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ABSTRACT
We develop group-mean fully modified OLS (FM-OLS) estimation and infer-
ence for panels of cointegrating polynomial regressions, i.e., regressions that
include an integrated process and its powers as explanatory variables. The
stationary errors are allowed to be serially correlated, the integrated regres-
sors – allowed to contain drifts – to be endogenous and, as usual in the
panel literature, we include individual-specific fixed effects and also allow for
individual-specific time trends. We consider a fixed cross-section dimension
and asymptotics in the time dimension only. Within this setting, we develop
cross-section dependence robust inference for the group-mean estimator. In
both the simulations and an illustrative application estimating environmental
Kuznets curves (EKCs) for carbon dioxide emissions we compare our group-
mean FM-OLS approach with a recently proposed pooled FM-OLS approach
of de Jong and Wagner.
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1. Introduction

We develop group-mean fully modified OLS (FM-OLS) estimation and inference for panels of cointe-
grating polynomial regressions (CPRs) in a large time (T ! 1) and finite cross-section (N fixed) set-
ting. CPRs, a term coined by Wagner and Hong (2016), include deterministic variables as well as
integrated processes, potentially with drifts, and their powers as regressors. The stochastic regressors
are allowed to be endogenous and the stationary errors are allowed to be serially correlated. For nota-
tional brevity, we only discuss a simple specification, the cubic CPR with only one integrated regres-
sor, see (1) and (2) below. The cubic and – probably even more so – the quadratic single regressor
CPR are the most widely-used specifications for the analysis of, e.g., environmental Kuznets curves
(EKCs). Thus, considering the cubic case simplifies notation considerably whilst containing all ele-
ments required for a typical EKC analysis. All results extend, at the price of increased notational
rather than mathematical complexity, straightforwardly to higher-order powers and multiple inte-
grated regressors, compare for a pure time series setting Wagner and Hong (2016). With respect to
deterministic regressors we consider individual-specific intercepts only or individual-specific intercepts
and individual-specific linear trends; this can also be generalized without additional mathematical
complexities to more general deterministic regressors.

The article is closely related to de Jong and Wagner (2022), who consider pooled FM-OLS-
type estimators for CPRs in a setting with both a large cross-section and time dimension and

� 2023 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Martin Wagner Martin.Wagner@aau.at Department of Economics, University of Klagenfurt, Klagenfurt, Austria.
Supplemental data for this article can be accessed online at https://doi.org/10.1080/07474938.2023.2178141.

ECONOMETRIC REVIEWS
2023, VOL. 42, NO. 4, 358–392
https://doi.org/10.1080/07474938.2023.2178141

http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2023.2178141&domain=pdf&date_stamp=2023-05-05
http://orcid.org/0000-0002-6123-4797
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
http://www.tandfonline.com


with a cross-sectional i.i.d. structure. Considering a finite cross-section dimension and asymptotic
analysis only for a large time series dimension renders it, of course, impossible to develop a joint
or sequential asymptotic normality result for the group-mean FM-OLS estimator.1 However, the
finite cross-section dimension offers some room to consider a more general setting than de Jong
and Wagner (2022) in two important ways: First, we allow for the presence of drifts, i.e., linear
time trends, in the integrated regressors, which are a prominent feature in many macroeconomic
and financial time series. The presence of drifts, as is known from standard unit root and cointe-
gration analysis, see, e.g., West (1988), can lead to asymptotic normality of estimated coefficients
in the time series unit root case. We show that similar results hold also in the CPR case, in which
higher-order polynomial trends are the dominant features of the powers of the integrated regres-
sors with drifts. It turns out that whether and if so for which slope coefficients asymptotic nor-
mality prevails depends, in addition to the presence of drifts, also upon the presence or absence
of individual-specific linear trends in the regression model. In this respect, it is important to note
that for applying the developed estimators and tests no knowledge concerning the presence or
absence of drifts is required. Second, we allow for very general forms of cross-section dependence
by providing robust test statistics that lead to asymptotically valid inference despite cross-section
dependence. As is well-known, for macro-panels, which is an important difference to classical
micro-panels, the assumption of cross-sectional independence is very likely unrealistic.
Consequently, being able to perform cross-section dependence robust inference in conjunction
with our group-mean estimator increases applicability substantially, nota bene without the need
to posit a specific model for cross-section dependence like, e.g., a factor structure.

In a simulation study, we compare the group-mean estimators, both OLS and FM-OLS, with
the pooled FM-OLS estimator of de Jong and Wagner (2022). In addition to assessing estimator
performance, we also compare the performance, i.e., null rejection probabilities and “size-
corrected” power, of a variety of tests based upon these estimators. Many of the results are as
expected and in line with asymptotic theory, e.g., the strong negative effects of error serial correl-
ation, endogeneity, and cross-section dependence on the performance of the estimators, where –
as expected – the group-mean OLS estimator is most strongly affected. By construction,
the pooled FM-OLS estimator leads in most cases to the smallest bias and RMSE. The overall
conclusion for hypothesis testing is to use the cross-section dependence robust version of tests
based on the group-mean FM-OLS estimator. These tests are, by construction, least affected by
cross-section dependence and are much less affected than, e.g., the test based on the pooled FM-
OLS estimator by large values of error serial correlation and regressor endogeneity (and are the
only ones asymptotically valid in the presence of cross-section dependence). Furthermore, even in
the absence of cross-section dependence, the cross-section dependence robust test statistics per-
form at least at par with the non-robust counterparts. Altogether, this makes the cross-section
dependence robust tests based on the group-mean FM-OLS estimator the preferred choice.

We briefly illustrate the developed methodology by estimating EKCs for carbon dioxide
emissions using the same data sets as de Jong and Wagner (2022), i.e., two long data sets with
N¼ 6 and N¼ 19 countries and about T¼ 130 observations over time and one wide data set
with N¼ 89 countries and T¼ 54 observations over time. The EKC hypothesis postulates an
inverted U-shaped relationship between measures of economic development, typically GDP per
capita, and measures of pollution or emissions. The term EKC refers by analogy to the inverted
U-shaped relationship between the level of economic development and income inequality

1Given that many macro-panel data sets have a small cross-section dimension, e.g., also two of the data sets used in our
illustration with six and 19 countries, it is not ex ante clear that it is always necessary or beneficial to consider large cross-
section dimensions. Of course, in situations with N large compared to T, asymptotics in N in addition to T is important and
useful. One main value added that large N asymptotics provides – at the standard

ffiffiffi
N

p
-rate – in addition to large T

asymptotics, is unconditional asymptotic normality of estimators (under appropriate assumptions). Of course, in case of large
N, especially large with respect to T, asymptotics in N is an important aspect. However, unconditional asymptotic normality is
not necessary for asymptotic standard inference, which can be based on a conditional asymptotic normality result when T !
1 only.
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postulated by Simon Kuznets (1955) in his 1954 presidential address to the American Economic
Association.2 A key finding in our illustrative application is that cross-section robust inference
makes a difference. The coefficient to the third-order power of the logarithm of GDP per capita
is significantly different from zero for the wide data set only, both with and without individual-
specific linear trends included. Relying upon standard inference only indicates the necessity for a
cubic specification also for the two long data sets for one of the specifications. The group-mean
FM-OLS-based turning points (TPs) for the long data sets are larger than those found in de Jong
and Wagner (2022) for the N¼ 6 data set and very similar for the N¼ 19 data set. For the wide
data set group-mean FM-OLS estimation leads to very small or no TPs. For this data set, pooled
estimation leads to more plausible results.

The article is organized as follows: Section 2 presents the setting, the assumptions, and the the-
oretical results, separated – for didactic reasons – in three subsections according to different set-
tings concerning the absence or presence of drifts. Section 3 contains some illustrative simulation
results. Section 4 briefly illustrates the method by estimating EKCs for carbon dioxide emissions
using, as mentioned above, the same data sets as de Jong and Wagner (2022) and Section 5
briefly summarizes and concludes. The proofs are relegated to Appendix A and Appendix B pro-
vides the country list for the wide data set. Supplementary Material available upon request con-
tains additional simulation results.

We use the following notation: bxc denotes the integer part of x 2 R and diagð�Þ denotes a

diagonal matrix. With ) , !p and !d we denote weak convergence, convergence in probability
and convergence in distribution, respectively, as T ! 1: Brownian motion with variance speci-
fied in the context is denoted by B(r) and W(r) denotes a standard Wiener process. VarðzÞ
denotes the covariance matrix of a vector z and Covðz1, z2Þ denotes the cross-covariance matrix
of two vectors z1 and z2.

2. Theory

As mentioned in the introduction, in this article, we discuss the cubic specification with a single unit
root regressor only. With respect to deterministic regressors, we allow for either individual-specific
intercepts (i.e., fixed effects) only or individual-specific intercepts and individual-specific linear time
trends. The integrated regressors xit potentially contain individual-specific drifts li, i.e.,:

yit ¼ ai þ dit þ xitb1 þ x2itb2 þ x3itb3 þ uit , (1)

xit ¼ li þ xi, t�1 þ vit: (2)

Mainly to relate the article to de Jong and Wagner (2022), see the discussion below Assumption
3, we use the same assumptions as in that (companion) article. Thus, we assume that the cross-
sectionally independent error processes fgitgt2Z :¼ fðuit , vitÞ0gt2Z are random linear processes ful-
filling a functional central limit theorem similar to (Phillips and Moon, 1999, Lemma 3), i.e.,:

1ffiffiffiffi
T

p
XbrTc
t¼1

git ) BiðrÞ ¼ X1=2
i WiðrÞ, 0 � r � 1, (3)

2The empirical EKC literature started about 30 years ago, with early important contributions including Grossman and Krueger
(1993) or Holtz-Eakin and Selden (1995). Early survey papers like Stern (2004) or Yandle et al. (2004) already count more than
100 refereed publications, with the number growing steadily since then. For more discussion on the empirical literature and
theoretical underpinnings of the EKC see, e.g., Wagner (2015). Inverted U-shaped relationships also feature prominently in
modeling the relationship between energy or material intensity and GDP per capita (see, e.g., Labson and Crompton, 1993;
Malenbaum, 1978). In the exchange rate target zone literature predictive regressions involving an exchange rate and its
powers as explanatory variables are widely used (see, e.g., Darvas, 2007; Svensson, 1992). In either of these literatures typically
only quadratic or cubic polynomials are considered. Thus, also from this perspective, it suffices to describe the estimator in
this paper for the cubic specification.
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where WiðrÞ :¼ ðWuiðrÞ,WviðrÞÞ0 with BiðrÞ partitioned analogously, is a bivariate standard
Wiener process. The random long-run covariance matrices are partitioned as:

Xi :¼ Xuiui Xuivi
Xviui Xvivi

� �
: (4)

For later usage, we also define the half long-run covariance matrices partitioned analogously, i.e.,:

Di :¼ Duiui Duivi
Dviui Dvivi

� �
, (5)

with consequently Xi ¼ Di þ D0
i � Ri, where Ri is the random contemporaneous covariance

matrix. More specifically, this leads to the assumption:

Assumption 1. The random processes fgitgt2Z are independent across i ¼ 1, :::,N, the random
matrices ðDi,RiÞ are independent of the Wiener processes WiðrÞ for i ¼ 1, :::,N and Xi is positive
definite almost surely for i ¼ 1, :::,N:

Given the primary focus on the slope parameter vector b :¼ ðb1, b2,b3Þ0, it is convenient to
use uniform notation, ~yit and ~Xit , for both demeaned and demeaned and linearly detrended varia-
bles. In the demeaning only case, we thus have:

~yit :¼ yit � �yi: ¼ yit � 1
T

XT
t¼1

yit , (6)

with analogously defined quantities for xit (and its powers), uit and vit. Stacking defines:

~Xit :¼
~xitex2itex3it

0BB@
1CCA ¼

xit � �xi:
x2it � x2i:

x3it � x3i:

0BB@
1CCA: (7)

In case of demeaning and linear detrending, we have, using generic notation zit, for yit, xit and its
powers:

~zit :¼ zit � 4T � 6t þ 2
T � 1

zi: � �6T þ 12t � 6
ðT � 1ÞðT þ 1Þ

XT
t¼1

t
T

� �
zit , (8)

leading to a correspondingly demeaned and detrended stacked vector ~Xit , with ~uit and ~vit again
defined analogously.3

The exact form of the results depends, in addition to the specification of the deterministic
components in the regression equation, also on whether the regressors xit include a (non-zero)
drift or not. It is therefore convenient to structure the discussion according to the following cases:
zero drifts li ¼ 0, i ¼ 1, :::,N, non-zero drifts li 6¼ 0, i ¼ 1, :::,N and the general case li 2
R, i ¼ 1, :::,N:

2.1. Zero drifts

To complete the formulation of the assumptions required in this case, define GT :¼
diagðT�1,T�3=2,T�2Þ and Ai :¼ ð1, 2 Ð 10 BviðrÞdr, 3

Ð 1
0 B

2
viðrÞdrÞ0: To capture the effects of demean-

ing and demeaning and linear detrending – or of the “removal” of more general trend functions

3Clearly, more general (asymptotically) regular trend functions can be considered, e.g., higher-order polynomial time trends. A
trend function DðrÞ, 0 � r � 1 is called asymptotically regular, if

Ð 1
0 DðrÞDðrÞ0dr is positive definite.
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– define for an (integrable stochastic process) P(r) and an asymptotically regular trend function
D(r) for 0 � r � 1:

~PðrÞ :¼ PðrÞ � DðrÞ
ð1
0
DðsÞDðsÞ0ds

 !�1 ð1
0
DðsÞPðsÞds, (9)

which for the case of demeaning, of course, simplifies to ~PðrÞ ¼ PðrÞ � Ð 10 PðsÞds:4 The notation

allows to (generically) define ~BviðrÞ :¼ ð~BviðrÞ,fB2
vi ðrÞ,fB3

vi ðrÞÞ0, corresponding to the deterministic
specification considered. Using this notation, we assume:

Assumption 2. For i ¼ 1, :::,N and 0 � r � 1 it holds that:

(a) T1=2GT ~XibrTc ) ~BviðrÞ,
(b) GT

PT
t¼1

~Xit~uit !d
Ð 1
0
~BviðrÞdBuiðrÞ þ DviuiAi,

(c) GT
PT

t¼1
~Xitvit !d

Ð 1
0
~BviðrÞdBviðrÞ þ DviviAi,

with all quantities converging jointly.

