jiang and Oomen

(2008) found that the accumulated difference of the simple arithmetic return Ri,n and log-

return ri,n should equal half the realized variance in the absence of jumps. If this difference

is too large (in absolute terms), this would indicate the existence of jumps. For other

suggestions of jump tests, see Ait-Sahalia and Jacod (2009) and Barndorff-Nielsen and

Shephard (2006).
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The null and alternative hypothesis of the JO jump test is given by:

H0 : There are no jumps in period t

HA : There is at least one jump in period t.

If there are N equispaced returns in period t and N → ∞, the test statistic of the ratio

test is given by

JOjumpTestt,N =
NBVt√
ΩSwV

∗
(
1− RVt

SwVt

)
d−→ N(0, 1),

where SωVt = 2ΣN
i=1(Rt,i− rt,i), BV is the bipower variation given by (10) and RV denotes

the realized variance stated in equation (6). Furthermore

ΩSwV =
µ6
9

N3µ−p
6/p

N − p− 1

N−p∑
i=0

p∏
k=1

|rt,i+k|6/p,

is an estimator of the integrated sixticity,
∫ t
t−1 σ

6
sds. µ6 of ΩSwV is the same as in equation

(11) evaluated at p = 6.

The estimator of the integrated sixticity depends on a power parameter p, which is jump-

robust for p = 4 and p = 6 (Jiang and Oomen (2008)). We choose p = 4, as using higher

powers of returns can make the estimator upward-biased, which leads to a deterioration of

the power of the test. In fact, Jiang and Oomen (2008) found that using either the realized

quadpower or sixthpower sixticity estimator makes little difference, which is also in line

with the findings of Theodosiou and Zikes (2011).

Now it is possible to distinguish the continuous and discontinuous variation of the

realized variance. Formally, the continuous part is given by

Ct = I(JOjumpTestt,N ≤ ϕα) ∗RVt + I(JOjumpTestt,N > ϕα) ∗MedRVt, (12)

where I(.) is the indicator function and ϕα is the α–quantile of the standard normal dis-

36



tribution. The corresponding discontinuous jump variation of the quadratic variation is

defined as

Jt = I(JOjumpTestt,N > ϕα) ∗max{RVt −MedRVt, 0} (13)

We use the 5% significance level for identifying statistically significant jumps.

5.2. HAR and related models

The simplest version of all Heterogeneous Autoregression of Realized Volatility (HAR-

RV) models was introduced by Corsi (2009) and assumes that the price process of Bitcoin

is generated by equation (8) which implies a continuous price process and the absence of

any jumps. Then, the HAR-RV model has the following form:

RV
(d)
t = β0 + β1RV

(d)
t−1 + β2RV

(w)
t−1 + β3RV

(m)
t−1 + εt, (14)

where εt is a mean-zero error term and RV
(d)
t−1, RV

(w)
t−1 and RV

(m)
t−1 are the corresponding

first lag of daily, average weekly and average monthly realized variances which are defined

as

RV
(w)
t−1 =

1

7
(RVt−7 +RVt−6 + . . .+RVt−1),

RV
(m)
t−1 =

1

30
(RVt−30 +RVt−29 + . . .+RVt−1) (15)

In contrast to most applications, we use seven days and 30 days when computing the

average weekly and monthly realized variance, respectively. BTC can be traded seven days

a week and 24 hours a day. There do not exist any trading hours and trading days as

with typical stock exchanges. Apart from that, there exist ample studies that show that

the typical assumption of a homoskedastic and normally distributed error term is violated,

therefore we also use the logarithmic transformation of equation (14) as suggested by Corsi

(2009). Using the logarithm of the realized variance has two advantages. On the one

hand, it ensures the positivity of the partial variances and on the other hand it reduces the

heteroskedasticity of the error term and the assumption εt ∼ N(0, σ2ε) holds approximately

due to the log-normal property of the realized variance. The logarithmic version takes the
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form

log(RV
(d)
t ) = β0 + β1 log(RV

(d)
t−1) + β2 log(RV

(w)
t−1 ) + β3 log(RV

(m)
t−1 ) + εt.

