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A B S T R A C T

We study the asset allocation of an investor with prospect theory (PT) preferences. First, we solve analytically
the two-asset problem of the PT investor for one risk-free and one risky asset and find that the reference
return and the level of risk aversion or risk seeking (diminishing sensitivity) affect differently less ambitious
and more ambitious investors: the less ambitious investor decreases her exposure to the risky asset when
increasing her reference return or the level of diminishing sensitivity, while the more ambitious investor
increases her exposure to the risky asset when increasing her reference return or the level of diminishing
sensitivity. However, both less and more ambitious investors decrease their exposures to the risky asset when
increasing their degrees of loss aversion. In a comprehensive sensitivity analysis, we investigate how different
aspects of the PT investor’s preferences contribute to her risk taking, performance and happiness. We observe,
for instance, that the investor’s happiness decreases with her increasing level of ambition. Second, we perform
simulations to examine concrete solutions of the theoretical two-asset problem for different types of the PT
investor and for different characteristics of the risky asset and find that the assumption of skewness, as
opposed to symmetry, changes the optimal investment in the risky asset. Third, we empirically investigate
the performance of a PT portfolio when diversifying among a stock market index, a government bond and
gold, in Europe and the US. We focus on investors with PT preferences under different scenarios regarding the
reference return and the degree of loss aversion and compare their portfolio performance with the performance
of investors under mean–variance (MV), linear loss averse and CVaR preferences. We find that, in the US, PT
portfolios significantly outperform MV portfolios (in terms of returns) in most cases.
1. Introduction

The mainstream expected utility model cannot explain many as-
pects of financial market characteristics. An alternative that has been
proposed to describe investors’ behavior under risk is prospect the-
ory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). This
theory can explain many of the anomalies observed in asset returns
including the equity premium puzzle (An et al., 2020; Barberis et al.,
2001, 2021; Benartzi & Thaler, 1995). Experiments by Kahneman
and Tversky found that the utility function does not depend on the
absolute level of terminal wealth, as is hypothesized with the expected
utility model, but depends on the change in the level of wealth. In
addition, the probabilities assigned to the utility of the outcomes are
expressed within a weighted function. These weight functions allow one
to capture the tendency of people to underreact when faced with large
probability events and overreact when faced with small probability
events.1 Kahneman and Tversky proposed a utility function that is

✩ Jaroslava Hlouskova gratefully acknowledges financial support from the Austrian Science Fund FWF (project number V 438-N32).
∗ Correspondence to: Josefstädter Straße 39, 1080 Vienna, Austria.

E-mail address: hlouskov@ihs.ac.at (J. Hlouskova).
1 This is referred to in the literature as cumulative prospect theory. However, in our study we do not use weight functions (subjective probabilities).

defined over terminal wealth in relation to some reference level, such
as the status quo, i.e., investors have reference-dependent preferences.
In addition, they found that investors exhibit loss aversion, meaning
that their disutility of a loss is greater than their utility of a gain
of the same magnitude, i.e., investors are more sensitive when they
experience a loss in financial wealth than when they experience a gain.
Even when there is no commonly accepted measure of loss aversion in
the literature and there are many alternatives introduced (Abdellaoui
et al., 2007), the main characteristic seems to be that the utility
function is steeper in the domain of losses than in the domain of
gains. The simplest form of such loss aversion is linear loss aversion,
where the marginal utility of gains and losses is fixed. The optimal
asset allocation decision under linear loss aversion has been studied
widely, see, for example, Best and Grauer (2016), Best et al. (2014),
Fortin and Hlouskova (2011), Grauer (2013), and Siegmann and Lucas
(2005). Further, Kahnemann and Tversky found that investors prefer
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risk aversion options when they are confronted with gains, while they
are more willing to select risk seeking options when confronted with
losses. This behavior can be captured by an S-shaped utility function.
We generalize linear loss aversion, as studied in Fortin and Hlouskova
(2011), to S-shaped loss aversion and study optimal asset allocation in
this setup, both theoretically and empirically.

In order to explain stock market anomalies (Barberis et al., 2021)
introduce a new model of asset prices in which investors evaluate risk
according to prospect theory. This model incorporates all elements of
prospect theory, accounts for investors’ prior gains and losses, and
makes quantitative predictions about an asset’s average return based
on empirical estimates of the asset’s return volatility, return skewness,
and past capital gain. With this model, average asset returns can thus be
predicted under prospect theory preferences, as with the capital asset
pricing model under mean–variance preferences. In our study, however,
we consider the asset allocation problem of a given sufficiently loss
averse prospect theory investor, which is different from equilibrium
asset pricing models.

Other studies examine the investor’s asset allocation problem using
the continuous-time framework and the martingale method (under the
assumption that the market is complete) to solve the S-shaped utility
maximization problem. For example, Berkelaar et al. (2004) derive the
optimal investment strategies for two prospect theory utility functions.
Chen et al. (2017) examine S-shaped preferences with a minimum
performance constraint and inflation risk. He and Kou (2018) inves-
tigate the S-shaped utility maximization under a minimum guarantee.
Dong and Zheng (2019) include short-selling and portfolio insurance
constraints in the model, and Dong and Zheng (2020) impose trading
and Value-at-Risk constraints; both apply the dual control method
to solve the corresponding constrained optimization problem. In this
framework, however, the solutions for the optimal wealth and trading
strategy are not given directly, as in our discrete one-period setup.
Choi et al. (2022) solve an intertemporal consumption investment prob-
lem, considering disutility from changing consumption levels. This is
closely related to loss aversion towards a consumption change when the
previous consumption level is the reference consumption and, in our
setup, translates to loss aversion towards an investment change when
the previous portfolio return is the reference return. The investment
behavior in Choi et al. (2022) exhibits a U-shaped relationship between
the share of the risky assets in wealth and actual wealth.

In this paper we focus on a single-period model, which allows us
to examine certain properties of the optimal portfolio in more detail
and, in some sense, is in line with myopic investors who prefer im-
mediate gratification over long-term objectives. Multi-period models of
an investor with prospect theory preferences are developed in Barberis
and Huang (2009), He and Zhou (2014) and Shi et al. (2015), but
only for a piecewise linear value function, not for the general S-
shaped value function. De Giorgi and Legg (2012) extend the approach
of Barberis and Huang (2009) to a convex–concave value function,
however, examples are again presented only for the piecewise linear
value function. In a comprehensive sensitivity analysis, we investigate
how different aspects of the prospect theory investor’s preferences
contribute to her risk taking, performance and happiness. More pre-
cisely we examine the following properties: (i) the dependence of
the optimal solution (investment in the risky asset) on the degree of
loss aversion, the level of ambition,2 and the degree of diminishing
sensitivity; (ii) the behavioral pattern of the first three moments of the
portfolio return with respect to the changing degree of the investor’s
loss aversion, level of ambition and diminishing sensitivity; (iii) the
sensitivity of the investor’s ‘‘happiness/satisfaction’’ with respect to
the level of ambition, where we observe that happiness decreases

2 We show analytically the V-shaped dependence of risk taking with respect
o the reference return for the general continuous distribution, which, to our
nowledge, was not tackled in the literature in such detail before.
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with an increasing level of ambition; and (iv) the investor’s expected
gains and losses, where we find different risk attitudes for different
diminishing sensitivity parameters. We derive an explicit solution when
the risky asset return follows a discrete Bernoulli distribution and a
semi-analytical solution when it follows a general continuous distribu-
tion. The shortage of one-period models is that the reference return is
assumed to be exogenous, while it can be assumed to be endogenous
in a multi-period model, depending, e.g., on the portfolio return of the
previous period. However, an exogenous reference return allows us to
analyze the dependence of our results and performance measures with
respect to the investor’s ambition. Hlouskova et al. (2019) examine
the consumption–investment decision of a prospect theory household
in a two-period model with an endogenous second period reference
consumption (under the assumption of the risky asset return following
a Bernoulli distribution, where the investor draws her utility from gains
and losses in intertemporal consumption). In this setup the second
period reference consumption is determined as a convex combination of
the previous (first) period reference consumption and previous period
consumption, i.e., the reference level increases after prior ‘‘gains’’ and
decreases after prior ‘‘losses’’. This, of course, cannot be done in a
one-period model.3 In our empirical analysis we try to address this
by considering dynamic scenarios which update the reference level
according to the portfolio return gained in the previous period. What
is not investigated in Hlouskova et al. (2017, 2019), is the analysis of
prospect theory portfolio properties under more general distributions,
which is one of the focuses in this study.

As the S-shaped prospect theory utility function is not concave
and the problem cannot be easily transformed to a sufficiently smooth
higher dimensional concave problem, grid search algorithms (as in
the empirical part of our paper) or alternative special algorithms are
necessary to solve the problem. More recent empirical studies pro-
pose numerical portfolio optimization techniques which maximize the
prospect theory utility implied by the empirical distribution of asset
returns. Harris and Mazibas (2022), for example, solve the one-period
multi-asset model in two steps, first smoothing the utility (as it is
non-differentiable) employing the cubic spline smoothing approach and
then using a multistart scatter search heuristic approach; Luxenberg
et al. (2022) provide several practical methods to maximize prospect
theory utility for the multi-asset case, which exploit the special struc-
ture of the prospect theory maximization problem; Barro et al. (2020)
use the partial swarm optimization approach; Cui et al. (2022) propose
a method based on the alternating direction method of multipliers;
and Grishina et al. (2017), employ intelligent algorithms. Also older
empirical studies use numerical algorithms to solve the maximization
problem for more risky assets. De Giorgi and Hens (2009), for exam-
ple, consider data of private clients and measure the clients’ added
value from holding prospect theory portfolio as compared to a mean–
variance asset allocation; they find considerable monetary gains. Hens
and Mayer (2014) perform a similar analysis using eight indices of
different asset classes and, again, find that prospect theory investors
are better off than mean–variance investors. In the empirical part of
our study we also take the mean–variance portfolio as the main bench-
mark when assessing the performance of prospect theory portfolios.
Grishina et al. (2017) compute prospect theory portfolios composed
of up to 225 stocks, taking the stock index (in which the individual
stocks are included) as the reference point, and find that prospect
theory portfolios perform better than index tracking models in bullish
markets, and worse in bearish markets. We also compute prospect
theory portfolios empirically, for three assets (stock, bond, gold), in
the European and the US markets and compare these portfolios with
other benchmark portfolios, in particular with the traditional mean–
variance portfolios, in terms of different performance measures. Finally,

3 However, there are no large differences in the sensitivity analyses in the
ases when the second period reference level is exogenous or endogenous, see
louskova et al. (2017, 2019).
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Fig. 1. Value function of S-shaped prospect theory investor.
Pirvu and Schulze (2012) consider a one-period multi-asset model of
cumulative prospect theory investment under the assumption that asset
returns follow a multivariate elliptical (symmetric) distribution. Their
main result is that agents invest in the risk-free asset and in the mean–
variance portfolio, where the mean–variance portfolio is the same for
all investors, but the participation differs. In our study we consider
one risk-free and one risky asset and assume a general continuous
distribution, which enables us to analyze the effects of asymmetric
returns.

The remaining paper is organized as follows. In Section 2 we explore
the two-asset problem of an S-shaped sufficiently loss averse prospect
theory investor, with a risky and a risk-free asset, and derive properties
of the optimal weight of the risky asset under the assumptions of
Bernoulli and (generally) continuously distributed returns, both for the
case when the reference point is equal to the risk-free rate and for the
case when it is not. In Section 3 we perform simulations for a prospect
theory investor with different characteristics, with a focus on the effect
of (negatively) skewed returns of the risky asset. In Section 4 we imple-
ment different trading strategies of the prospect theory investor, who
reallocates her portfolio on a monthly basis, and study the performance
of the resulting optimal portfolios with respect to different performance
measures that are based solely on portfolio returns (mean, median, re-
alized returns), on risk-adjusted returns (Omega measure, Sharpe ratio,
Sortino ratio, conditional value-at-risk) or on risk (volatility, downside
volatility). We also compare the performance of the prospect theory
portfolios with the performance of risk neutral, linear loss averse,
conditional value-at-risk and, in particular, with the performance of
traditional mean–variance portfolios. Section 5 provides a summary of
the results and concludes.

2. Portfolio optimization under prospect theory preferences: ana-
lytical solution

We consider a sufficiently loss averse investor characterized by the
following S-shaped prospect theory value function of portfolio return
𝑅

𝑣(𝑅) =

⎧

⎪

⎨

⎪

⎩

(𝑅−𝑟̂)1−𝛾

1−𝛾
, 𝑅 > 𝑟̂

−𝜆 (𝑟̂−𝑅)1−𝛾

1−𝛾
, 𝑅 ≤ 𝑟̂

⎫

⎪

⎬

⎪

⎭

= 1
1 − 𝛾

[

|𝑟̂ − 𝑅|1−𝛾 − (1 + 𝜆)
(

[𝑟̂ − 𝑅]+
)1−𝛾

]

(1)

where 𝑟̂ ∈ R is the reference return with respect to which relative gains
and losses are coded, 𝛾 ∈ (0, 1) is a parameter determining the curvature
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of the utility function for relative gains and losses (diminishing sensitiv-
ity parameter),4 and [𝑡]+ denotes the maximum of 0 and 𝑡. We assume
net returns but the whole analysis holds also under the assumption of
gross returns.5 The parameter 𝜆 > 1 is the penalty parameter, which
captures the degree of loss aversion making thus utility steeper in the
loss domain (𝑅 < 𝑟̂) than in the gain domain (𝑅 > 𝑟̂). The investor’s
reduction in utility arising from a loss is greater (in absolute terms)
than the marginal utility from a gain or, in other words, the investor is
more sensitive when experiencing a loss than when experiencing a gain
of the same size. Investors also display risk aversion in the domain of
gains (the value function is concave for 𝑅 > 𝑟̂) but become risk lovers
when they deal with losses (the value function is convex for 𝑅 < 𝑟̂).
See Fig. 1 for a graphical illustration of the value function, which is
non-differentiable at the reference return.

We study the optimal asset allocation behavior of an investor with
S-shaped prospect theory preferences. This behavior depends on the
reference return 𝑟̂ and, in particular, on whether this reference return
is below, equal to, or above the risk-free interest rate, 𝑟0. The position
of the investor’s reference return with respect to the risk-free rate is
determined exogenously by the investor’s incentive, e.g., investors with
their reference return being below the risk-free rate (𝑟̂ < 𝑟0) can be
viewed as less ambitious investors while investors with their reference
return being above the risk-free rate (𝑟̂ > 𝑟0) can be viewed as more
ambitious investors.

Investors maximize their expected utility of returns

max
𝐱

{

E
(

𝑣(𝐫′𝐱)
)

|

|

|

𝐀𝐱 ≤ 𝐛
}

(2)

where 𝐱 = (𝑥1,… , 𝑥𝑛)′, with 𝑥𝑖 denoting the proportion of wealth
invested in asset 𝑖,6 𝑖 = 1,… , 𝑛, and 𝐫 is the 𝑛−dimensional random
vector of net returns, subject to the usual asset constraints 𝐀𝐱 ≤ 𝐛, with
𝐀 ∈ R𝑚×𝑛 and 𝐛 ∈ R𝑚. Note that in general the proportion invested in
a given asset may be negative, due to short-selling, or larger than one.

4 We assume that 𝛾 ∈ (0, 1) in order to be consistent with the experimental
findings of Tversky and Kahneman (1992). Booij and van de Kuilen (2009)
find the 𝛾 parameter to be (statistically) significantly less than unity.

5 Without loss of generality we assume that the initial wealth (𝑊0) is unity,
as otherwise the reference wealth becomes 𝑊0 𝑟̂ which gives the value function
𝑊 1−𝛾

0 𝑣(𝑟) and does not change the solution when considering only 𝑣(𝑟).
6 Throughout this paper, prime (′) is used to denote matrix transposition

and any unprimed vector is a column vector.
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To better understand the attitude with respect to risk of an investor
with prospect theory preferences, we consider a simple two-asset world,
where one asset is risk-free and the other is risky, and analyze what
proportion of wealth is invested in the risky asset.7 Let 𝑟0 be the certain
(deterministic) return of the risk-free asset and let 𝑟 be the (stochastic)
return of the risky asset. Then the portfolio return is 𝑅 = 𝑅(𝑥) =
𝑥𝑟+(1−𝑥)𝑟0 = 𝑟0+(𝑟−𝑟0)𝑥, where 𝑥 is the proportion of wealth invested
in the risky asset, and the maximization problem of the investor with
prospect theory preferences is

max
𝑥

{

E (𝑣 ((𝑅(𝑥)))) = E
(

𝑣
(

𝑟0 +
(

𝑟 − 𝑟0
)

𝑥
))

| 𝑥 ∈ R
}

(3)

with value function 𝑣(⋅) given by (1). As will be seen later, the results
ill be sensitive to the position of the reference return with respect to

he risk-free rate.
In the following we present optimal solutions and their properties

or the following three cases, when the investor: (i) is modest in setting
er return goals, i.e., 𝑟̂ < 𝑟0 (less ambitious investor), (ii) stays out of
he market, i.e., 𝑟̂ = 𝑟0, and (iii) is more ambitious in setting her goals,
.e., 𝑟̂ > 𝑟0 (more ambitious investor). We assume first that the risky
sset return is Bernoulli distributed (discrete distribution) and later on
hat it is (generally) continuously distributed.

.1. The risky asset return follows the Bernoulli distribution

First we assume, for the sake of simplicity and because in this case
e can show a number of results analytically, that the return of the

isky asset follows the Bernoulli distribution. We assume two states of
ature: a good state of nature which yields return 𝑟𝑔 such that 𝑟𝑔 > 𝑟0

nd which occurs with probability 𝑝, and a bad state of nature which
yields return 𝑟𝑏 such that 𝑟𝑏 < 𝑟0 and which occurs with probability
1 − 𝑝, i.e., 𝑟𝑏 < 𝑟0 < 𝑟𝑔 .8 In the good state of nature the portfolio yields
return 𝑅𝑔(𝑥) = 𝑟0 + (𝑟𝑔 − 𝑟0)𝑥 with probability 𝑝 and in the bad state
of nature it yields return 𝑅𝑏(𝑥) = 𝑟0 − (𝑟0 − 𝑟𝑏)𝑥 with probability 1 − 𝑝.
Thus, based on (1) and (3), the expected prospect theory utility (value
function) of the two-asset portfolio including the risk-free asset and the
Bernoulli distributed risky asset is the following continuous function

E (𝑣 (𝑅(𝑥)))

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
1−𝛾

[

𝑝
(

𝑅𝑔(𝑥) − 𝑟̂
)1−𝛾 + (1 − 𝑝)(𝑅𝑏(𝑥) − 𝑟̂)1−𝛾

]

, 𝑅𝑔(𝑥) ≥ 𝑟̂, 𝑅𝑏(𝑥) ≥ 𝑟̂

1
1−𝛾

[

𝑝(𝑅𝑔(𝑥) − 𝑟̂)1−𝛾 − 𝜆(1 − 𝑝)(𝑟̂ − 𝑅𝑏(𝑥))1−𝛾
]

, 𝑅𝑔(𝑥) ≥ 𝑟̂, 𝑅𝑏(𝑥) ≤ 𝑟̂

1
1−𝛾

[

−𝜆𝑝(𝑟̂ − 𝑅𝑔(𝑥))1−𝛾 + (1 − 𝑝)(𝑅𝑏(𝑥) − 𝑟̂)1−𝛾
]

, 𝑅𝑔(𝑥) ≤ 𝑟̂, 𝑅𝑏(𝑥) ≥ 𝑟̂

−𝜆 1
1−𝛾

[

𝑝(𝑟̂ − 𝑅𝑔(𝑥))1−𝛾 + (1 − 𝑝)(𝑟̂ − 𝑅𝑏(𝑥))1−𝛾
]

, 𝑅𝑔(𝑥) ≤ 𝑟̂, 𝑅𝑏(𝑥) ≤ 𝑟̂

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(4)

To proceed with the analysis, we define the following threshold

𝛾 =
(1 − 𝑝)(𝑟0 − 𝑟𝑏)1−𝛾

𝑝(𝑟𝑔 − 𝑟0)1−𝛾
(5)

∕𝐾𝛾 shows similar features as the Omega measure (see Shadwick &
eating, 2002), which reflects the ratio of the upside potential of the
isky asset return relative to its downside potential with respect to the
isk-free rate. It coincides with the Omega measure of the risky asset
or 𝛾 = 0.

7 Another motivation for looking at this problem is the following. When
obin’s separation theorem holds, the investment decision problem can be
implified to deciding which proportion to invest in the safe asset and which
o invest in some risky portfolio. Levy et al. (2004) have shown that Tobin’s
eparation principle holds, under certain assumptions, also for the Tversky and
ahneman’s prospect theory utility.

8 This assumption rules out any arbitrage between the risky and risk-free
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The next proposition presents the analytical solution of the prospect
theory investor with preferences described by (1) and (3), who is less
ambitious and who is also sufficiently loss averse.

Proposition 2.1. Let E(𝑟) > 𝑟0, 𝑟̂ < 𝑟0, and 𝜆 > max
{

𝐾𝛾 , 1∕𝐾𝛾
}

, where
𝐾𝛾 is defined by (5). Then there exists the only solution 𝑥∗ of (3) such that

𝑥∗ =

(

1 −𝐾1∕𝛾
0

)

(𝑟0 − 𝑟̂)

𝑟0 − 𝑟𝑏 +𝐾1∕𝛾
0 (𝑟𝑔 − 𝑟0)

> 0 (6)

Proof. See Appendix A. □

Note that solution (6) does not depend on the degree of loss aver-
sion, 𝜆, but a sufficiently large degree of loss aversion is needed
to guarantee the monotonic properties of the prospect theory utility
function in its certain domains and thus the uniqueness of the solution.
In addition, the optimal portfolio return exceeds the reference return,
i.e., 𝑅(𝑥∗) > 𝑟̂. See the proof of Proposition 2.1 in Appendix A for more
details.

Note that if 𝑣̃(⋅) is the power utility, namely 𝑣̃(𝑦) = 𝑦1−𝛾

1−𝛾 , then
he solution of the maximization of the expected power utility un-
er the Bernoulli distributed risky asset as specified above, namely

ax{E(𝑣̃(𝑅(𝑥))) | 𝑥 ∈ R}, is 𝑥̃∗ =

(

1−𝐾1∕𝛾
0

)

𝑟0

𝑟0−𝑟𝑏+𝐾
1∕𝛾
0 (𝑟𝑔−𝑟0)

, and thus for 𝑟̂ < 𝑟0

we have 𝑥∗ < 𝑥̃∗ when 𝑟̂ > 0.9 The proportion invested in the risky
asset is thus smaller for the less ambitious prospect theory investor
than for the investor characterized by power utility, as long as the
reference return is positive. Based on (6) we can formulate the fol-
lowing corollary, which formally states that when the investor is less
ambitious, i.e., when the reference return is below the risk-free rate,
then the investor is not sensitive to the degree of loss aversion (𝜆) and
she becomes more conservative with an increasing reference return and
curvature parameter, i.e., her investment in the risky asset decreases
with an increasing level of ambition and diminishing sensitivity 𝛾.