As usual in FM-OLS type estimation, consistent non-parametric kernel estimators of long-run
covariances and half long-run covariances – based on the OLS residuals ûit from (1) and vit ¼
Dxit – are required. This in turn requires appropriate kernel and bandwidth choices, compare,
e.g., Jansson (2002).5

Assumption 3. The cross-sectionally independent estimators D̂i and R̂i satisfy D̂i !p Di and

R̂i !p Ri for i ¼ 1, :::,N. By definition, this implies cross-sectional independence and consistency of

X̂i :¼ D̂i þ D̂
0
i � R̂i for i ¼ 1, :::,N:

For brevity, we abstain from formulating primitive assumptions that generate our Assumptions
2 and 3 that are, in fact, convergence results. The literature provides several – by now well-under-
stood – routes to derive these results from primitive assumptions using near-epoch dependence
concepts, martingale difference sequences or linear processes (see, e.g., de Jong, 2002; Ibragimov
and Phillips, 2008; Park and Phillips, 2001). Our formulations and assumptions are similar to de
Jong and Wagner (2022) who in turn build upon Phillips and Moon (1999). However, in a finite
N setting, as considered in this article, one can replace the random linear process framework
without any (substantial) loss with more classical assumptions as posited, e.g., in Wagner and
Hong (2016) in a time series setting. As discussed below in Remark 4, the random linear process
framework provides fundamental value added only in case N ! 1, see also the discussion in de
Jong and Wagner (2022).

We are now ready to define the group-mean FM-OLS estimator as the cross-sectional average
of the individual-specific FM-OLS estimators (as developed in Wagner and Hong, 2016) of the
coefficient vector b. More precisely, we define for i ¼ 1, :::,N the FM-OLS estimator of b from
the ith cross-section member – computed from individual-specifically demeaned or individual-
specifically demeaned and linearly detrended data – as:

b̂
þðiÞ :¼

XT
t¼1

~Xit ~X
0
it

 !�1 XT
t¼1

~Xit~y
þ
it � Ci

 !
, (10)

4As is well-known, in case of demeaning and linear detrending, ~PðrÞ ¼ PðrÞ � ð4� 6rÞ Ð 10 PðsÞds� ð�6þ 12rÞ Ð 10 sPðsÞds:
5To maintain cross-sectional independence of the individual-specific estimators, the long-run covariance matrix estimators
need to be cross-sectionally independent as well. The asymptotic analysis considered in de Jong and Wagner (2022), with also
N ! 1 after T ! 1, allows for more flexibility in this respect.
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where ~yþit :¼ ~yit � DxitX̂
�1
viviX̂viui and Ci :¼ D̂

þ
viuiðT, 2

PT
t¼1 xit , 3

PT
t¼1 x

2
itÞ0, with D̂

þ
viui :¼

D̂viui � D̂viviX̂
�1
viviX̂viui :

6 The cross-sectional average of b̂
þðiÞ defines the group-mean FM-OLS

estimator:

b̂
þ
:¼ 1

N

XN
i¼1

b̂
þðiÞ: (11)

The following proposition derives its asymptotic distribution as the time series dimension T !
1, for fixed cross-section dimension N.

Proposition 1. Let the data be generated by (1) and (2) with li ¼ 0, i ¼ 1, :::,N and let Assumptions
1–3 be in place. Then it holds for T ! 1, conditional upon Di, Ri and WviðrÞ for i ¼ 1, :::,N, that:

G�1
T b̂

þ � b
� �

!d N 0,Vþð Þ, (12)

where Nð0,VþÞ denotes a normal distribution with expectation zero and conditional covariance
matrix:

Vþ :¼ 1
N2

XN
i¼1

Xui�vi

ð1
0

~BviðrÞ~BviðrÞ0dr
 !�1

¼ 1
N2

XN
i¼1

Xui�vi ~M
�1
ii , (13)

with Xui�vi :¼ Xuiui � XuiviX
�1
viviXviui > 0 equal to the conditional variance of Bui�viðrÞ :¼ BuiðrÞ �

XuiviX
�1
viviBviðrÞ and ~Mii defined by the last equality.

Under our assumptions, the natural consistent estimator of V þ is:

V̂
þ
:¼ 1

N2

XN
i¼1

X̂ui�vi GT

XT
t¼1

~Xit ~X
0
itGT

 !�1

¼ G�1
T Ŝ

þ
G�1
T , (14)

with X̂ui�vi :¼ X̂uiui � X̂uiviX̂
�1
viviX̂viui and Ŝ

þ
defined by the last equality.

The conditional normal limit in conjunction with the availability of a consistent estimator of
the covariance matrix as given in (14) leads to standard asymptotic inference. To obtain standard
asymptotic behavior of hypothesis tests, we have to take into account that the components of the

vector b̂
þ

converge at different rates, an issue discussed in detail in, e.g., Sims et al. (1990,
Section 4) or Wagner and Hong (2016, Section 2.2, p. 1297). It suffices to assume that the con-
straint matrix fulfills the (asymptotic) restriction posited in the following corollary.

Corollary 1. Let the data be generated by (1) and (2) with li ¼ 0, i ¼ 1, :::,N, and let Assumptions
1–3 be in place. Consider s linearly independent restrictions collected in:

H0 : Rb ¼ r, (15)

with R 2 R
s�3, r 2 R

s and assume that there exists a nonsingular matrix GR 2 R
s�s such that

limT!1 GRRGT ¼ R�, with R� 2 R
s�3 of rank s. Then it holds under the null hypothesis that the

Wald-type statistic:

Wþ :¼ Rb̂
þ � r

� �0
RŜ

þ
R0

� ��1
Rb̂

þ � r
� �

(16)

is chi-squared distributed with s degrees of freedom as T ! 1. In case s¼ 1, of course, a t-type test
can also be considered:

6Note that performing FM-OLS calculations for a time series dimension ranging from t ¼ 1, :::, T implicitly assumes that
observations are available for t ¼ 0, :::, T as the construction of ~yþit implies that one loses the first observation.
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tþ :¼ Rb̂
þ � rffiffiffiffiffiffiffiffiffiffiffiffiffi
RŜ

þ
R0

p , (17)

which is under the null hypothesis asymptotically standard normally distributed as T ! 1:

Inference on ai and di is also possible. Similarly, as an observation for later when drifts are
considered, inference on li using, e.g., augmented Dickey-Fuller type regressions can also be
performed.

Remark 1. The group-mean estimator is robust to many forms of cross-section dependence, i.e.,
it remains consistent with a zero mean Gaussian mixture limiting distribution despite cross-
section dependence. Of course, the covariance matrix of the asymptotic distribution changes –
depending upon the form and extent of cross-section dependence. Given that we consider a fixed
N setting, it suffices to simply consider a multivariate version of our assumptions ensuring joint
convergence of all quantities for i ¼ 1, :::,N:

The key quantity required for robust inference is (a consistent estimator of) the asymptotic
covariance matrix of the group-mean FM-OLS estimator in case of cross-section dependence. To

this end, denote with ~Mij :¼
Ð 1
0
~BviðrÞ~BvjðrÞ0dr and with Xui�vi;uj�vj the “constant” in the quadratic

covariation of the processes Bui�viðrÞ and Buj�vjðrÞ:7 The asymptotic covariance matrix of the
group-mean estimator given in (11) changes from the expression given in (13) to the “sandwich”
form:

Vþ
rob :¼

1
N2

XN
i, j¼1

Xui�vi;uj�vj ~M
�1
ii

~Mij ~M
�1
jj : (18)

It is important to note that the above result allows for very general forms of cross-section
dependencies, as long as Vþ

rob is invertible. As an (extreme) example, consider the case xit ¼ xt
for i ¼ 1, :::,N, i.e., the integrated regressor is the same for all cross-section members, which is
an extreme form of cross-unit cointegration, compare Wagner and Hlouskova (2009). In this

case, ~Mii ¼ ~Mjj ¼ ~Mij ¼ ~M for i, j ¼ 1, :::,N and Vþ
rob ¼ 1

N2

PN
i, j¼1 Xui�v;uj�v

� �
~M

�1
, using simpli-

fied notation Dxt ¼ vt in X. The term in brackets simplifies in this case to 1
N2 10NXu�v1N , with 1N :

¼ ½1, :::, 1�0 2 R
N and Xu�v ¼ Xuu � XuvX

�1
vv Xvu: Thus, positive definiteness of Xu�v is in this

example sufficient for robust inference. This example highlights the wide applicability of robust
inference based on the group-mean estimator, without having to posit a model for cross-section
dependence, e.g., common stochastic trends or a factor structure.8

A consistent estimator of the asymptotic covariance matrix Vþ
rob is given by:

V̂
þ
rob :¼

1
N2

XN
i, j¼1

X̂ui�vi;uj�vj GT

XT
t¼1

~Xit ~X
0
itGT

 !�1

GT

XT
t¼1

~Xit ~X
0
jtGT

 !
GT

XT
t¼1

~Xjt ~X
0
jtGT

 !�1

¼ G�1
T

1
N2

XN
i, j¼1

X̂ui�vi;uj�vj
XT
t¼1

~Xit ~X
0
it

 !�1 XT
t¼1

~Xit ~X
0
jt

 ! XT
t¼1

~Xjt ~X
0
jt

 !�1

G�1
T

¼: G�1
T Ŝ

þ
robG

�1
T ,

(19)

7Given that we consider the quadratic covariation between Brownian motions, this constant is, of course, simply the
covariance between Bui �vi ð1Þ and Buj �vj ð1Þ:
8We abstain from positing an explicit set of assumptions for brevity as the discussion in the remark makes clear that any set
of sufficient assumptions has to extend the marginal assumptions posited so far to hold jointly with cross-section dependence
allowed for. Clearly, in the presence of cross-section dependence the estimators of the joint long-run covariance matrix will
not feature cross-sectional independence by construction, compare Footnote 5.
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with Ŝ
þ
rob defined by the last equality. Since Xui�vi;uj�vj ¼ Xuiuj � XuiviX

�1
viviXviuj � XujvjX

�1
vjvjXvjui þ

XuiviX
�1
viviXvivjX

�1
vjvjXvjuj , we obtain the estimator X̂ui�vi;uj�vj by replacing the unknown long-run var-

iances and covariances in the expression just given for Xui�vi;uj�vj by consistent estimators. Robust
Wald-type and t-type test statistics can now be defined similarly to the Wald-type and t-type test

statistics defined in (16) and (17), with Ŝ
þ
rob as defined in (19) in place of Ŝ

þ
, i.e.:

Wþ
rob :¼ Rb̂

þ � r
� �0

RŜ
þ
robR

0
� ��1

Rb̂
þ � r

� �
, (20)

tþrob :¼
Rb̂

þ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RŜ

þ
robR

0
q , (21)

which are under the null hypothesis asymptotically chi-squared distributed with s degrees of free-
dom and standard normally distributed, respectively, as T ! 1:

Remark 2. In panel data settings, often time effects rather than individual-specific time trends
are considered – most commonly in conjunction with individual effects – in a two-way effects
specification. Time effects also do not invalidate consistency of the group-mean estimator.
However, the limiting distribution is in this case contaminated by second-order bias terms related
to the presence of cross-sectional averages of time series limits. In the two-way case, with individ-
ual-specific intercepts and time effects, the transformed regressor vector, e.g., is given by �Xit :¼
~Xit � 1

N

PN
j¼1

~Xjt , with ~Xit , i ¼ 1, :::,N as defined in (7). This leads to a partial sum limit (com-

pare Assumption 2) of the form T1=2GT �XibrTc ) ~BviðrÞ � 1
N

PN
j¼1

~BvjðrÞ ¼: �BviðrÞ: Thus, the cross-

section dependence induced by two-way demeaning shows up in the limit partial sum processes,

which in turn leads to second-order bias terms also in the limit of GT
PT

t¼1
�Xit�uþ

it , with �uþ
it :¼

�uit � DxitX̂
�1
viviX̂viui and �uit :¼ ~uit � 1

N

PN
j¼1 ~ujt: Under appropriate assumptions 1

N

PN
j¼1

~BvjðrÞ fulfills

a law of large numbers for N ! 1: A corresponding result is the basis for the derivation of the large
N and large T asymptotic distribution of the pooled estimator in de Jong and Wagner (2022) in the
two-way effects case.

Remark 3. Considering time effects in a cross-sectionally homogenous case, with Di ¼ D a.s. and
Ri ¼ R a.s. for i ¼ 1, :::,N, allows to alternatively adjust the group-mean estimator to achieve

asymptotically valid inference by using �yþit :¼ �yit � D�xitX̂
�1
vv X̂vu, where �yit :¼ ~yit � 1

N

PN
j¼1 ~yjt ,

with ~yit as defined in (6) for i ¼ 1, :::,N, as transformed dependent variable and:9

�Ci :¼ D̂
þ
vu

N � 1
N

� �2

T, 2
XT
t¼1

xit , 3
XT
t¼1

x2it

 !0
þ 1
N2

X
j 6¼i

T, 2
XT
t¼1

xjt , 3
XT
t¼1

x2jt

 !00@ 1A, (22)

as additive correction term when estimating the parameters of the ith equation with FM-OLS.
This leads to the following homogeneous group-mean estimator:

�b
þ
HOM :¼ 1

N

XN
i¼1

�b
þðiÞ, (23)

where:

9In this case, e.g., the homogenous long-run covariance matrix X can be estimated by the cross-sectional average of
individual-specific long-run covariance matrix estimators, i.e., X̂ :¼ 1

N

PN
i¼1 X̂ i; and similarly for the other required matrices.
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�b
þðiÞ :¼

XT
t¼1

�Xit �X
0
it

 !�1 XT
t¼1

�Xit�y
þ
it � �Ci

 !
, i ¼ 1, :::,N: (24)

The asymptotic (conditional) covariance matrix of the homogenous group-mean FM-OLS estima-

tor is given by Vþ
HOM :¼ Xu�v 1

N2

PN
i¼1

~M
�1
ii , compare (13). The homogenous versions of the Wald-

and t-type statistics follow straightforwardly.

Remark 4. Note that under (additional) assumptions that ensure the existence of required

moments, in particular of EðXui�vi ~M
�1
ii Þ, it follows in case of cross-sectional independence that:ffiffiffiffi

N
p

G�1
T b̂

þ � b
� �

!d N 0,EðXui�vi ~M
�1
ii Þ

� �
, (25)

as N ! 1 after T ! 1: An estimator of the covariance matrix of this limiting distribution is

given by NV̂
þ
, with V̂

þ
the “finite N” covariance matrix estimator given below Proposition 1

in (14).