The HAR-RV-J model was introduced by Andersen et al. (2007). In contrast to the

HAR-RV model, it does not assume a continuous price process but a jump diffusion process

given by (9). This model uses an additional explanatory variable when predicting the daily

realized variance. The HAR-RV-J is defined as

RV
(d)
t = β0 + β1RV

(d)
t−1 + β2RV

(w)
t−1 + β3RV

(m)
t−1 + β4J

(d)
t−1 + εt, (16)

where J
(d)
t−1 is a jump component estimated by (13). Applying a log-transformation of (16)

is complicated by the existence of days with no jump and with a zero jump component. To

deal with this issue, Andersen et al. (2007) suggest the logarithmic HAR-RV-J model

log(RV
(d)
t ) = β0 + β1 log(RV

(d)
t−1) + β2 log(RV

(w)
t−1 ) + β3 log(RV

(m)
t−1 )

+β4 log(1 + J
(d)
t−1) + εt

A further extension of the standard HAR-RV model was again introduced by Andersen

et al. (2007). The main idea of the HAR-RV-CJ model is to use the property of the

realized variance and decompose the RV into its continuous and discontinuous component

as described in (12) and (13). This yields six explanatory variables instead of the three in

HAR-RV model. Formally, the HAR-RV-CJ model is defined as

RV
(d)
t = β0 + β1C

(d)
t−1 + β2C

(w)
t−1 + β3C

(m)
t−1 + β4J

(d)
t−1 + β5J

(w)
t−1 + β6J

(m)
t−1 + εt, (17)
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where

C
(w)
t−1 =

1

7
∗ (Ct−7 + Ct−6 + . . .+ Ct−1)

J
(w)
t−1 =

1

7
∗ (Jt−7 + Jt−6 + . . .+ Jt−1)

C
(m)
t−1 =

1

30
∗ (Ct−30 + Ct−29 + . . .+ Ct−1)

J
(m)
t−1 =

1

30
∗ (Jt−30 + Jt−29 + . . .+ Jt−1)

The logarithmic HAR-RV-CJ model takes the form

log(RV
(d)
t ) = β0 + β1 log(C

(d)
t−1) + β2 log(C

(w)
t−1) + β3 log(C

(m)
t−1 )

+β4 log(1 + J
(d)
t−1) + β5 log(1 + J

(w)
t−1) + β6 log(1 + J

(m)
t−1 ) + εt

5.3. Evaluation of model performance

For the evaluation, the data set is divided into a training set from 31st Mar 2015 to 31st

Mar 2020 containing 1,827 data points and a test set of the last year of the data set (1st

Apr 2020 to 31st Mar 2021) containing 365 data points. In total sixteen different models

are estimated and subjected to an in-sample and out-of-sample performance evaluation.

The following ten GARCH models are estimated:

� Standard GARCH with normally distributed standardized error terms (sGARCH-

norm)

� Standard GARCH with t-distributed standardized error terms (sGARCH-t)

� EGARCH with normally distributed standardized error terms (EGARCH-norm)

� EGARCH with t-distributed standardized error terms (EGARCH-t)

� GJR-GARCH with normally distributed standardized error terms (GJR-GARCH-

norm)

� GJR-GARCH with t-distributed standardized error terms (GJR-GARCH-t)
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� Realized GARCH with normally distributed standardized error terms and realized

variance as realized measure (RealGARCH-RV-norm)

� Realized GARCH with t-distributed standardized error terms and realized variance

as realized measure (RealGARCH-RV-t)

� Realized GARCH with normally distributed standardized error terms and median

realized variance as realized measure (RealGARCH-MedRV-norm)

� Realized GARCH with t-distributed standardized error terms and median realized

variance as realized measure (RealGARCH-MedRV-t)

Furthermore, six different HAR-RV models are estimated, containing

� HAR-RV

� Log-HAR-RV

� HAR-RV-J

� Log-HAR-RV-J

� HAR-RV-CJ

� Log-HAR-RV-CJ

For comparing the in-sample fit of the models, four different information criteria in-

cluding the Akaike (AIC), Bayesian (BIC), Hannan-Quinn (HQIC) and Shibata (SIC) in-

formation criteria are used as well as the maximum value of the log-likelihood function.