Corollary 2.1. Let the assumptions of Proposition 2.1 be satisfied. Then
the optimal solution of (3), 𝑥∗, has the following properties
𝑑𝑥∗

𝑑𝜆
= 0

𝑑𝑥∗

𝑑𝑟̂
= −

(

1 −𝐾1∕𝛾
0

)

𝑟0 − 𝑟𝑏 +𝐾1∕𝛾
0 (𝑟𝑔 − 𝑟0)

< 0 (7)

and

𝑑𝑥∗

𝑑𝛾
=

(𝑟0 − 𝑟̂)(𝑟𝑔 − 𝑟𝑏)𝐾
1∕𝛾
0 ln𝐾0

[

𝛾
(

𝑟0 − 𝑟𝑏 +𝐾1∕𝛾
0 (𝑟𝑔 − 𝑟0)

)]2
< 0 (8)

The following proposition states that when the reference return
coincides with the risk-free rate (𝑟̂ = 𝑟0) the prospect theory investor
stays out of the market (𝑥∗ = 0), i.e., everything is invested in the
risk-free asset.10

Proposition 2.2. Let 𝑟̂ = 𝑟0 and 𝜆 ≥ max
{

𝐾𝛾 , 1∕𝐾𝛾
}

, where 𝐾𝛾 is
defined by (5). Then the solution of (3) is 𝑥∗ = 0.

Proof. See Appendix A. □

9 Note in addition that 𝑥∗ ≥ 𝑥̃∗ when 𝑟̂ ≤ 0.
10 This is also the case for the linear loss averse investor (𝛾 = 0), see Fortin
nd Hlouskova (2011), but not for the loss averse investor with quadratic
hortfall, where the optimal investment in the risky asset is strictly positive,
ee Fortin and Hlouskova (2015).
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Table 1
Summary of optimal solutions under S-shaped prospect theory and linear loss aversion.

Assumptions on 𝑟̂ Additional assumptions Solutions

𝑟̂ < 𝑟0 E(𝑟) > 𝑟0 0 < 𝑥∗ < 𝑥∗LLA = 𝑟0−𝑟̂
𝑟0−𝑟𝑏

𝑟̂ = 𝑟0 𝑥∗ = 𝑥∗LLA = 0
𝑟̂ > 𝑟0 𝑝 > 𝑝̄ 𝑥∗𝑝 = 𝑥∗ > 𝑥∗LLA = 𝑟̂−𝑟0

𝑟𝑔−𝑟0
> 0

𝑟̂ > 𝑟0 𝑝 < 𝑝̄ 𝑥∗𝑛 = 𝑥∗ < 0 < 𝑥∗LLA = 𝑟̂−𝑟0

𝑟𝑔−𝑟0

We assume that 𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾 , 1∕𝐾0}. Note that 𝑥∗ is given by (6) when 𝑟̂ < 𝑟0; 𝑥∗𝑝 is
given by (9), 𝑥∗𝑛 by (10), 𝑝̄ by (11) and 𝑥∗LLA is derived in Fortin and Hlouskova (2011).
a

p
l
i
o
a
p
t
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Note that this is the only case when the portfolio of the prospect
theory investor coincides with the portfolio of the mean–variance
investor.11 From the proof of Proposition 2.2 it is easy to see that for
the less loss averse investor the following holds: For 1 < 𝜆 < 1∕𝐾𝛾 the
investor would benefit from an ever increasing long position, i.e., 𝑥∗ =
+∞,12 while for 1 < 𝜆 < 𝐾𝛾 the investor would benefit from an ever
increasing short position, i.e., 𝑥∗ = −∞.

Before proceeding further let us introduce the following notation

𝑥∗𝑝 = 𝑟̂ − 𝑟0

𝑟𝑔 − 𝑟0
×

𝜆1∕𝛾 +
(

1
𝐾0

)1∕𝛾

𝜆1∕𝛾 −
(

1
𝐾𝛾

)1∕𝛾
(9)

𝑥∗𝑛 = − 𝑟̂ − 𝑟0

𝑟0 − 𝑟𝑏
×

𝜆1∕𝛾 +𝐾1∕𝛾
0

𝜆1∕𝛾 −𝐾1∕𝛾
𝛾

(10)

𝑝̄ =

(

𝑟0 − 𝑟𝑏
)1−𝛾

(

𝑟0 − 𝑟𝑏
)1−𝛾 +

(

𝑟𝑔 − 𝑟0
)1−𝛾

(11)

ote that for the more ambitious investor, i.e., 𝑟̂ > 𝑟0, is 𝑥∗𝑝 > 0 when
> 1∕𝐾𝛾 and 𝑥∗𝑛 < 0 when 𝜆 > 𝐾𝛾 .

The following proposition presents the analytical solution of the
nvestor with prospect theory preferences, see (1) and (3), who is more
mbitious and who is also sufficiently loss averse.

roposition 2.3. Let 𝑟̂ > 𝑟0 and 𝜆 > max
{

𝐾𝛾 , 1∕𝐾𝛾
}

, where 𝐾𝛾 is
efined by (5). Then there exists the solution 𝑥∗ of (3) such that

∗

⎧

⎪

⎨

⎪

⎩

= 𝑥∗𝑝 > 0, for 𝑝 > 𝑝̄
= 𝑥∗𝑛 < 0, for 𝑝 < 𝑝̄
∈
{

𝑥∗𝑝 , 𝑥
∗
𝑛

}

for 𝑝 = 𝑝̄

⎫

⎪

⎬

⎪

⎭

(12)

hich is unique for 𝑝 ≠ 𝑝̄.

roof. See Appendix A. □

Proposition 2.3 implies that the more ambitious sufficiently loss
verse investor purchases the risky asset when the probability of the
ood state to occur (𝑟 = 𝑟𝑔) is sufficiently large. In this case the portfolio
eturn exceeds the reference return if 𝑟 = 𝑟𝑔 (𝑅(𝑥∗) > 𝑟̂), while it
s below the reference return if 𝑟 = 𝑟𝑏 (𝑅(𝑥∗) < 𝑟̂). However, if the
robability of the bad state to occur (𝑟 = 𝑟𝑏) is sufficiently large, the
nvestor takes a short position in the stock market.13 In this case the
ortfolio return exceeds the reference return if 𝑟 = 𝑟𝑏 (𝑅(𝑥∗) > 𝑟̂), while
t is below the reference return if 𝑟 = 𝑟𝑔 (𝑅(𝑥∗) < 𝑟̂).

Based on (12) we can formulate the following corollary, which
resents the sensitivity of the risky investment of a more ambitious
nvestor (𝑟̂ > 𝑟0) with respect to her degree of loss aversion, her

11 As the variance of the portfolio return 𝑅(𝑥) = 𝑥𝑟+(1−𝑥)𝑟0 is 𝑥2Var(𝑟), the
minimum variance of the mean–variance portfolio is reached at 𝑥 = 0.

12 An infinite long position is also observed in Ang et al. (2005), when
calibrating a binomial tree to the US stock market and working with the
original Kahneman and Tversky (1979) specification.
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Note that 𝐾𝛾 < 1 if and only if 𝑝 > 𝑝̄ and 𝐾𝛾 = 1 if and only if 𝑝 = 𝑝̄.
reference return and her diminishing sensitivity (risk aversion/risk
seeking parameter 𝛾).

Corollary 2.2. Let the assumptions of Proposition 2.3 be satisfied. Then
the optimal solution has the following properties:

𝑑𝑥∗

𝑑𝜆
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 1
𝛾
𝑟𝑔−𝑟𝑏
𝑟𝑔−𝑟0

× 𝜆1∕𝛾−1

𝐾1∕𝛾
0

[

𝜆1∕𝛾−
(

1
𝐾𝛾

)1∕𝛾
]2 < 0, for 𝑝 > 𝑝̄

1
𝛾
𝑟𝑔−𝑟𝑏
𝑟0−𝑟𝑏

×
𝐾1∕𝛾
0 𝜆1∕𝛾−1

[

𝜆1∕𝛾−𝐾1∕𝛾
𝛾

]2 > 0, for 𝑝 < 𝑝̄

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(13)

𝑑𝑥∗

𝑑𝑟̂
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝑟𝑔−𝑟0

×
𝜆1∕𝛾+

(

1
𝐾0

)1∕𝛾

𝜆1∕𝛾−
(

1
𝐾𝛾

)1∕𝛾 > 0, for 𝑝 > 𝑝̄

− 1
𝑟0−𝑟𝑏

×
𝜆1∕𝛾+𝐾1∕𝛾

0

𝜆1∕𝛾−𝐾1∕𝛾
𝛾

< 0, for 𝑝 < 𝑝̄

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(14)

nd

𝑑𝑥∗

𝑑𝛾
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(𝑟̂−𝑟0)(𝑟𝑔−𝑟𝑏)
[

𝛾(𝑟𝑔−𝑟0)

(

𝜆1∕𝛾−
(

1
𝐾𝛾

)1∕𝛾
)]2

(

𝜆
𝐾0

)1∕𝛾 (
ln 𝜆 − ln 1

𝐾0

)

> 0,

for 𝑝 > 𝑝̄ and 𝜆 > 1
𝐾0

− (𝑟̂−𝑟0)(𝑟𝑔−𝑟𝑏)
[

𝛾(𝑟0−𝑟𝑏)
(

𝜆1∕𝛾−𝐾1∕𝛾
𝛾

)]2

(

𝜆𝐾0
)1∕𝛾 (ln 𝜆 − ln𝐾0

)

< 0,

for 𝑝 < 𝑝̄ and 𝜆 > 𝐾0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(15)

Corollary 2.2 implies the following findings regarding the com-
arative statics for the more ambitious investor. For a sufficiently
arge probability of the good state to occur, the risk taking (i.e., the
nvestment in the risky asset, 𝑥∗) decreases with an increasing degree
f loss aversion, while it increases with an increasing level of ambition
nd an increasing degree of diminishing sensitivity. However, when the
robability of the good state to occur is sufficiently small then the risk
aking increases (i.e., the short position decreases) with an increasing
oss aversion, while it decreases (i.e., the short position increases) with
n increasing level of ambition and an increasing degree of diminishing
ensitivity. These findings together with the findings in Corollary 2.1,
amely (7), imply that risk taking, 𝑥∗, as a function of the reference

return, 𝑟̂, is non-differentiable at 𝑟̂ = 𝑟0, which implies the V-shaped
relation between 𝑥∗ and 𝑟̂ for sufficiently large 𝑝 (𝑝 > 𝑝̄).

Table 1 summarizes and contrasts the optimal investments into the
risky asset of the linear loss averse (LLA) investor, who is defined by
value function (1) with 𝛾 = 0, and the prospect theory (PT) investor,
who is defined by value function (1) with 𝛾 ∈ (0, 1).14 Note that the
investment in the risky asset of the less ambitious LLA investor exceeds
the investment in the risky asset of the less ambitious PT investor. The
opposite holds for the more ambitious investor when the probability of
the good state to occur is sufficiently large, i.e., when 𝑝 > 𝑝̄. If 𝑝 < 𝑝̄

14 For more details regarding the LLA investor, see Fortin and Hlouskova
(2011).
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Fig. 2. 1∕𝐾𝛾 with respect to 𝛾 for different Sharpe ratios.
The results are shown for symmetric, negatively skewed and positively skewed distributions of the risky asset return, where the parameters of the risky asset return and the
risk-free rate are in line with the EU data (stock market and risk-free rate), see Table B.2. Note that only for negatively skewed returns can the line be upward sloping, however,
it is downward sloping for a sufficiently large Sharpe ratio (SR); in the example shown, for 𝑆𝑅 ≥ 0.35.
then the PT investor takes a short position and thus the risk taking of
the LLA investor again exceeds the risk taking of the PT investor. Note
in addition that only when the reference return coincides with the risk-
free rate is the investment in the risky asset the same for both investors,
namely staying out of the market. Risk taking for the LLA investor is
always positive when the reference return does not coincide with the
risk-free rate.

Propositions 2.1, 2.3 and their proofs imply the following form
of the indirect utility function, i.e., the value of the expected value
function at its maximum.

Corollary 2.3. The investor’s level of satisfaction/happiness can be
expressed as follows

E(𝑣(𝑅(𝑥∗))) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑝(𝑟0 − 𝑟̂)1−𝛾
(

1 +𝐾1∕𝛾
𝛾

)𝛾 ( 𝑟𝑔−𝑟𝑏
𝑟0−𝑟𝑏

)1−𝛾
,

for 𝑟̂ < 𝑟0, 𝜆 > max
{

𝐾𝛾 , 1∕𝐾𝛾
}

−(1 − 𝑝)(𝑟̂ − 𝑟0)1−𝛾
[

𝜆1∕𝛾 −
(

1
𝐾𝛾

)1∕𝛾
]𝛾

(

𝑟𝑔−𝑟𝑏
𝑟𝑔−𝑟0

)1−𝛾
,

for 𝑟̂ > 𝑟0, 𝑝 ≥ 𝑝̄, 𝜆 > 1∕𝐾𝛾

−𝑝(𝑟̂ − 𝑟0)1−𝛾
(

𝜆1∕𝛾 −𝐾1∕𝛾
𝛾

)𝛾 ( 𝑟𝑔−𝑟𝑏
𝑟0−𝑟𝑏

)1−𝛾
,

for 𝑟̂ > 𝑟0, 𝑝 ≤ 𝑝̄, 𝜆 > 𝐾𝛾

(16)

This implies that for 𝜆 > max
{

𝐾𝛾 , 1∕𝐾𝛾
}

is 𝑑E(𝑣(𝑅(𝑥∗)))
𝑑𝑟̂ < 0, i.e., hap-

piness decreases with an increasing level of ambition and thus upward
comparison seems to spoil the happiness. The same is true in our nu-
merical example when the risky asset return is continuously distributed,
see Fig. 7. Note in addition that 𝑑E(𝑣(𝑅(𝑥∗)))

𝑑𝜆 = 0 for 𝑟̂ < 𝑟0, 𝑑E(𝑣(𝑅(𝑥∗)))
𝑑𝜆 < 0

for 𝑟̂ > 𝑟0, i.e., for more ambitious investors happiness decreases with
an increasing level of loss aversion.

2.2. The risky asset is continuously distributed

Now we assume that the risky asset return 𝑟 is continuously dis-
tributed with probability density function 𝑓 (⋅) and cumulative distri-
bution function 𝐹 (⋅), such that E(𝑟2) = ∫ +∞

−∞ 𝑟2𝑓 (𝑟)𝑑𝑟 < +∞, i.e., the
variance exists, and 𝐹 (𝑐) < 1 for any 𝑐 ∈ R. These assumptions are
met by a large number of distributions including the normal, the skew
normal, the student t with degrees of freedom strictly larger than two,
the Gamma, etc.

Let 𝑅 be a continuous random variable describing the stochastic
portfolio return and 𝑓𝑅(⋅) be its probability density function. Then
based on (1) we can define the expected prospect theory utility of
return 𝑅 as

E(𝑣(𝑅)) = 1
1 − 𝛾

(

−𝜆∫

𝑟̂

−∞
(𝑟̂ − 𝑧)1−𝛾𝑓𝑅(𝑧)𝑑𝑧 + ∫

+∞

𝑟̂
(𝑧 − 𝑟̂)1−𝛾𝑓𝑅(𝑧)𝑑𝑧

)

(17)
219
and thus based on (17), the expected prospect theory utility function
of portfolio return 𝑅 = 𝑅(𝑥) is

E(𝑣(𝑅(𝑥))) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(−𝑥)1−𝛾

1−𝛾

[

∫ 𝑧(𝑥)
−∞ (𝑧(𝑥) − 𝑟)1−𝛾 𝑓 (𝑟)𝑑𝑟 − 𝜆 ∫ +∞

𝑧(𝑥) (𝑟 − 𝑧(𝑥))1−𝛾 𝑓 (𝑟)𝑑𝑟
]

, 𝑥 < 0

1
1−𝛾

(

𝑟0 − 𝑟̂
)1−𝛾 , 𝑥 = 0 and 𝑟̂ ≤ 𝑟0

− 𝜆
1−𝛾

(

𝑟̂ − 𝑟0
)1−𝛾 , 𝑥 = 0 and 𝑟̂ > 𝑟0

𝑥1−𝛾

1−𝛾

[

−𝜆 ∫ 𝑧(𝑥)
−∞ (𝑧(𝑥) − 𝑟)1−𝛾 𝑓 (𝑟)𝑑𝑟 + ∫ +∞

𝑧(𝑥) (𝑟 − 𝑧(𝑥))1−𝛾 𝑓 (𝑟)𝑑𝑟
]

, 𝑥 > 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(18)

where 𝑧(𝑥) = 𝑟̂−𝑟0
𝑥 + 𝑟0. It is easy to see that E(𝑣(𝑅(𝑥))) is continuous in

𝑥, also for 𝑥 = 0.
The problem we want to solve is

max
𝑥

{E(𝑣(𝑅(𝑥))) | 𝑥 ∈ R } (19)

The case when 𝑟̂ = 𝑟0 is already solved in the literature (see Bernard
& Ghossoub, 2010, or He & Zhou, 2011) and, as in the discrete case,
the PT investor stays out of the market. This holds also for the mean–
variance investor. We summarize it in the following proposition, where

𝐾𝛾 =
∫ 𝑟0
−∞(𝑟0 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟

∫ +∞
𝑟0 (𝑟 − 𝑟0)1−𝛾𝑓 (𝑟)𝑑𝑟

(20)

𝐾𝛾 plays an important role as it, together with 1∕𝐾𝛾 , represents the
lower bound of loss aversion (𝜆), which rules out infinite investment
in the risky asset (𝑥∗ = +∞) if 𝜆 > 1∕𝐾𝛾 , or infinite short-selling
(𝑥∗ = −∞) if 𝜆 > 𝐾𝛾 .15 Thus, when 𝜆 > 1∕𝐾𝛾 the investor’s loss aversion
is strong enough to offset the attractiveness of investing in the risky
asset indicated by 1∕𝐾𝛾 , while when 𝜆 > 𝐾𝛾 loss aversion is sufficient
to offset the attractiveness of short selling the risky asset indicated
by 𝐾𝛾 . As mentioned in Section 2.1, 1∕𝐾0 coincides with the Omega
measure of the risky asset and thus shows similar features. Harris and
Mazibas (2022) refer to 1∕𝐾𝛾 as the hope-fear ratio, as it presents
optimism (about the portfolio return exceeding a benchmark) relative
to pessimism (about the portfolio return being below a benchmark),
while Bernard and Ghossoub (2010) refer to 1∕𝐾𝛾 as the generalized
Omega measure or the CPT-ratio.16 Based on the assumption of the

15 Note that 1∕𝐾𝛾 can be also written as 1∕𝐾𝛾 =
E((𝑟−𝑟0)1−𝛾 |𝑟≥𝑟0)×𝑃 (𝑟≥𝑟0)
E((𝑟0−𝑟)1−𝛾 |𝑟≤𝑟0)×𝑃 (𝑟≤𝑟0) , where

𝑃 (⋅) is the probability implied by the cumulative distribution function of the
risky asset return.

16 Harris and Mazibas (2022) propose the discrete version of 1∕𝐾𝛾 as an al-
ternative behavioral objective function, where instead of the risky asset return
𝑟 they use the portfolio return. In addition they use subjective probabilities.
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risky asset’s distribution, namely E(𝑟2) = ∫ +∞
−∞ 𝑟2𝑓 (𝑟)𝑑𝑟 < +∞, it follows

that 𝐾𝛾 is finite, see Lemma A.1 in Appendix A.
In order to better understand the dynamics of 1∕𝐾𝛾 , we compute

1∕𝐾𝛾 for 𝛾 ∈ (0, 1) under the assumption of both symmetric and skewed
istributions that we present in more detail in Section 3. Our findings
uggest that for the risky asset return following a symmetric or a
ositively skewed distribution is 1∕𝐾𝛾 a decreasing function of 𝛾, while

for a negatively skewed distribution the results are mixed, see Fig. 2.17

However, there seems to be the following pattern for negatively skewed
returns: for a sufficiently large Sharpe ratio of the risky asset is 1∕𝐾𝛾 a
decreasing function of 𝛾, while for a sufficiently small Sharpe ratio is
1∕𝐾𝛾 increasing (at least for a sufficiently small diminishing sensitivity
parameter 𝛾). Note that stocks and stock indices are usually negatively
skewed.

Proposition 2.4. Let 𝑟̂ = 𝑟0 and 𝜆 > max
{

𝐾𝛾 ,
1
𝐾𝛾

}

where 𝐾𝛾 is given
y (20). Then 𝑥∗ = 0 is the solution of problem (19).

roof. See Appendix A. □

For 𝑟̂ ≠ 𝑟0 we can find the solution only in its implicit semi-
analytical form but we can still perform comparative statics and show
how the solution depends on the degree of loss aversion 𝜆 and on the
reference return 𝑟̂.

The following propositions present sufficient conditions for the
existence of a global maximum or at least local maxima of problem
(3).

𝜆∫

𝑧(𝑥∗)

−∞

𝑟 − 𝑟0

[𝑧(𝑥∗) − 𝑟]𝛾
𝑓 (𝑟)𝑑𝑟 + ∫

+∞

𝑧(𝑥∗)

𝑟 − 𝑟0

[𝑟 − 𝑧(𝑥∗)]𝛾
𝑓 (𝑟)𝑑𝑟 = 0 (21)

where 𝑧(𝑥∗) = 𝑟̂−𝑟0
𝑥∗ +𝑟0. In more detail, the proposition below states that

the optimal investment in the risky asset of a sufficiently loss averse
less ambitious investor is strictly positive. To ease the exposition we
introduce the following notation

𝐾̂𝛾 = max
𝑐

{

𝐾𝛾 (𝑐) =
∫ 𝑐
−∞(𝑐 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟 − (𝑐 − 𝑟0)1−𝛾

∫ +∞
𝑐 (𝑟 − 𝑐)1−𝛾𝑓 (𝑟)𝑑𝑟

|

|

|

𝑐 ≥ 𝑟0
}

(22)

Proposition 2.5. Let E(𝑟) > 𝑟0, 𝑟̂ < 𝑟0, and 𝜆 > max{𝐾̂𝛾 , 1∕𝐾𝛾}, where
𝐾𝛾 is given by (20) and 𝐾̂𝛾 is given by (22). Then there exists a finite positive
global maximum of problem (19), i.e., 𝑥∗ > 0, which satisfies Eq. (21).

Proof. See Appendix A. □

Note that 𝐾𝛾 (𝑟0) = 𝐾𝛾 and thus from the assumption of Proposi-
tion 2.5 it follows that 𝜆 > 𝐾𝛾 . Lemma A.1 (see Appendix A) shows
that 𝐾̂𝛾 < +∞, i.e., 𝐾̂𝛾 is bounded from above and thus there exist
such 𝜆s that the assumption 𝜆 > max{𝐾̂𝛾 , 1∕𝐾𝛾} of Proposition 2.5 is
satisfied.