2.2. Non-zero drifts

Let us now consider the case with non-zero drifts, i.e., li 6¼ 0, i ¼ 1, :::,N: In this case, the inte-
grated regressor:

xit ¼ li þ xi, t�1 þ vit ¼ lit þ
Xt
s¼1

vis þ xi0 ¼ lit þ xoit þ xi0, (26)

is asymptotically dominated by the deterministic linear trend lit rather than the stochastic trend

xoit :¼
Pt

s¼1 vis: For later usage define ~X
o
it similarly to ~Xit in (7), with xoit and its powers in place

of xit and its powers.
The implications of the dominance of a deterministic trend component on unit root and coin-

tegration analysis have been already investigated in the linear time series case by West (1988),
and, in the context of FM-OLS estimation, in Phillips and Hansen (1990, Remark (e), p. 105).
For the second and third powers of xit, the higher-order deterministic (monomial) quadratic or
cubic time trends are the dominant elements. This, of course, leads to asymptotic normality
results similar to those of West (1988) in a linear cointegration setting. However, in our context,
the deterministic trend will not be dominant in ~xit , when both demeaning and linear detrending
take place. In this case, the deterministic component is exactly annihilated in the demeaned and
detrended variable ~xit: Consequently, in this case, the coefficient to the first power of the inte-
grated regressor will have a unit root type asymptotic distribution rather than a normal asymp-
totic distribution.10

It is maybe worth mentioning that the presence of non-zero drifts li 6¼ 0 does not imply
changes in the construction of the transformed dependent variable ~yþit : Commencing from Dxit ¼
li þ vit immediately leads to:

~yþit ¼ ~yit � DxitX̂
�1
viviX̂viui ¼ ~yit � vitX̂

�1
viviX̂viui � liX̂

�1
viviX̂viui : (27)

This in turn implies that ~uþ
it ¼ ~uit � vitX̂

�1
viviX̂viui � liX̂

�1
viviX̂viui : Consequently, the scaled partial

sum process 1ffiffiffi
T

p
PbrTc

t¼1 ~uþ
it diverges, being non-centered. Nevertheless,

PT
t¼1

~Xit ¼ 0 implies that –

10For a full analysis of the impacts of the presence of deterministic trends in the regression equation and/or the regressors for
a more general CPR specification – in the time series case – see Reichold and Wagner (2022).
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after appropriate scaling – the cross product term
PT

t¼1
~Xit~u

þ
it converges (conditionally) to a

Gaussian mixture limit (with integrator and integrand independent of each other) plus an addi-
tive bias term to be subtracted. This is the key result allowing for asymptotically valid inference
based upon the group-mean FM-OLS estimator. Thus, the definition and computation of the
group-mean FM-OLS estimator is unaffected by or invariant to the presence of non-zero drifts.

Remark 5. In relation to the above, a word of caution may be in order concerning long-run covari-
ance estimation, typically based on the OLS residuals ûit of (1) in conjunction with the first difference
Dxit of xit. If one uses, as is sometimes done, an estimator that does not center the variables prior to
autocovariance estimation, the resultant estimator will diverge due to non-zero expectation li of Dxit:
By construction, ûit does not have to be centered in any of our specifications as they all include at
least an intercept as deterministic variable. If it is known that li ¼ 0, also Dxit need not be centered.

Extending Proposition 1 to the case of non-zero drifts requires the definition of a few add-
itional quantities, including the scaling matrices HT :¼ diagðT�3=2,T�5=2,T�7=2Þ and KT :¼
diagðT�1,T�5=2,T�7=2Þ: Furthermore, for i ¼ 1, :::,N define:

JiðrÞ :¼
li

l2i
l3i

0B@
1CA r � 1=2

r2 � 1=3

r3 � 1=4

0B@
1CA ¼: DðliÞ

r � 1=2

r2 � 1=3

r3 � 1=4

0B@
1CA

, (28)

LiðrÞ :¼
1

l2i
l3i

0B@
1CA ~BviðrÞ

r2 � r þ 1=6

r3 � 9=10r þ 1=5

0BB@
1CCA ¼: EðliÞ

~BviðrÞ
r2 � r þ 1=6

r3 � 9=10r þ 1=5

0BB@
1CCA: (29)

Proposition 2. Let the data be generated by (1) and (2) with li 6¼ 0, i ¼ 1, :::,N and let
Assumptions 1, 2 for ~X

o
it and 3 be in place.

(i) In case individual-specific intercepts but no individual-specific linear trends are included in
(1), it holds for T ! 1, conditional upon Di and Ri for i ¼ 1, :::,N that:

H�1
T b̂

þ � b
� �

!d N 0,Vþ
a

� �
, (30)

with Vþ
a :¼ 1

N2

PN
i¼1 Xui�við

Ð 1
0 JiðrÞJiðrÞ0drÞ�1 for i ¼ 1, :::,N:

(ii) In case individual-specific intercepts and linear trends are included in (1), it holds for
T ! 1, conditional upon Di, Ri and WviðrÞ for i ¼ 1, :::,N that:

K�1
T b̂

þ � b
� �

!d N 0,Vþ
a, d

� �
, (31)

with Vþ
a, d :¼ 1

N2

PN
i¼1 Xui�við

Ð 1
0 LiðrÞLiðrÞ0drÞ�1 for i ¼ 1, :::,N:

Proposition 2 shows that the two cases – with or without individual-specific trends – lead to different
asymptotic distributions of the group-mean FM-OLS estimator. Case (i), without individual-specific
trends, leads to a West-type asymptotic normality result for all elements of b, more clearly (uncondi-
tionally) visible in case Di and Ri are considered nonrandom. It is convenient to rewrite Vþ

a as:

Vþ
a ¼ 1

N2

XN
i¼1

Xui�vi DðliÞ
1=12 1=12 3=40

1=12 4=45 1=12

3=40 1=12 9=112

0B@
1CADðliÞ

0B@
1CA

�1

: (32)
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This leads immediately to two estimators of Vþ
a , one similar to the estimator V̂

þ
given in (14)

and the second commencing from the closed form expression for the limit result, i.e.:

V̂
þ
a :¼ 1

N2

XN
i¼1

X̂ui�vi HT

XT
t¼1

~Xit ~X
0
itHT

 !�1

¼ H�1
T Ŝ

þ
H�1

T , (33)

and:

~V
þ
a :¼ 1

N2

XN
i¼1

X̂ui�vi Dðl̂iÞ
1=12 1=12 3=40

1=12 4=45 1=12

3=40 1=12 9=112

0B@
1CADðl̂iÞ

0B@
1CA

�1

, (34)

with, e.g., l̂i :¼ 1
T

PT
t¼1 Dxit:

In Case (ii), with individual-specific intercepts and linear trends included, the coefficient to ~xit
has, as mentioned above, a unit-root-type limiting distribution and only the coefficients to the
higher-order powers have a West-type asymptotic normal distribution. This implies that a “direct”

estimator of Vþ
a, d, similar in spirit to ~V

þ
a , can only be constructed for the lower 2� 2 block, i.e.:

V̂
þ
a, d :¼

1
N2

XN
i¼1

X̂ui�vi KT

XT
t¼1

~Xit ~X
0
itKT

 !�1

¼ K�1
T Ŝ

þ
K�1
T , (35)

and:

~V
þ
a, d :¼ 1

N2

XN
i¼1

X̂ui�vi

1
T2

XT
t¼1

ð~xitÞ2 1
T7=2

XT
t¼1

~xit ex2it 1
T9=2

XT
t¼1

~xit ex3it
1

T7=2

XT
t¼1

~xit ex2it l̂4
i =180 l̂5

i =120

1
T9=2

XT
t¼1

~xit ex3it l̂5
i =120 9l̂6

i =700

0BBBBBBBBBBB@

1CCCCCCCCCCCA

�1

: (36)

The above considerations lead to the following corollary summarizing the test options in case of
non-zero drifts.

Corollary 2. Let the data be generated by (1) and (2) with li 6¼ 0, i ¼ 1, :::,N and let Assumptions

1, 2 for ~X
o
it and 3 be in place. Consider s linearly independent restrictions collected in H0 : Rb ¼ r,

with R 2 R
s�3, r 2 R

s and assume that there exists a nonsingular matrix GR 2 R
s�s and a matrix

R� 2 R
s�3 of rank s such that limT!1 GRRHT ¼ R� (in the individual-specific intercepts only case)

or limT!1 GRRKT ¼ R� (in the individual-specific intercepts and linear trends case).
In both, the individual-specific intercepts only and the individual-specific intercepts and linear

trends cases, the Wald- and (in case s¼ 1) t-type statistics:

Wþ ¼ Rb̂
þ � r

� �0
RŜ

þ
R0

� ��1
Rb̂

þ � r
� �

, (37)

tþ ¼ Rb̂
þ � rffiffiffiffiffiffiffiffiffiffiffiffiffi
RŜ

þ
R0

p , (38)

already defined in (16) and (17), are under the null hypothesis chi-squared distributed with s
degrees of freedom and standard normally distributed, respectively, as T ! 1:
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Furthermore, in the individual-specific intercepts only case, the test statistics can alternatively
(asymptotically equivalently) be defined as:

Wþ
a :¼ Rb̂

þ � r
� �0

R~S
þ
a R

0
� ��1

Rb̂
þ � r

� �
, (39)

tþa :¼ Rb̂
þ � rffiffiffiffiffiffiffiffiffiffiffiffiffi
R~S

þ
a R

0
q , (40)

with ~S
þ
a :¼ HT ~V

þ
a HT :

In the individual-specific intercepts and linear trends case, the test statistics can alternatively
(asymptotically equivalently) be defined as:

Wþ
a, d :¼ Rb̂

þ � r
� �0

R~S
þ
a, dR

0
� ��1

Rb̂
þ � r

� �
, (41)

tþa, d :¼
Rb̂

þ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R~S

þ
a, dR

0
q , (42)

with ~S
þ
a, d :¼ KT ~V

þ
a, dKT : Under the null hypothesis, the four additionally considered test statistics

are asymptotically chi-squared or standard normally distributed, respectively, as T ! 1:

Remark 6. Similar to Remark 1 in Subsection 2.1, the results can be extended to allow for cross-
section dependence; based again upon any suitable modification of the assumptions to ensure the
necessary joint convergence results. The precise form of the asymptotic results will depend upon
the deterministic components in (1). With individual-specific intercepts only, the covariance
matrix of the asymptotic distribution is, in case of cross-section dependence, given by:

Vþ
a, rob :¼

1
N2

XN
i, j¼1

Xui�vi;uj�vj

ð1
0
JiðrÞJiðrÞ0dr

 !�1 ð1
0
JiðrÞJjðrÞ0dr

ð1
0
JjðrÞJjðrÞ0dr

 !�1

¼ 1
N2

XN
i, j¼1

Xui�vi;uj�vj DðliÞ
1=12 1=12 3=40

1=12 4=45 1=12

3=40 1=12 9=112

0B@
1CADðljÞ

0B@
1CA

�1

:

(43)

In case that both individual-specific intercepts and linear trends are included in (1), the covari-
ance matrix of the asymptotic distribution is given by:

Vþ
a, d, rob :¼

1
N2

XN
i, j¼1

Xui�vi;uj�vj

ð1
0
LiðrÞLiðrÞ0dr

 !�1 ð1
0
LiðrÞLjðrÞ0dr

ð1
0
LjðrÞLjðrÞ0dr

 !�1

¼:
1
N2

XN
i, j¼1

Xui�vi;uj�vjCði, jÞ,
(44)

with Cði, jÞ defined by the last equality. Considering again:

Ŝ
þ
rob ¼

1
N2

XN
i, j¼1

X̂ui�vi;uj�vj
XT
t¼1

~Xit ~X
0
it

 !�1 XT
t¼1

~Xit ~X
0
jt

 ! XT
t¼1

~Xjt ~X
0
jt

 !�1

, (45)

as defined already in (19), immediately leads to consistent estimators in both cases, given by

V̂
þ
a, rob :¼ H�1

T Ŝ
þ
robH

�1
T or V̂

þ
a, d, rob :¼ K�1

T Ŝ
þ
robK

�1
T , respectively. Entirely analogously to Remark 1,
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using Ŝ
þ
rob in the definition of the robust test statistics Wþ

rob and tþrob (in case s¼ 1) given in (20)
and (21), leads to chi-squared and standard normal inference, respectively, as T ! 1:

Note for completeness that the test statistics Wþ
a and tþa defined in (39) and (40) in Corollary

2 can also be “robustified” straightforwardly. Considering:

~V
þ
a, rob :¼ 1

N2

XN
i, j¼1

X̂ui _vi;uj�vj Dðl̂iÞ
1=12 1=12 3=40

1=12 4=45 1=12

3=40 1=12 9=112

0B@
1CADðl̂jÞ

0B@
1CA

�1

(46)

and ~S
þ
a, rob :¼ HT ~V

þ
a, robHT allows to define:

Wþ
a, rob :¼ Rb̂

þ � r
� �0

R~S
þ
a, robR

0
� ��1

Rb̂
þ � r

� �
, (47)

tþa, rob :¼
Rb̂

þ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R~S

þ
a, robR

0
q : (48)

Analogously, Wþ
a, d and tþa, d defined in (41) and (42) can be “robustified” by constructing a

“direct” estimator of Vþ
a, d, rob: To be precise, ~V

þ
a, d defined in (36) has to be replaced by:

~V
þ
a, d, rob :¼

1
N2

XN
i, j¼1

X̂ui�vi;uj�vj~Cði, jÞ :¼
1
N2

XN
i, j¼1

X̂ui�vi;uj�vj ~AðiÞ�1 ~Bði, jÞ ~AðjÞ�1, ð49Þ

~AðiÞ :¼

1
T2

XT
t¼1

ð~xitÞ2 1
T7=2

XT
t¼1

~xit ex2it 1
T9=2

XT
t¼1

~xit ex3it
1

T7=2

XT
t¼1

~xit ex2it l̂4
i =180 l̂5

i =120

1
T9=2

XT
t¼1

~xit ex3it l̂5
i =120 9l̂6

i =700

0BBBBBBBBBBB@

1CCCCCCCCCCCA
, i ¼ 1, :::,N, ð50Þ

~Bði, jÞ :¼

1
T2

XT
t¼1

~xit~xjt
1

T7=2

XT
t¼1

~xit ex2jt 1
T9=2

XT
t¼1

~xit ex3jt
1

T7=2

XT
t¼1

~xit ex2jt l̂2
i l̂

2
j =180 l̂2

i l̂
3
j =120

1
T9=2

XT
t¼1

~xit ex3jt l̂3
i l̂

2
j =120 9l̂3

i l̂
3
j =700

0BBBBBBBBBBB@

1CCCCCCCCCCCA
, i, j ¼ 1, :::,N: ð51Þ

Based upon this, defining ~S
þ
a, d, rob :¼ KT ~V

þ
a, robKT leads to the robust versions of the “direct” test

statistics, i.e.:

Wþ
a, d, rob :¼ Rb̂

þ � r
� �0

R~S
þ
a, d, robR

0
� ��1

Rb̂
þ � r

� �
, (52)

tþa, d, rob :¼
Rb̂

þ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R~S

þ
a, d, robR

0
q : (53)
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Under the null hypothesis, the test statistics are asymptotically chi-squared or standard normally
distributed, respectively, as T ! 1:

Remark 7. In case of individual-specific intercepts in (1) only, the OLS estimator also allows for
asymptotically valid standard inference, as noted by West (1988) in the context of linear time
series cointegrating regressions. Proper scaling by a consistent estimator of the long-run variance
of the errors uit suffices. Therefore, in this case, one can consider a group-mean OLS estimator:

b̂ :¼ 1
N

XN
i¼1

b̂ðiÞ, (54)

with:

b̂ðiÞ :¼
XT
t¼1

~Xit ~X
0
it

 !�1XT
t¼1

~Xit~yit , i ¼ 1, :::,N: (55)

Under the assumptions of Proposition 2, it holds for T ! 1, conditional upon Di and Ri for i ¼
1, :::,N, that:

H�1
T b̂ � b
� �

!d N 0,
1
N2

XN
i¼1

Xuiui

ð1
0
JiðrÞJiðrÞ0dr

 !�1
0@ 1A: (56)

Therefore, exactly as discussed in Corollary 2, group-mean OLS-based Wald- and t-type test sta-
tistics can be defined using two different estimators of the covariance matrix, analogous to using

either Ŝ
þ
or ~S

þ
a , where in both matrices X̂ui�vi is replaced by X̂uiui for i ¼ 1, :::,N: More precisely,

constructing:

Ŝ :¼ 1
N2

XN
i¼1

X̂uiui

XT
t¼1

~Xit ~X
0
it

 !�1

, (57)

~Sa :¼ 1
N2

XN
i¼1

X̂uiuiHT Dðl̂iÞ
1=12 1=12 3=40

1=12 4=45 1=12

3=40 1=12 9=112

0B@
1CADðl̂iÞ

0B@
1CA

�1

HT , (58)

with, as before, HT ¼ diagðT�3=2,T�5=2,T�7=2Þ, Dðl̂iÞ ¼ diagðl̂i, l̂
2
i , l̂

3
i Þ and X̂uiui an estimator of

the long-run variance of uit, allows to define corresponding Wald- and (in case s¼ 1) t-type statistics:

W :¼ Rb̂ � r
� �0

RŜR0ð Þ�1
Rb̂ � r
� �

, (59)

t :¼ Rb̂ � rffiffiffiffiffiffiffiffiffiffi
RŜR0

p (60)

and

Wa :¼ Rb̂ � r
� �0

R~SaR
0� ��1

Rb̂ � r
� �

, (61)

ta :¼ Rb̂ � rffiffiffiffiffiffiffiffiffiffiffiffi
R~SaR0

p : (62)

Furthermore, similar to Remarks 1 and 6, cross-section dependence can be accommodated, i.e.,
the group-mean OLS estimator can also be used to perform robust inference, again in two ways.
One variant is given by:
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Wrob :¼ Rb̂ � r
� �0

RŜrobR
0� ��1

Rb̂ � r
� �

, (63)

trob :¼ Rb̂ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RŜrobR0

p , (64)

with Ŝrob similar to Ŝ
þ
rob as defined in (19), but with X̂uiuj in place of X̂ui�vi;uj�vj : The second possi-

bility resembles the result discussed in Remark 6. The corresponding test statistics are given by:

Wa, rob :¼ Rb̂ � r
� �0

R~Sa, robR
0� ��1

Rb̂ � r
� �

, (65)

ta, rob :¼ Rb̂ � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R~Sa, robR0

q , (66)

with ~Sa, rob similar to ~S
þ
a, rob, but with X̂uiuj in place of X̂ui�vi;uj�vj in ~V

þ
a, rob as defined in (46).

Under the null hypothesis, all considered test statistics are asymptotically chi-squared or standard
normally distributed, respectively, as T ! 1:

2.3. Zero or non-zero drifts

We are now ready to discuss the “general” case concerning drifts, with drifts present or absent in
any cross-section member. It is important to stress again that for using the developed estimators
and tests based upon them no knowledge concerning the presence or absence of drifts is required.
As in the previous subsection, it is convenient to first discuss the case with individual-specific
intercepts only on the one hand and the case with individual-specific intercepts and linear trends
on the other hand separately.

In the individual-specific intercepts only case, it follows from a combination of the results of
Propositions 1 and 2 that the asymptotic behavior of the group-mean estimator only depends on

the individual-specific estimators b̂
þðiÞ calculated from cross-section members with zero drifts,

since these converge at a slower rate than the estimators corresponding to cross-section members
with non-zero drifts in the integrated regressor. It is clear that this “sorts out itself” in the limit-
ing distributions and there are no implications for either the definition or the usage of the con-
sidered test statistics.

In case of individual-specific intercepts and linear trends, Proposition 2 shows that the coeffi-
cient to the first power of the integrated regressor, b1, is estimated with (the standard unit root)
rate T, irrespective of whether a non-zero drift is present or not. Therefore, the limiting distribu-

tion of the first component of b̂
þ

will depend upon all cross-section member-specific estimates
of b1. For b2 and b3, the situation is exactly as in the individual-specific intercepts only case, with
the limiting distribution only depending upon the individual-specific estimators corresponding to
cross-section members with zero drifts in the integrated regressor.

For notational convenience only, consider the cross-section members ordered in i ¼ 1, :::,N0

cross-section members with zero drifts and i ¼ N0 þ 1, :::,N cross-section members with non-
zero drifts; noting that N0 can range from zero (non-zero drifts in all cross-section members) to
N (all cross-section members with zero drifts in xit). Furthermore, define the following scaling
matrices:

QT :¼ GT if N0 > 0
HT if N0 ¼ 0

and RT :¼ GT if N0 > 0,
KT if N0 ¼ 0:

		
(67)

Proposition 3. Let the data be generated by (1) and (2) with li 2 R, i ¼ 1, :::,N and let
Assumptions 1, 2 for ~X

o
it and 3 be in place.
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(i) In case individual-specific intercepts but no individual-specific linear trends are included in
(1), it holds for T ! 1, conditional upon Di, Ri and WviðrÞ for i ¼ 1, :::,N that:

Q�1
T b̂

þ � b
� �

!d N 0,Vþ
N0

� �
, (68)

with:

Vþ
N0

:¼
1
N2

XN0

i¼1

Xui�vi

ð1
0

~BviðrÞ~BviðrÞ0dr
 !�1

if N0 > 0,

Vþ
a if N0 ¼ 0:

8>><>>: (69)

(ii) In case individual-specific intercepts and linear trends are included in (1), it holds for
T ! 1, conditional upon Di, Ri and WviðrÞ for i ¼ 1, :::,N that:

R�1
T b̂

þ � b
� �

!d N 0,Vþ
N0

� �
, (70)

with:

Vþ
N0

:¼

1
N2

XN0

i¼1

Xui�vi

ð1
0

~BviðrÞ~BviðrÞ0dr
 !�1

þ 1
N2

XN
i¼N0þ1

Xui�vi

Ð 1
0 LiðrÞLiðrÞ0dr

� ��1

1, 1½ � 0 0

0 0 0

0 0 0

0BBB@
1CCCA if N0 > 0,

Vþ
a, d if N0 ¼ 0,

8>>>>>>>>>>>><>>>>>>>>>>>>:
(71)

with ½1, 1� indicating the (1, 1) element of the (3� 3 inverted) matrix.

The second term in the covariance matrix Vþ
N0

in item (ii) in case N0 > 0 reflects the above-men-
tioned fact that the coefficient to the first power of the integrated regressor is estimated at rate T
irrespective of whether the drift is zero or non-zero – as in either case linear detrending removes
a potential deterministic linear trend from the corresponding regressor. The asymptotic distribu-
tion immediately leads to Wald- and t-type test statistics.

Corollary 3. Let the data be generated by (1) and (2) with li 2 R, i ¼ 1, :::,N and let Assumptions
1, 2 for ~X

o
it and 3 be in place. Consider s linearly independent restrictions collected in H0 : Rb ¼ r

with R 2 R
s�3, r 2 R

s and assume that there exists a nonsingular matrix GR 2 R
s�s and a matrix

R� 2 R
s�3 of rank s such that limT!1 GRRQT ¼ R� (in the individual-specific intercepts only case)

or limT!1 GRRRT ¼ R� (in the individual-specific intercepts and linear trends case). In both, the
individual-specific intercepts only and the individual-specific intercepts and linear trends case, the
Wald- and (in case s¼ 1) t-type statistics:

W ¼ Rb̂
þ � r

� �0
RŜ

þ
R0

� ��1
Rb̂

þ � r
� �

, (72)

t ¼ Rb̂
þ � rffiffiffiffiffiffiffiffiffiffiffiffiffi
RŜ

þ
R0

p , (73)

already defined in (16) and (17), are under the null hypothesis chi-squared distributed with s
degrees of freedom and standard normally distributed, respectively, as T ! 1:
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Remark 8. As in the previous subsections, cf. Remarks 1 and 6, the group-mean FM-OLS estima-
tor remains consistent with a zero mean (conditional) normal limiting distribution in case of
cross-section dependencies; with the assumptions adjusted correspondingly. The key input for
performing robust inference is again a consistent estimator of the covariance matrix of the
asymptotic distribution.

In case individual-specific intercepts only are included (1), the asymptotic covariance matrix
is, in case of cross-section dependence, given by:

Vþ
N0, rob

:¼
1
N2

XN0

i, j¼1

Xui�vi;uj�vj ~M
�1
ii

~Mij ~M
�1
jj if N0 > 0,

Vþ
a, rob if N0 ¼ 0:

8>><>>: (74)

In case both individual-specific intercepts and linear trends are included in (1), the asymptotic
covariance matrix is given by:

Vþ
N0, rob

:¼

1
N2

XN0

i, j¼1

Xui�vi;uj�vj ~M
�1
ii

~Mij ~M
�1
jj

þ 1
N2

XN
i, j¼N0þ1

Xui�vi;uj�vj

Cði, jÞ 1, 1½ � 0 0

0 0 0

0 0 0

0B@
1CA

þ 1
N2

XN0

i¼1

XN
j¼N0þ1

Xui�vi;uj�vj

Fði, jÞ 1, 1½ � 0 0

0 0 0

0 0 0

0B@
1CA if N0 > 0,

þ 1
N2

XN
i¼N0þ1

XN0

j¼1

Xui�vi;uj�vj

Kði, jÞ 1, 1½ � 0 0

0 0 0

0 0 0

0B@
1CA

Vþ
a, d, rob if N0 ¼ 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

(75)

with:

Fði, jÞ :¼
ð1
0

~BviðrÞ~BviðrÞ0dr
 !�1 ð1

0

~BviðrÞLjðrÞ0dr
ð1
0
LjðrÞLjðrÞ0dr

 !�1

, (76)

Kði, jÞ :¼
ð1
0
LiðrÞLiðrÞ0dr

 !�1 ð1
0
LiðrÞ~BvjðrÞ0dr

ð1
0

~BvjðrÞ~BvjðrÞ0dr
 !

, (77)

for i, j ¼ 1, :::,N:
For performing robust inference, however, the fact that the asymptotic covariance matrices are

case-dependent with respect to both N0 and whether or not individual-specific linear trends are
included in (1), has no consequences. The robust test statistics Wþ

rob and tþrob defined in (20) and

(21), using Ŝ
þ
rob defined in (19), lead to chi-squared and standard normal inference, respectively,

under the null hypothesis as T ! 1: This follows using similar arguments as in Proposition 3
and Corollary 3.

We abstain from a detailed discussion of constructing test statistics based on “direct” estima-
tors of the covariance matrix. Doing so would, in practice, necessitate knowledge concerning the
presence or absence of non-zero drifts in the integrated regressors in the individual cross-section
members. Whilst this knowledge, as unlikely as this may be, could in some applications indeed
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be available and one could construct individual-specific “direct” estimators, we do not provide –
notationally more cumbersome rather than mathematically more complicated – details here. For
the same reason, we also abstain from considering OLS rather than FM-OLS estimation in the
cross-section members with non-zero drifts and do not define a mixed OLS-FM-OLS group-mean
estimator. The corresponding analysis is, again, notationally more cumbersome rather than math-
ematically more complex.

3. Finite sample performance

We generate, commencing from de Jong and Wagner (2022), data according to (1) and (2), i.e.:

yit ¼ ai þ dit þ xitb1 þ x2itb2 þ x3itb3 þ uit , (78)

xit ¼ li þ xi, t�1 þ vit , xi0 ¼ 0, (79)

with slope parameters b1 ¼ 5, b2 ¼ �3 and b3 ¼ 0:3: The regression errors uit and vit are gener-
ated as:

uit ¼ q1iui, t�1 þ eit þ q2i�it , (80)

vit ¼ 0:1 �it þ 0:5�i, t�1ð Þ, (81)

with ðe1t , :::, eNtÞ0 � N ð0,RÞ and ð�1t , :::, �NtÞ0 � N ð0,RÞ, i.i.d. across t ¼ 0, 1, :::,T, where:

R ¼

1 q3 ::: q3

q3 1 . .
. ..

.

..

. . .
. . .

.
q3

q3 ::: q3 1

0BBBB@
1CCCCA: (82)

The parameters q1i and q2i control the level of serial correlation in the error terms uit and the
extent of regressor endogeneity, respectively, whereas the parameter q3 controls the extent of
cross-section dependence. The parameters qi1,qi2 are cross-sectionally i.i.d. and independent of
ðeit , �itÞ0, t ¼ 1, :::,T: In particular, we consider q1i ¼ q1 þ U1i and q2i ¼ q2 þ U2i with U1i, U2i

i.i.d. uniform random variables over the interval ½�0:05, 0:05�, with q1, q2 2 f0, 0:3, 0:6, 0:9g:11
Furthermore, we also consider q3 2 f0, 0:3, 0:6, 0:9g: The individual effects ai are i.i.d. Nð�45, 5Þ
and independent of all other random quantities. For the individual-specific time trends we con-
sider two cases: (i) di ¼ 0 for i ¼ 1, :::,N and (ii) di i.i.d. Nð�0:01, 0:01Þ, independent of all
other random quantities. In the former case, the variables are demeaned and in the second case,
the variables are demeaned and linearly detrended for the construction of the estimators, compare
(10) and (11).

With respect to drifts, li, we consider three cases: Two boundary cases, one with all drift
parameters equal to zero, i.e., li ¼ l ¼ 0, and one with all drift parameters equal to
li ¼ l ¼ 0:02:12 Furthermore, we consider an “intermediate case,” with half of the individual-
specific drifts equal to zero and the other half equal to 0.02. The simulation setting covers all
combinations of N 2 f10, 20, 100g and T 2 f100, 250, 500g: For every setting considered, the

11The addition of cross-sectionally i.i.d. random variables to the coefficients q1 and q2 is a simple way of generating data in a
random linear process fashion. Considering nonrandom q1i and q2i leads, as expected, to very similar results.