The model with the lowest information criteria and highest log-likelihood is considered as

the best model. Formally, the information criteria are defined as follows:

AIC =
−2LL

N
+

2m

N
,

BIC =
−2LL

N
+
m logN

N
,

HQIC =
−2LL

N
+

2m log(log(N))

N
,

SIC =
−2LL

N
+ log

N + 2m

N

where LL denotes the maximum value of the log-likelihood function, N is the number

of observations and m stands for the number of parameters. However, this procedure
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does not make sense when comparing GARCH models with the HAR-RV models since the

conditional variance of daily returns estimated from GARCH models might not, on average,

correspond to the realized measures estimated from intraday data. Even though these two

types of models are not directly comparable because they do not exactly predict the same

volatilities, in order to perform an in-sample comparison we use the mean squared error

(MSE) and Quasi-Likelihood (QLIKE) loss function. When performing the forecasting

analysis, we conduct a one-step ahead forecast where we estimate the model with the

training data and re-estimate the model after each shift in start and end of the estimation

interval. For evaluating performance, the MSE and QLIKE loss functions are used, as these

two are robust when evaluating the out-of-sample performance by divergence between the

predicted values and the volatility proxy of an observable variable (Patton (2011)). The

two loss functions are defined by

MSE =
1

N

N∑
t=1

(
σ2t − σ̂2t

)2
QLIKE =

1

N

N∑
t=1

(
σ2t
σ̂2t

− log

(
σ2t
σ̂2t

)
− 1

)

Moreover, for an out-of-sample robustness check the realized variance and MedRV serve

as a proxy for the true variance σ2t in order to compare GARCH and HAR models. In

Panel A of Table 17, HAR-RV is considered as a benchmark model by looking whether any

other model outperforms the standard HAR-RV model when applying the Diebold-Mariano

test at the 5% significance level. Panel B uses MedRV as a variance proxy and evaluates

which model is outperformed by the RealGARCH-MedRV-std. The Diebold-Mariano test

is applied at the same significance level. This test was originally introduced by Diebold

and Mariano (1995), but we use the modified version due to Harvey et al. (1997). The

orginal test assumes uncorrelated forecast errors, while the modified version allows for

autocorrelation in the errors. The test works as follows: Let dt = L(x̂
(1)
t )− L(x̂

(2)
t ), where

L(x̂
(i)
t ) is an out-of-sample loss function, i.e. L(x̂

(i)
t ) ∈ {MSE,QLIKE} for forecast x̂

(i)
t

obtained with model Mi. Assuming dt is covariance-stationary and has finite moments, the
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null hypothesis is equal predictive accuracy or formally, H0 : E(dt) = 0. Moreover, the test

statistic is given by

DM =
1
N

∑
dt√

σ̂2d

d−→ N(0, 1),

where σ̂2d is a long-run variance estimate of 1
N

∑
dt . For details, see Diebold and Mariano

(1995) and Harvey et al. (1997). If DM is significantly < 0 (> 0), one can conclude that

model M1 is better (worse) than M2. Furthermore, we use the Mincer-Zarnowitz test

proposed by Mincer and Zarnowitz (1969) for out-of-sample evaluation by using the same

two proxies mentioned previously. The test works as follows:

1. Estimate the simple OLS regression (Mincer-Zarnowitz regression): θt = α+βθ̂t+ et,

where θt is the true value, i.e. θt ∈ {RVt,MedRVt} and the regressor θ̂t is the value

of the forecast, i.e. θ̂t ∈ {RVt, σ2t }

2. Test the joint hypothesis H0 : α = 0, β = 1 by using an F-test and focus on the R2.

3. If the null hypothesis gets rejected the forecast is considered as being biased and

inefficient

However, as pointed out by Andersen and Bollerslev (1998), σ2t is often subject to an

estimation error which may cause biased estimates for β for GARCH models. To overcome

this problem the authors suggest concentrating on theR2 of the Mincer-Zarnowitz regression

instead. Therefore, we also use the R2 as decision criterion and consider the model with

the highest R2 as the best forecasting model.

5.4. Empirical results

Jump test results

Table 14 shows the numbers of rejections of the null hypothesis of no jumps for different

significance levels. The results indicate that there are many rejections of the null, which

suggests the usage of a jump-robust estimator like the MedRV estimator. Even with a

significance level of 0.1% the null hypothesis is rejected 392 times which equates approxi-
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Table 14
JO Jump test results, Number of days: 2,192

Significance level α = 5% α = 1% α = 0.1%

Number of rejections 713 537 392

Table 15
In-sample fit (GARCH Models)