The following proposition presents the results again in the implicit
form, for both less and more ambitious investors. It proves the existence
of at least one positive local maximum and also shows that any local
(and thus also global) maximum is finite, which is guaranteed by the
assumption that the investor is sufficiently loss averse. If this is not the
case, i.e., if the investor is less loss averse, then she holds an infinite
long or short position in the risky asset. Namely, for 1 < 𝜆 < 1∕𝐾𝛾
the investors holds an infinite long position, while for 1 < 𝜆 < 𝐾𝛾 the
investors holds an infinite short position.

17 An analogous pattern can be observed in the case of the Bernoulli
istribution. Namely, 1∕𝐾𝛾 is an increasing function of 𝛾 when 𝑟0 > 𝑟𝑔+𝑟𝑏

2
,

which together with E(𝑟) > 𝑟0 implies that 𝑝 > 0.5, i.e., when the Bernoulli
distribution is negatively skewed, and thus 1∕𝐾𝛾 can be increasing only for a
negatively skewed Bernoulli distribution.
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Proposition 2.6. Let E(𝑟) > 𝑟0, 𝑟̂ ≠ 𝑟0, and 𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾}, where
𝛾 is given by (20). Then there exists at least one local maximum of problem

19) such that 𝑥∗ > 0 and any positive local maximum 𝑥∗ > 0 satisfies (21).
f there exists also a local maximum such that 𝑥∗ < 0 then it satisfies the
ollowing equation

𝑧(𝑥∗)

−∞

𝑟 − 𝑟0

[𝑧(𝑥∗) − 𝑟]𝛾
𝑓 (𝑟)𝑑𝑟 + 𝜆∫

+∞

𝑧(𝑥∗)

𝑟 − 𝑟0

[𝑟 − 𝑧(𝑥∗)]𝛾
𝑓 (𝑟)𝑑𝑟 = 0 (23)

here 𝑧(𝑥∗) = 𝑟̂−𝑟0
𝑥∗ + 𝑟0. Finally, any global maximum is finite, i.e. −∞ <

𝑥∗ < +∞.

Proof. See Appendix A. □

The next proposition presents the sensitivity analysis of risky invest-
ment for both less and more ambitious investors with respect to their
degrees of loss aversion and reference rates.

Proposition 2.7. Let 𝑥∗ ≠ 0 be the optimal solution of (19), 𝑟̂ ≠ 𝑟0, let

lim
𝑟→±∞

|𝑟|2−𝛾𝑓 (𝑟) = 0 (24)

and let 𝑥∗ satisfies (21) if 𝑥∗ > 0 and let 𝑥∗ satisfies (23) if 𝑥∗ < 0. Then
𝑥∗ has the following properties
𝑑|𝑥∗|
𝑑𝜆

< 0 (25)

and
𝑑|𝑥∗|
𝑑𝑟̂

=
{

< 0, if 𝑟̂ < 𝑟0

> 0, if 𝑟̂ > 𝑟0

}

(26)

roof. See Appendix A. □

Proposition 2.7 implies that any positive solution (investment in
he risky asset) of (19) satisfying (21) decreases with an increasing
egree of loss aversion, and it also decreases with an increasing ref-
rence return for the less ambitious investor, while it increases with
n increasing reference return for the more ambitious investor. The
eference return thus plays an important role in asset allocation as the
nvestor’s risk attitude changes differently with respect to the reference
eturn, depending on whether 𝑟̂ is smaller or larger than the risk-free
ate. The proof of Proposition 2.7, namely (A.20) and (A.21), shows
hat
𝑑𝑥∗

𝑑𝑟̂
= 𝑥∗

𝑟̂ − 𝑟0
(27)

This implies that 𝑥∗ is proportional to 𝑟̂ − 𝑟0, i.e., 𝑥∗ is bi-linear with
respect to 𝑟̂ and at 𝑟̂ = 𝑟0 it is non-differentiable.18 Thus, the proportion
invested in the risky asset, if it is positive, shows a V-shaped pattern
with respect to the reference return. The less ambitious investor (𝑟̂ <
𝑟0) prefers to accept less risk and move away from the stock market
when increasing her level of ambition, due to her risk aversion in the
domain of gains, while the more ambitious investor (𝑟̂ > 𝑟0) puts more
money into the risky asset when increasing her level of ambition, due
to her risk seeking behavior in the domain of losses. The opposite
holds for any negative solution (short-position in the risky asset) of
(19) satisfying (23), in which case we observe an inverse V-shaped
pattern of risk taking with respect to the reference return. However, a
similar argument for this behavior applies: the less ambitious investor
decreases her short position when increasing 𝑟̂ as she is more risk averse

18 See (A.22) and the proof of Proposition 2.7 for more details. More
precisely, for 𝑟̂ < 𝑟0 is 𝑥∗ = 𝑟0−𝑟̂

𝐾
, where 𝐾 > 0 satisfies (A.23) for the positive

olution and 𝐾 < 0 satisfies (A.25) for a local negative solution, while for
̂ > 𝑟0 is 𝑥∗ = 𝑟̂−𝑟0

𝐾
, where 𝐾 > 0 satisfies (A.24) for the positive solution and

< 0 satisfies (A.26) if a local negative solution exists. In all these cases is 𝐾
function of 𝜆, 𝛾, 𝑟0 and the distribution of the risky asset return, but not of

̂. This property can be seen also in the case of the Bernoulli distribution.
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Table 2
Summary of optimal solutions and sensitivities under S-shaped prospect theory and linear loss aversion.

Conditions on 𝜆 Conditions on 𝑟̂ Bernoulli Continuous

S-shaped prospect theory
𝐱∗ 𝐱∗

𝜆 > max{𝐾𝛾 , 𝐾̂𝛾 , 1∕𝐾𝛾} 𝑟̂ < 𝑟0 > 0 > 0
𝜆 > 1∕𝐾𝛾 , 𝑝 > 𝑝̄ 𝑟̂ > 𝑟0 > 0 –
𝜆 > 𝐾𝛾 , 𝑝 < 𝑝̄ 𝑟̂ > 𝑟0 < 0 –
𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾}, (21) is satisfied 𝑟̂ ≠ 𝑟0 – > 0, local
𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾}, (23) is satisfied 𝑟̂ ≠ 𝑟0 – < 0, local
𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾} 𝑟̂ = 𝑟0 = 0 = 0

𝐝|𝐱∗|∕𝐝𝜆 𝐝|𝐱∗|∕𝐝𝜆
𝜆 > max{𝐾𝛾 , 𝐾̂𝛾 , 1∕𝐾𝛾} 𝑟̂ < 𝑟0 = 0 < 0∗

𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾} 𝑟̂ > 𝑟0 < 0 –
𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾}, (21) or (23) is satisfied 𝑟̂ ≠ 𝑟0 – < 0∗

𝑟̂ = 𝑟0 = 0 = 0
𝐝|𝐱∗|∕𝐝𝐫̂ 𝐝|𝐱∗|∕𝐝𝐫̂

𝜆 > max{𝐾𝛾 , 𝐾̂𝛾 , 1∕𝐾𝛾} 𝑟̂ < 𝑟0 < 0 < 0∗

𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾} 𝑟̂ > 𝑟0 > 0 –
𝜆 > max{𝐾𝛾 , 1∕𝐾𝛾}, (21) or (23) is satisfied 𝑟̂ > 𝑟0 – > 0∗

𝑟̂ = 𝑟0 = 0 = 0
Linear loss aversion

𝐱∗ 𝐱∗
𝜆 > 1∕𝐾0 𝑟̂ ≠ 𝑟0 > 0 > 0

𝑟̂ = 𝑟0 = 0 = 0
𝐝𝐱∗∕𝐝𝜆 𝐝𝐱∗∕𝐝𝜆

𝜆 > 1∕𝐾0 𝑟̂ ≠ 𝑟0 = 0 < 0
𝑟̂ = 𝑟0 = 0 = 0

𝐝𝐱∗∕𝐝𝐫̂ 𝐝𝐱∗∕𝐝𝐫̂
𝜆 > 1∕𝐾0 𝑟̂ < 𝑟0 < 0 < 0

𝑟̂ > 𝑟0 > 0 > 0
𝑟̂ = 𝑟0 = 0 = 0

We assume that E(𝑟) > 𝑟0 and 𝜆 > 1. Note that 𝐾𝛾 for the Bernoulli case is defined by (5) while for the
continuous case it is defined by (20). In addition, 𝐾̂𝛾 is defined by (22) and 𝑝̄ by (11). 0∗ denotes the cases
when an additional assumption is required, namely lim𝑟→±∞ |𝑟|2−𝛾𝑓 (𝑟) = 0. For more details regarding the
linear loss averse investor see Fortin and Hlouskova (2011).
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n the domain of gains, while the more ambitious investor increases
er short position when increasing 𝑟̂ as she is more risk seeking in the
omain of losses. Finally, with an increasing degree of loss aversion the
hort position decreases.

A complete summary of the results including comparative statics
ith respect to loss aversion (𝜆) and the level of ambition (𝑟̂) for both

the prospect theory investor and the linear loss averse investor19 can
be found in Table 2.

2.3. Additional portfolio properties

In this section we present additional portfolio’s properties, such
as the sensitivities of the first three moments of the portfolio return
as well as its expected excess return with respect to the reference
return, E(𝑟) − 𝑟̂, to changes of the degree of loss aversion, 𝜆, the
level of ambition, 𝑟̂, and diminishing sensitivity, 𝛾. We analyze also
the portfolio performance, such as the Sharpe ratio, the Sortino ratio,
downside volatility, and the Omega measure, with respect to the same
parameters (𝜆, 𝑟̂, 𝛾). We show these properties analytically, under the
assumption that the risky asset is continuously distributed and that
E(𝑟2) is finite, i.e., the variance exists, as stated above.

Note that E(𝑅(𝑥∗)) = 𝑟0 +
(

E(𝑟) − 𝑟0
)

𝑥∗. Thus, 𝑑E(𝑅(𝑥∗))
𝑑𝜆 =

(

E(𝑟) − 𝑟0
)

𝑑𝑥∗

𝑑𝜆 , and as E(𝑟) > 𝑟0 then

sgn
(

𝑑E(𝑅(𝑥∗))
𝑑𝜆

)

= sgn
(

𝑑𝑥∗

𝑑𝜆

)

(28)

I.e., the sign of the change of the expected portfolio return, E(𝑅(𝑥∗)),
with respect to 𝜆, and also with respect to 𝑟̂ and 𝛾, is the same as the

19 For more details regarding the LLA investor, see again Fortin and
louskova (2011).
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sign of the change of risk taking, 𝑥∗, with respect to these parameters.20

Thus, based on Proposition 2.7 it follows that, e.g., for 𝑥∗ > 0 is the
expected portfolio return decreasing with an increasing loss aversion
and has a V-shaped pattern with respect to the reference return level,
i.e., the expected portfolio return decreases with an increasing refer-
ence return for 𝑟̂ < 𝑟0 and it increases with an increasing reference
return for 𝑟̂ > 𝑟0. Similar findings hold when 𝑥∗ < 0.

The expected excess return with respect to the reference return, or
expected gain/loss, has the form

E(𝑅(𝑥∗)) − 𝑟̂ = 𝑟0 − 𝑟̂ + (E(𝑟) − 𝑟0)𝑥∗ (29)

We refer to it as expected gain, when E(𝑟) > 𝑟̂, or expected loss, when
E(𝑟) < 𝑟̂. Let us focus on 𝑥∗ > 0. Then it follows from E(𝑟) > 𝑟0 that

E(𝑅(𝑥∗)) − 𝑟̂

⎧

⎪

⎨

⎪

⎩

< 0 if 𝑥∗ < 𝑟̂−𝑟0
E(𝑟)−𝑟0 (expected loss)

> 0 if 𝑥∗ > 𝑟̂−𝑟0
E(𝑟)−𝑟0 (expected gain)

(30)

his implies that an expected loss can only occur for more ambitious
nvestors. On the other hand, for less ambitious investors only an
xpected gain can occur (as 𝑥∗ > 0). Finally, more ambitious investors
an achieve an expected gain only for a sufficiently large 𝑥∗, namely
hen 𝑥∗ > 𝑟̂−𝑟0

E(𝑟)−𝑟0 . Thus, the positioning of the reference return with
espect to the risk-free rate is crucial for the perception of gains or
osses.

Note that (27) and (29) imply that the expected gain/loss has the
ollowing property with respect to the reference return, for fixed 𝜆 and

𝑑
𝑑𝑟̂

(E(𝑅(𝑥∗)) − 𝑟̂)

20 Note in addition that for 𝑥∗ > 0 is E(𝑅(𝑥∗)) > 𝑟0 and for 𝑥∗ < 0 is
E(𝑅(𝑥∗)) < 𝑟0.
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= −1 +
(

E(𝑟) − 𝑟0
) 𝑑𝑥∗

𝑑𝑟̂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

< 0, if 𝑟̂ < 𝑟0 (expected gain) or
if 𝑟̂ > 𝑟0 and 𝑥∗ < 𝑟̂−𝑟0

E(𝑟)−𝑟0 (expected loss)

> 0, if 𝑟̂ > 𝑟0 and 𝑥∗ > 𝑟̂−𝑟0

E(𝑟)−𝑟0 (expected gain)

(31)

hus, for less ambitious investors is the expected gain a decreasing
unction of 𝑟̂, while for more ambitious investors is the expected gain
n increasing function of 𝑟̂, if 𝑥∗ > 𝑟̂−𝑟0

E(𝑟)−𝑟0 , and the expected gain/loss

a decreasing function of 𝑟̂, if 𝑥∗ < 𝑟̂−𝑟0
E(𝑟)−𝑟0 .

Sensitivity analysis of higher moments of the portfolio return and of perfor-
mance measures

Regarding the sensitivity analysis of the variance of the portfolio
return,21 we observe that the variance responds, in terms of its sign,
to the changes in the parameters (𝜆, 𝑟̂ and 𝛾) in the same way as risk
aking 𝑥∗ does. As 𝑉 𝑎𝑟(𝑅(𝑥)) = 𝑉 𝑎𝑟

(

𝑟0 + (𝑟 − 𝑟0)𝑥
)

= 𝑥2𝑉 𝑎𝑟(𝑟) we have
𝑑𝑉 𝑎𝑟(𝑅(𝑥∗))

𝑑𝜆 = 2𝑥∗𝑉 𝑎𝑟(𝑟) 𝑑𝑥
∗

𝑑𝜆 , which implies that

sgn
(

𝑑𝑉 𝑎𝑟(𝑅(𝑥∗))
𝑑𝜆

)

=

⎧

⎪

⎨

⎪

⎩

sgn
(

𝑑𝑥∗

𝑑𝜆

)

for 𝑥∗ > 0

− sgn
(

𝑑𝑥∗

𝑑𝜆

)

for 𝑥∗ < 0
(32)

The same holds for 𝑑𝑉 𝑎𝑟(𝑅(𝑥∗))
𝑑𝑟̂ and 𝑑𝑉 𝑎𝑟(𝑅(𝑥∗))

𝑑𝛾 . Thus, e.g., for 𝑥∗ > 0 is
he portfolio variance decreasing with an increasing level of loss aver-
ion, decreasing with an increasing reference return (or diminishing
ensitivity), if investors are less ambitious, while the portfolio vari-
nce is increasing with an increasing reference return (or diminishing
ensitivity) if investors are more ambitious.

When looking at the sensitivity analysis of the third moment of the
ortfolio return we observe that it responds, in terms of the sign, to
he changes in the parameters (𝜆, 𝑟̂ and 𝛾) in the same way as the risk
aking 𝑥∗ for a positively skewed return of the risky asset and in the
pposite way for a negatively skewed return. As E (𝑅(𝑥) − E(𝑅(𝑥)))3 =
3E (𝑟 − E(𝑟))3, we have 𝑑E(𝑅(𝑥∗)−E(𝑅(𝑥∗)))3

𝑑𝜆 = 3(𝑥∗)2E (𝑟 − E(𝑟))3 𝑑𝑥∗

𝑑𝜆 ,
hich implies that

gn
(

𝑑E (𝑅(𝑥∗) − E(𝑅(𝑥∗)))3

𝑑𝜆

)

=

⎧

⎪

⎨

⎪

⎩

sgn
(

𝑑𝑥∗

𝑑𝜆

)

for E (𝑟 − E(𝑟))3 > 0

− sgn
(

𝑑𝑥∗

𝑑𝜆

)

for E (𝑟 − E(𝑟))3 < 0

(33)

he same again applies to sensitivities with respect to 𝑟̂ and 𝛾. Thus,
f for instance the return of the risky asset is negatively skewed,
.e., E (𝑟 − E(𝑟))3 < 0, then the third moment of the portfolio return
ncreases with increasing degree of loss aversion, as investment in
he risky asset decreases with increasing 𝜆. The same dynamics occur
or an increasing reference return and diminishing sensitivity for less
mbitious investors, while the third moment of the portfolio return
ecreases with an increasing 𝑟̂ and 𝛾 for more ambitious investors.
onsidering the third standardized moment of the portfolio return we

ave E
(

𝑅(𝑥)−E(𝑅(𝑥))
√

𝑉 𝑎𝑟(𝑅(𝑥))

)3
= sgn(𝑥) ⋅E

(

𝑟−E(𝑟)
√

𝑉 𝑎𝑟(𝑟)

)3
, which is independent of

any parameters (𝜆, 𝑟̂ and 𝛾).
When analyzing risk-adjusted performance measures of the portfolio

return, such as the Sharpe ratio (SR) or the Sortino ratio, we can see
that they are independent of loss aversion, the reference return and
diminishing sensitivity. E.g., in the case of the Sharpe ratio

𝑆𝑅(𝑅(𝑥)) =
E(𝑅(𝑥) − 𝑟0)

√

𝑉 𝑎𝑟(𝑅(𝑥) − 𝑟0)
=

𝑥 (E(𝑟) − 𝑟0)

|𝑥|
√

𝑉 𝑎𝑟(𝑟 − 𝑟0)

=
{

𝑆𝑅(𝑟), for 𝑥 > 0
−𝑆𝑅(𝑟), for 𝑥 < 0

(34)

21 The same applies to the downside variance.
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and the Sharpe ratio of the risky asset return, 𝑆𝑅(𝑟), does not depend on
the above mentioned parameters. As will be seen later in the empirical
part in Section 4, this is not the case when more risky assets are
included in the portfolio.

Finally, it is straightforward to see that when the risky asset return
follows the Bernoulli distribution then

Omega(𝑅(𝑥)) =
{

1∕𝐾0 for 𝑥 > 0
𝐾0 for 𝑥 < 0

(35)

where 𝐾0 is given by (5) for 𝛾 = 0. Thus also the Omega measure does
ot depend on the parameters of the model.22

3. Simulations

In this section we perform different simulation exercises to present
the results for our theoretical two-asset problem of a prospect theory
investor with different values of the reference return, loss aversion,
diminishing sensitivity and different characteristics of the financial
market, when 𝑥∗ > 0. In particular, we examine whether the assump-
tion of an asymmetric distribution of the risky asset return has major
effects on the results. We consider the normal and the skew normal
distributions to describe symmetric and asymmetric distributions of the
risky asset return, respectively. We focus on negative skewness as this
type of skewness is mainly observed in stock markets. For the risky
asset return we consider a mean of 13.6%, a standard deviation of
14.9% and, for the negatively skewed distribution, a shape parameter
of −3.1, resulting in a skewness of −0.68. The risk-free rate is 3.5%.
These values are in line with the observed statistics of the US (stock)
market in the period January 1983 to December 2020 (see Table B.2),
which we consider in the empirical application. In some examples we
fix the degree of loss aversion at 2.25, which is the value suggested by
experimental results, see, e.g., Tversky and Kahneman (1992). In the
simulations we numerically compute the optimal weight of the risky
asset, 𝑥∗, which is derived theoretically in Propositions 2.2, 2.5, and
2.6, using the densities of the normal and skew normal distributions
and generating numerical integral solutions.23

First we present risk taking, 𝑥∗, as a function of the diminishing
sensitivity parameter, 𝛾, see Fig. 3.24 We observe that less ambitious
investors (𝑟̂ < 𝑟0, left graph in Fig. 3) are becoming more conservative
(i.e., decrease the investment in the risky asset) with an increasing de-
gree of diminishing sensitivity, while more ambitious investors (𝑟̂ > 𝑟0,
right graph in Fig. 3) are becoming less conservative (i.e., increase the
investment in the risky asset) with an increasing degree of diminishing
sensitivity. Thus, the investor’s risk attitude is different for less and
more ambitious investors. This can be explained as follows: (30) implies
that less ambitious investors experience only expected gains, E(𝑅(𝑥∗)) >
𝑟̂, and as in the domain of gains investors become more risk averse
with an increasing 𝛾, they invest less in the risky asset. However, more
ambitious investors experience also expected losses, E(𝑅(𝑥∗)) < 𝑟̂, and

22 At least for this particular distribution of the risky asset returns. This
feature we have observed also in our simulations when assuming that the risky
asset return followed normal and skew normal distributions.

23 Alternatively, we simulate from the normal and skew normal distributions
and compute expectations, where we use the method introduced in Henze
(1986) to simulate from the skew normal. The number of simulations is 106.
The two solution methods basically deliver the same solutions.

24 Let us remind ourselves that a larger 𝛾 parameter in the value function
implies a smaller sensitivity with respect to the return of the risky asset that
is far away from the reference return, 𝑟 > 𝑟̂ (higher degree of risk aversion),
but a higher sensitivity for the risky asset return that is closer to 𝑟̂. Similarly,
we observe a smaller sensitivity with respect to the return of the risky asset
that is much smaller than the reference return, 𝑟 < 𝑟̂ (higher degree of risk
seeking), but a higher sensitivity for the risky asset return that is closer to 𝑟̂.
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Fig. 3. Risk taking, 𝑥∗, as a function of diminishing sensitivity, 𝛾.
The horizontal axis shows the diminishing sensitivity parameter. In the left graph the reference level is smaller than the risk-free rate, in the right graph the reference level is
larger than the risk-free rate. The results are shown for both symmetric and negatively skewed distributions, where the parameters of the risky asset return and the risk-free rate
(𝑟0 = 3.5%) are in line with the US data, see Table B.2, 𝜆 = 2.25, 𝑟̂ = 1.2% < 𝑟0 (left graph), and 𝑟̂ = 4.3% > 𝑟0 (right graph).
Fig. 4. Risk taking, 𝑥∗, as a function of the reference return, 𝑟̂, for 𝛾 = 0.1, 0.5, 0.9.
The horizontal axis shows the reference return. The results are shown for both symmetric and negatively skewed distributions, where the parameters of the risky asset return and
the risk-free rate (𝑟0 = 3.5%) are in line with the US data, see Table B.2, and 𝜆 = 2.25.
𝑟

in the domain of losses they are more risk seeking, and thus they invest
more in the risky asset with increasing 𝛾.25

Fig. 4 presents risk taking as a function of the reference return, 𝑟̂,
which is V-shaped and which is shown analytically in Proposition 2.7
for a general continuous distribution of the risky asset. Fig. 5 presents
risk taking as a function of loss aversion, 𝜆, for both less ambitious and
more ambitious investors. In both cases risk taking decreases with an
increasing degree of loss aversion, which is in line with Proposition 2.7.