Our way of introducing cross-section dependence is inspired by Wagner and Hlouskova (2009) who consider three
specifications for modeling cross-section dependence. We consider their constant correlation setting.
12Setting all non-zero drift parameters equal to 0.02 is for simplicity only. The results are very similar when the non-zero drifts
are independently drawn from the interval ½0:01, 0:03�: The point value for l ¼ 0:02 and the interval ½0:01, 0:03� are inspired by
the arithmetic means of the annual GDP per capita growth rates for 19 countries in the long data set analyzed in Section 4.
The country-specific arithmetic means range from 0.013 to 0.024, and the arithmetic mean over all countries of the country-
specific mean growth rates is equal to 0.018.

ECONOMETRIC REVIEWS 375



number of replications is 5,000 and all test decisions are performed at the 5% nominal level. The
reported results rely upon long-run covariance estimation using the Bartlett kernel in conjunction
with the data-dependent bandwidth rule of Andrews (1991). As indicated in the introduction, the
Supplementary Material contains a number of additional tables and figures.

We start by considering bias and root mean squared error (RMSE) of three estimators:

The group-mean OLS estimator, labeled b̂, the group-mean FM-OLS estimator b̂
þ

and the

pooled FM-OLS estimator of de Jong and Wagner (2022), labeled b̂
þ
P :

13 In general, see as an
illustration the results for b1, with li 6¼ 0 for i ¼ 1, :::,N, in Tables 1 and 2, the presence of indi-
vidual-specific trends adversely affects estimator performance, both in terms of bias and RMSE.
This almost necessarily implies, as will be seen below, a corresponding detrimental impact also
on test performance.14 As expected, increasing the sample size, either the cross-section dimension
N or (with a stronger positive effect) the time series dimension T, leads to improved perform-
ance. As also expected, increasing any of the q-parameters that govern error serial correlation,
regressor endogeneity, or cross-section dependence, respectively, leads to performance deterior-
ation. In this respect, it turns out that RMSE is more strongly affected by cross-section depend-
ence than bias, which does not react strongly to cross-section dependence. By construction, as the
pooled FM-OLS estimator estimates only one set of slope coefficients, the pooled FM-OLS esti-
mator mostly outperforms the group-mean FM-OLS estimator both in terms of bias and RMSE.
Only for b1 in the individual-specific intercepts only case, see Tables 1 and 2, the group-mean
FM-OLS estimator leads in several cases to smaller bias than the pooled FM-OLS estimator
(more pronounced for large q-values and smaller sample sizes), albeit in conjunction with higher
RMSE. However, this is not the case for b2 and b3, see Tables 9–16 in the Supplementary
Material, and should thus not be over-interpreted. Increasing values of q1,q2 lead to performance
advantages of group-mean FM-OLS over group-mean OLS with – as expected – basically no dif-
ferences between these two estimators for q1, q2 ¼ 0:

The (asymptotic) implications of the absence or presence of drifts manifest themselves also in
the finite sample results. In the individual-specific intercepts only case, bias and RMSE of all
components of the OLS and FM-OLS group-mean estimators of b are smaller in the presence
than in the absence of drifts; compare, e.g., for b1 Table 1 with Table 7 in the Supplementary
Material. Exactly in line with asymptotic theory (Proposition 3), bias and RMSE of the OLS and
FM-OLS group-mean estimators of b1 are not affected by the absence or presence of drifts in the
individual-specific intercepts and linear trends case, compare Table 2 with Table 8 in the
Supplementary Material.

To assess test performance, we consider in total five different test statistics evaluated under the
null hypothesis by means of empirical null rejection probabilities and under a sequence of 20
alternatives by means of “size-corrected” power. We consider two test statistics based on the
group-mean OLS estimator: The first is a textbook version of a group-mean OLS estimator-based

test, labeled WTB, using in Ŝ, as defined in (57), instead of X̂uiui a textbook variance estimator

given by r̂2
ui ¼ 1

T

PT
t¼1 û

2
it: This test serves as a “textbook” OLS test benchmark and leads to

asymptotically valid inference only when qi1 ¼ qi2 ¼ q3 ¼ 0 for i ¼ 1, :::,N: The second group-
mean OLS-based test statistic is Wrob as defined in (63). As discussed in Remark 7, asymptotic
validity of this test for all values of the q-parameters hinges critically upon drifts being present in
all cross-section members, which in practice is almost certainly unknown. We, of course, consider
both standard and robust inference based on the group-mean OLS estimator, i.e., Wþ as defined
in (16) and Wþ

rob as defined in (20). Finally, for comparison, we also include the Wald-type test

13de Jong and Wagner (2022) do not consider the case of individual-specific linear trends but consider time effects, compare
Remark 2. It is straightforward to adjust – and implement – the pooled FM-OLS estimator to include individual-specific (linear)
time trends, using demeaned and linearly detrended observations.
14Tables 7 and 8 in the Supplementary Material provide the corresponding results for li ¼ 0 for i ¼ 1, :::,N:

376 M. WAGNER AND K. REICHOLD

https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141
https://doi.org/10.1080/07474938.2023.2178141


Table 1. Bias and RMSE of the estimators of b1 in the individual-specific intercepts only case with non-zero drifts.

N¼ 10 N¼ 20 N¼ 100

T q1,q2 b̂1 b̂
þ
1 b̂

þ
P, 1 b̂1 b̂

þ
1 b̂

þ
P, 1 b̂1 b̂

þ
1 b̂

þ
P, 1

Bias, q3 ¼ 0

100 0 �0.01 �0.01 �0.00 �0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.23 0.04 0.01 0.24 0.05 0.01 0.24 0.05 0.01
0.6 0.88 0.21 0.10 0.90 0.22 0.09 0.90 0.22 0.08
0.9 3.23 0.54 0.94 3.24 0.52 0.95 3.23 0.57 0.89

250 0 0.00 0.00 0.00 0.00 0.00 �0.00 �0.00 �0.00 �0.00
0.3 0.08 0.01 0.00 0.08 0.01 0.00 0.08 0.01 0.00
0.6 0.36 0.06 0.03 0.36 0.06 0.03 0.36 0.06 0.02
0.9 1.79 0.24 0.33 1.78 0.24 0.31 1.79 0.25 0.30

500 0 0.00 0.00 �0.00 �0.00 �0.00 �0.00 0.00 0.00 �0.00
0.3 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00
0.6 0.14 0.02 0.01 0.14 0.02 0.01 0.14 0.02 0.01
0.9 0.86 0.13 0.11 0.86 0.12 0.11 0.87 0.14 0.10

Bias, q3 ¼ 0:9

100 0 �0.02 �0.02 �0.01 �0.03 �0.02 �0.02 0.00 0.00 0.01
0.3 0.21 0.02 0.00 0.20 0.01 �0.01 0.24 0.05 0.03
0.6 0.86 0.18 0.11 0.86 0.17 0.10 0.90 0.23 0.15
0.9 3.23 0.39 0.68 3.22 0.35 0.72 3.28 0.47 0.90

250 0 �0.00 �0.00 �0.00 �0.01 �0.01 �0.00 �0.00 �0.00 0.00
0.3 0.08 0.01 0.00 0.08 �0.00 0.00 0.08 0.01 0.01
0.6 0.36 0.06 0.03 0.35 0.05 0.03 0.36 0.07 0.04
0.9 1.78 0.22 0.23 1.77 0.17 0.22 1.81 0.22 0.27

500 0 �0.00 �0.00 �0.00 �0.00 �0.00 �0.00 0.00 0.00 �0.00
0.3 0.03 0.00 0.00 0.03 �0.00 �0.00 0.03 0.00 �0.00
0.6 0.14 0.02 0.01 0.13 0.01 0.00 0.14 0.02 0.01
0.9 0.84 0.10 0.09 0.85 0.10 0.07 0.84 0.12 0.09

RMSE, q3 ¼ 0

100 0 0.47 0.48 0.11 0.33 0.33 0.07 0.15 0.15 0.03
0.3 0.66 0.63 0.16 0.50 0.44 0.10 0.31 0.20 0.04
0.6 1.32 0.97 0.29 1.14 0.71 0.19 0.95 0.37 0.10
0.9 4.03 2.69 1.37 3.66 1.95 1.14 3.32 1.04 0.93

250 0 0.14 0.14 0.05 0.10 0.10 0.03 0.04 0.04 0.01
0.3 0.21 0.19 0.07 0.16 0.14 0.05 0.10 0.06 0.02
0.6 0.50 0.33 0.13 0.44 0.24 0.09 0.38 0.12 0.04
0.9 2.15 1.16 0.65 1.97 0.85 0.49 1.83 0.46 0.34

500 0 0.05 0.05 0.03 0.04 0.04 0.02 0.02 0.02 0.01
0.3 0.08 0.08 0.04 0.06 0.05 0.02 0.04 0.02 0.01
0.6 0.20 0.13 0.07 0.17 0.09 0.04 0.15 0.05 0.02
0.9 1.06 0.54 0.32 0.95 0.39 0.23 0.89 0.22 0.13

RMSE, q3 ¼ 0:9

100 0 1.10 1.11 0.63 1.05 1.06 0.57 1.03 1.04 0.53
0.3 1.50 1.46 0.84 1.41 1.40 0.77 1.38 1.36 0.71
0.6 2.54 2.25 1.34 2.40 2.13 1.23 2.32 2.05 1.14
0.9 6.46 6.37 4.13 6.14 5.82 3.73 5.95 5.58 3.42

250 0 0.35 0.35 0.24 0.35 0.35 0.22 0.35 0.35 0.22
0.3 0.50 0.49 0.34 0.50 0.49 0.31 0.50 0.48 0.30
0.6 0.95 0.82 0.57 0.96 0.82 0.53 0.95 0.81 0.51
0.9 3.48 2.87 2.04 3.50 2.85 1.93 3.44 2.79 1.84

500 0 0.14 0.14 0.11 0.14 0.14 0.10 0.14 0.14 0.10
0.3 0.21 0.20 0.15 0.21 0.20 0.15 0.21 0.20 0.15
0.6 0.42 0.35 0.27 0.41 0.35 0.25 0.43 0.35 0.25
0.9 1.84 1.41 1.05 1.80 1.38 1.01 1.85 1.40 1.00

Note: The column labels b̂1, b̂
þ
1 , and b̂

þ
P, 1 denote the group-mean OLS estimator, the group-mean FM-OLS estimator, and the

pooled FM-OLS estimator, respectively, of b1.
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Table 2. Bias and RMSE of the estimators of b1 in the individual-specific intercepts and linear trends case with non-zero drifts.

N¼ 10 N¼ 20 N¼ 100

T q1,q2 b̂1 b̂
þ
1 b̂

þ
P, 1 b̂1 b̂

þ
1 b̂

þ
P, 1 b̂1 b̂

þ
1 b̂

þ
P, 1

Bias, q3 ¼ 0

100 0 �0.01 �0.01 �0.00 �0.00 0.00 �0.00 0.00 0.00 0.00
0.3 0.31 0.10 0.03 0.32 0.11 0.03 0.32 0.11 0.02
0.6 1.23 0.67 0.30 1.25 0.69 0.27 1.24 0.69 0.25
0.9 4.69 3.96 2.91 4.73 3.97 2.82 4.73 3.99 2.74

250 0 0.00 0.00 0.00 �0.00 �0.00 �0.00 �0.00 �0.00 �0.00
0.3 0.13 0.03 0.01 0.13 0.03 0.01 0.13 0.03 0.01
0.6 0.58 0.24 0.10 0.57 0.23 0.09 0.57 0.23 0.08
0.9 3.06 2.22 1.34 3.02 2.19 1.25 3.04 2.21 1.18

500 0 0.00 0.00 0.00 �0.00 �0.00 �0.00 0.00 0.00 0.00
0.3 0.06 0.01 0.00 0.06 0.01 0.00 0.07 0.01 0.00
0.6 0.30 0.10 0.04 0.30 0.09 0.03 0.30 0.10 0.03
0.9 1.92 1.23 0.60 1.92 1.23 0.56 1.94 1.25 0.53

Bias, q3 ¼ 0:9

100 0 �0.03 �0.03 �0.02 �0.03 �0.03 �0.02 0.01 0.01 0.01
0.3 0.29 0.08 0.04 0.28 0.07 0.03 0.32 0.12 0.07
0.6 1.21 0.65 0.46 1.20 0.63 0.44 1.25 0.71 0.49
0.9 4.75 4.01 3.53 4.73 3.94 3.46 4.75 4.09 3.56

250 0 �0.00 0.00 �0.00 �0.01 �0.01 �0.00 �0.00 0.00 0.00
0.3 0.13 0.03 0.02 0.12 0.02 0.01 0.13 0.03 0.02
0.6 0.58 0.24 0.16 0.56 0.22 0.15 0.58 0.24 0.17
0.9 3.07 2.25 1.84 3.00 2.15 1.76 3.11 2.27 1.82

500 0 �0.00 �0.00 �0.00 �0.01 �0.01 �0.01 0.00 0.00 0.00
0.3 0.06 0.01 0.01 0.06 0.00 �0.00 0.06 0.01 0.01
0.6 0.29 0.09 0.07 0.30 0.09 0.06 0.29 0.10 0.07
0.9 1.89 1.21 0.94 1.94 1.23 0.93 1.91 1.25 0.93

RMSE, q3 ¼ 0

100 0 0.49 0.50 0.14 0.34 0.35 0.09 0.15 0.15 0.04
0.3 0.72 0.66 0.20 0.55 0.47 0.13 0.38 0.23 0.06
0.6 1.59 1.20 0.45 1.44 0.99 0.35 1.28 0.75 0.27
0.9 5.19 4.54 3.11 4.99 4.29 2.91 4.78 4.06 2.75

250 0 0.15 0.15 0.07 0.10 0.10 0.04 0.05 0.05 0.02
0.3 0.25 0.21 0.09 0.19 0.15 0.06 0.14 0.07 0.03
0.6 0.69 0.42 0.19 0.63 0.34 0.14 0.59 0.26 0.09
0.9 3.31 2.51 1.52 3.14 2.33 1.34 3.06 2.24 1.20

500 0 0.06 0.06 0.03 0.04 0.04 0.02 0.02 0.02 0.01
0.3 0.11 0.08 0.05 0.09 0.06 0.03 0.07 0.03 0.01
0.6 0.34 0.17 0.09 0.32 0.14 0.07 0.30 0.11 0.04
0.9 2.05 1.39 0.72 1.98 1.31 0.63 1.95 1.27 0.55

RMSE, q3 ¼ 0:9

100 0 1.15 1.16 0.70 1.09 1.11 0.64 1.06 1.07 0.60
0.3 1.57 1.52 0.95 1.49 1.46 0.88 1.44 1.41 0.82
0.6 2.77 2.44 1.60 2.64 2.32 1.49 2.54 2.23 1.39
0.9 7.19 6.73 5.27 6.95 6.39 4.97 6.75 6.27 4.83

250 0 0.37 0.37 0.27 0.36 0.37 0.26 0.37 0.37 0.25
0.3 0.54 0.52 0.38 0.54 0.51 0.36 0.53 0.51 0.35
0.6 1.11 0.90 0.67 1.11 0.89 0.64 1.11 0.90 0.62
0.9 4.39 3.67 2.90 4.34 3.59 2.79 4.37 3.62 2.75

500 0 0.16 0.16 0.13 0.15 0.15 0.12 0.16 0.16 0.12
0.3 0.24 0.22 0.18 0.23 0.22 0.17 0.24 0.22 0.17
0.6 0.54 0.40 0.32 0.53 0.40 0.31 0.54 0.41 0.31
0.9 2.68 2.04 1.59 2.67 2.01 1.54 2.69 2.03 1.54

Note: See note of Table 1.
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based on the pooled estimator of de Jong and Wagner (2022), labeled as Wþ
P :

15 Specifically, we
consider the null hypothesis H0 : b1 ¼ 5, b2 ¼ �3, b3 ¼ 0:3: To assess power, we generate data
for a sequence of 20 alternative values for the vector b. Reflecting the different convergence rates
of the components of b, we choose (including also the null values) 21 equidistant values for b1 in
the interval ½5, 7�, for b2 in the interval ½�3, � 2� and for b3 in the interval ½0:3, 0:7�: The selec-
tion of tests does not include the “direct” tests as they do not provide any extra value added. The
simulations have shown that for small values of T they are very conservative, with empirical null
rejection probabilities often very close to zero, and for large values of T their performance is (as
expected) very similar to the performance of their “non-direct” counterparts.