Model Point estimates
µ ω α1 β1 γ1 δ ξ η1 η2 λ

sGARCH-norm 0.0022** 0.0001*** 0.206*** 0.791***
sGARCH-std 0.0017*** 0.00002*** 0.131*** 0.868***
EGARCH-norm 0.0016* -0.4501*** -0.058*** 0.925*** 0.331***
EGARCH-std 0.0016*** -0.06 0.053** 0.99*** 0.312***
GJR-GARCH-norm 0.0015** 0.0001*** 0.159*** 0.779*** 0.103***
GJR-GARCH-std 0.0017*** 0.00001*** 0.146*** 0.879*** -0.052**
RealGARCH-RV-norm 0.0016** -0.988*** 0.406*** 0.432*** 1.22*** 1.237*** -0.028* 0.065*** 0.615***
RealGARCH-RV-std 0.0016*** 0.2538 0.508*** 0.456*** 0.953*** -1.152*** -0.061** 0.108*** 0.624***
RealGARCH-MedRV-norm 0.0014 -1.299*** 0.378*** 0.405*** 1.373*** 2.111*** -0.024 0.055*** 0.606***
RealGARCH-MedRV-std 0.0015*** 0.390 0.554*** 0.409*** 0.948*** -1.345*** -0.046** 0.106*** 0.601***

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Values
in parentheses are HAC standard errors to account for the presence of autocorrelation and
heteroskedasticity in the error terms.

mately every 5th trading day.

In-sample results

Table 15 presents estimates for all ten GARCH models, with most coefficients significant at

least at the 5% level. Notably, the conditional mean across all models hovers around zero

and all models are stable (asymptotically stationary). Of particular interest, RealGARCH

models with t-distributed innovations (α1 = 0.508 and 0.554) assign greater weight to

the realized measure compared to normally distributed returns (α1 = 0.406 and 0.378).

This implies a more responsive reaction to sudden volatility changes. Consequently, in

scenarios like the onset of the COVID-19 crisis, realized GARCH models with t-distributed

standardized returns offer improved conditional variance estimation.

Table 16 further reveals that logarithmic transformations in HAR models result in

significantly higher R2 values. Additionally, coefficients in the continuous component of

realized variance are highly significant. Notably, the jump component in HAR-RV-J only

shows significance at the 10% level, while the Log-HAR-RV-J model reaches 1% significance.

Surprisingly, jump variations in HAR-RV-CJ and Log-HAR-RV-CJ are all insignificant,
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Table 16
In-sample fit (HAR Models)

Model Point estimates and R2

β0 β1 β2 β3 β4 β5 β6 R2

HAR-RV 0.0005*** 0.3885*** 0.1559*** 0.2401*** 0.267
(0.0002) (0.0668) (0.0457) (0.0825)

Log-HAR-RV -0.7769*** 0.5045*** 0.2737*** 0.1213*** 0.6227
(0.1447) (0.0281) (0.0339) (0.0398)

HAR-RV-J 0.0005*** 0.4293*** 0.1645*** 0.2344*** -0.5656* 0.2716
(0.0002) (0.0846) (0.0472) (0.0808) (0.3317)

Log-HAR-RV-J -0.5905*** 0.5425*** 0.2645*** 0.1156*** -100.58*** 0.6253
(0.1453) (0.0294) (0.0342) (0.0388) (27.4939)

HAR-RV-CJ 0.0006*** 0.4103*** 0.1267** 0.2908*** -0.0098 0.5187 -1.0096 0.2699
(0.0002) (0.0702) (0.0575) (0.0814) (0.3891) (0.5490) (0.8421)

Log-HAR-RV-CJ -0.6903*** 0.5258*** 0.2358*** 0.1368*** 15.219 -2.4985 -49.4889 0.628
(0.1592) (0.0270) (0.0360) (0.0437) (38.2334) (103.1854) (161.6001)

Notes: *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. Values
in parentheses are HAC standard errors to account for the presence of autocorrelation and
heteroskedasticity in the error terms.