Based on Figs. 3, 4 and 5 we observe the following common result
related to comparing risk taking implied by the symmetric distribution
of the risky asset return, 𝑥∗𝑠𝑦𝑚, and risk taking implied by the negatively
skewed distribution of the risky asset return, 𝑥∗𝑛𝑒𝑔𝑠𝑘. For less ambitious
investors risk taking implied by the negatively skewed distribution is
smaller than risk taking implied by the symmetric distribution (𝑥∗𝑛𝑒𝑔𝑠𝑘 <
𝑥∗𝑠𝑦𝑚 for 𝑟̂ < 𝑟0), while for more ambitious investors risk taking implied
by the negatively skewed distribution is larger than risk taking implied

25 This is analytically shown for the case when the risky asset return follows
the Bernoulli distribution (see Corollaries 2.1 and 2.2). It seems to be equally
true when the risky return is generally continuously distributed, as suggested
by the numerical solutions of risk taking as a function of 𝛾.
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by the symmetric distribution (𝑥∗𝑛𝑒𝑔𝑠𝑘 > 𝑥∗𝑠𝑦𝑚 for 𝑟̂ > 𝑟0), given all
other parameters are fixed. Thus, if one falsely assumes symmetric
returns when in fact they are negatively skewed, one overestimates the
investment in the risky asset for less ambitious investors; and underes-
timates investment in the risky asset for more ambitious investors. The
positive skewness of the risky asset return has the opposite effect on
risk taking.26

Fig. 6 presents the expected gain/loss functions for investors with
𝛾 = 0.1, 0.5, 0.9, for a symmetric and a negatively skewed distribution of
the risky asset return. The graph additionally shows risk taking, 𝑥∗, and
the ratio 𝑟̂−𝑟0

E(𝑟)−𝑟0 , as the relation of 𝑥∗ to this ratio determines whether
the more ambitious investor incurs expected gains or losses, see (30).
The more ambitious investor with 𝛾 = 0.9 experiences expected gains,
as 𝑥∗ > 𝑟̂−𝑟0

E(𝑟)−𝑟0 , while the more ambitious investor with 𝛾 = 0.1

experiences expected losses, as 𝑥∗ < 𝑟̂−𝑟0
E(𝑟)−𝑟0 . For the more ambitious

investor with 𝛾 = 0.5 the expected gain/loss function is slightly negative

26 Namely, 𝑥∗𝑛𝑒𝑔𝑠𝑘 < 𝑥∗𝑠𝑦𝑚 < 𝑥∗𝑝𝑜𝑠𝑠𝑘 for 𝑟̂ < 𝑟0, while 𝑥∗𝑝𝑜𝑠𝑠𝑘 < 𝑥∗𝑠𝑦𝑚 < 𝑥∗𝑛𝑒𝑔𝑠𝑘 for
̂ > 𝑟0, for fixed 𝜆, 𝑟̂ and 𝛾, where 𝑥∗𝑝𝑜𝑠𝑠𝑘 is risk taking when the return of the
risky asset is positively skewed.
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Fig. 5. Risk taking, 𝑥∗, as a function of loss aversion, 𝜆, for 𝛾 = 0.1, 0.5, 0.9.
The horizontal axis shows the level of loss aversion. In the left graph the reference level is smaller than the risk-free rate, in the right graph the reference level is larger than the
risk-free rate. The results are shown for both symmetric and negatively skewed distributions, where 𝑟0 = 3.5% (in line with the US data, see Table B.2), 𝜆 = 2.25, 𝑟̂ = 1.2% < 𝑟0 (left
graph), and 𝑟̂ = 4.9% > 𝑟0 (right graph).
Fig. 6. Risk taking, 𝑥∗, and expected portfolio gain/loss, E(𝑅(𝑥∗)) − 𝑟̂, with respect to the reference return.
The vertical axis shows risk taking, 𝑥∗, and the expected excess portfolio return with respect to the reference return, E(𝑅(𝑥∗)) − 𝑟̂, which we call expected portfolio gain if it is
positive, E(𝑅(𝑥∗)) > 𝑟̂, and expected portfolio loss if it is negative, E(𝑅(𝑥∗)) < 𝑟̂. The horizontal axis shows the reference return. The results are shown for both symmetric and
negatively skewed distributions, where the parameters of the risky asset return and the risk-free rate (𝑟0 = 3.5%) are in line with the US data, see Table B.2, and 𝜆 = 2.25.
𝑟

for symmetric returns and it is positive for negatively skewed returns.
The negative skewness of returns thus turns expected losses to expected
gains in this example. So the value of the diminishing sensitivity
parameter as well as the skewness/symmetry of the risky asset return
are crucial for incurring expected gains or losses, when the investor is
more ambitious. The less ambitious investor always achieves expected
gains, see again (30).

In our example, the expected gain decreases with an increasing
reference return 𝑟̂ for less ambitious investors for any 𝛾, see (31),
while for more ambitious investors the expected loss increases (with
increasing 𝑟̂) for 𝛾 = 0.1, as 𝑥∗ < 𝑟̂−𝑟0

E(𝑟)−𝑟0 , and the expected gain

increases for 𝛾 = 0.9 as 𝑥∗ > 𝑟̂−𝑟0
E(𝑟)−𝑟0 . For 𝛾 = 0.5 the situation is

different for symmetric and negatively skewed returns. Namely, more
ambitious investors increase their expected losses with an increasing
reference return if the risky asset return is symmetric, as 𝑥∗𝑠𝑦𝑚 < 𝑟̂−𝑟0

E(𝑟)−𝑟0 ,
while they increase their expected gains if the risky asset return is
negatively skewed, as 𝑥∗𝑛𝑒𝑔𝑠𝑘 > 𝑟̂−𝑟0

E(𝑟)−𝑟0 , see (31). Thus, in this context,
the negative skewness of the risky asset return seems to improve the
investor’s performance in terms of the expected gain/loss measure.

In the following we consider our concrete example to analyze the
dynamics of the indirect utility function (the expected value function at
its maximum which expresses the investor’s level of satisfaction or hap-
piness) with respect to the investor’s level of ambition represented by
the reference return 𝑟̂, see Fig. 7. As in the case of the discrete Bernoulli
distribution is the investor’s level of happiness decreasing with an
increasing reference return. We can see that the shape of indirect utility
(happiness) as a function of the reference return mirrors, in some sense,
the value function (where the reference return is replaced by the risk-
free rate 𝑟0). Hence the indirect utility function is decreasing with an
increasing reference return, is concave in the domain of less ambitious
investors, and is convex in the domain of more ambitious investors. This
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implies that the sensitivity of happiness with respect to the reference
return increases with an increasing reference return for less ambitious
investors (i.e., when 𝑟̂ is moving towards 𝑟0) and decreases with an
increasing reference return for more ambitious investors (i.e., when
̂ is moving away from 𝑟0). Thus, investors with reference returns
around the risk-free rate are the most sensitive ones with respect to
changes of their levels of ambition. In addition, the investor’s happiness
for more ambitious investors is larger when the risky asset return is
negatively skewed than when it is symmetric.27 In summary, higher
ambition decreases happiness, but less so for negatively skewed risky
asset returns.

4. Empirical application

In this section we illustrate the investment problem of a prospect
theory (PT) investor. Investors typically include safe assets (bonds),
risky assets (stocks) and additional assets, which are only weakly
related to the other assets (e.g., commodities), in their portfolios.
The simplest such type of portfolio includes a bond, a stock and a
commodity, and this is what we consider. We compare the results
implied by PT preferences with the results implied by other types of
preferences, in particular, the mean–variance (MV) approach.28 We also
examine how different characteristics of the PT investor (loss aversion,
diminishing sensitivity, reference level) affect the optimal portfolio.29

27 The opposite holds, to a lesser extent, for less ambitious investors.
28 Throughout this section we refer to the mean–variance (MV) portfolio as

the portfolio with the minimum variance of the portfolio return.
29 For example, does the expected return of the portfolio, its volatility, and

downside volatility decrease with an increasing degree of loss aversion, as
found theoretically for the two-asset case?
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Fig. 7. Expected utility at its maximum (indirect utility function, happiness, investor satisfaction) for 𝛾 = 0.1, 0.5, 0.9.
The horizontal axis shows the reference return. The results are shown for both symmetric and negatively skewed distributions, where the parameters of the risky asset return and
the risk-free rate (𝑟0 = 3.5%) are in line with the US data, see Table B.2, and 𝜆 = 2.25.
We separately consider a European and a US investor in order to
acknowledge geographical differences. The investor re-optimizes her
portfolio each month and we also consider dynamic scenarios in which
the reference return and the loss aversion parameter are updated based
on the previous period portfolio performance.

4.1. Different types of prospect theory investors

We investigate the performance of an optimal asset portfolio con-
structed by a PT investor. We study the benchmark scenario, where the
penalty parameter is constant and the reference return is equal to zero
percent, and three modified versions of the benchmark scenario. The
first modification uses again a constant penalty parameter and the risk-
free interest rate as the reference point (risk-free scenario), while the
remaining two dynamic modifications employ time-changing versions
of the penalty parameter, which depend on previous gains and losses,
while the reference return is either zero, (𝑟̂𝑡 = 0), the risk-free interest
rate (𝑟̂𝑡 = 𝑟0) or the portfolio return of the previous period (𝑟̂𝑡 = 𝑅𝑡−1).30

So, we consider two constant and two dynamic scenarios with respect
to the penalty parameter. The first dynamic scenario describes the usual
conservative loss averse investor, who becomes even more loss averse
after losses (conservative scenario), while the second dynamic scenario
describes a more aggressive non-conventional risk seeking investor,
who becomes less loss averse after losses and accepts further risk
and gambles which offer a chance to break even (aggressive scenario).
Our conservative and aggressive (break-even) scenarios are modified
versions of the scenarios suggested by Barberis and Huang (2001) and
Zhang and Semmler (2009), respectively.31

30 This idea is developed in Choi et al. (2022) and it was also used in
Hlouskova et al. (2019). Using the last period’s information (in our case, the
last period’s portfolio return) as a reference point is also supported by Baucells
et al. (2011), who find in experiments about updating reference levels that the
first and the last prices in a sequence of information are most important.

31 Note that although this analysis covers many empirical aspects of the
problem a more thorough analysis is required to shed light on all details and
we will deal with this in our future research. For example, as we focus mainly
on loss aversion, the dynamic scenarios in our study update only the investor’s
loss aversion, and only after prior losses. They do not update the reference
return and do not apply dynamic updates of both the reference return and loss
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Thus, the value function adjusted for the time-changing penalty
parameter and a certain reference return is

𝑣(𝑅𝑡) =

⎧

⎪

⎨

⎪

⎩

(𝑅𝑡−𝑟̂𝑡)1−𝛾

1−𝛾 , 𝑅𝑡 ≥ 𝑟̂𝑡

−𝜆𝑡
(𝑟̂𝑡−𝑅𝑡)1−𝛾

1−𝛾 , 𝑅𝑡 < 𝑟̂𝑡

The conservative scenario is modeled as follows. If the investor has
experienced gains then her penalty parameter is equal to the prespeci-
fied 𝜆 while, on the other hand, if the investor has experienced losses
then she increases her degree of loss aversion with respect to the
prespecified level, i.e.,

𝜆𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜆, 𝑅𝑡−1 ≥ 𝑅𝑡−2 (gains, 𝜆 at prespecif ied level)
𝜆 +

(

𝑧𝑡−1 − 1
)

, 𝑅𝑡−1 < 𝑅𝑡−2 (losses, 𝜆 increases with respect
to prespecif ied level)

(36)

where 𝑧𝑡 =
1+𝑅𝑡−1
1+𝑅𝑡

≥ 032 and 𝜆𝑡 ≥ 𝜆. See the left plot in Fig. 8, where
the dashed line represents the value function of a conservative investor,
when loss aversion increases after prior losses.

The aggressive scenario is based on the idea that sometimes both
private and institutional investors become more risk seeking after losses
in order to make up for previous losses. In other words, even if they
have experienced a loss in the previous period, investors may be ready
to incur further risks and accept gambles which offer them a chance to
break even. So in this case losses imply a decreasing loss aversion due
to the investor’s increased risk seeking. The gain, on the other hand, is
treated as in the conservative scenario, i.e., the degree of loss aversion
is equal to the prespecified level. The time-changing penalty parameter

aversion after prior gains. So we cannot study here the house money effect, for
instance, when people tend to take on increased risk subsequent to a successful
investment experience, see Thaler and Johnson (1990).

32 Note that in the case of gains, i.e., 𝑅𝑡−1 ≥ 𝑅𝑡−2, is 𝑧𝑡−1 ≤ 1 and in the case
of losses, i.e., 𝑅 < 𝑅 , is 𝑧 > 1.
𝑡−1 𝑡−2 𝑡−1
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Fig. 8. Value function of conservative and aggressive investors.
The value function after prior gains is plotted as a solid line, the value function after prior losses as a dashed line; 𝑟̂ denotes the reference return.
is then

𝜆𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜆, 𝑅𝑡−1 ≥ 𝑅𝑡−2 (gains, 𝜆 at prespecif ied level)
𝜆 +

(

1
𝑧𝑡−1

− 1
)

, 𝑅𝑡−1 < 𝑅𝑡−2 (losses, 𝜆 decreases with respect
to prespecif ied level)

(37)

where 𝜆𝑡 ≤ 𝜆. With the current lambda adjustment a sufficient condition
for 𝜆𝑡 ≥ 1 is 𝜆 ≥ 2.33 See the right plot in Fig. 8, where the dashed
line represents the value function of an aggressive investor, when loss
aversion decreases after prior losses.

We use different values of 𝜆 in all scenarios to allow for different
degrees of loss aversion. Specifically, we let the penalty parameter
be equal to 1.5, 2, 2.25, 2.5 and 3.34 In addition we account for the
following values of the risk aversion/risk seeking – or diminishing
sensitivity – parameter, namely 𝛾 = 0, 0.1, 0.5 and 0.9.35 Note that
an investor with 𝛾 = 0 represents the linear loss averse (LLA) investor
and an investor with 𝛾 = 0 and 𝜆 = 1 corresponds to the risk neutral
investor. The latter is thus a special case of LLA investors.

4.2. Data

In the empirical analysis we consider two geographical markets, the
European (EU) and the US markets, where the euro area represents
the EU market. We consider three different assets among which the
investor may select: a stock market index, a 10-year government bond36

and gold.37 We solve problem (2) numerically by approximating the

33 Note that this assumption might be violated in our empirical applications
only for 𝜆 = 1.5, which we handle in our code such that if 𝜆𝑡 happens to be
below one then we impose 𝜆𝑡 = 1.

34 Note that the value 𝜆 = 2.25 is the one initially estimated by Kahneman
and Tversky (see Tversky & Kahneman, 1992). Chapman et al. (2018) provide
a median estimate of 𝜆 = 1.99 for the US in lab experiments. Finally, Kahneman
(2011) finds a range for 𝜆 of 1.5 to 2.5, doing several experiments.

35 Among these values, 0.1 is closest to the one determined by Kahneman
and Tversky in their lab experiments, which is 𝛾 = 0.12, and we sometimes
call the PT investor with 𝛾 = 0.1 the ‘‘typical’’ PT investor.

36 We consider the German 10-year government bond as a proxy, because
euro area government bonds do not exist and we want to use an investable
asset not an artificial aggregate.

37 Note that gold has a low correlation with stocks and bonds, and hence
including gold in the portfolio provides a natural hedge, and it is also (slightly)
positively skewed, see Table B.2. Gold is also considered a safe haven in
turbulent times.
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expectation of the value function of the portfolio return by its empirical
counterpart, using the empirical distribution

max
𝑥

{

1
𝑆(1 − 𝛾)

𝑆
∑

𝑠=1

[

(

[

𝑟′𝑠𝑥 − 𝑟̂
]+
)1−𝛾

− 𝜆
(

[

𝑟̂ − 𝑟′𝑠𝑥
]+
)1−𝛾

]

|

|

|

3
∑

𝑖=1
𝑥𝑖 = 1, 𝑥 ≥ 0

}

(38)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3)′ and its elements denote the proportions of wealth
invested in the stock market, the 10-year government bond and gold,
𝑟𝑠 = (𝑟𝑠1, 𝑟𝑠2, 𝑟𝑠3)′ is the vector of corresponding observed net returns
at state 𝑠, 𝑠 = 1,… , 𝑆, and [𝑡]+ is maximum of 0 and 𝑡. We solve
(38) numerically by applying the grid search method.38 Returns are
computed as 𝑟𝑡 = 100 (𝑃𝑡∕𝑃𝑡−1−1), where 𝑃𝑡 is the monthly closing price
at time 𝑡 and we consider EU and US investors who completely hedge
their respective currency risk.39 All prices are extracted from Refinitiv
Datastream from January 1983 to December 2020. The stock market
indices for the EU and the US are broad indices and are calculated by
Datastream. Table B.1 in Appendix B provides the data description and
the data sources, and Table B.2 in Appendix B reports the summary
statistics of all asset returns including correlations. In general, the stock
index exhibits a comparatively high risk and return, the government
bond shows a much lower risk and return, and gold exhibits a relatively
high risk but also a small return. The correlations between the assets
are small, which suggest that – at least in mean–variance portfolios
– all three assets should be included in the optimal portfolio at non-
negligible rates for diversification reasons (provided the volatilities of
these asset are not too large and the given correlations also prevail in
subperiods).

The investor is assumed to re-optimize her portfolio once a month
considering an optimization sample of 36 months, i.e., 𝑆 = 36. This
yields an out-of-sample evaluation period from January 1986 until
December 2020. For the EU and US prospect theory investors we report
optimization results for different scenarios and for different values
of loss aversion and diminishing sensitivity, as described above. In
addition we present results for the LLA investors (including risk-neutral
investors) and for the benchmark investors, i.e, the mean–variance
investor and the conditional value-at-risk investor. In particular, we
present descriptive statistics including mean, standard deviation, down-
side volatility, conditional value at risk, and various risk-adjusted
performance measures of the optimal portfolio returns as well as the
average optimal portfolio weights. Risk-adjusted performance measures

38 The whole procedure is implemented in MATLAB R2021a.
39 Prices in the EU market are quoted in, or transformed to, Euro; prices in

the US market are quoted in US dollar.
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include the Omega measure and the Sharpe and Sortino ratios. All
presented numbers are annualized.

4.3. Results: portfolio performance and asset allocation

The performance results of all investors for all scenarios under
consideration are presented in Appendix C, Tables C.1–C.6.40 There are

any different results and our discussion will focus on selected aspects.

rospect theory versus mean–variance
Our empirical results suggest that PT investment leads to clearly

igher means of portfolio returns, but also to much higher risk (mea-
ured by the volatility of portfolio returns), than traditional MV in-
estment, for all types of PT investors41 and for both the EU and US

markets. If we consider risk-adjusted performance measures like the
Omega measure, the Sharpe ratio and the Sortino ratio, however, then
the geographical market seems to matter. In this case MV investment
outperforms PT investment in the EU, while PT investment outperforms
MV investment in the US in most cases. Considering the benchmark
scenario in PT investment with 𝛾 = 0.5, for example, we observe an
average Sharpe ratio of portfolio returns (over the different degrees of
loss aversion) of 49.9 (59.7) for PT investment versus 62.7 (57.4) for
MV investment in the EU (US) market. This is probably driven by the
larger weight of bonds in MV portfolios in the EU (81%) than in the
US (65%), a less volatile EU than US bond, and a larger mean of the
US than the EU stock. See Table 4, Fig. 9 and Tables C.1 and C.2.

In the US, PT portfolios perform significantly better than MV port-
folios in terms of their mean returns42 in the majority of cases, at the
5% significance level, see Table 3. For a PT investor with 𝛾 = 0.1
this is true for all scenarios and for degrees of loss aversion of up to
2.25, for a PT investor with 𝛾 = 0.5 it is true nearly all the time,
nd for a PT investor with 𝛾 = 0.9 it is true for all portfolios except
he ones generated by scenarios with a zero reference return. In the
U, however, PT portfolios hardly ever significantly outperform MV
ortfolios, except for three cases, namely for an investor with 𝛾 = 0.9

and 𝜆 = 3, where the reference return is equal to zero (including
the benchmark scenario as well as the conservative and aggressive
scenarios). This difference between the portfolio performance implied
by various types of PT investors in the EU and US is probably partly
due to the higher returns of stock markets in the US than in the EU. In
general the differences between PT and MV investment depend on the
type of performance measure used for comparison, and the different
results can be explained with the different preferences of PT and
MV investors. While PT investors maximize the portfolio return under
certain conditions for the deviations from a given reference return, MV
investors minimize the portfolio variance.

In addition, the PT investor shows a clearly different investment
behavior from the MV investor with respect to implied asset weights.
Fig. 10 shows the optimal portfolio weights of stocks, bonds and gold
for a PT investor (characterized by 𝜆 = 2.25, 𝛾 = 0.5 and 𝑟̂ = 0) and for

40 Additional tables for all possible PT scenarios, all reference returns and
ll levels of diminishing sensitivity, for the EU and the US, are available upon
equest. In total we have 48 results tables, of which we present six selected
nes in the appendix.
41 By all types of PT investors we mean investors with respect to all different
alues (under consideration) of 𝑟̂, 𝜆 and 𝛾, as well as both types of scenarios

(constant and dynamic).
42 In order to find out whether the means of PT portfolio returns (𝑟𝑃𝑇𝑡 ) are

significantly larger than the means of MV portfolio returns (𝑟𝑀𝑉
𝑡 ), we estimate

coefficient 𝑐 in the regression 𝑟𝑃𝑇𝑡 − 𝑟𝑀𝑉
𝑡 = 𝑐 + 𝜀𝑡, and test whether 𝑐 is

significantly different from zero. We use the HAC adjustment and thus this
is equivalent to the Diebold–Mariano test, which is performed in EViews 12.
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an MV investor from January 1986 to December 2020.43 While the PT
investor holds large proportions of stocks during certain time periods
and her asset weights may sometimes vary strongly over short periods,
the MV investor holds rather large proportions of bonds throughout the
total period and her asset weights do not change a lot over short peri-
ods.44 Note that the PT investor substantially increases her investment
in gold during (and after) the global financial crisis 2007–2009, which
is not observed to the same extent for the MV investor. This behavior
of the PT investor is thus more in line with the safe haven behavior
observed in crisis periods, considering gold as the safe asset. See again
Tables C.1 and C.2.