As indicated already above, the tests – as an immediate consequence of estimator performance
– generally also perform better in the individual-specific intercepts only case than when linear
trends are also included. This effect becomes more pronounced for increasing q-parameters, see
and compare, e.g., Tables 3 and 4 for the results in case li 6¼ 0, i ¼ 1, :::,N:16 Many of the
observed features are in line with expectations: First, size distortions increase with increasing
q-parameters. This effect occurs most visibly for WTB, which, as mentioned, only leads to asymp-
totically valid inference in case all q-parameters are equal to zero. If N is large compared to T,
we observe the phenomenon of “size-divergence” (see, e.g., Wagner and Hlouskova, 2009), i.e.,
increasing size distortions for increasing N and fixed (small) T.17 The (relative) behavior of Wþ

and Wþ
rob is also as expected: Both tests are, by construction, less adversely affected than, e.g., W

when qi1, qi2 increase, at least for small values of q3. Increasing q3 leads to smaller size distortions
– partly substantially smaller size distortions – of Wþ

rob than of Wþ. This indicates that robust
inference indeed works. The group-mean OLS-based robust test Wrob is much less affected by
increasing q3 than one would expect, with this being driven by our DGP that generates strong
contemporaneous cross-section dependence for large values of q3. The test based on the pooled
FM-OLS estimator of de Jong and Wagner (2022) is very strongly adversely affected by cross-
section dependence, visible already for q3 ¼ 0:3: Wþ

P is strongly outperformed by Wþ
rob and even

by Wrob in case of cross-section dependence. Altogether, in case of unknown forms of error serial
correlation, regressor endogeneity, and cross-section dependence, Wþ

rob is the overall best
performing test with the smallest size distortions under the null hypothesis. Wþ

rob performs
similarly to Wþ even when all q-parameters are equal to zero and is thus, from the null rejection
probabilities perspective, the best choice.

We close the simulation section by looking at “size-corrected” power. Figures 1 and 2 display
results for T¼ 100, q1,q2 ¼ 0:6 and li 6¼ 0, i ¼ 1, :::,N for the individual-specific intercepts only
and the individual-specific intercepts and linear trends cases, respectively.18 Some observations
emerge: First, whilst the empirical null rejection probabilities are hardly affected by the absence
or presence of drifts, size-corrected power is higher when all drifts are non-zero. Second, larger
values of qi1, qi2 lead to smaller size-corrected power. Third, size-corrected power increases
unequivocally with an increasing time dimension T, whereas increasing N has only minor impact
on size-corrected power in case of cross-section dependence. Fourth, effectively by construction,
the test based on the pooled estimator of de Jong and Wagner (2022) exhibits the highest size-
corrected power (which, however, has to be seen in conjunction with the very large size distor-
tions in case of cross-section dependence). Fifth, size-corrected power is often the second highest
for Wþ

rob and is for large values of q3 closely followed by size-corrected power of Wrob: These
findings, in conjunction with the behavior under the null hypothesis, lead to the conclusion that

15For the pooled estimator the so-called standard covariance estimator is used, see de Jong and Wagner (2022) for details.
16Tables 17 and 18 in the Supplementary Material provide the corresponding results for li ¼ 0 for i ¼ 1, :::,N: The absence or
presence of drifts exhibits very limited impact on the null rejection probabilities.
17The test based on the pooled estimator of de Jong and Wagner (2022) is particularly strongly affected by size-divergence.
18Figures 4 and 5 in the Supplementary Material provide the corresponding results for li ¼ 0 for i ¼ 1, :::,N:
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Table 3. Empirical null rejection probabilities of Wald-type tests for H0 : b1 ¼ 5,b2 ¼ �3, b3 ¼ 0:3 in the individual-specific
intercepts only case with non-zero drifts.

N¼ 10 N¼ 20 N¼ 100

T q1, q2 WTB Wrob Wþ Wþ
rob Wþ

P WTB Wrob Wþ Wþ
rob Wþ

P WTB Wrob Wþ Wþ
rob Wþ

P

q3 ¼ 0

100 0 0.06 0.07 0.08 0.08 0.06 0.07 0.08 0.09 0.09 0.07 0.06 0.07 0.07 0.07 0.06
0.3 0.22 0.11 0.12 0.12 0.11 0.25 0.13 0.13 0.13 0.11 0.40 0.25 0.11 0.11 0.11
0.6 0.58 0.20 0.15 0.15 0.18 0.67 0.27 0.15 0.14 0.20 0.95 0.68 0.16 0.16 0.35
0.9 0.89 0.29 0.26 0.25 0.55 0.94 0.32 0.24 0.23 0.71 1.00 0.54 0.34 0.23 0.99

250 0 0.05 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05
0.3 0.26 0.11 0.10 0.11 0.09 0.27 0.12 0.10 0.10 0.08 0.47 0.25 0.09 0.09 0.08
0.6 0.69 0.22 0.13 0.13 0.12 0.77 0.32 0.12 0.12 0.12 0.99 0.81 0.14 0.12 0.16
0.9 0.97 0.39 0.23 0.22 0.30 0.99 0.47 0.21 0.18 0.36 1.00 0.86 0.29 0.17 0.76

500 0 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05
0.3 0.25 0.09 0.09 0.09 0.08 0.28 0.10 0.09 0.09 0.08 0.45 0.22 0.08 0.08 0.07
0.6 0.69 0.19 0.11 0.11 0.10 0.77 0.27 0.10 0.10 0.10 0.99 0.77 0.12 0.10 0.10
0.9 0.98 0.40 0.20 0.20 0.19 0.99 0.51 0.20 0.18 0.22 1.00 0.92 0.28 0.13 0.41

q3 ¼ 0:3

100 0 0.13 0.07 0.15 0.08 0.21 0.18 0.08 0.21 0.08 0.33 0.41 0.07 0.43 0.08 0.70
0.3 0.33 0.12 0.22 0.13 0.28 0.40 0.14 0.27 0.13 0.41 0.67 0.17 0.49 0.13 0.75
0.6 0.66 0.21 0.26 0.17 0.36 0.74 0.24 0.31 0.17 0.49 0.94 0.41 0.52 0.18 0.81
0.9 0.91 0.33 0.37 0.31 0.63 0.94 0.35 0.41 0.29 0.75 0.99 0.44 0.62 0.32 0.94

250 0 0.18 0.06 0.20 0.06 0.26 0.28 0.06 0.29 0.06 0.41 0.61 0.06 0.62 0.06 0.79
0.3 0.44 0.11 0.27 0.11 0.32 0.55 0.12 0.36 0.11 0.47 0.81 0.13 0.67 0.10 0.82
0.6 0.78 0.21 0.31 0.15 0.36 0.86 0.25 0.40 0.15 0.50 0.97 0.36 0.69 0.14 0.84
0.9 0.97 0.38 0.42 0.27 0.51 0.98 0.40 0.47 0.24 0.64 1.00 0.50 0.72 0.25 0.91

500 0 0.25 0.06 0.25 0.06 0.32 0.40 0.06 0.41 0.06 0.51 0.76 0.06 0.76 0.06 0.87
0.3 0.52 0.09 0.31 0.10 0.37 0.65 0.10 0.46 0.10 0.55 0.88 0.11 0.79 0.10 0.89
0.6 0.82 0.17 0.35 0.13 0.39 0.89 0.19 0.50 0.12 0.57 0.97 0.25 0.81 0.13 0.89
0.9 0.98 0.35 0.46 0.23 0.46 0.99 0.39 0.58 0.24 0.63 1.00 0.45 0.83 0.22 0.91

q3 ¼ 0:6

100 0 0.30 0.08 0.33 0.09 0.40 0.43 0.07 0.45 0.08 0.58 0.76 0.07 0.78 0.08 0.89
0.3 0.52 0.14 0.41 0.15 0.48 0.62 0.13 0.52 0.13 0.64 0.88 0.14 0.80 0.14 0.91
0.6 0.78 0.22 0.45 0.21 0.54 0.85 0.23 0.56 0.19 0.69 0.97 0.28 0.82 0.20 0.93
0.9 0.95 0.37 0.56 0.38 0.72 0.96 0.38 0.63 0.38 0.84 0.99 0.43 0.87 0.42 0.97

250 0 0.41 0.06 0.43 0.07 0.48 0.56 0.06 0.58 0.06 0.66 0.86 0.06 0.86 0.07 0.93
0.3 0.64 0.11 0.49 0.12 0.53 0.77 0.10 0.64 0.11 0.71 0.94 0.12 0.88 0.11 0.94
0.6 0.87 0.20 0.54 0.17 0.57 0.93 0.21 0.67 0.16 0.74 0.99 0.25 0.89 0.17 0.95
0.9 0.98 0.38 0.63 0.32 0.68 0.99 0.38 0.73 0.32 0.81 1.00 0.42 0.91 0.33 0.96

500 0 0.50 0.06 0.51 0.06 0.55 0.68 0.06 0.68 0.06 0.73 0.92 0.06 0.93 0.06 0.96
0.3 0.73 0.10 0.56 0.10 0.60 0.84 0.10 0.72 0.10 0.77 0.97 0.10 0.94 0.10 0.96
0.6 0.91 0.16 0.59 0.14 0.62 0.95 0.16 0.75 0.14 0.78 0.99 0.17 0.95 0.14 0.97
0.9 0.99 0.34 0.69 0.26 0.67 1.00 0.35 0.80 0.28 0.82 1.00 0.35 0.96 0.26 0.98

q3 ¼ 0:9

100 0 0.66 0.09 0.68 0.10 0.70 0.81 0.08 0.83 0.09 0.84 0.97 0.09 0.98 0.10 0.98
0.3 0.80 0.15 0.74 0.17 0.75 0.90 0.13 0.86 0.16 0.87 0.99 0.15 0.98 0.16 0.99
0.6 0.92 0.22 0.78 0.25 0.79 0.96 0.21 0.88 0.25 0.89 1.00 0.23 0.99 0.25 0.99
0.9 0.98 0.44 0.84 0.50 0.87 0.99 0.44 0.91 0.49 0.94 1.00 0.45 0.98 0.50 0.99

250 0 0.71 0.06 0.73 0.06 0.73 0.86 0.06 0.87 0.06 0.88 0.98 0.06 0.98 0.07 0.99
0.3 0.86 0.10 0.77 0.12 0.78 0.94 0.10 0.89 0.11 0.91 0.99 0.11 0.99 0.12 0.99
0.6 0.95 0.18 0.81 0.17 0.80 0.98 0.17 0.91 0.17 0.91 1.00 0.18 0.99 0.18 0.99
0.9 1.00 0.38 0.85 0.38 0.85 1.00 0.39 0.93 0.38 0.93 1.00 0.40 0.99 0.38 0.99

500 0 0.76 0.05 0.76 0.06 0.77 0.89 0.06 0.89 0.06 0.90 0.99 0.06 0.99 0.06 0.99
0.3 0.89 0.09 0.80 0.09 0.80 0.95 0.10 0.91 0.10 0.91 0.99 0.09 0.99 0.10 0.99
0.6 0.96 0.14 0.82 0.13 0.82 0.99 0.15 0.92 0.14 0.92 1.00 0.14 0.99 0.13 0.99
0.9 1.00 0.31 0.86 0.28 0.85 1.00 0.32 0.94 0.29 0.94 1.00 0.32 0.99 0.28 0.99

Note: The column labels are as defined in the main text of Section 3.
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Table 4. Empirical null rejection probabilities of Wald-type tests for H0 : b1 ¼ 5,b2 ¼ �3, b3 ¼ 0:3 in the individual-specific
intercepts and linear trends case with non-zero drifts.