Table 17
In-sample results – Loss functions

Panel A: RV as proxy Panel B: MedRV as proxy
Model MSE QLIKE MSE QLIKE

sGARCH-norm 0.1451 0.3653 0.1446 0.3610
sGARCH-std 0.1585 0.4748 0.1604 0.4531
EGARCH-norm 0.1784 0.3783 0.1579 0.3770
EGARCH-std 0.1815 0.4396 0.1930 0.4796
GJR-GARCH-norm 0.1454 0.3773 0.1427 0.3712
GJR-GARCH-std 0.1639 0.4868 0.1666 0.4625
RealGARCH-RV-norm 0.1666 0.3480 0.1734 0.3348
RealGARCH-RV-std 0.3143 0.4810 0.3453 0.5280
RealGARCH-MedRV-norm 0.1661 0.3517 0.1724 0.3353
RealGARCH-MedRV-std 0.4083 0.5072 0.4426 0.5542
HAR-RV 0.1580 0.3529
Log-HAR-RV 0.1606 0.3924
HAR-RV-J 0.1570 0.3576
Log-HAR-RV-J 0.1606 0.3907
HAR-RV-CJ 0.1574 0.3571
Log-HAR-RV-CJ 0.1586 0.3908

Notes: The MSE is multiplied by 105
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Table 18
Information criteria and Log-Likelihood

Model AIC BIC HQIC SIC LL

sGARCH-norm -3.824 -3.8115 -3.8191 -3.8236 3496.9
sGARCH-std -4.141 -4.1254 -4.1349 -4.1405 3787.3
EGARCH-norm -3.8257 -3.8106 -3.8201 -3.8257 3499.8
EGARCH-std -4.1624 -4.1444 -4.1558 -4.1625 3808.4
GJR-GARCH-norm -3.8287 -3.8136 -3.8231 -3.8287 3502.5
GJR-GARCH-std -4.1418 -4.1237 -4.1352 -4.1419 3789.6
RealGARCH-RV-norm -3.7768 -3.7496 -3.7668 -3.7768 3459.1
RealGARCH-RV-std -4.1233 -4.0961 -4.1132 -4.1233 3775.6
RealGARCH-MedRV-norm -3.7585 -3.7314 -3.7485 -3.7586 3442.4
RealGARCH-MedRV-std -4.1123 -4.0852 -4.1023 -4.1124 3765.6

possibly due to the lacking overnight component because of continuous Bitcoin trading.

Table 17 enables a potential in-sample performance evaluation of two different types

of volatility models with robust loss functions. Intriguingly, the GARCH family outper-

forms the HAR family. Panel A shows that sGARCH-norm exhibits the lowest MSE, and

RealGARCH-RV-norm displays the lowest QLIKE. In Panel B, RealGARCH-RV-norm re-

tains the lowest QLIKE, while GJR-GARCH-norm yields the smallest MSE.

Table 18 presents information criteria and the maximum Log-Likelihood value (LL) for

the ten estimated GARCH models. To compare classical GARCH models with realized

GARCH models, we exclusively employ the partial log-likelihood of the realized GARCH

models. Notably, the EGARCH-std model is identified as having the best in-sample fit

according to AIC, BIC, HQIC, SIC, and Log-Likelihood values. Interestingly, realized

GARCH models exhibit inferior in-sample performance compared to GARCH models with-

out a realized measure. The next section explores if these findings hold out-of-sample.

Out-of-sample results

The out-of-sample analysis, as presented in Table 19, unveils noteworthy insights. Firstly,

we observe that realized GARCH models featuring t-distributed error terms consistently

outperform all other considered GARCH models. This superiority holds true for both Panel

A and Panel B.
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Table 19
Out-of-sample results : Loss functions

Panel A: RV as proxy Panel B: MedRV as proxy
Model MSE QLIKE MSE QLIKE

sGARCH-norm 0.0527 0.3041 0.0524 0.3318**
sGARCH-std 0.0548 0.3068 0.0541 0.3189**
EGARCH-norm 0.0536 0.3358 0.0527 0.3619**
EGARCH-std 0.0697 0.4244 0.0749** 0.4975**
GJR-GARCH-norm 0.0539 0.3295 0.0532 0.3507**
GJR-GARCH-std 0.0542 0.2879 0.0537 0.3035**
RealGARCH-RV-norm 0.0711 0.4767 0.0749** 0.5502**
RealGARCH-RV-std 0.0493 0.2490* 0.0487 0.2537**
RealGARCH-MedRV-norm 0.0993 0.5719 0.1050** 0.6558**
RealGARCH-MedRV-std 0.0455 0.2399* 0.0434 0.2203
HAR-RV 0.0475 0.3136
Log-HAR-RV 0.0462 0.2665*
HAR-RV-J 0.0502 0.9138
Log-HAR-RV-J 0.0463 0.3131
HAR-RV-CJ 0.0476 0.3171
Log-HAR-RV-CJ 0.0451* 0.2594*

Notes: The MSE is multiplied by 105, * in Panel A denotes that the MSE/QLIKE of the
corresponding model is significantly less than the MSE/QLIKE of the HAR-RV model when
applying the Diebold-Mariano test at the 5% significance level, ** in Panel B denotes that
the MSE/QLIKE of the corresponding model is significantly greater than the MSE/QLIKE
of the RealGARCH-MedRV-std model when applying the Diebold-Mariano test at the 5%
significance level
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A key revelation is the performance of the RealGARCH-MedRV-std model. It dis-

plays lower MSE and QLIKE values compared to its counterpart, the RealGARCH-RV-std.