We can explain the ‘‘smooth’’ investment behavior of the MV in-
vestor, dominated by bonds, by her strong preference for a small
portfolio risk, which clearly favors bonds whose risk is constantly small
and much lower than that of stocks and gold. The PT investor seems
to be driven more by the different levels of stock returns resulting,
sometimes, in large changes in stock weights.45 The large difference
in investment behavior would be reduced when applying transaction
costs. However, we did not impose transaction costs in order to see
investment patterns solely driven by different preferences.

In general, investors with PT preferences seem to be more willing
to take risks than MV investors, as their preferences are designed to
maximize positive deviations from their reference return, minimize
negative deviations from the reference return and they also exhibit risk
taking behavior in the domain of losses. The MV investors considered
in this study, however, minimize the variance of their portfolio returns,
which is quite different from targeting returns. Nonetheless, some
studies show that under certain conditions, in particular when asset
returns are normally, i.e., symmetrically, distributed, the performance
of PT and MV portfolios does not deviate too much, see, e.g., Hens
and Mayer (2014).46 However, this is not the case in our study.47 The
quite substantial difference in asset allocations between MV and PT
investors, we observe, could thus be caused by asset returns being not
symmetrically distributed. Note that, for more ambitious investors, we
observe a better performance in terms of the expected gain/loss in
our theoretical two-asset world, if the risky asset return is negatively
skewed (as opposed to being symmetric), see Section 3.

Reference return updates
Our empirical results suggest that for a given level of diminishing

sensitivity and a given degree of loss aversion the reference return
seems to be a crucial factor in determining the performance of PT
investment. This is in line with our theoretical findings in the two-asset
case that the optimal solution of a prospect theory investor depends
on her reference level and that expected gains/losses are determined

43 Note that this particular example shows an investment behavior very
similar to other types of PT investors, including conservative and aggressive
types. So the following discussion holds overall for any PT investor.

44 These different weight patterns across PT and MV investors are also
suggested by the means and standard deviations of the portfolio weights
presented in the bottom parts of Tables C.1–C.6. In particular the high standard
deviation of the weights implied by the PT investor vis-a-vis the much lower
standard deviation of the weights implied by the MV investor reflects the
non-smooth investment behavior of PT investors versus the smooth investment
behavior of MV investors. For stocks and bonds, the standard deviation of the
weight of the MV investor is often only a third, or even a forth, of the standard
deviation of the weight of the PT investor.

45 This is supported by the high correlations between PT stock weights and
stock returns over rolling windows of three years (the optimization period).

46 Fortin and Hlouskova (2011) show analytically that, under mild assump-
tions, the optimal portfolio for linear loss averse and mean–variance investors
is identical when the risky asset return is normally distributed.

47 The only case in our theoretical part, when MV investment coincides with
PT investment, is when the reference return coincides with the risk-free rate
and thus both investors stay out of the market.
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Table 3
Diebold–Mariano test for prospect theory returns being larger than mean–variance returns. The table shows annualized
estimated coefficients 𝑐 from the regression 𝑟𝑃𝑇𝑡 − 𝑟𝑀𝑉

𝑡 = 𝑐 + 𝜀𝑡, estimated for the period January 1986 to December 2020. 𝑅
is the portfolio return from the previous period.

Scenario: Benchmark Risk-free Conservative Aggressive

Reference return: 𝑟̂ = 0 𝑟̂ = 𝑟0 𝑟̂ = 0 𝑟̂ = 𝑟0 𝑟̂ = 𝑅 𝑟̂ = 0 𝑟̂ = 𝑟0 𝑟̂ = 𝑅

EU
𝜸 = 𝟎.𝟏
𝜆 = 1.5 2.25 2.54 2.01 2.38 3.70 2.31 2.49 3.91
𝜆 = 2 2.02 1.89 1.80 1.85 1.93 1.82 1.78 1.92
𝜆 = 2.25 1.35 1.51 1.50 1.59 1.57 1.33 1.57 1.35
𝜆 = 2.5 1.20 1.35 1.28 1.37 0.95 1.23 1.33 1.08
𝜆 = 3 0.79 0.74 0.76 0.70 1.06 0.79 0.71 1.07
𝜸 = 𝟎.𝟓
𝜆 = 1.5 1.55 1.78 1.69 1.72 1.18 1.68 1.69 1.75
𝜆 = 2 1.77 1.45 1.82 1.59 0.26 1.83 1.70 1.43
𝜆 = 2.25 0.97 1.43 0.95 1.49 0.46 1.01 1.38 0.23
𝜆 = 2.5 1.57 1.72 1.56 1.79 0.60 1.33 1.73 0.02
𝜆 = 3 1.32 1.38 1.53 1.43 0.38 1.31 1.40 0.33
𝜸 = 𝟎.𝟗
𝜆 = 1.5 1.77 2.16 2.12 1.91 1.94 2.00 2.16 0.79
𝜆 = 2 1.28 1.90 1.37 2.15 0.16 1.47 1.99 1.09
𝜆 = 2.25 1.90 1.72 1.82 1.75 −0.93 1.79 2.05 0.92
𝜆 = 2.5 1.79 2.07 1.80 1.98 1.29 1.55 2.05 2.30
𝜆 = 3 2.06∗ 1.63 2.29∗∗ 1.80 0.84 1.99∗ 1.53 1.13
US
𝜸 = 𝟎.𝟏
𝜆 = 1.5 5.01∗∗ 5.27∗∗ 4.70∗∗ 5.03∗∗ 6.27∗∗ 5.20∗∗ 5.31∗∗ 6.25∗∗

𝜆 = 2 2.94∗∗ 3.03∗∗ 2.88∗ 3.36∗∗ 4.20∗∗ 2.94∗∗ 3.10∗∗ 4.02∗∗

𝜆 = 2.25 2.50∗ 2.94∗∗ 2.45∗ 2.72∗ 3.44∗∗ 2.54∗ 2.91∗∗ 3.59∗∗

𝜆 = 2.5 1.82 2.18 1.73 2.08 2.71∗ 1.81 2.30∗ 2.59
𝜆 = 3 1.41 1.56 1.31 1.52 2.48∗ 1.39 1.63 2.34
𝜸 = 𝟎.𝟓
𝜆 = 1.5 2.92∗ 3.84∗∗ 3.03∗ 3.88∗∗ 2.68 3.16∗ 3.91∗∗ 4.23∗∗

𝜆 = 2 3.30∗∗ 3.04∗ 3.21∗∗ 3.21∗∗ 4.03∗∗ 3.24∗∗ 3.07∗∗ 4.00∗∗

𝜆 = 2.25 2.77∗∗ 3.21∗∗ 2.66∗ 3.10∗∗ 4.10∗∗ 2.68∗ 3.04∗∗ 4.29∗∗

𝜆 = 2.5 2.53∗ 3.23∗∗ 2.51∗ 3.18∗∗ 4.01∗∗ 2.35∗ 3.08∗∗ 4.66∗∗

𝜆 = 3 1.82 2.82∗∗ 1.77 2.83∗∗ 2.90∗ 2.10∗ 2.83∗∗ 3.21∗

𝜸 = 𝟎.𝟗
𝜆 = 1.5 2.46 4.28∗∗ 2.47 4.10∗∗ 3.62∗ 2.48 4.38∗∗ 3.39∗

𝜆 = 2 1.98 4.34∗∗ 1.97 4.27∗∗ 3.44∗ 1.93 4.36∗∗ 2.02
𝜆 = 2.25 1.65 3.96∗∗ 1.77 4.12∗∗ 4.28∗∗ 1.58 4.09∗∗ 3.41∗

𝜆 = 2.5 1.80 4.08∗∗ 1.80 4.15∗∗ 4.05∗∗ 1.71 4.20∗∗ 3.26∗

𝜆 = 3 1.54 2.83∗ 1.39 2.89∗∗ 2.23 1.65 2.87∗ 3.89∗∗

∗ indicates rejection of the null hypothesis 𝑐 = 0 at the 10% level, using the HAC adjustment.
∗∗ indicates rejection of the null hypothesis 𝑐 = 0 at the 5% level, using the HAC adjustment.
𝑟

by the position of the reference return with respect to the risk-free
rate. So the reference return seems to be more of a game changer
than whether the investor follows a constant or a conservative or an
aggressive strategy. However, this is an observation based on the spe-
cific (limited) scenarios we consider, see Footnote 31. For the reference
return being equal to zero or the risk-free interest rate, the constant,
conservative and aggressive scenarios yield very similar performance
results, for both the EU and the US markets; see Fig. 9, which shows
Omega measures for different PT investors with 𝛾 = 0.5.48 Only when
the reference return is equal to the portfolio return of the previous
period is the situation different. In this case the difference between
the performance of conservative and aggressive investors is generally
more pronounced. In the US market the Omegas implied by aggressive
investment are larger than those implied by conservative investment
for all degrees of loss aversion, while in the EU market the Omegas
implied by aggressive investment are larger for smaller degrees of
loss aversion and smaller for higher degrees of loss aversion.49 The

48 Similar observations apply for other performance measures.
49 The investors’ characteristics for which the aggressive scenarios lead to
better performance are, however, not similar across the three levels of

iminishing sensitivity.
228
similarities for zero and risk-free reference returns (across constant and
dynamic scenarios) are mainly due to portfolio returns being rather
close to the reference return combined with the small differences in
the respective penalty parameters across the scenarios.50 In the case of
the reference return being equal to the portfolio return of the previous
period, the differences between the corresponding penalty parameters
across conservative and aggressive scenarios are also small, but the
portfolio returns are much further away from the reference returns,
and thus the resulting differences in performance measures are more
pronounced.

Note finally, that the property shown in the theoretical part for the
case with two assets, namely, that the expected return of portfolio, its
volatility and downside volatility decrease with an increasing degree of

50 Across all different types of investors (with respect to different 𝛾, 𝜆 and
̂) the loss aversion parameter is at most by 0.33 larger than the prespecified
value in the conservative scenarios, and it is at most by 0.25 smaller than the
prespecified value in the aggressive scenarios. Mostly, however, the deviations
from the prespecified 𝜆 are much smaller. In at least 90% of the deviations
upwards (conservative scenario) the deviations are smaller than 0.08 (for a
given investor), and in at least 90% of the deviations downwards (aggressive

scenario) the absolute deviations are smaller than 0.07 (for a given investor).
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Fig. 9. Conservative versus aggressive prospect theory investing: Omega measure.
The graphs show the Omega measures of portfolio returns implied by conservative and aggressive prospect theory investing (𝛾 = 0.5) for different degrees of loss aversion (shown
on the x-axis) and for a given reference return (top row: 𝑟̂ = 0, middle row: 𝑟̂ = 𝑟0, bottom row: 𝑟̂ = 𝑅) in the EU market (left) and the US market (right).
loss aversion holds, in some sense, also for the case with three assets.
We observe this property for 𝛾 = 0.1 (see Footnote 35) and to a lesser
extent also for 𝛾 = 0.5, 0.9. See Proposition 2.7, Eqs. (25), (28), (32),
and Tables C.1–C.6.

EU versus US
When comparing prospect theory investment in the EU and the US

we notice that the means of portfolio returns are clearly larger in the US
than in the EU (by roughly two to three percentage points, for a given
229
PT investor), and also risk-adjusted performance measures are mostly
larger in the US, see Tables 4 and 5. If one targets risk measures like
the volatility of portfolio returns, however, then the EU seems to be the
market to go for, as volatilities of PT portfolios are generally smaller in
the EU than in the US, where for higher levels of loss aversion (all other
things equal) the difference in volatility is usually more pronounced.
See Tables C.1–C.6.

With respect to the best performance we observe that investors show
a different behavior in the EU and US markets. The best risk-adjusted
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Fig. 10. Optimal portfolio weights for prospect theory and mean–variance investors.
The graph shows optimal asset weights for investors in the EU (left) and in the US (right) markets. The prospect theory investor is characterized by 𝜆 = 2.25, 𝛾 = 0.5 and a zero
reference return.
Table 4
Best performing scenarios and models with respect to risk-adjusted performance measures (Omega measure, CVaR, Sharpe
ratio, Sortino ratio) for the EU and the US markets. 𝑅 is the portfolio return from the previous period.

Omega Scenario Model CVaR Scenario Model

EU
𝛾 = 0.1 167.86/159.23 risk neutral/MV −27.23 MV
𝛾 = 0.5 169.79 Conservative 𝜆 = 3, 𝑟̂ = 0 −27.23 MV
𝛾 = 0.9 180.76 Conservative 𝜆 = 3, 𝑟̂ = 0 −27.23 MV
US
𝛾 = 0.1 173.28 Conservative 𝜆 = 1.5, 𝑟̂ = 𝑅 −31.16 MV
𝛾 = 0.5 172.36 Benchmark 𝜆 = 2, 𝑟̂ = 0 −31.16 MV
𝛾 = 0.9 181.59 Aggressive 𝜆 = 2, 𝑟̂ = 𝑟0 −31.16 MV

Sharpe Scenario Model Sortino Scenario Model

EU
𝛾 = 0.1 63.16/62.74 Risk neutral/MV 98.64/97.7 Risk neutral/MV
𝛾 = 0.5 63.16/62.74 Risk neutral/MV 98.64/97.7 Risk neutral/MV
𝛾 = 0.9 69.82 Conservative 𝜆 = 3, 𝑟̂ = 0 116.87 Conservative 𝜆 = 3, 𝑟̂ = 𝑟0

US
𝛾 = 0.1 68.70 Conservative 𝜆 = 1.5, 𝑟̂ = 𝑅 103.06 Conservative 𝜆 = 1.5, 𝑟̂ = 𝑅
𝛾 = 0.5 67.57 Aggressive 𝜆 = 2.5, 𝑟̂ = 𝑅 106.28 Aggressive 𝜆 = 2.5, 𝑟̂ = 𝑅
𝛾 = 0.9 71.71 Aggressive 𝜆 = 2, 𝑟̂ = 𝑟0 109.87 Aggressive 𝜆 = 2, 𝑟̂ = 𝑟0
performance51 in the EU market is implied by the conservative PT
investor with the largest diminishing sensitivity (𝛾 = 0.9), the largest

51 What follows is equally true for the Omega measure, the Sharpe ratio and
the Sortino ratio, for both the EU and the US.
230
degree of loss aversion (𝜆 = 3) and a zero reference return, see Table 4.
On the other hand, the best risk-adjusted performance in the US market
is implied by the aggressive PT investor with the largest diminishing
sensitivity (𝛾 = 0.9), 𝜆 = 2, and the risk-free reference return, see again
Table 4. Though in both markets the largest risk-adjusted performance
is implied by a PT investor with the largest diminishing sensitivity,
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Table 5
Best performing scenarios and models with respect to the mean and median for the EU and the US markets. Presented values
for means and medians are annual averages in percent. For comparison, the mean–variance investor shows a mean of 6.17
(EU) and 6.95 (US), and a median of 7.32 (EU) and 6.17 (US), respectively. 𝑅 is the portfolio return from the previous period.

Mean Scenario Model Median Scenario Model

EU
𝛾 = 0.1 10.30 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑅 10.62 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑅
𝛾 = 0.5 8.11 Aggressive 𝜆 = 2, 𝑟̂ = 0 9.49 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑟0

𝛾 = 0.9 8.61 Aggressive 𝜆 = 2.5, 𝑟̂ = 𝑅 9.53 Risk-free 𝜆 = 1.5, 𝑟̂ = 𝑟0

US
𝛾 = 0.1 13.62 Conservative 𝜆 = 1.5, 𝑟̂ = 𝑅 18.86 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑅
𝛾 = 0.5 11.91 Aggressive 𝜆 = 2.5, 𝑟̂ = 𝑅 13.57 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑅
𝛾 = 0.9 11.61 Aggressive 𝜆 = 1.5, 𝑟̂ = 𝑟0 14.30 Aggressive 𝜆 = 2.5, 𝑟̂ = 𝑅
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in the EU the conservative strategy seems to beat all other strategies,
while in the US the aggressive strategy provides the best risk-adjusted
performance. Note that the best EU investor is more loss averse than
the best US investor, and the reference return of the best EU investor is
most of the time zero, while it is equal to the risk-free rate in the case
of the best US investor. Note also that the best EU investor allocates
on average 29%, 60% and 11% to the stock, bond and gold markets,
while the best US investor allocates on average 50%, 35% and 15% to
the stock, bond and gold markets. Thus, while the bond market is the
main focus for the PT investor in the EU, it is the stock market for the
PT investor in the US. See Tables C.3 and C.6.

The smallest volatility and smallest downside volatility are implied
by the MV model in both the EU and the US. This does not come as a
surprise, as the mean–variance model explicitly targets the minimiza-
tion of the variance, which is closely related to these risk measures.
Note that volatility and downside volatility decrease with increasing 𝜆
when all other model parameters are fixed), which is in line with the
heoretical results in Section 2.3. Note in addition that CVaR mostly
ncreases with increasing 𝜆 (when all other model parameters are
ixed).

Finally, our results suggest that for higher degrees of loss aversion
𝜆 = 2, 2.25, 2.5, 3) PT investors mostly outperform LLA investors in
erms of the mean and risk-adjusted performance measures, in both the
U and the US.

In a nutshell, the best typical PT investor (i.e., 𝛾 = 0.1, see Foot-
ote 35) in the US market is the conservative one who targets her
ortfolio return to the portfolio return from the previous period, is
ot too much loss averse (𝜆 = 1.5), and outperforms other benchmark
nvestors such as MV and risk neutral. This is also the investor with
he largest mean of portfolio returns, see Table 5. However, in the EU
arket, the best typical PT investor is outperformed by both MV and

isk neutral investors.

. Conclusion

In this paper we investigate the behavior of an S-shaped prospect
heory investor. In the theoretical part we derive the analytical closed
orm solution for a two-asset portfolio consisting of one risk-free asset
nd one risky asset with returns following the Bernoulli distribution.
hen the risky asset return follows a general continuous distribution

hen the solution can be expressed in a semi-analytical way. In a
omprehensive sensitivity analysis, we investigate how different aspects
f the prospect theory investor’s preferences contribute to her risk-
aking, performance, and happiness. For both assumptions with respect
o the distribution of the risky asset return we observe similar findings.
amely, the reference return, in particular its position relative to

he risk-free interest rate, plays an important role: the less ambitious
nvestor decreases her exposure to the risky asset when increasing
er reference return, while the more ambitious investor increases her
xposure to the risky asset when increasing her reference return. More
231

recisely, we observe a V-shaped relationship between risk taking and E
he level of ambition when risk taking is positive, and an inverse
-shaped relationship when risk taking is negative. However, both

ess and more ambitious investors decrease their exposures to the
isky asset when increasing their degrees of loss aversion. When the
eference return coincides with the risk-free rate then the investor
nvests everything into the risk-free asset. In addition, we observe
hat the investor’s level of happiness (or satisfaction) decreases with
n increasing reference return (level of ambition). We also analyze
he investor’s expected gains and losses and observe different risk
ttitudes with respect to her level of diminishing sensitivity. Namely,
or less ambitious investors with any degree of diminishing sensitiv-
ty, the expected gain decreases with an increasing reference return,
hile more ambitious investors with a smaller degree of diminishing

ensitivity experience an increasing expected loss with an increasing
eference return and more ambitious investors with a larger degree of
iminishing sensitivity experience an increasing expected gain with an
ncreasing reference return.

In the simulation part we investigate the theoretical results for a
rospect theory investor with different values of the reference return,
oss aversion, diminishing sensitivity and for different characteristics of
he financial market. In particular, we examine whether the assumption
f negative skewness of the risky asset return has major effects on
he results. We find that risk taking implied by a negatively skewed
istribution of the risky asset return is smaller than the risk taking
mplied by a symmetric distribution of the risky asset return for less
mbitious investors, while risk taking implied by a negatively skewed
istribution is larger than the risk taking implied by a symmetric
istribution for more ambitious investors.

In the empirical part we investigate the performance of optimal
sset portfolios implied by PT preferences. We study two scenarios
ith a constant penalty parameter, where the reference return is either
qual to zero or equal to the risk-free interest rate, and two dynamic
cenarios, where the penalty parameter is time-changing conditional
n previous gains and losses and the reference return is either zero,
he risk-free interest rate or the portfolio return of the previous period.
n one of the two dynamic scenarios the PT investor becomes more
oss averse after losses (conservative scenario), while in the other the
T investor becomes less loss averse after losses (aggressive scenario).
e consider different levels of diminishing sensitivity and different

egrees of loss aversion. The investor selects among three risky assets,
stock market index, a government bond and gold, and she operates

ither in the EU or in the US market. We use various performance
easures, including risk-adjusted measures like the Omega measure

nd the Sharpe and Sortino ratios. In addition to PT portfolios, we
xamine optimal portfolios implied by linear loss averse, risk neutral,
onditional value-at-risk and, in particular, traditional mean–variance
MV) preferences.

There are many different findings. First, PT investment leads to
learly higher means of portfolio returns, but also to much higher risk,
han MV investment, for all types of PT investors and for both the

U and US markets. We actually find that, in the US market, returns
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of PT portfolios are significantly larger than returns of MV portfolios
for almost all types of PT investors, while this is hardly the case
in the EU. If we consider risk-adjusted performance, PT investment
(mostly) outperforms MV investment in the US, while MV investment
outperforms PT investment in the EU. If we consider the variance,
downside volatility or the conditional value-at-risk, MV investment
outperforms PT investment. These differences between the performance
of PT and MV portfolios are due to the different preferences of PT and
MV investors. While PT investors maximize the portfolio return under
certain conditions for the deviations from a given reference return,
MV investors minimize the portfolio variance. In addition we find that
the performance results of optimal portfolios in the conservative and
aggressive scenarios are very similar, for a given reference return of
either zero or the risk-free rate, in both the EU and the US markets.
The situation is different when the reference return is the portfolio
return of the previous period. In this case the differences between
conservative and aggressive scenarios are more pronounced, which is
mainly due to the rather large difference between the portfolio return
and the reference return. Rather unexpectedly, the risk neutral investor
performs quite well empirically. In the EU market she mostly performs
better than any PT investor in terms of the mean and risk-adjusted
measures, while in the US the PT investor usually performs best. Linear
loss averse investors generally perform worse than PT investors in
terms of the mean and risk-adjusted measures, for larger degrees of loss
aversion, in both the EU and the US.

Note that although our empirical analysis covers many aspects of
the prospect theory asset allocation problem, a more thorough analysis
is required to shed light on all details. For example, as we focus on loss
aversion, the dynamic investors in our study update mainly their loss
aversion, and only after prior losses. They do not update the reference
return and do not apply dynamic updates of both the reference return
and loss aversion after both prior gains and losses. These effects will be
explored in future research.