N¼ 10 N¼ 20 N¼ 100

T q1, q2 WTB Wrob Wþ Wþ
rob Wþ

P WTB Wrob Wþ Wþ
rob Wþ

P WTB Wrob Wþ Wþ
rob Wþ

P

q3 ¼ 0

100 0 0.06 0.08 0.09 0.09 0.07 0.07 0.08 0.09 0.09 0.07 0.06 0.07 0.08 0.08 0.07
0.3 0.26 0.16 0.14 0.15 0.13 0.30 0.19 0.15 0.15 0.14 0.55 0.39 0.15 0.15 0.15
0.6 0.74 0.40 0.30 0.30 0.35 0.83 0.53 0.36 0.35 0.47 0.99 0.94 0.71 0.65 0.94
0.9 0.98 0.81 0.83 0.82 0.99 1.00 0.90 0.92 0.91 1.00 1.00 1.00 1.00 1.00 1.00

250 0 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
0.3 0.35 0.18 0.12 0.12 0.10 0.42 0.23 0.11 0.11 0.09 0.77 0.58 0.12 0.12 0.10
0.6 0.91 0.62 0.29 0.29 0.21 0.96 0.78 0.36 0.35 0.26 1.00 1.00 0.76 0.70 0.65
0.9 1.00 0.94 0.92 0.91 0.89 1.00 0.98 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00

500 0 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.05
0.3 0.42 0.20 0.09 0.09 0.09 0.55 0.32 0.10 0.10 0.08 0.95 0.85 0.12 0.11 0.08
0.6 0.98 0.78 0.24 0.24 0.14 1.00 0.95 0.35 0.33 0.16 1.00 1.00 0.82 0.76 0.40
0.9 1.00 0.99 0.94 0.93 0.70 1.00 1.00 1.00 0.99 0.89 1.00 1.00 1.00 1.00 1.00

q3 ¼ 0:3

100 0 0.11 0.08 0.15 0.09 0.17 0.17 0.08 0.20 0.09 0.28 0.39 0.08 0.42 0.09 0.63
0.3 0.35 0.16 0.22 0.15 0.24 0.44 0.18 0.28 0.15 0.37 0.72 0.25 0.50 0.15 0.71
0.6 0.79 0.42 0.40 0.32 0.45 0.86 0.49 0.49 0.37 0.59 0.98 0.71 0.77 0.47 0.89
0.9 0.99 0.81 0.86 0.83 0.97 0.99 0.87 0.92 0.89 0.99 1.00 0.97 0.99 0.98 1.00

250 0 0.16 0.06 0.17 0.07 0.20 0.24 0.06 0.26 0.07 0.33 0.58 0.06 0.59 0.06 0.75
0.3 0.50 0.17 0.25 0.12 0.26 0.61 0.19 0.34 0.12 0.39 0.87 0.26 0.66 0.12 0.78
0.6 0.92 0.56 0.42 0.28 0.37 0.96 0.65 0.56 0.32 0.52 1.00 0.81 0.83 0.39 0.87
0.9 1.00 0.90 0.91 0.87 0.89 1.00 0.93 0.95 0.91 0.97 1.00 0.98 1.00 0.97 1.00

500 0 0.19 0.06 0.20 0.06 0.25 0.33 0.06 0.34 0.06 0.41 0.72 0.06 0.73 0.06 0.82
0.3 0.59 0.17 0.27 0.10 0.29 0.72 0.21 0.41 0.11 0.47 0.93 0.29 0.77 0.10 0.85
0.6 0.97 0.65 0.41 0.22 0.36 0.99 0.76 0.57 0.25 0.53 1.00 0.88 0.88 0.32 0.89
0.9 1.00 0.96 0.93 0.86 0.78 1.00 0.98 0.97 0.93 0.92 1.00 0.99 1.00 0.97 1.00

q3 ¼ 0:6

100 0 0.30 0.08 0.34 0.10 0.39 0.44 0.08 0.48 0.09 0.59 0.78 0.08 0.80 0.09 0.89
0.3 0.54 0.15 0.43 0.17 0.48 0.66 0.16 0.55 0.16 0.66 0.90 0.19 0.83 0.16 0.91
0.6 0.85 0.38 0.57 0.33 0.61 0.90 0.41 0.67 0.33 0.75 0.99 0.51 0.89 0.38 0.94
0.9 0.99 0.78 0.88 0.79 0.95 1.00 0.81 0.93 0.83 0.98 1.00 0.89 0.99 0.90 1.00

250 0 0.40 0.07 0.42 0.07 0.46 0.56 0.06 0.58 0.07 0.66 0.88 0.06 0.88 0.06 0.93
0.3 0.68 0.15 0.50 0.13 0.53 0.80 0.14 0.64 0.12 0.71 0.95 0.16 0.90 0.12 0.94
0.6 0.94 0.42 0.61 0.25 0.61 0.97 0.45 0.73 0.25 0.76 1.00 0.51 0.93 0.27 0.95
0.9 1.00 0.83 0.91 0.79 0.90 1.00 0.85 0.95 0.81 0.95 1.00 0.90 0.99 0.84 1.00

500 0 0.47 0.06 0.48 0.06 0.52 0.67 0.06 0.67 0.06 0.73 0.93 0.06 0.93 0.06 0.96
0.3 0.74 0.13 0.55 0.10 0.57 0.85 0.14 0.72 0.10 0.76 0.98 0.15 0.95 0.12 0.97
0.6 0.97 0.42 0.64 0.19 0.62 0.98 0.45 0.78 0.19 0.79 1.00 0.50 0.96 0.21 0.97
0.9 1.00 0.85 0.91 0.71 0.84 1.00 0.87 0.95 0.73 0.94 1.00 0.91 0.99 0.78 0.99

q3 ¼ 0:9

100 0 0.67 0.10 0.70 0.11 0.71 0.83 0.09 0.86 0.10 0.87 0.98 0.10 0.98 0.10 0.98
0.3 0.83 0.16 0.77 0.18 0.77 0.92 0.16 0.89 0.17 0.89 0.99 0.17 0.98 0.18 0.99
0.6 0.94 0.31 0.83 0.32 0.83 0.97 0.32 0.91 0.32 0.91 1.00 0.34 0.99 0.33 0.99
0.9 1.00 0.72 0.94 0.75 0.95 1.00 0.73 0.97 0.76 0.98 1.00 0.75 0.99 0.77 1.00

250 0 0.72 0.06 0.73 0.07 0.74 0.87 0.07 0.88 0.07 0.89 0.98 0.07 0.98 0.07 0.99
0.3 0.87 0.12 0.78 0.12 0.79 0.94 0.12 0.91 0.13 0.91 0.99 0.13 0.99 0.13 0.99
0.6 0.97 0.27 0.83 0.21 0.83 0.99 0.27 0.92 0.22 0.93 1.00 0.28 0.99 0.23 0.99
0.9 1.00 0.69 0.94 0.66 0.94 1.00 0.69 0.97 0.66 0.97 1.00 0.70 1.00 0.68 1.00

500 0 0.77 0.06 0.77 0.06 0.78 0.89 0.06 0.89 0.06 0.90 0.99 0.06 0.99 0.06 0.99
0.3 0.90 0.10 0.81 0.10 0.81 0.96 0.11 0.91 0.10 0.92 1.00 0.10 0.99 0.11 0.99
0.6 0.98 0.23 0.84 0.16 0.84 0.99 0.24 0.93 0.16 0.93 1.00 0.26 0.99 0.16 0.99
0.9 1.00 0.64 0.94 0.54 0.93 1.00 0.65 0.97 0.54 0.97 1.00 0.67 1.00 0.55 1.00

Note: See note of Table 3.
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in applications, where one typically does not know the dependence structure, it is the best choice
to use Wþ

rob, i.e., the robust version of the group-mean FM-OLS-based test statistic.19

4. An illustration: the environmental Kuznets curve for carbon dioxide emissions

In this section, we briefly illustrate the group-mean FM-OLS estimator as well as inference based
upon it by estimating EKCs for carbon dioxide (CO2) emissions. The dependent variable is the
logarithm of per capita CO2 emissions and the explanatory variables are log per capita GDP and
its powers. We consider both the quadratic and the cubic specification as well as the inclusion of
individual-specific intercepts only and of both individual-specific intercepts and linear trends.
Long-run covariance estimation uses the Bartlett kernel and the Andrews (1991) bandwidth selec-
tion rule.

We use exactly the same data as de Jong and Wagner (2022). These are the long data set with
N¼ 19 countries for T¼ 136 years and the wide data set with N¼ 89 countries and T¼ 54 years.

Figure 1. Size-corrected power of the tests for T¼ 100 and q1,q2 ¼ 0:6 in the individual-specific intercepts only case with non-
zero drifts. Note: The axis label Db indicates, see also the description in the main text, the difference between the parameter
vector under the null hypothesis and for the considered alternatives, i.e., bH1

¼ bþ j � Db, with b ¼ ð5, � 3, 0:3Þ0 , Db ¼
ð0:1, 0:05, 0:02Þ0 and j ¼ 0, 1, :::, 20 (displayed on the horizontal axis).

19Note that even in the absence of cross-section dependence, i. e., q3 ¼ 0, the non-robust version of the Wald-type test, Wþ,
does not have larger size-corrected power than Wþ

rob:
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The long data set has originally been used in Wagner et al. (2020) and ranges from 1878 to 2013
for 19 early industrialized countries.20 We also consider a subset comprising six of these 19 coun-
tries analyzed in more detail in a seemingly unrelated regression setting in Wagner et al. (2020).
These six countries are Austria (AT), Belgium (BE), Finland (FI), the Netherlands (NL),
Switzerland (CH) and the United Kingdom (UK), with data for these countries available from
1870 to 2013, leading to a sample size of T¼ 144. The country list for the wide data set, with
time span 1960–2013, is available in Table B.1 in Appendix B.

Table 5 shows all estimation results – including standard and robust t-statistics – as well as
the implied turning points (TPs). To facilitate comparison with de Jong and Wagner (2022) the
TPs obtained in that paper are also included in the rows labeled “TP de J&W.” The upper panel
considers individual-specific intercepts only and the lower panel considers individual-specific
intercepts and linear trends. The left block-column shows the results for the quadratic

Figure 2. Size-corrected power of the tests for T¼ 100 and q1, q2 ¼ 0:6 in the individual-specific intercepts and linear trends
only case with non-zero drifts. Note: See note of Figure 1.

20The 19 countries are given by Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,
Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and USA. Note that the data are in
fact available from 1870 onwards, with the exception of CO2 emissions for New Zealand. Considering all 19 countries with
1878 as starting point is merely done to use exactly the same balanced panel data set as de Jong and Wagner (2022). Of
course, whether the panel is balanced or not is irrelevant even from a computational perspective for group-mean estimation.
A detailed description of the data including the sources is contained in Wagner et al. (2020).
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specification and the right block-column shows the results for the cubic specification. The first
question to be addressed concerns the polynomial degree of the EKC, i.e., whether a cubic specifi-
cation has to be considered or the quadratic specification suffices. With respect to this question,
it turns out that robust inference leads to different conclusions than standard inference. For both
N¼ 6 and N¼ 19 the use of robust inference leads to insignificant coefficients to the third power
of the logarithm of per capita GDP; for both the intercept only and the intercept and trend case.
For the wide data set with N¼ 89 the cubic specification is required, in the sense that both stand-
ard and – more importantly – robust t-statistics indicate significance of the third-order coefficient
for both specifications of the deterministic component.

Based on the above, we focus on the findings with the quadratic specification for the N¼ 6
and N¼ 19 data sets. For both specifications of the deterministic components, the coefficient to
the squared logarithm of per capita GDP is (significantly) negative, with both standard and
robust t-statistics. For N¼ 6, the TPs differ substantially between the group-mean estimator
and the pooled estimator of de Jong and Wagner (2022) and are substantially larger for the

Table 5. Group-mean fully modified OLS EKC estimation results.

Quadratic specification Cubic specification

N¼ 6 N¼ 19 N¼ 89 N¼ 6 N¼ 19 N¼ 89

Individual-specific intercepts only

b1 7.63 8.24 9.16 –26.22 0.46 1061.85
(9.66) (15.38) (3.26) (–1.65) (0.04) (2.53)
[6.06] [6.46] [3.06] [–1.03] [0.02] [2.46]

b2 –0.38 –0.42 –0.44 3.43 0.43 –148.79
(–8.65) (–13.98) (–2.44) (1.92) (0.33) (–2.72)
[–5.43] [–5.83] [–2.30] [1.20] [0.14] [–2.65]

b3 –0.14 –0.03 6.80
(–2.13) (–0.64) (2.84)
[–1.33] [–0.27] [2.78]

TP GM 20,951 19,470 35,596 16,854 19,587 4,211
548 1 510

TP de J&W 14,051 20,054 531,260 – – 43,231
– – 443

Individual-specific intercepts and linear trends

b1 9.92 8.74 11.54 15.83 26.69 –952.79
(15.58) (18.58) (4.72) (1.57) (2.87) (–2.75)
[12.22] [8.16] [4.11] [1.18] [1.45] [–2.77]

b2 –0.48 –0.43 –0.59 –1.18 –2.51 114.93
(–14.06) (–17.38) (–3.86) (–1.04) (–2.43) (2.55)
[–10.95] [–7.41] [–3.40] [–0.78] [–1.21] [2.56]

b3 0.03 0.08 –4.71
(0.67) (2.11) (–2.40)
[0.50] [1.03] [–2.42]

TP GM 33,743 25,889 17,027 1:2� 107 – –
94,276 – –

TP de J&W 23,967 26,284 72,329 – – 29,519
– – 578

Notes: Standard t-statistics, defined in (17), in parentheses and robust t-statistics, defined in (21), in square brackets. Italic num-
bers indicate significance at the 10% nominal level and bold numbers indicate significance at the 5% significance level. The

turning points based on the group-mean estimator (TP GM) are computed as exp � b̂1

2b̂2

� �
in the quadratic case and as

exp � b̂2

3b̂3
ð61Þ � b̂1

3b̂3
þ ð b̂2

3b̂3
Þ2

� �1=2
 !

in the cubic case. The symbol “–” indicates the absence of turning points for the

estimated polynomial. The row labeled “TP de J&W” contains the turning points given in de Jong and Wagner (2022, Tables
7 and 8) using the pooled FM-OLS estimator in a slightly different specification with, in the lower panel (common) time
effects instead of individual-specific linear time trends.
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group-mean estimator. For N¼ 19 the differences in the TPs between the group-mean and pooled
estimators are negligible.21

Figure 3 shows the impact of including individual-specific linear trends (in the lower graph) in
addition to individual-specific intercepts only (in the upper graph) on the estimated EKCs for N¼ 6.
Including individual-specific linear time trends (obviously) leads to a better fit, in particular for
Finland and Switzerland, both for the low GDP values, i.e., for the beginning of the sample period,
and the high GDP values, i.e., for the end of the sample period. Thus, the different “average levels” of
log per capita emissions are well captured by the individual-specific intercepts, the individual-specific
trends allow in addition to account to some extent for “curvature differences” across countries. On
the question of poolability of the EKC across these countries see also Wagner et al. (2020), who in
fact only find evidence for – in the words of that paper – partial poolability of the slope coefficients
for Belgium, the Netherlands, and the UK. Against this background, this empirical section is to be
interpreted merely as an illustration. For larger values of N, of course, the seemingly unrelated regres-
sions-based analysis of Wagner et al. (2020) is not feasible and one needs to resort to panel-type
methods of one kind or another with the corresponding cross-sectional pooling imposed.

Figure 3. Scatter plot and estimated EKC relationship for CO2 emissions over the period 1870–2013 for the N¼ 6 data set. Notes: The
curves display the results of inserting 144 equidistant points from the sample range of ln ðGDPÞ in the quadratic relationship estimated
with group-mean fully modified OLS estimator and adding the individual-specific intercepts (top panel) or the individual-specific inter-
cepts and linear time trends (bottom panel), with corresponding values of the time trend given by t ¼ 1, :::, 144:

21The sample range for the N¼ 6 data set is from 1,725 to 26,102 and for the N¼ 19 data set the sample range is from 794
to 31,933 (measured in 1990 Geary-Khamis dollars). Therefore, the group-mean TP when including individual-specific
intercepts and linear trends is out of sample for the N¼ 6 data set.
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Let us close this illustration section with a brief look at the cubic specification results for
the N¼ 89 wide data set. One striking feature for this data set is that the signs of the coefficient
to the third power differ between the two specifications of the deterministic component, with
b3 > 0 in the intercept only case and b3 < 0 in the intercept and linear trend case.22 The group-
mean estimator leads to two TPs at small values in the intercept only case, with the larger TP
corresponding to U-type behavior, and to a monotonic relationship in the intercept and linear
trend specification. For the wide data set, it thus appears that the pooled estimator leads to – not-
withstanding all issues concerning poolability – more “useful” TPs.