This suggests that the incorporation of a jump-robust realized measure, such as MedRV,

significantly enhances forecast accuracy.

Furthermore, despite EGARCH-std showing the best in-sample fit according to infor-

mation criteria, its out-of-sample performance is notably weaker, ranking third in terms

of both MSE and QLIKE. This highlights the discrepancy between in-sample fitness and

out-of-sample forecasting accuracy.

In Panel A, the Log-HAR-RV-CJ model excels, boasting the lowest MSE and emerg-

ing as the only model with a statistically significantly smaller MSE than the HAR-RV

model. When evaluated using the QLIKE loss function, four models, including both real-

ized GARCH models with t-distributed innovations, outperform the HAR-RV model.

Panel B underscores the supremacy of the RealGARCH-MedRV-std, with the smallest

MSE and QLIKE values. While the difference in MSE is statistically significant for only

three GARCH models, the RealGARCH-MedRV-std outperforms all other GARCH models

at the 5% significance level when the QLIKE loss function is considered.

Further, the introduction of a more recent realized GARCHmodel employing t-distributed

error terms proves to be a significant development. This model stands as the sole contender

against the HAR models, with the RealGARCH-MedRV-std exhibiting the smallest QLIKE

across all models. The asymmetry of the QLIKE loss function indicates a systematic over-

estimation of realized volatility by the RealGARCH-MedRV-std.

Within the realm of HAR models, the application of log specifications for forecast-

ing outperforms using levels. Moreover, the Log-HAR-RV-CJ model emerges as the best

performing model even though the three jump components are all insignificant.

Our examination of the Mincer-Zarnowitz test, as detailed in Table 20, reveals intriguing

and somewhat unexpected outcomes. On one hand, the null hypothesis is rejected in Panel

A and Panel B at the 5% significance level for several models, suggesting a prevailing bias

in forecasts. Surprisingly, models where the null hypothesis is rejected tend to exhibit the

highest R-squared values, indicating a superior ability to explain variations in the dependent
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Table 20
Out-of-sample results - Mincer-Zarnowitz test

Panel A: RV as proxy Panel B: MedRV as proxy
p-value p-value

α β H0 : α = 0, β = 1 R2 α β H0 : α = 0, β = 1 R2

Model

sGARCH-norm -0.0001 1.202 0.0857 0.1963 -0.0002 1.103 0.5778 0.2037
(0.0002) (0.1276) (0.0002) (0.1145)

sGARCH-std 0.000003 1.150 0.0849 0.194 -0.0001 1.085 0.7064 0.1766
(0.0002) (0.1230) (0.0002) (0.1229)

EGARCH-norm -0.0006 1.56 0.0003 0.2034 -0.0007 1.453 0.0078 0.2172
(0.0003) (0.1621) (0.0003) (0.1448)

EGARCH-std -0.0002 0.662 ≈ 0 0.2406 -0.0003 0.632 ≈ 0 0.2242
(0.0002) (0.0618) (0.0002) (0.0617)

GJR-GARCH-norm -0.0001 1.228 0.0249 0.1828 -0.0002 1.133 0.5469 0.1916
(0.0002) (0.1363) (0.0002) (0.1222)

GJR-GARCH-std 0.00002 1.099 0.2492 0.1984 -0.0001 1.039 0.9445 0.1812
(0.0002) (0.1160) (0.0002) (0.1159)

RealGARCH-RV-norm -0.0002 0.688 ≈ 0 0.2654 -0.0004 0.677 ≈ 0 0.3169
(0.0002) (0.0601) (0.0002) (0.0522)

RealGARCH-RV-std 0.0003 0.725 ≈ 0 0.3185 0.0001 0.729 ≈ 0 0.3309
(0.0002) (0.0555) (0.0002) (0.0544)