The single-period model allows us to focus on a myopic loss averse
investor, who prefers immediate gratification over her investment
choices rather than considering long-term consequences. Considering
one risky and one risk-free asset allows us to analyze certain port-
folio properties in a straightforward way, when assuming a general
continuous distribution of the risky asset. In the future it would be
interesting to see how these properties change when the investor
chooses among more risky assets, how these properties are affected
by certain, in particular non-symmetric, joint distribution of the risky
assets returns, and under what conditions a global (unique) solution
exists. In addition, we would like to explore the PT investment problem
in a multi-period model in order to see whether and in which direction
the main results are affected.
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Appendix A. Proofs

Proof of Proposition 2.1. To calculate the expected value of 𝑣(𝑅(𝑥))
ith respect to the Bernoulli distribution, we evaluate four options

ollowing from (4): (i) 𝑅𝑏(𝑥) > 𝑟̂ and 𝑅𝑔(𝑥) > 𝑟̂, (ii) 𝑅𝑏(𝑥) ≤ 𝑟̂ and
232

𝑔(𝑥) > 𝑟̂, (iii) 𝑅𝑏(𝑥) > 𝑟̂ and 𝑅𝑔(𝑥) ≤ 𝑟̂, and (iv) 𝑅𝑏(𝑥) ≤ 𝑟̂ and 𝑅𝑔(𝑥) ≤ 𝑟̂.
ase (i) can occur only when 𝑥 ∈
[

𝑟̂−𝑟0
𝑟𝑔−𝑟0

, 𝑟0−𝑟̂
𝑟0−𝑟𝑏

]

, case (ii) occurs when

𝑥 ≥ max
{

𝑟0−𝑟̂
𝑟0−𝑟𝑏

, 𝑟̂−𝑟0
𝑟𝑔−𝑟0

}

, case (iii) occurs when 𝑥 ≤ min
{

𝑟0−𝑟̂
𝑟0−𝑟𝑏

, 𝑟̂−𝑟0
𝑟𝑔−𝑟0

}

,

and case (iv) occurs when 𝑥 ∈
[

𝑟0−𝑟̂
𝑟0−𝑟𝑏

, 𝑟̂−𝑟0
𝑟𝑔−𝑟0

]

. Note that for 𝑟̂ < 𝑟0, which
is the assumption of this proposition, is case (iv) infeasible. Based on
these we thus solve the following three maximization problems

max ∶ E(𝑣(𝑅(𝑥))) = 1
1−𝛾

[

(1 − 𝑝)(𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

+ 𝑝(𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ − 𝑟0−𝑟̂
𝑟𝑔−𝑟0

≤ 𝑥 ≤ 𝑟0−𝑟̂
𝑟0−𝑟𝑏

⎫

⎪

⎬

⎪

⎭

(i)

max ∶ E(𝑣(𝑅(𝑥))) = 1
1−𝛾

[

−𝜆(1 − 𝑝)(𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

+ 𝑝(𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ 𝑥 ≥ 𝑟0−𝑟̂
𝑟0−𝑟𝑏

⎫

⎪

⎬

⎪

⎭

(ii)

max ∶ E(𝑣(𝑅(𝑥))) = 1
1−𝛾

[

(1 − 𝑝)(𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

− 𝜆𝑝(𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ 𝑥 ≤ − 𝑟0−𝑟̂
𝑟𝑔−𝑟0

⎫

⎪

⎬

⎪

⎭

(iii)

he idea of the proof is to show now that (i) is a concave problem with
n unique maximum and as the objective function of (iii) is increasing
t its domain and the objective function of (ii) is decreasing at its
omain, and as E(𝑣(𝑅(𝑥))) is continuous function, then the maximum
f problem (i) coincides with the maximum of (3).

By differentiating the objective function of problem (i) we obtain
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = −(1−𝑝)[𝑟0−𝑟̂−(𝑟0−𝑟𝑏)𝑥]−𝛾 (𝑟0−𝑟𝑏)+𝑝[𝑟0−𝑟̂+(𝑟𝑔−𝑟0)𝑥]−𝛾 (𝑟𝑔−𝑟0)

and
𝑑2

𝑑𝑥2
E(𝑣(𝑅(𝑥))) = −𝛾(1 − 𝑝)[𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥]−1−𝛾 (𝑟0 − 𝑟𝑏)2

− 𝛾𝑝[𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥]−1−𝛾 (𝑟𝑔 − 𝑟0)2 < 0

which implies that (i) is a concave programming problem and thus the
maximum satisfies the following first order conditions
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = −(1−𝑝)[𝑟0− 𝑟̂−(𝑟0−𝑟𝑏)𝑥]−𝛾 (𝑟0−𝑟𝑏)+𝑝[𝑟0− 𝑟̂+(𝑟𝑔−𝑟0)𝑥]−𝛾 (𝑟𝑔−𝑟0) = 0

hus,

𝑝(𝑟𝑔−𝑟0))1∕𝛾
[

𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥
]

= ((1−𝑝)(𝑟0−𝑟𝑏))1∕𝛾
[

𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥
]

which implies

𝑥 =
(𝑝(𝑟𝑔 − 𝑟0))1∕𝛾 − ((1 − 𝑝)(𝑟0 − 𝑟𝑏))1∕𝛾

[

(𝑝(𝑟𝑔 − 𝑟0))1∕𝛾 (𝑟0 − 𝑟𝑏) + ((1 − 𝑝)(𝑟0 − 𝑟𝑏))1∕𝛾 (𝑟𝑔 − 𝑟0)
] (𝑟0 − 𝑟̂)

=

(

1 −𝐾1∕𝛾
0

)

(𝑟0 − 𝑟̂)

𝑟0 − 𝑟𝑏 +𝐾1∕𝛾
0 (𝑟𝑔 − 𝑟0)

(A.1)

and this coincides with (6). Note that the conditions of the proposition
imply that 0 < 𝐾0 < 1 (following from 𝑟𝑏 < 𝑟0 < 𝑟𝑔 and E(𝑟) > 𝑟0) and
thus 𝑥∗ > 0.

Problem (iii) is increasing at its domain if
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = −(1−𝑝)[𝑟0−𝑟̂−(𝑟0−𝑟𝑏)𝑥]−𝛾 (𝑟0−𝑟𝑏)+𝜆𝑝[𝑟̂−𝑟0−(𝑟𝑔−𝑟0)𝑥]−𝛾 (𝑟𝑔−𝑟0) > 0

which is guaranteed if

𝜆 >
(1 − 𝑝)

[

𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥
]𝛾 (𝑟0 − 𝑟𝑏)

𝑝
[

𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥
]𝛾 (𝑟𝑔 − 𝑟0)

=

⎛

⎜

⎜

⎜

⎝

𝑟̂−𝑟0
𝑟𝑔−𝑟0

− 𝑥

𝑟0−𝑟̂
𝑟0−𝑟𝑏

− 𝑥

⎞

⎟

⎟

⎟

⎠

𝛾

𝐾𝛾 (A.2)

t follows from the assumptions of the theorem that 𝜆 > 𝐾𝛾 and as
𝑟̂−𝑟0

𝑟𝑔−𝑟0
−𝑥

𝑟0−𝑟̂
𝑟0−𝑟𝑏

−𝑥
< 1 then (A.2) is satisfied and thus the objective function of

(iii) is increasing.
Problem (ii) is decreasing at its domain if

𝑑 E(𝑣(𝑅(𝑥))) = −𝜆(1−𝑝)[𝑟̂−𝑟0+(𝑟0−𝑟 )𝑥]−𝛾 (𝑟0−𝑟 )+𝑝[𝑟0− 𝑟̂+(𝑟 −𝑟0)𝑥]−𝛾 (𝑟 −𝑟0) < 0

𝑑𝑥 𝑏 𝑏 𝑔 𝑔
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B

s

I

E

𝜆

r

which is guaranteed if

𝜆 >
𝑝(𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥)𝛾 (𝑟𝑔 − 𝑟0)

(1 − 𝑝)(𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥)𝛾 (𝑟0 − 𝑟𝑏)
=

⎛

⎜

⎜

⎜

⎝

𝑟̂−𝑟0
𝑟0−𝑟𝑏

+ 𝑥

𝑟0−𝑟̂
𝑟𝑔−𝑟0

+ 𝑥

⎞

⎟

⎟

⎟

⎠

𝛾

1
𝐾𝛾

(A.3)

It follows from assumptions of the theorem that 𝜆 > 1
𝐾𝛾

and as
𝑟̂−𝑟0

𝑟0−𝑟𝑏
+𝑥

𝑟0−𝑟̂
𝑟𝑔−𝑟0

+𝑥
< 1 then (A.3) is satisfied and thus the objective function of

(ii) is decreasing. This finishes the proof. □

Proof of Proposition 2.2. Note that solving (3) boils down to solving
problems (ii) and (iii) for 𝑟0 = 𝑟̂ as in cases (i) and (iv) is 𝑥 = 0
the optimal solution. As the objective function of (iii) is increasing for
𝑥 ≤ 0 and the objective function of (ii) is decreasing for 𝑥 ≥ 0 then this
implies that zero is the solution of (3). This finishes the proof. □

Proof of Proposition 2.3. Based on (4) we consider the following
four cases: (i) 𝑅𝑏(𝑥) > 𝑟̂ and 𝑅𝑔(𝑥) > 𝑟̂, (ii) 𝑅𝑏(𝑥) ≤ 𝑟̂ and 𝑅𝑔(𝑥) > 𝑟̂,
(iii) 𝑅𝑏(𝑥) > 𝑟̂ and 𝑅𝑔(𝑥) ≤ 𝑟̂, and (iv) 𝑅𝑏(𝑥) ≤ 𝑟̂ and 𝑅𝑔(𝑥) ≤ 𝑟̂.

Case (i) can occur only when 𝑥 ∈
[

𝑟̂−𝑟0
𝑟𝑔−𝑟0

,− 𝑟̂−𝑟0
𝑟0−𝑟𝑏

]

, case (ii) occurs when

𝑥 ≥ 𝑟̂−𝑟0
𝑟𝑔−𝑟0

, case (iii) occurs when 𝑥 ≤ − 𝑟̂−𝑟0
𝑟0−𝑟𝑏

, and case (iv) occurs when

𝑥 ∈
[

− 𝑟̂−𝑟0
𝑟0−𝑟𝑏

, 𝑟̂−𝑟0
𝑟𝑔−𝑟0

]

. Note that for 𝑟̂ > 𝑟0, which is the assumption of
this proposition, is case (i) infeasible. Based on these we thus solve the
following three maximization problems

max ∶ E(𝑣(𝑅(𝑥))) = 1
1−𝛾

[

−𝜆(1 − 𝑝)(𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

+ 𝑝(𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ 𝑥 ≥ 𝑟̂−𝑟0
𝑟𝑔−𝑟0

⎫

⎪

⎬

⎪

⎭

(ii)

max ∶ E(𝑣(𝑅(𝑥))) = 1
1−𝛾

[

(1 − 𝑝)(𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

− 𝜆𝑝(𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ 𝑥 ≤ 𝑟0−𝑟̂
𝑟0−𝑟𝑏

⎫

⎪

⎬

⎪

⎭

(iii)

max ∶ E(𝑣(𝑅(𝑥))) = −𝜆
1−𝛾

[

(1 − 𝑝)(𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥)1−𝛾

+ 𝑝(𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥)1−𝛾
]

such that ∶ − 𝑟̂−𝑟0
𝑟0−𝑟𝑏

≤ 𝑥 ≤ 𝑟̂−𝑟0
𝑟𝑔−𝑟0

⎫

⎪

⎬

⎪

⎭

(iv)

y differentiating (iv) we obtain

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = − 𝜆
[

(1 − 𝑝)[𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥]−𝛾 (𝑟0 − 𝑟𝑏)

− 𝑝[𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥]−𝛾 (𝑟𝑔 − 𝑟0)
]

and

1
𝛾

𝑑2

𝑑𝑥2
E(𝑣(𝑅(𝑥))) = 𝜆(1 − 𝑝)[𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥]−1−𝛾 (𝑟0 − 𝑟𝑏)2

+ 𝜆𝑝[𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥]−1−𝛾 (𝑟𝑔 − 𝑟0)2 > 0 (A.4)

which implies that (iv) is a convex programming problem and thus the
maximum is reached in one of the corner points, i.e., − 𝑟̂−𝑟0

𝑟0−𝑟𝑏
or 𝑟̂−𝑟0

𝑟𝑔−𝑟0
.

The first order conditions (FOC) for (iii) are
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = −(1−𝑝)[𝑟0−𝑟̂−(𝑟0−𝑟𝑏)𝑥]−𝛾 (𝑟0−𝑟𝑏)+𝜆𝑝[𝑟̂−𝑟0−(𝑟𝑔−𝑟0)𝑥]−𝛾 (𝑟𝑔−𝑟0) = 0

It can be shown that 𝑥∗𝑛, given by (10), satisfies the FOC and that (iii)
is concave, i.e.,

1
𝛾

𝑑2

𝑑𝑥2
E(𝑣(𝑅(𝑥))) =

− (1 − 𝑝)[𝑟0 − 𝑟̂ − (𝑟0 − 𝑟𝑏)𝑥]−1−𝛾 (𝑟0 − 𝑟𝑏)2

+𝜆𝑝[𝑟̂ − 𝑟0 − (𝑟𝑔 − 𝑟0)𝑥]−1−𝛾 (𝑟𝑔 − 𝑟0)2
233

< 0 𝑥
for 𝜆 > 𝐾𝛾 and 𝑥 > 𝑥𝐿 ≡

[

1+
(

𝜆
𝐾−1

)1∕(1+𝛾)
]

(𝑟̂−𝑟0)

𝑟𝑔−𝑟0−
(

𝜆
𝐾−1

)1∕(1+𝛾)
(𝑟0−𝑟𝑏)

= − 𝑟̂−𝑟0
𝑟0−𝑟𝑏

×

(

𝜆
1

1+𝛾 +𝐾
1

1+𝛾
−1

)

(

𝜆
1

1+𝛾 −𝐾
1

1+𝛾
𝛾

)

and that 𝑥𝐿 < 𝑥∗𝑛 < 𝑟0−𝑟̂
𝑟0−𝑟𝑏

for 𝜆 > 𝐾𝛾 . Note in addition that (iii) is a
convex problem for 𝑥 < 𝑥𝐿 and that lim𝑥→−∞ E(𝑣(𝑅(𝑥))) = −∞. This
hows that 𝑥∗𝑛 is the only maximum of (iii).

The first order conditions (FOC) for (ii) are
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = − 𝜆(1 − 𝑝)[𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥]−𝛾 (𝑟0 − 𝑟𝑏)

+ 𝑝[𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥]−𝛾 (𝑟𝑔 − 𝑟0) = 0

It can be shown that 𝑥∗𝑝 , given by (9), satisfies the FOC and that (ii) is
concave, i.e.,

1
𝛾

𝑑2

𝑑𝑥2
E(𝑣(𝑅(𝑥))) =

𝜆(1 − 𝑝)[𝑟̂ − 𝑟0 + (𝑟0 − 𝑟𝑏)𝑥]−1−𝛾 (𝑟0 − 𝑟𝑏)2

−𝑝[𝑟0 − 𝑟̂ + (𝑟𝑔 − 𝑟0)𝑥]−1−𝛾 (𝑟𝑔 − 𝑟0)2

< 0

for 𝜆 > 1∕𝐾𝛾 and 𝑥 < 𝑥𝑈 ≡

[

1+
(

1
𝜆𝐾−1

)1∕(1+𝛾)
]

(𝑟̂−𝑟0)

𝑟𝑔−𝑟0−
(

1
𝜆𝐾−1

)1∕(1+𝛾)
(𝑟0−𝑟𝑏)

= 𝑟̂−𝑟0
𝑟𝑔−𝑟0

×
(

𝜆
1

1+𝛾 +
(

1
𝐾−1

)
1

1+𝛾
)

⎛

⎜

⎜

⎝

𝜆
1

1+𝛾 −
(

1
𝐾𝛾

)
1

1+𝛾 ⎞
⎟

⎟

⎠

and that 𝑟̂−𝑟0
𝑟𝑔−𝑟0

< 𝑥∗𝑝 < 𝑥𝑈 for 𝜆 > 1∕𝐾𝛾 . Note in addi-

tion that (ii) is a convex problem for 𝑥 > 𝑥𝑈 and that lim𝑥→−∞ E(𝑣(𝑅(𝑥)))
= −∞. This shows that 𝑥∗𝑝 is the only maximum of (ii) and thus
the global maximum of (3) is achieved at 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{E(𝑣(𝑅(𝑥∗𝑝))),
E(𝑣(𝑅(𝑥∗𝑛)))}. Next we analyze the case when E(𝑣(𝑅(𝑥∗𝑝))) > E(𝑣(𝑅(𝑥∗𝑛))).
t can be shown that

(𝑣(𝑅(𝑥∗𝑝))) = −
1 − 𝑝
1 − 𝛾

[

(𝑟𝑔 − 𝑟𝑏)(𝑟̂ − 𝑟0)

𝑟𝑔 − 𝑟0

]1−𝛾 [

𝜆1∕𝛾 −
(

1
𝐾𝛾

)1∕𝛾
]𝛾

< 0 as 𝜆 > 1
𝐾𝛾

and

E(𝑣(𝑅(𝑥∗𝑛))) = −
1 − 𝑝
1 − 𝛾

[

(𝑟𝑔 − 𝑟𝑏)(𝑟̂ − 𝑟0)

𝑟𝑔 − 𝑟0

]1−𝛾 [
(

𝜆
𝐾𝛾

)1∕𝛾
− 1

]𝛾

< 0 as 𝜆 > 𝐾𝛾

and thus showing E(𝑣(𝑅(𝑥∗𝑝))) > E(𝑣(𝑅(𝑥∗𝑛))) boils down to proving that

1∕𝛾 −
(

1
𝐾𝛾

)1∕𝛾
<

(

𝜆
𝐾𝛾

)1∕𝛾
− 1

or

𝜆1∕𝛾
(

1 −𝐾1∕𝛾
𝛾

)

> 𝐾1∕𝛾
𝛾 − 1

where the last inequality is implied by 𝐾𝛾 < 1 which follows from 𝑝 > 𝑝̄.
The other cases follow directly. This concludes the proof. □

Proof of Proposition 2.4. Note that the derivative of E(𝑣(𝑅(𝑥))) with
espect to 𝑥 when 𝑟̂ = 𝑟0 is
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−𝑥)−𝛾
[

𝜆 ∫ +∞
𝑟0 (𝑟 − 𝑟0)1−𝛾𝑓 (𝑟)𝑑𝑟 − ∫ 𝑟0

−∞(𝑟0 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟
]

, 𝑥 < 0

𝑥−𝛾
[

∫ +∞
𝑟0 (𝑟 − 𝑟0)1−𝛾𝑓 (𝑟)𝑑𝑟 − 𝜆 ∫ 𝑟0

−∞(𝑟0 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟
]

, 𝑥 > 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A.5)

and thus 𝑑
𝑑𝑥E(𝑣(𝑅(𝑥))) > 0 for 𝑥 < 0 and 𝜆 > 𝐾𝛾 , and 𝑑

𝑑𝑥E(𝑣(𝑅(𝑥))) < 0
for 𝑥 > 0 and 𝜆 > 1∕𝐾𝛾 . E(𝑣(𝑅(𝑥))) is continuous for 𝑥 = 0 as

lim E(𝑣(𝑅(𝑥))) = lim E(𝑣(𝑅(𝑥))) = 0 = E(𝑣(𝑅(0)))

→0+ 𝑥→0−
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which follows from (18) and the assumption 𝑟̂ = 𝑟0. Then, based on
this and (A.5) is the maximum of (19) reached at zero when 𝜆 >

max
{

𝐾𝛾 ,
1
𝐾𝛾

}

. This finishes the proof. □

roof of Proposition 2.5. The expected prospect theory utility func-
ion (18) is continuous as

lim
𝑥→0+

E(𝑣(𝑅(𝑥))) = lim
𝑥→0−

E(𝑣(𝑅(𝑥))) = (𝑟0 − 𝑟̂)1−𝛾

1 − 𝛾
= E(𝑣(𝑅(0))) (A.6)

which follows from (18) and the assumption 𝑟̂ < 𝑟0. Note that E(𝑣(𝑅(𝑥)))
(𝑣(𝑅(0))) for 𝑥 < 0 if

1 − 𝛾)E(𝑣(𝑅(𝑥))) = (−𝑥)1−𝛾 ∫

𝑧(𝑥)

−∞
[𝑧(𝑥) − 𝑟]1−𝛾 𝑓 (𝑟)𝑑𝑟

−(−𝑥)1−𝛾𝜆∫

+∞

𝑧(𝑥)
[𝑟 − 𝑧(𝑥)]1−𝛾 𝑓 (𝑟)𝑑𝑟

< (𝑟0 − 𝑟̂)1−𝛾

where 𝑧(𝑥) = 𝑟0−𝑟̂
−𝑥 + 𝑟0. Thus

𝜆 >
∫ 𝑧(𝑥)
−∞ [𝑧(𝑥) − 𝑟]1−𝛾 𝑓 (𝑟)𝑑𝑟 −

[

𝑧(𝑥) − 𝑟0
]1−𝛾

∫ +∞
𝑧(𝑥) [𝑟 − 𝑧(𝑥)]1−𝛾 𝑓 (𝑟)𝑑𝑟

= 𝐾𝛾𝑧(𝑥) (A.7)

as ∫ +∞
𝑧(𝑥) [𝑟 − 𝑧(𝑥)]1−𝛾 𝑓 (𝑟)𝑑𝑟 > 0.52 The assumption of the theorem,

namely 𝜆 > 𝐾̂𝛾 and the definition of 𝐾̂𝛾 , see (22), imply that (A.7)
holds and thus E(𝑣(𝑅(𝑥))) < E(𝑣(𝑅(0))) for 𝑥 < 0.