5. Summary and conclusions

This article extends the toolkit for parameter estimation and inference in panels of CPRs with a
group-mean FM-OLS approach, which complements the pooled FM-OLS approach of de Jong and
Wagner (2022). The consideration of a group-mean rather than a pooled estimation approach is not
the only difference between the two papers. This article gains a lot of mileage from considering a
fixed cross-section setting, which allows to include two features not considered in de Jong and
Wagner (2022). First, we allow for the (potential) presence of drifts in the integrated regressors, which
increases applicability substantially. Second, we provide cross-section robust inference for the group-
mean OLS and FM-OLS estimators. Asymptotically valid inference is, as discussed, possible under
minimal restrictions on the form and extent of cross-section dependence. No specific model of
cross-section dependence, e.g., a factor structure, has to be posited. It is important to stress again that
computation of the developed estimators and tests does not require any knowledge concerning the
presence or absence of drifts and/or cross-section dependence.

The simulation results are, by and large, as expected, with one important exception regarding
hypothesis testing: Using the cross-section robust version of the group-mean FM-OLS estimator-based
tests is unequivocally the best choice, as the robust version of the tests performs at least as good as
the non-robust version of the tests even in the absence of cross-section dependence. The test based
on the pooled estimator of de Jong and Wagner (2022) is very strongly adversely affected by cross-
section dependence.

The illustrative application conveys two messages: First, cross-section robust inference makes
a difference. In our illustration, it indicates, unlike standard inference, that the quadratic speci-
fication is sufficient for the long data sets and that a cubic formulation is only required for the
wide data set. The wide data set with N¼ 89 (larger than T¼ 54) indicates potential advantages
of the pooled estimator in case of large cross-section dimension compared to the time series
dimension, i.e., benefits of resorting to an asymptotic approximation also in the cross-section
dimension.

Two (related) issues remain open for future research: First, an analysis of the asymptotic
behavior of the group-mean estimator in the two-way fixed effects case, i.e., with both individ-
ual- and time-specific fixed effects. This will require, second, asymptotic analysis in a large time
and large cross-section setting, which is in any case important for panels with N large com-
pared to T. Letting N ! 1 requires that potential cross-section dependence will have to be
considered more restrictively than in our fixed N setting; not only with respect to robust infer-
ence but also for obtaining, e.g., a sequential (unconditional) asymptotic normality result for
the estimated coefficients.

22b3 > 0 implies that the fitted polynomial diverges to plus infinity for log per capita GDP tending to infinity. Consequently,
in case of TPs being present, the larger TP corresponds to U-type rather than an inverted U-type behavior. Note for
completeness, see de Jong and Wagner (2022, Table 8), that the pooled estimator leads to negative third-order coefficients
for both specifications for this data set.
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Appendices
A. Proofs

Proof of Proposition 1. The starting point is:

G�1
T b̂

þ � b
� �

¼ 1
N

XN
i¼1

G�1
T b̂

þðiÞ � b
� �

¼ 1
N

XN
i¼1

GT

XT
t¼1

~Xit ~X
0
itGT

 !�1

GT

XT
t¼1

~Xit~u
þ
it � GTCi

 !
,

(83)

with:

~uþ
it :¼ ~uit � DxitX̂

�1
vivi X̂viui ¼ ~uit � ðli þ vitÞX̂�1

vivi X̂viui : (84)

Since li ¼ 0 for all i ¼ 1, :::,N, it follows directly from Assumptions 2 and 3 that:

GT

XT
t¼1

~Xit~X
0
itGT !d

ð1
0

~Bvi ðrÞ~Bvi ðrÞ0dr, (85)

GT

XT
t¼1

~Xit~u
þ
it !

d
ð1
0

~Bvi ðrÞdBui �vi ðrÞ þ Dþ
viuiAi, (86)

and:

GTCi !d Dþ
viuiAi, (87)

where Dþ
viui :¼ Dviui � DviviX

�1
viviXviui and Ai as given in the main text, with all quantities converging jointly. This

immediately implies – for the parameter estimator corresponding to the ith equation – that:

G�1
T b̂

þðiÞ � b
� �

!d
ð1
0

~Bvi ðrÞ~Bvi ðrÞ0dr
 !�1 ð1

0

~Bvi ðrÞdBui �vi ðrÞ: (88)

Conditional upon Di, Ri and Wvi ðrÞ, the limiting distribution given in (88) is normal with expectation zero and

covariance matrix Xui �vi ð
Ð 1
0
~Bvi ðrÞ~Bvi ðrÞ0drÞ�1: Cross-sectional independence (Assumption 1) thus implies the –

conditional upon Di, Ri and Wvi ðrÞ for i ¼ 1, :::,N – asymptotic normality result for the group-mean FM-OLS esti-
mator given in the main text in (12) and (13). w

Proof of Corollary 1. Under the null hypothesis, the Wald-type statistic given in (16) is equal to:

Wþ ¼ ðGRRGTÞG�1
T ðb̂þ � bÞ

� �0
ðGRRGTÞV̂þðGRRGTÞ0
� ��1

� ðGRRGTÞG�1
T ðb̂þ � bÞ

� �
:

(89)

With the (asymptotic) restriction on the constraint matrix R posited in the main text in place and with V̂
þ ¼

G�1
T Ŝ

þ
G�1
T converging in distribution to V þ, it follows from Proposition 1 that:

Wþ !d R�Zð Þ0 R�VþR�0ð Þ�1
R�Zð Þ, (90)

with Z conditionally Nð0,VþÞ distributed. This shows the conditional – and hence unconditional – asymptotic
chi-squared null distribution of the Wald-type statistic. In case s¼ 1 analogous arguments lead to the result for the
t-type test. w

Proof of Remark 1. Similar arguments as used in the proof of Proposition 1 show that:

G�1
T b̂

þ � b
� �

!d 1
N

XN
i¼1

ð1
0

~Bvi ðrÞ~Bvi ðrÞ0dr
 !�1 ð1

0

~Bvi ðrÞdBui �vi ðrÞ: (91)

Conditional upon D, R and WvðrÞ, the limiting distribution given in (91) is normal with expectation zero and
covariance matrix:
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(92)

where ~Mij ¼
Ð 1
0
~Bvi ðrÞ~BvjðrÞ0dr and Xui �vi ;uj �vj is the constant in the quadratic covariation of the processes Bui �vi ðrÞ

and Buj �vj ðrÞ and is defined in the main text.

It is straightforward to verify that V̂
þ
rob ¼ G�1

T Ŝ
þ
robG

�1
T converges in distribution to Vþ

rob: Therefore, the null limiting
distributions of Wþ

rob and tþrob can be derived with exactly the same arguments as used in the proof of Corollary 1. w

Proof of Proposition 2. We first consider the case with individual-specific intercepts but no individual-specific
linear trends included in (1). The proof for the case with both individual-specific intercepts and individual-specific
linear trends included in (1) is considered afterwards and is based upon similar arguments.

(i) Similar to the proof of Proposition 1 the starting point is given by:
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By definition of ~uþ
it (see, e. g., the proof of Proposition 1) it follows that:XT
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where the last equality follows from the fact that by construction
PT

t¼1
~Xit ¼ 0: This implies:
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(95)

As the deterministic trends (asymptotically) dominate the elements of ~Xit , it follows that T1=2HT ~XibrTc ) JiðrÞ,
HT
PT

t¼1
~Xit~uit !d

Ð 1
0 JiðrÞdBui ðrÞ, HT

PT
t¼1

~Xitvit !d
Ð 1
0 JiðrÞdBvi ðrÞ and HTCi ¼ oPð1Þ, with all quantities converg-

ing jointly, with JiðrÞ as defined in the main text in (28).23 This immediately implies – for the parameter estimator
from the ith equation – that:

H�1
T b̂

þðiÞ � b
� �

!d
ð1
0
JiðrÞJiðrÞ0dr

 !�1 ð1
0
JiðrÞdBui �vi ðrÞ: (96)

23For more details we refer to Reichold and Wagner (2022, Lemma 2).
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Conditional upon Di, Ri and Wvi ðrÞ, the limiting distribution given in (96) is normal with expectation zero and

covariance matrix Xui �vi ð
Ð 1
0 JiðrÞJiðrÞ0drÞ�1: Cross-sectional independence (Assumption 1) thus implies the – condi-

tional upon Di, Ri and Wvi ðrÞ for i ¼ 1, :::,N – asymptotic normality result for the group-mean estimator given in
the main text in (30).

(ii) Analogously, the starting point for showing (31) is given by:
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(97)

As described in the main text, as a result of demeaning and linear detrending, the linear trend that asymptotically
dominates xit is exactly annihilated in ~xit: This is reflected in the following joint convergence results that can be
derived with similar calculations as in Reichold and Wagner (2022, Proof of Lemma 2). First, T1=2KT ~XibrTc )
LiðrÞ, with LiðrÞ as defined in the main text in (29). Moreover:

KT

XT
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ð1
0
LiðrÞdBui ðrÞ þ ðDviui , 0, 0Þ0, (98)
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(99)

and KTCi !d ðDþ
viui , 0, 0Þ

0: The remaining parts of the proof are similar to the corresponding parts of the proof of
(i) and are therefore omitted. w

Proof of Corollary 2. The proof is based on similar arguments as the proof of Corollary 1 and therefore
omitted. w

Proof of Remark 6. For sake of brevity, we only consider the individual-specific intercepts only case here in
detail. The proof is entirely analogous for the individual-specific intercepts and linear trends case.

It follows from the proof of Proposition 2 that:
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ð1
0
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Conditional upon D, R and WvðrÞ, the limiting distribution given in (100) is normal with expectation zero and
covariance matrix:
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where Xui �vi ;uj�vj is the constant in the quadratic covariation of the processes Bui �vi ðrÞ and Buj �vjðrÞ and is defined in
the main text.
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It is straightforward to verify that both V̂
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a, rob ¼ H�1
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þ
robH

�1
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(101)

converge in distribution to Vþ
a, rob: Therefore, the limiting distributions of Wþ

rob and Wþ
a, rob can be shown to be chi-

squared with s degrees of freedom under the null hypothesis using exactly the same arguments as in the proof of
Corollary 1. Similarly, in case s¼ 1, tþrob and tþa, rob can be shown to be asymptotically standard normally distributed
under the null hypothesis. w

Proof of Proposition 3. The case N0 ¼ 0 is contained in the (proof of) Proposition 2. The results for N0 > 0
follow from combining the results of Propositions 1 and 2. As in the proof of Proposition 2, we commence with
the individual-specific intercepts only case before turning to the individual-specific intercepts and linear trends
case.

(i) First note that the appropriate scaling matrix for the individual-specific estimators b̂
þðiÞ calculated from

cross-section members with zero drifts in the integrated regressor is GT, whereas the appropriate scaling matrix for

the individual-specific estimators b̂
þðiÞ calculated from cross-section members with non-zero drifts in the inte-

grated regressor is HT. This implies:
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(102)

where the last equality follows from G�1
T HT ¼ diagðT�1=2,T�1,T�3=2Þ and H�1

T ðb̂þðiÞ � bÞ ¼ OPð1Þ for i ¼
N0 þ 1, :::,N: Hence, the asymptotic behavior of the group-mean estimator only depends on the individual-specific

estimators b̂
þðiÞ calculated from cross-section members with zero drifts in the integrated regressor, since these

converge at a slower rate than the estimators corresponding to cross-section members with non-zero drifts. The
rest of the proof is analogous to the proof of Proposition 1 and therefore omitted.

(ii) As in (i), the appropriate scaling matrix depends upon the absence or presence of a non-zero drift in the
integrated regressor. In the former case, the appropriate scaling matrix is again given by GT, whereas it is given by
KT in the presence of a non-zero drift. Therefore:
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(103)

where b̂
þ
1 ðiÞ denotes the first element of b̂

þðiÞ: The last equality follows from G�1
T KT ¼ diagð1,T�1,T�3=2Þ and

K�1
T ðb̂þðiÞ � bÞ ¼ OPð1Þ, for i ¼ N0 þ 1, :::,N: In contrast to (i), the limiting distribution of the first component

of b̂
þ
depends upon all cross-section member-specific estimates of b1, reflecting the fact that the coefficient to the

first power of the integrated regressor is estimated at rate T irrespective of whether the drift is zero or non-zero –
as in any case linear detrending removes a potentially present linear trend from the corresponding regressor. For
the coefficients b2 and b3, the situation is exactly as in (i), with the limiting distribution only depending upon the
individual-specific estimators corresponding to cross-section members with zero drifts in the integrated regressor,
since these are converging at a slower rate than the estimators corresponding to cross-section members with non-
zero drifts. The rest of the proof is similar to the proof of Proposition 1 and therefore omitted. w
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Proof of Corollary 3. The proof is based on similar arguments as the proofs of Corollary 1 and 2 and therefore
omitted. w

Proof of Remark 8. The case N0 ¼ 0 has already been considered in the proof of Remark 6. The results for
N0 > 0 follow from combining the results of Proposition 3 and Remark 1, compare also the proofs of Remarks 1
and 6. The proof is therefore omitted. w

B. Country List for the Wide Data Set

Acknowledgments

The authors gratefully acknowledge partial financial support from Deutsche Forschungsgemeinschaft via the
Collaborative Research Center SFB823 Statistical Modelling of Nonlinear Dynamic Processes (Projects A3 and A4).
Furthermore, we thank the editor Esfandiar Maasoumi and two anonymous reviewers for a number of insightful
comments that have led to significant changes and improvements of the paper. In addition, we thank Fabian
Knorre for his suggestion to present the empirical results as in Figure 3 and conference participants at the 2021
Annual Conference of the Verein f€ur Socialpolitik in Regensburg. The views expressed in this paper are solely
those of the authors and not necessarily those of the Bank of Slovenia or the European System of Central Banks.
On top of this, the usual disclaimer applies.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Martin Wagner http://orcid.org/0000-0002-6123-4797

References

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation.
Econometrica 59(3):817–858. doi:10.2307/2938229

Darvas, Z. (2007). Estimation bias and inference in overlapping autoregressions: implications for the Target-Zone
literature. Oxford Bulletin of Economics and Statistics 0(0):070921170652008–070921170652008. doi:10.1111/j.
1468-0084.2007.00488.x

de Jong, R. M. (2002). Nonlinear Estimators with Integrated Regressors but without Exogeneity. New York, NY: Mimeo.

Table B.1. Country list for the wide data set.

Albania Algeria Angola Argentina Australia
Austria Bahrain Barbados Belgium Bolivia
Brazil Bulgaria Cambodia Cameroon Canada
Chile China Colombia Costa Rica Côte d’Ivoire
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