RealGARCH-MedRV-norm -0.0003 0.5764 ≈ 0 0.2917 -0.0006 0.5713 ≈ 0 0.3353
(0.0002) (0.047) (0.0002) (0.0406)

RealGARCH-MedRV-std 0.0004 0.710 ≈ 0 0.3864 0.0002 0.723 ≈ 0 0.4111
(0.0001) (0.0468) (0.0001) (0.0454)

HAR-RV -0.0001 0.9738 0.2401 0.2975
(0.0002) (0.0785)

Log-HAR-RV 0.0001 1.1669 0.0013 0.3335
(0.0002) (0.0862)

HAR-RV-J 0.00001 0.8601 0.0127 0.2696
(0.0002) (0.0743)

Log-HAR-RV-J 0.0002 1.0460 0.0230 0.3238
(0.0002) (0.0793)

HAR-RV-CJ -0.0001 0.9351 0.0842 0.2995
(0.0002) (0.0751)

Log-HAR-RV-CJ 0.0002 1.0965 0.0092 0.3443
(0.0002) (0.0794)

Notes: Values in parentheses are the corresponding standard errors

variable. Of particular note is the RealGARCH-MedRV-std model, which achieves the

highest R-squared value in Panel A, surpassing all GARCH and HAR models. This occurs

despite the rejection of the null hypothesis at a very low significance level and a systematic

tendency to overestimate forecasts. In Panel B, the RealGARCH-MedRV-std once again

outperforms all other GARCHmodels in terms of R-squared, even though it produces biased

forecasts. In conclusion, our findings from the Mincer-Zarnowitz test challenge conventional

expectations, revealing an intriguing relationship between bias and explanatory power in

forecasts. The RealGARCH-MedRV-std consistently emerges as the superior forecasting

model, aligning with prior research in this domain.

48



6. Conclusion

In conclusion, our cointegration analysis reveals that the ten considered cryptocurrencies

exhibit common stochastic trends, allowing for the creation of mean-reverting portfolios.

Out-of-sample results underscore the profitability of trading strategies during the test pe-

riod, indicating a robust long-term relationship. Notably, cointegrated portfolios based on

the Johansen procedure consistently outperform those constructed with the Engle-Granger

two-step procedure. Furthermore, spreadJ,2t , exhibiting superior in-sample performance,

leads to the highest out-of-sample returns. In contrast to volatility modeling, where in-

sample fitness does not guarantee out-of-sample success, trading strategies built upon

spreadJ,2t consistently deliver remarkable returns. This analysis reveals compelling arbi-

trage opportunities in the unregulated crypto market through mean-reverting portfolios,

capable of yielding positive returns even in bear markets while outperforming a ”buy-and-

hold” strategy. It is worth noting that we have not accounted for potential short-selling

constraints and transaction costs, which may impact profitability and warrant further in-

vestigation.

Furthermore, Granger causality results establish a link between trading strategies and

volatility, motivating the extension of volatility modeling for Bitcoin. The RealGARCH-

MedRV-std model outperforms other GARCH models, including the HAR-RV model, par-

ticularly when employing a jump-robust realized measure and t-distributed innovations. Of

utmost importance is the RealGARCH-MedRV-std’s superior performance when utilizing

realized variance as a proxy.

Remarkably, the Mincer-Zarnowitz regression reveals that models with biased and inef-

ficient forecasts achieve higher R2. This study underscores the significance of considering

jumps when modeling and forecasting Bitcoin’s volatility, with GARCH models demon-

strating superior accuracy compared to the standard HAR-RV model, especially when in-

corporating high-frequency data and a jump-robust realized measure with a heavy-tailed

distribution.

In summary, our research emphasizes the importance of factoring in jumps when mod-

eling the volatility of Bitcoin, suggesting that GARCH models can offer more accurate
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forecasts than the standard HAR-RV model when augmented with high-frequency data.

Future research could explore the robustness of results, considering HAR-RV models with

a leverage effect and longer forecasting horizons (e.g., 1 week and 1 month). Additionally,

incorporating a volatility component for each cryptocurrency when constructing statistical

arbitrage strategies based on cointegrated portfolios may enhance out-of-sample perfor-

mance. Expanding the volatility analysis to other cryptocurrencies and providing one-day

ahead forecasts for each cryptocurrency can help traders avoid significant losses when clos-

ing long or short positions.
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