Note that based on Leibniz integral rule the derivative of E(𝑣(𝑅(𝑥)))
with respect to 𝑥 is

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
(−𝑥)𝛾

∫ 𝑧(𝑥)
−∞

𝑟−𝑟0

[𝑧(𝑥)−𝑟]𝛾
𝑓 (𝑟)𝑑𝑟 + 𝜆

𝑥𝛾
∫ +∞
𝑧(𝑥)

𝑟−𝑟0

[𝑟−𝑧(𝑥)]𝛾
𝑓 (𝑟)𝑑𝑟, 𝑥 < 0

E(𝑟)−𝑟0
(𝑟0−𝑟̂)𝛾

> 0, 𝑥 = 0, 𝑟̂ < 𝑟0

𝜆 E(𝑟)−𝑟0
(𝑟̂−𝑟0)𝛾

> 0, 𝑥 = 0, 𝑟̂ > 𝑟0

𝜆
𝑥𝛾

∫ 𝑧(𝑥)
−∞

𝑟−𝑟0

[𝑧(𝑥)−𝑟]𝛾
𝑓 (𝑟)𝑑𝑟 + 1

𝑥𝛾
∫ +∞
𝑧(𝑥)

𝑟−𝑟0

[𝑟−𝑧(𝑥)]𝛾
𝑓 (𝑟)𝑑𝑟, 𝑥 > 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(A.8)

where 𝑧(𝑥) = 𝑟0−𝑟̂
−𝑥 + 𝑟0. This follows from E(𝑟) > 𝑟0 and

lim
𝑥→0+

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = lim
𝑥→0−

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = ∫

+∞

−∞

𝑟 − 𝑟0

(𝑟0 − 𝑟̂)𝛾
𝑓 (𝑟)𝑑𝑟

=
E(𝑟) − 𝑟0

(𝑟0 − 𝑟̂)𝛾
> 0 (A.9)

for 𝑟̂ < 𝑟0 and from

lim
→0+

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = lim
𝑥→0−

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥)))

= 𝜆∫

+∞

−∞

𝑟 − 𝑟0

(𝑟̂ − 𝑟0)𝛾
𝑓 (𝑟)𝑑𝑟 = 𝜆

E(𝑟) − 𝑟0

(𝑟̂ − 𝑟0)𝛾
> 0 (A.10)

or 𝑟̂ > 𝑟0. Thus, for any 𝑟̂ ≠ 𝑟0 is E(𝑣(𝑅(𝑥))) increasing in zero. Note in
ddition that based on (18) we obtain the following

lim
𝑥→+∞

E(𝑣(𝑅(𝑥)))

= +∞ ×

[

−𝜆∫

𝑟0

−∞

(

𝑟0 − 𝑟
)1−𝛾 𝑓 (𝑟)𝑑𝑟 + ∫

+∞

𝑟0

(

𝑟 − 𝑟0
)1−𝛾 𝑓 (𝑟)𝑑𝑟

]

= −∞

(A.11)

as 𝜆 > 1∕𝐾𝛾 , i.e., the expression in the brackets is negative.53

52 Let 𝜙(𝑐) = ∫ +∞
𝑐 (𝑟 − 𝑐)1−𝛾𝑓 (𝑟)𝑑𝑟 and let us assume that there exists 𝑐0 ∈ R

uch that 𝜙(𝑐0) = 0. Then 𝑓 (𝑟) = 0 for any 𝑟 ≥ 𝑐0 and 𝐹 (𝑐0) = ∫ 𝑐0
−∞ 𝑓 (𝑟)𝑑𝑟 =

+∞
−∞ 𝑓 (𝑟)𝑑𝑟 = 1, which is a contradiction to the assumption of the distribution
f the risky asset’s return. Thus, 𝜙(𝑐) > 0 for any 𝑐 ∈ R.
53 Note that this property holds also for 𝑟̂ > 𝑟0.
234
Thus, based on the fact that E(𝑣(𝑅(𝑥))) < E(𝑣(𝑅(0))) for 𝑥 < 0,
(𝑣(𝑅(𝑥))) being continuous (also at zero, see (A.6)), increasing at zero,
ee (A.8), for 𝑥 = 0, and achieving −∞ in infinity, see (A.11), it follows
hen that the solution 𝑥∗ of (19) is positive and such that the first
rder conditions are satisfied, i.e., 𝑑

𝑑𝑥E(𝑣(𝑅(𝑥
∗))) = 0 for 𝑥∗ > 0, which

oincides with (21). This finishes the proof. □

emma A.1. Let E(𝑟) > 𝑟0. Then the function 𝐾𝛾 ∶ [𝑟0,+∞) → R

𝛾 (𝑐) =
∫ 𝑐
−∞(𝑐 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟 − (𝑐 − 𝑟0)1−𝛾

∫ ∞
𝑐 (𝑟 − 𝑐)1−𝛾𝑓 (𝑟)𝑑𝑟

is bounded from above; i.e., there exists a constant 𝑀 ≥ 0 such that
𝐾𝛾 (𝑐) ≤ 𝑀 for any 𝑐 ∈ [𝑟0,+∞).

Proof. Note that 𝑐 ∈ R and that the denominator of 𝐾𝛾 (𝑐), namely
∫ +∞
𝑐 (𝑟 − 𝑐)1−𝛾𝑓 (𝑟)𝑑𝑟, is strictly positive and that both integrals
∫ 𝑐
−∞(𝑐 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟 and ∫ +∞

𝑐 (𝑟− 𝑐)1−𝛾𝑓 (𝑟)𝑑𝑟 are nonnegative and finite
for any 𝑐 ∈ R. The latter is a consequence of the assumption E(|𝑟|) =
∫ +∞
−∞ |𝑟|𝑓 (𝑟)𝑑𝑟 < +∞ and the inequality |𝑟 − 𝑐|1−𝛾 ≤ 𝐶𝛾 (1 + |𝑐| + |𝑟|) for

any 𝑟, 𝑐 ∈ R where 𝐶𝛾 > 0 is a constant.
Let 𝑐 ≥ 𝑟0 be fixed. The function 𝐻(𝑟) ≡ (𝑐 − 𝑟)1−𝛾 is concave on the

set (−∞, 𝑐). We remind ourselves Jensen’s inequality

∫

𝑐

−∞
𝐻(𝑟)𝑔(𝑟)𝑑𝑟 ≤ 𝐻

(

∫

𝑐

−∞
𝑟𝑔(𝑟)𝑑𝑟

)

where 𝑔(𝑟) = 𝑓 (𝑟)∕𝐹 (𝑐) ≥ 0 is such that ∫ 𝑐
−∞ 𝑔(𝑟)𝑑𝑟 = (1∕𝐹 (𝑐)) ∫ 𝑐

−∞ 𝑓 (𝑟)𝑑𝑟
= 1. Therefore

∫

𝑐

−∞
(𝑐 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟 ≤ 𝐹 (𝑐)

(

𝑐 − ∫

𝑐

−∞
𝑟𝑔(𝑟)𝑑𝑟

)1−𝛾

= (𝐹 (𝑐))𝛾
(

∫

𝑐

−∞
(𝑐 − 𝑟)𝑓 (𝑟)𝑑𝑟

)1−𝛾

≤
(

∫

𝑐

−∞
(𝑐 − 𝑟)𝑓 (𝑟)𝑑𝑟

)1−𝛾
(A.12)

For 𝑐 ≥ 0 we have

∫

𝑐

−∞
(𝑐−𝑟)𝑓 (𝑟)𝑑𝑟−(𝑐−𝑟0) = 𝑐(𝐹 (𝑐)−1)+𝑟0−∫

𝑐

−∞
𝑟𝑓 (𝑟)𝑑𝑟 ≤ 𝑟0−∫

𝑐

−∞
𝑟𝑓 (𝑟)𝑑𝑟

(A.13)

ince E(𝑟) > 𝑟0, there exists 𝑐∗ ≥ max{0, 𝑟0} such that ∫ 𝑐
−∞ 𝑟𝑓 (𝑟)𝑑𝑟 > 𝑟0

for any 𝑐 ≥ 𝑐∗. This and (A.13) imply that for any 𝑐 ≥ 𝑐∗

∫

𝑐

−∞
(𝑐 − 𝑟)𝑓 (𝑟)𝑑𝑟 < 𝑐 − 𝑟0

which gives, together with (A.12), the following

∫

𝑐

−∞
(𝑐 − 𝑟)1−𝛾𝑓 (𝑟)𝑑𝑟 − (𝑐 − 𝑟0)1−𝛾 < 0 for any 𝑐 ≥ 𝑐∗

Since the denominator of 𝐾𝛾 (𝑐) is strictly positive the function 𝐾𝛾 (𝑐) is
continuous on a compact interval [𝑟0, 𝑐∗]. Hence it attains its maximum
𝑀 ≥ 0 on [𝑟0, 𝑐∗]. As 𝐾𝛾 (𝑐) < 0 for 𝑐 ≥ 𝑐∗ the lemma follows. □

Proof of Proposition 2.6. The following holds based on (18) and
assumption 𝜆 > 𝐾𝛾

lim
𝑥→−∞

E(𝑣(𝑅(𝑥)))

= +∞ ×

[

∫

𝑟0

−∞

(

𝑟0 − 𝑟
)1−𝛾 𝑓 (𝑟)𝑑𝑟 − 𝜆∫

+∞

𝑟0

(

𝑟 − 𝑟0
)1−𝛾 𝑓 (𝑟)𝑑𝑟

]

= −∞

(A.14)

The same holds also when 𝑥 reaches +∞, see (A.11) and assumption
𝜆 > 1∕𝐾𝛾 . Then, it follows based on this, the continuity of E(𝑣(𝑅(𝑥)))
and the fact that E(𝑣(𝑅(𝑥))) is increasing at zero, see (A.9) and (A.10),
that there is at least one local maximum 𝑥∗ of problem (19) such that
𝑥∗ > 0 and (21) is satisfied. In addition, continuity of E(𝑣(𝑅(𝑥))) and



Quarterly Review of Economics and Finance 94 (2024) 214–240I. Fortin and J. Hlouskova

s
s
a

P
d

N

𝑟

t

T

t

t

I
i

a

∫

T

(A.14) imply that if there is any local maxima of problem (19), 𝑥∗,
uch that 𝑥∗ < 0, then the first order conditions hold and (23) is
atisfied. Finally, continuity of E(𝑣(𝑅(𝑥))), (A.11) and (A.14) imply that
ny global maxima is finite. This concludes the proof. □

roof of Proposition 2.7. The proof is based on implicit function
ifferentiation and Eq. (21). Let 𝑥∗ > 0 be a solution of
𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) = 0

and let it be fixed for all the following analysis. Thus, the first order
conditions are satisfied and

𝐺(𝜆, 𝑟̂, 𝑥) ≡ 𝜆∫

𝑧(𝑥)

−∞

𝑟 − 𝑟0

[𝑧(𝑥) − 𝑟]𝛾
𝑓 (𝑟)𝑑𝑟+∫

+∞

𝑧(𝑥)

𝑟 − 𝑟0

[𝑟 − 𝑧(𝑥)]𝛾
𝑓 (𝑟)𝑑𝑟 = 0 (A.15)

where 𝑧(𝑥) = 𝑟0 + 𝑟̂−𝑟0
𝑥 . Then

𝑑𝑥
𝑑𝜆

= −
𝑑𝐺
𝑑𝜆
𝑑𝐺
𝑑𝑥

and 𝑑𝑥
𝑑𝑟̂

= −
𝑑𝐺
𝑑𝑟̂
𝑑𝐺
𝑑𝑥

(A.16)

where 𝑟̂ is fixed in the first case and 𝜆 is fixed in the second case. Note
that 𝐺(𝜆,𝑟̂,𝑥)

𝑥𝛾 = 𝑑
𝑑𝑥E(𝑣(𝑅(𝑥))) and as 𝑥∗ is the point of local maximum

then 𝑑2E(𝑣(𝑅(𝑥)))
𝑑𝑥2

< 0 for 𝑥 = 𝑥∗ which implies then that 𝑑𝐺(𝜆,𝑟̂,𝑥)
𝑑𝑥 < 0.

amely

𝑑2E(𝑣(𝑅(𝑥)))
𝑑𝑥2

= 𝑑
𝑑𝑥

(𝑥−𝛾𝐺(𝜆, 𝑟̂, 𝑥)) = −𝑥−1−𝛾𝛾𝐺(𝜆, 𝑟̂, 𝑥) + 𝑥−𝛾
𝑑𝐺(𝜆, 𝑟̂, 𝑥)

𝑑𝑥

= −
𝛾
𝑥

𝑑
𝑑𝑥

E(𝑣(𝑅(𝑥))) + 𝑥−𝛾
𝑑𝐺(𝜆, 𝑟̂, 𝑥)

𝑑𝑥
= 𝑥−𝛾

𝑑𝐺(𝜆, 𝑟̂, 𝑥)
𝑑𝑥

< 0

Thus, based on this and (A.16), the sign of 𝑑𝑥
𝑑𝜆 coincides with the sign

of 𝑑𝐺(𝜆,𝑟̂,𝑥)
𝑑𝜆 . (A.15) implies that

𝑑𝐺(𝜆, 𝑟̂, 𝑥)
𝑑𝜆

= ∫

𝑧(𝑥)

−∞

𝑟 − 𝑟0

[𝑧(𝑥) − 𝑟]𝛾
𝑓 (𝑟)𝑑𝑟 (A.17)

For 𝑟̂ < 𝑟0 and 𝑥 > 0 is 𝑧(𝑥) < 𝑟0 and thus based on (A.17) is
𝑑𝐺(𝜆,𝑟̂,𝑥)

𝑑𝜆 < 0. On the other hand, for 𝑟̂ > 𝑟0 and 𝑥 > 0 is 𝑧(𝑥) >
0 and thus ∫ +∞

𝑧(𝑥)
𝑟−𝑟0

[𝑟−𝑧(𝑥)]𝛾 𝑓 (𝑟)𝑑𝑟 > 0. This and Eq. (A.15) imply that

𝜆 ∫ 𝑧(𝑥)
−∞

𝑟−𝑟0
[𝑧(𝑥)−𝑟]𝛾 𝑓 (𝑟)𝑑𝑟 < 0 and thus 𝑑𝐺(𝜆,𝑟̂,𝑥)

𝑑𝜆 < 0. This and (A.16) imply
hat 𝑑𝑥

𝑑𝜆 |𝑥=𝑥∗ < 0.
Note that

∫
𝑟 − 𝑟0

[𝑟 − 𝑧(𝑥)]𝛾
𝑑𝑟 =

[𝑟 − 𝑧(𝑥)]2−𝛾

2 − 𝛾
+

[𝑟 − 𝑧(𝑥)]1−𝛾 [𝑧(𝑥) − 𝑟0]
1 − 𝛾

∫
𝑟0 − 𝑟

[𝑧(𝑥) − 𝑟]𝛾
𝑑𝑟 = −

[𝑧(𝑥) − 𝑟]2−𝛾

2 − 𝛾
+

[𝑧(𝑥) − 𝑟]1−𝛾 [𝑧(𝑥) − 𝑟0]
1 − 𝛾

Using this and condition (24), when applying integration by parts on
(A.15), gives

𝐺(𝜆, 𝑟̂, 𝑥) = −∫

+∞

𝑧(𝑥)

(

[𝑟 − 𝑧(𝑥)]2−𝛾

2 − 𝛾
+

[𝑟 − 𝑧(𝑥)]1−𝛾 [𝑧(𝑥) − 𝑟0]
1 − 𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟

𝑑𝑟

+ 𝜆∫

𝑧(𝑥)

−∞

(

−
[𝑧(𝑥) − 𝑟]2−𝛾

2 − 𝛾
+

[𝑧(𝑥) − 𝑟]1−𝛾 [𝑧(𝑥) − 𝑟0]
1 − 𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟

𝑑𝑟

= 0 (A.18)

As 𝑑𝑧(𝑥)
𝑑𝑥 = − 𝑟̂−𝑟0

(𝑥∗)2 and 𝑑𝑧(𝑥)
𝑑𝑟̂ = 1

𝑥∗ , Equation 𝐺(𝜆, 𝑟̂, 𝑥) = 0 given by (A.18)
implies

𝑑𝐺
𝑑𝑥 |𝑥=𝑥∗ = 𝑑𝑧(𝑥)

𝑑𝑥

[

𝜆 ∫ 𝑧(𝑥)
−∞

(

𝛾
1−𝛾 [𝑧(𝑥) − 𝑟]1−𝛾 + 𝑧(𝑥)−𝑟0

[𝑧(𝑥)−𝑟]𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟 𝑑𝑟

− ∫ +∞
𝑧(𝑥)

(

𝛾
1−𝛾 [𝑟 − 𝑧(𝑥)]1−𝛾 − 𝑧(𝑥)−𝑟0

[𝑟−𝑧(𝑥)]𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟 𝑑𝑟

]

𝑑𝐺
𝑑𝑟̂ |𝑥=𝑥∗ = 𝑑𝑧(𝑥)

𝑑𝑟̂

[

𝜆 ∫ 𝑧(𝑥)
−∞

(

𝛾
1−𝛾 [𝑧(𝑥) − 𝑟]1−𝛾 + 𝑧(𝑥)−𝑟0

[𝑧(𝑥)−𝑟]𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟 𝑑𝑟

− ∫ +∞
𝑧(𝑥)

(

𝛾
1−𝛾 [𝑟 − 𝑧(𝑥)]1−𝛾 − 𝑧(𝑥)−𝑟0

[𝑟−𝑧(𝑥)]𝛾

)

𝑑𝑓 (𝑟)
𝑑𝑟 𝑑𝑟

]

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭
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(A.19)
his and (A.16) imply that 𝑑𝑥
𝑑𝑟̂ = −

𝑑𝑧(𝑥)
𝑟̂

𝑑𝑧(𝑥)
𝑑𝑥

= 𝑥
𝑟̂−𝑟0 and thus

𝑑𝑥∗

𝑑𝑟̂
= 𝑥∗

𝑟̂ − 𝑟0

{

< 0, if 𝑟̂ < 𝑟0

> 0, if 𝑟̂ > 𝑟0
(A.20)

In a similar matter it can be shown that for 𝑥∗ < 0 is 𝑑𝑥∗

𝑑𝜆 > 0 and

𝑑𝑥∗

𝑑𝑟̂
= 𝑥∗

𝑟̂ − 𝑟0

{

> 0, if 𝑟̂ < 𝑟0

< 0, if 𝑟̂ > 𝑟0
(A.21)

Note that both (A.20) and (A.21) are first order linear differential equa-
tions, which then imply (piece-vice linear) dependence of risk taking
with respect to 𝑟̂ when 𝑥∗ > 0 and an inverse V-shaped dependence
when 𝑥∗ < 0.

𝑥∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑟0−𝑟̂
𝐾1(𝜆,𝑟0 ,𝛾)

> 0, if 𝑥∗ satisf ies (21) and 𝑟̂ < 𝑟0

where 𝐾1(𝜆, 𝑟0, 𝛾) > 0

𝑟̂−𝑟0
𝐾2(𝜆,𝑟0 ,𝛾)

> 0, if 𝑥∗ satisf ies (21) and 𝑟̂ > 𝑟0

where 𝐾2(𝜆, 𝑟0, 𝛾) > 0

𝑟0−𝑟̂
𝐾3(𝜆,𝑟0 ,𝛾)

< 0, if 𝑥∗ satisf ies (23) and 𝑟̂ < 𝑟0

where 𝐾3(𝜆, 𝑟0, 𝛾) < 0

𝑟̂−𝑟0
𝐾4(𝜆,𝑟0 ,𝛾)

< 0, if 𝑥∗ satisf ies (23) and 𝑟̂ > 𝑟0

where 𝐾4(𝜆, 𝑟0, 𝛾) < 0

(A.22)

where 𝐾1, 𝐾2, 𝐾3, 𝐾4 are functions of 𝜆, 𝑟0, 𝛾, and the distribution of
the risky asset return does not depend on the reference return 𝑟̂. This
implies the V-shaped (piecewise linear) dependence of risk taking with
respect to 𝑟̂ when 𝑥∗ > 0 and an inverse V-shaped dependence when
𝑥∗ < 0.

Note that based on (A.22), Proposition 2.5 can be re-formulated
such that for 𝑟̂ < 𝑟0 the global maximum is obtained for 𝑥∗ = 𝑟0−𝑟̂

𝐾(𝜆,𝑟0 ,𝛾) >
0, where 𝐾 = 𝐾(𝜆, 𝑟0, 𝛾) > 0 satisfies

𝜆∫

𝑟0−𝐾

−∞

𝑟 − 𝑟0
(

𝑟0 −𝐾 − 𝑟
)𝛾 𝑓 (𝑟)𝑑𝑟 + ∫

+∞

𝑟0−𝐾

𝑟 − 𝑟0
(

𝑟 − 𝑟0 +𝐾
)𝛾 𝑓 (𝑟)𝑑𝑟 = 0 (A.23)

Then the statement of Proposition 2.6 can be re-formulated such
hat for 𝑟̂ < 𝑟0 the local positive maximum is obtained for 𝑥∗ =
𝑟0−𝑟̂

𝐾(𝜆,𝑟0 ,𝛾) > 0, where 𝐾 = 𝐾(𝜆, 𝑟0, 𝛾) > 0 satisfies (A.23) while for 𝑟̂ > 𝑟0

he local positive maximum is obtained for 𝑥∗ = 𝑟̂−𝑟0
𝐾(𝜆,𝑟0 ,𝛾) > 0, where

𝐾 = 𝐾(𝜆, 𝑟0, 𝛾) > 0 satisfies

𝜆∫

𝑟0+𝐾

−∞

𝑟 − 𝑟0
(

𝑟0 +𝐾 − 𝑟
)𝛾 𝑓 (𝑟)𝑑𝑟 + ∫

+∞

𝑟0+𝐾

𝑟 − 𝑟0
(

𝑟 − 𝑟0 −𝐾
)𝛾 𝑓 (𝑟)𝑑𝑟 = 0 (A.24)

f there exists also a local negative maximum 𝑥∗ < 0, then for 𝑟̂ < 𝑟0 it
s of the form 𝑥∗ = 𝑟0−𝑟̂

𝐾(𝜆,𝑟0 ,𝛾) < 0, where 𝐾 = 𝐾(𝜆, 𝑟0, 𝛾) < 0 satisfies

∫

𝑟0−𝐾

−∞

𝑟 − 𝑟0
(

𝑟0 −𝐾 − 𝑟
)𝛾 𝑓 (𝑟)𝑑𝑟 + 𝜆∫

+∞

𝑟0−𝐾

𝑟 − 𝑟0
(

𝑟 − 𝑟0 +𝐾
)𝛾 𝑓 (𝑟)𝑑𝑟 = 0 (A.25)

nd for 𝑟̂ > 𝑟0 is 𝑥∗ = 𝑟̂−𝑟0
𝐾(𝜆,𝑟0 ,𝛾) < 0, where 𝐾 = 𝐾(𝜆, 𝑟0, 𝛾) < 0 satisfies

𝑟0+𝐾

−∞

𝑟 − 𝑟0
(

𝑟0 +𝐾 − 𝑟
)𝛾 𝑓 (𝑟)𝑑𝑟 + 𝜆∫

+∞

𝑟0+𝐾

𝑟 − 𝑟0
(

𝑟 − 𝑟0 −𝐾
)𝛾 𝑓 (𝑟)𝑑𝑟 = 0 (A.26)

his concludes the proof. □
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Appendix B. Data description and summary statistics

See Tables B.1 and B.2
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Appendix C. Empirical results

See Tables C.1–C.6
Table B.1
Data description and sources.

Abbr Variable Unit Note Source Code Start

EU markets
Stock EU stock market ind Index Ref DS TOTMKEM(RI)∼E 1983:1
Bond German gov bond ind Index Total ret ind, 10 yrs Ref DS BMBD10Y(RI) 1983:1
Gold Gold bullion LBM EUR A.M. official fixing Ref DS: ICE GOLDBLN(OF)∼E 1983:1
Risk-free One-month LIBOR Percent Ref DS: ICE BBDEM1M 1986:1
US markets
Stock US stock market ind Index Ref DS TOTMKUS(RI) 1983:1
Bond US gov bond ind Index Total ret ind, 10 yrs Ref DS BMUS10Y(RI) 1983:1
Gold Gold bullion LBM USD A.M. official fixing Ref DS: ICE GOLDBLN(OF) 1983:1
Risk-free One-month LIBOR Percent Ref DS: ICE BBUSD1M 1986:1

Gov = government, ind = index, ret = return, yrs = years, Ref DS = Refinitiv Datastream, EUR = Euro, USD = US dollar, LBM = London
Bullion Market, ICE = ICE Benchmark Administration Ltd. The frequency of all data is monthly, where monthly values are end-of-month values
for a given month. Returns are calculated as 100 (𝑃𝑡∕𝑃𝑡−1−1), where 𝑃𝑡 is the price of the index observed in month 𝑡, and are quoted in percent.
Note that the risk-free rate is used in the evaluation process, not in the optimization process. It is only available from January 1986, which
is why we start with the asset data in January 1983, granting us an optimization period of three years. Assets in Europe are quoted in Euro,
assets in the US are quoted in US dollar. Prices for gold are quoted per troy ounce.
Table B.2
Summary statistics for EU and US markets.

EU markets US markets

Stock Bond Gold Risk-free Stock Bond Gold Risk-free

Summary statistics of one-month returns (in percent p.a.)
Mean 12.28 6.62 4.77 3.04 13.61 7.36 5.13 3.50
Std.dev. 16.80 5.44 15.85 0.79 14.87 7.50 15.62 0.77
Skewness −0.61 −0.18 0.22 0.57 −0.68 0.24 0.13 0.27
Kurtosis 1.89 0.11 1.34 −0.39 2.31 0.95 1.61 −1.13
VaR −60.92 −22.29 −56.98 −0.42 −58.08 −28.95 −53.76 0.17
CVaR −76.81 −28.13 −69.38 −0.50 −71.08 −38.44 −68.32 0.16
Minimum −93.99 −49.47 −89.62 −0.59 −93.40 −58.63 −91.77 0.14
Maximum 546.04 90.58 653.20 9.88 376.67 209.02 731.56 10.06
Percentiles (in percent p.a.)
5 −60.92 −22.29 −56.98 −0.42 −58.08 −28.95 −53.76 0.17
10 −43.88 −17.59 −44.99 −0.40 −41.24 −21.81 −43.82 0.20
25 −17.40 −6.51 −23.90 0.35 −15.64 −8.46 −24.90 0.66
50 18.58 8.56 1.92 3.18 18.54 6.07 −0.39 3.19
75 57.11 21.18 39.20 4.57 52.22 24.19 42.22 5.68
90 104.72 32.64 101.53 7.93 102.38 46.48 104.64 7.13
95 149.39 40.55 157.25 9.06 134.23 65.99 157.16 8.31
Correlations across EU and US assets
Stock, EU
Bond, EU −0.07
Gold, EU −0.08 0.06
Risk-free, EU −0.04 0.07 −0.06
Stock, US 0.74 −0.09 −0.13 −0.03
Bond, US −0.17 0.67 −0.02 0.10 −0.04
Gold, US −0.13 0.05 0.79 −0.05 −0.06 0.06
Risk-free, US 0.02 −0.01 −0.07 0.72 0.02 0.07 −0.07

Statistics are calculated on the basis of monthly returns and then annualized using discrete compounding, for the period January 1983 to
December 2020 (for the period January 1986 to December 2020 in case of the risk-free rate). The annual standard deviation is computed as
𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. Skewness and kurtosis are not adjusted. The risk-free rate, originally given in percent p.a., is first converted to percent per month
using discrete compounding and then the statistics are computed similarly to the other data.



Quarterly Review of Economics and Finance 94 (2024) 214–240I. Fortin and J. Hlouskova
Table C.1
Portfolio performance of PT portfolios in the EU: benchmark scenario, 𝑟̂ = 0, 𝛾 = 0.5.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.5

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.17 5.75 12.92 9.42 8.36 7.69 7.36 7.03 7.81 8.04 7.19 7.84 7.57
Omega 159.23 143.34 167.86 150.45 151.48 149.66 148.38 149.69 146.31 157.46 147.98 164.78 165.16
Sharpe ratio 62.74 46.93 63.16 45.99 46.14 44.15 42.63 44.06 41.74 50.63 41.82 57.01 58.13
Sortino ratio 97.70 72.35 98.64 70.31 68.96 65.16 62.46 61.82 59.84 78.42 60.14 90.83 91.60
Additional descriptive statistics (in percent p.a.)
Median 7.32 6.10 14.93 9.51 8.99 8.44 8.74 9.02 9.11 8.34 7.81 7.74 7.86
Volatility 4.79 5.54 15.19 13.47 11.21 10.23 9.83 8.79 11.09 9.58 9.63 8.16 7.54
Down. vol. 2.69 3.16 9.35 8.48 7.17 6.61 6.40 5.97 7.38 5.82 6.38 4.77 4.45
CVaR −27.23 −31.10 −69.37 −66.91 −59.46 −56.03 −54.62 −51.37 −61.23 −52.28 −53.48 −44.46 −42.27
Skewness −0.34 −0.10 −0.31 −0.27 −0.56 −0.71 −0.78 −1.53 −0.83 −0.07 −1.05 0.00 −0.11
Kurtosis 3.59 4.10 5.19 6.86 10.15 12.95 14.71 19.12 11.00 9.17 15.82 10.71 10.96
Realized returns (in percent p.a.)
Last 10 years 5.67 5.18 7.19 4.52 4.15 4.50 4.51 5.03 4.44 5.19 4.94 5.73 5.99
Last 5 years 3.49 3.47 7.18 1.12 2.24 2.57 2.37 3.52 3.04 2.04 2.39 4.06 4.72
Last 3 years 3.23 3.50 7.83 1.26 2.62 2.84 2.21 3.56 3.77 2.50 2.90 4.35 4.57
Last year 1.13 −3.83 6.70 1.54 −2.41 −2.96 −3.95 −0.44 5.52 −0.79 −0.69 4.54 4.72
Mean portfolio weights (in percent)
Stock 10.55 14.66 66.19 48.11 38.54 34.13 31.41 27.84 41.47 35.20 32.85 28.73 25.07
Bond 80.65 70.40 11.43 31.28 47.28 53.33 56.53 60.86 45.82 54.30 56.88 61.17 65.10
Gold 8.80 14.95 22.38 20.61 14.18 12.54 12.06 11.29 12.70 10.50 10.27 10.10 9.83
Standard deviation of portfolio weights
Stock 8.51 8.57 47.31 42.57 36.20 32.03 29.62 26.03 35.64 31.51 29.95 25.98 21.28
Bond 7.42 16.49 31.82 38.66 35.41 32.54 30.91 27.89 35.98 31.51 29.99 26.93 22.73
Gold 7.10 12.71 41.68 35.66 22.75 18.67 16.54 13.65 18.27 12.80 11.92 11.03 10.05

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
Table C.2
Portfolio performance of PT portfolios in the US: benchmark scenario, 𝑟̂ = 0, 𝛾 = 0.5.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.5

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.95 7.35 13.34 12.34 10.08 9.35 8.62 8.46 10.06 10.46 9.90 9.64 8.89
Omega 155.26 159.99 163.86 167.92 158.80 155.92 152.46 155.95 158.69 172.36 166.71 166.93 160.51
Sharpe ratio 57.37 58.99 62.23 63.43 55.15 53.36 50.51 53.19 54.56 65.46 61.21 61.06 56.38
Sortino ratio 91.75 93.98 92.15 94.49 78.09 75.44 71.24 77.06 78.40 99.15 91.38 91.46 84.18
Additional descriptive statistics (in percent p.a.)
Median 6.17 6.91 18.72 14.24 11.46 10.57 10.60 10.04 10.69 9.91 9.69 9.34 8.45
Volatility 5.77 6.28 15.33 13.50 11.59 10.66 9.83 9.04 11.66 10.31 10.14 9.76 9.27
Down. vol. 3.14 3.49 9.90 8.65 7.78 7.13 6.55 5.82 7.72 6.40 6.38 6.10 5.79
CVaR −31.16 −33.82 −71.48 −66.52 −62.15 −59.59 −56.00 −51.24 −63.19 −55.62 −55.97 −53.93 −51.32
Skewness −0.02 −0.07 −0.68 −0.78 −1.30 −1.16 −1.12 −0.93 −1.03 −0.69 −0.73 −0.75 −0.70
Kurtosis 4.54 6.10 5.20 6.92 9.93 8.40 8.76 8.79 7.97 6.83 6.98 7.52 7.74
Realized returns (in percent p.a.)
Last 10 Years 7.72 7.64 9.21 10.24 6.84 6.01 6.06 6.26 6.79 6.81 6.78 6.91 6.95
Last 5 Years 8.00 7.41 8.90 9.79 6.75 6.70 6.40 6.82 5.14 7.43 7.72 8.04 7.86
Last 3 Years 9.43 9.14 4.50 8.29 6.83 7.34 6.31 7.19 3.74 7.77 7.79 8.88 8.86
Last Year 15.05 14.66 −7.97 4.01 6.44 7.70 11.76 14.08 −9.99 4.27 5.03 8.04 11.14
Mean portfolio weights (in percent)
Stock 20.74 25.78 65.48 58.99 49.04 45.89 42.21 38.63 50.92 46.34 45.95 43.47 41.47
Bond 64.64 55.68 6.43 17.51 34.52 38.67 43.72 48.52 34.06 40.48 41.79 45.35 48.38
Gold 14.62 18.54 28.10 23.51 16.44 15.44 14.08 12.84 15.02 13.18 12.26 11.18 10.15
Standard deviation of portfolio weights
Stock 10.49 13.46 47.54 41.39 35.08 32.53 29.84 27.02 33.99 32.18 31.57 30.32 28.81
Bond 10.46 16.18 24.53 30.12 31.74 31.62 30.70 28.92 33.51 32.64 32.23 31.42 29.72
Gold 14.20 15.77 44.95 35.11 22.64 20.09 17.29 14.89 22.62 18.65 16.88 15.45 13.61

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
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Table C.3
Portfolio performance of PT portfolios in the EU: conservative scenario, 𝑟̂ = 0, 𝛾 = 0.9.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.9

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.17 5.75 12.92 9.20 8.29 7.73 7.30 7.00 8.41 7.62 8.10 8.08 8.59
Omega 159.23 143.34 167.86 148.83 151.48 150.25 148.25 149.33 167.98 159.76 169.07 170.64 180.76
Sharpe ratio 62.74 46.93 63.16 44.76 46.08 44.57 42.69 43.78 60.04 54.74 61.86 63.01 69.82
Sortino ratio 97.70 72.35 98.64 67.84 68.92 65.82 61.93 61.24 97.31 85.46 100.05 103.25 116.87
Additional descriptive statistics (in percent p.a.)
Median 7.32 6.10 14.93 9.43 8.99 8.57 8.74 9.02 7.54 7.47 8.19 8.01 8.10
Volatility 4.79 5.54 15.19 13.36 11.07 10.22 9.70 8.76 8.66 8.11 7.92 7.74 7.70
Down. vol. 2.69 3.16 9.35 8.48 7.08 6.60 6.37 5.96 4.99 4.85 4.55 4.38 4.26
CVaR −27.23 −31.10 −69.37 −66.97 −58.74 −56.03 −54.58 −51.37 −46.04 −45.33 −42.81 −41.48 −40.60
Skewness −0.34 −0.10 −0.31 −0.31 −0.56 −0.71 −0.91 −1.56 −0.08 −0.29 −0.13 −0.07 −0.03
Kurtosis 3.59 4.10 5.19 6.96 10.44 12.99 15.14 19.33 8.15 8.79 8.86 9.07 9.20
Realized returns (in percent p.a.)
Last 10 Years 5.67 5.18 7.19 4.08 4.24 4.56 4.55 5.06 6.01 4.73 5.20 5.11 5.80
Last 5 Years 3.49 3.47 7.18 0.59 2.41 2.57 2.37 3.58 3.55 3.00 2.42 2.38 4.35
Last 3 Years 3.23 3.50 7.83 0.46 2.74 2.84 2.21 3.66 3.21 1.30 2.73 2.20 4.30
Last Year 1.13 −3.83 6.70 −0.03 −2.41 −2.96 −3.95 −0.08 0.92 −1.55 −0.82 1.01 1.40
Mean portfolio weights (in percent)
Stock 10.55 14.66 66.19 48.01 37.96 34.05 31.08 27.79 33.24 31.56 31.21 29.57 28.57
Bond 80.65 70.40 11.43 32.05 47.93 53.47 56.83 60.89 55.53 57.97 58.24 59.49 60.45
Gold 8.80 14.95 22.38 19.94 14.11 12.47 12.09 11.32 11.23 10.47 10.55 10.94 10.98
Standard deviation of portfolio weights
Stock 8.51 8.57 47.31 42.50 35.64 32.01 29.24 26.00 29.19 27.34 26.62 25.53 24.56
Bond 7.42 16.49 31.82 38.72 35.13 32.54 30.65 27.89 29.80 27.84 27.51 27.12 26.55
Gold 7.10 12.71 41.68 34.71 22.61 18.59 16.49 13.64 12.10 10.26 9.88 10.13 10.01

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
Table C.4
Portfolio performance of PT portfolios in the EU: aggressive scenario, 𝑟̂ is the portfolio return from the previous period, 𝛾 = 0.1.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.1

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.17 5.75 12.92 10.64 8.80 7.98 7.69 7.67 10.30 8.20 7.60 7.32 7.31
Omega 159.23 143.34 167.86 154.49 145.96 142.39 142.32 145.74 151.07 139.91 137.58 137.06 140.61
Sharpe ratio 62.74 46.93 63.16 50.99 43.32 40.26 39.63 41.73 48.29 38.68 36.27 35.50 37.89
Sortino ratio 97.70 72.35 98.64 78.31 65.27 59.44 58.59 61.50 73.82 57.16 53.06 52.47 55.44
Additional descriptive statistics (in percent p.a.)
Median 7.32 6.10 14.93 11.38 9.30 9.39 8.48 7.73 10.62 9.40 8.41 7.70 7.77
Volatility 4.79 5.54 15.19 14.47 12.91 11.91 11.38 10.76 14.60 12.95 12.21 11.71 10.94
Down. vol. 2.69 3.16 9.35 9.06 8.23 7.74 7.37 6.98 9.18 8.40 8.00 7.58 7.15
CVaR −27.23 −31.10 −69.37 −68.48 −65.40 −62.51 −60.50 −58.07 −68.75 −65.93 −64.24 −61.48 −59.05
Skewness −0.34 −0.10 −0.31 −0.26 −0.35 −0.53 −0.56 −0.67 −0.24 −0.44 −0.52 −0.48 −0.64
Kurtosis 3.59 4.10 5.19 5.92 7.18 8.56 9.64 11.29 5.79 7.13 8.15 8.88 10.73
Realized returns (in percent p.a.)
Last 10 Years 5.67 5.18 7.19 5.24 4.34 3.70 4.10 4.31 4.43 3.74 2.84 2.56 3.17
Last 5 Years 3.49 3.47 7.18 3.30 1.42 1.09 1.29 1.24 2.29 1.09 −0.22 −0.47 −0.33
Last 3 Years 3.23 3.50 7.83 3.46 1.49 1.67 1.86 1.13 3.42 2.13 0.64 −0.48 −0.53
Last Year 1.13 −3.83 6.70 1.64 −2.24 −2.67 −1.70 −3.18 −1.18 −0.52 −2.98 −1.23 −7.07
Mean portfolio weights (in percent)
Stock 10.55 14.66 66.19 58.53 49.56 45.64 42.82 39.17 58.74 51.07 47.21 44.01 40.19
Bond 80.65 70.40 11.43 19.91 33.51 40.12 43.65 47.76 20.21 32.41 38.51 42.19 47.01
Gold 8.80 14.95 22.38 21.56 16.93 14.24 13.53 13.07 21.05 16.53 14.28 13.81 12.79
Standard deviation of portfolio weights
Stock 8.51 8.57 47.31 44.54 40.25 38.21 36.81 34.76 44.56 40.55 39.42 37.84 35.82
Bond 7.42 16.49 31.82 35.28 37.49 36.90 35.73 34.32 34.85 36.31 37.00 36.29 35.17
Gold 7.10 12.71 41.68 38.36 29.91 23.31 20.51 18.26 37.97 29.15 24.21 21.50 18.45

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
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Table C.5
Portfolio performance of PT portfolios in the US: conservative scenario, 𝑟̂ is the portfolio return from the previous period, 𝛾 = 0.1.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.1

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.95 7.35 13.34 12.80 10.83 9.99 9.67 9.21 13.62 11.42 10.62 9.84 9.59
Omega 155.26 159.99 163.86 168.67 158.29 153.98 152.85 152.83 173.28 162.62 158.52 153.11 155.29
Sharpe ratio 57.37 58.99 62.23 64.53 55.06 51.99 51.27 52.14 68.70 58.49 55.32 51.39 54.33
Sortino ratio 91.75 93.98 92.15 96.39 80.40 75.33 73.80 76.80 103.06 85.94 79.56 73.87 79.66
Additional descriptive statistics (in percent p.a.)
Median 6.17 6.91 18.72 15.84 12.83 11.98 11.80 10.62 18.32 13.61 13.00 11.54 11.37
Volatility 5.77 6.28 15.33 13.96 12.89 12.09 11.66 10.62 14.26 13.12 12.46 11.95 10.87
Down. vol. 3.14 3.49 9.90 8.93 8.42 7.92 7.68 6.76 9.08 8.52 8.25 7.89 6.97
CVaR −31.16 −33.82 −71.48 −67.74 −65.21 −63.20 −62.07 −56.69 −68.40 −65.81 −64.42 −62.98 −58.76
Skewness −0.02 −0.07 −0.68 −0.74 −0.88 −0.87 −0.90 −0.67 −0.73 −0.85 −1.06 −0.95 −0.69
Kurtosis 4.54 6.10 5.20 6.33 7.58 6.90 7.00 6.19 6.03 7.35 8.09 7.26 5.75
Realized returns (in percent p.a.)
Last 10 Years 7.72 7.64 9.21 11.45 9.74 8.38 7.77 6.55 12.11 10.26 9.26 8.50 7.25
Last 5 Years 8.00 7.41 8.90 11.10 10.06 7.98 7.65 7.35 10.36 9.40 9.89 7.95 7.44
Last 3 Years 9.43 9.14 4.50 9.01 9.93 7.08 6.98 6.98 7.83 9.15 10.19 6.78 6.82
Last Year 15.05 14.66 −7.97 6.43 9.55 7.79 10.61 10.82 1.80 7.74 12.09 7.10 10.59
Mean portfolio weights (in percent)
Stock 20.74 25.78 65.48 62.20 56.26 53.50 51.30 48.13 63.17 57.86 54.70 53.21 49.58
Bond 64.64 55.68 6.43 13.27 24.26 28.84 32.03 37.04 12.62 22.78 27.16 30.21 35.58
Gold 14.62 18.54 28.10 24.53 19.49 17.66 16.67 14.83 24.21 19.36 18.14 16.59 14.84
Standard deviation of portfolio weights
Stock 10.49 13.46 47.54 43.36 39.25 38.20 36.98 34.86 43.78 39.64 38.95 37.79 36.50
Bond 10.46 16.18 24.53 29.23 30.23 30.65 30.87 30.82 28.43 30.85 31.88 31.47 31.87
Gold 14.20 15.77 44.95 37.77 28.15 24.45 21.95 18.59 39.02 28.95 25.75 22.53 18.63

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
Table C.6
Portfolio performance of PT portfolios in the US: aggressive scenario, 𝑟̂ = 𝑟0, 𝛾 = 0.9.

MV CVaR Risk Linear loss aversion S-shaped prospect theory, 𝛾 = 0.9

neutral 𝜆 𝜆
1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.95 7.35 13.34 12.59 10.07 9.69 8.90 8.40 11.61 11.59 11.31 11.42 10.00
Omega 155.26 159.99 163.86 169.14 158.63 159.29 155.41 154.70 177.74 181.59 178.08 181.25 166.21
Sharpe ratio 57.37 58.99 62.23 64.42 54.93 56.23 52.99 52.16 68.64 71.71 69.19 70.90 60.85
Sortino ratio 91.75 93.98 92.15 95.90 77.63 80.79 75.45 74.72 102.56 109.87 104.77 108.20 89.07
Additional descriptive statistics (in percent p.a.)
Median 6.17 6.91 18.72 15.24 11.87 10.84 10.18 9.92 11.64 11.16 11.15 10.80 9.91
Volatility 5.77 6.28 15.33 13.65 11.60 10.69 9.88 9.11 11.46 10.95 10.95 10.84 10.36
Down. vol. 3.14 3.49 9.90 8.76 7.81 7.02 6.53 5.94 7.25 6.73 6.81 6.68 6.65
CVaR −31.16 −33.82 −71.48 −67.17 −62.55 −59.44 −56.53 −52.42 −60.75 −58.00 −58.98 −58.35 −58.12
Skewness −0.02 −0.07 −0.68 −0.78 −1.31 −1.02 −1.04 −1.01 −0.82 −0.64 −0.66 −0.64 −0.88
Kurtosis 4.54 6.10 5.20 6.72 9.91 7.56 8.18 8.94 7.42 6.95 6.84 6.96 7.08
Realized returns (in percent p.a.)
Last 10 Years 7.72 7.64 9.21 10.73 6.96 6.18 6.34 6.41 7.95 8.07 7.59 7.78 6.04
Last 5 Years 8.00 7.41 8.90 10.22 6.92 6.80 6.87 7.11 8.94 9.33 8.06 8.42 4.96
Last 3 Years 9.43 9.14 4.50 8.99 7.15 7.44 7.08 7.66 9.26 9.70 9.08 9.13 3.80
Last Year 15.05 14.66 −7.97 5.74 6.11 7.35 12.35 15.97 8.26 9.22 9.23 9.24 −5.39
Mean portfolio weights (in percent)
Stock 20.74 25.78 65.48 59.55 49.35 46.49 42.62 38.55 51.55 49.99 49.92 49.93 48.08
Bond 64.64 55.68 6.43 17.00 34.55 38.61 43.84 49.43 31.86 35.23 35.58 36.15 38.15
Gold 14.62 18.54 28.10 23.45 16.11 14.90 13.54 12.02 16.59 14.78 14.50 13.92 13.77
Standard deviation of portfolio weights
Stock 10.49 13.46 47.54 41.64 35.13 33.23 30.54 27.69 30.48 30.47 30.33 30.32 29.50
Bond 10.46 16.18 24.53 30.67 32.38 32.24 31.26 29.39 27.29 27.58 27.47 27.67 27.71
Gold 14.20 15.77 44.95 35.56 22.46 19.80 17.16 14.55 21.21 19.01 18.44 17.66 16.92

The table reports statistics of monthly reallocated optimal portfolio returns based on an optimization period of 36 months as well as the average and standard
deviation of the optimal asset weights. The table also reports results for portfolios implied by mean–variance (MV), conditional value-at-risk (CVaR), risk neutral,
and linear loss averse investors. The evaluation period covers January 1986 to December 2020. Statistics are calculated on the basis of monthly returns and
then annualized assuming discrete compounding. The annual standard deviation is computed as 𝜎𝑝𝑎 =

√

12𝜎𝑝𝑚. The Omega measure and the Sortino ratio use the
risk-free interest rate as target return.
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