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Abstract. This paper investigates stability properties of evolutionary se-
lection dynamics in normal form games. The analysis is focused on ag-
gregate monotonic selection (AMS) dynamics in continuous time. While
it is already known that virtually only strict equilibria are asymptoti-
cally stable in such selection dynamics, we emphasize asymptotic sta-
bility of sets of population states, more precisely of boundary faces of
the mixed-strategy space. Our main result is a characterization of those
boundary faces which are asymptotically stable in AMS dynamics, and
we show that every such boundary face contains an essential component
of Nash equilibria, and hence a strategically stable set of Nash equilibria.

1. INTRODUCTION

Most applications of non-cooperative game theory build on such so-
lution concepts as Nash equilibrium. As is well known by now, the
rationalistic foundation of this approach is quite demanding. Not only
is it required that agents are optimizers, but it also presumes a large
degree of coordination of different agents’ expectations [see: Tan and
Werlang, 1988, and Aumann and Brandenburger, 1992, for a recent
investigation]. In recent years researchers have investigated alternative
foundations of Nash equilibrium play. Particularly promising seems the
approach taken in evolutionary game theory. Instead of asking if agents
are rational in some epistemologically well-defined sense, one asks if
evolutionary selection processes induce a tendency towards Nash equi-
librium play. In other words, one then investigates the validity of Fried-
man’s [1953] "as if” paradigm in the context of strategic interaction.

The best studied setting for such evolutionary dynamics is pairwise
random matchings in a single but infinitely large population of individ-
uals. All individuals in the population are, at each instant, ”prepro-
grammed” to use a certain pure strategy. At each matching, the indi-
viduals play a symmetric and finite two-person game, each individual
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using his or her "programmed” strategy. In the so-called replicator dy-
namics, players change from currently worse to better strategies at rates
which are proportional to current payoff differences. It has been shown
that (Lyapunov) stability in the replicator dynamics implies (symmet-
ric) Nash equilibrium behavior [Bomze, 1986], and that dynamic con-
vergence from an initial population state in which all strategies are in
use implies that the limit state corresponds to a (symmetric) Nash equi-
librium [Nachbar, 1990]. Hence, the evolutionary approach lends fairly
strong support for the Nash equilibrium hypothesis in this setting.

However, the relevance for economics of these results is limited in
several ways. First, the special form of the replicator dynamics is not
compelling in an economic modelling setting. Accordingly, economic
theorists have recently worked with broader classes of evolutionary se-
lection dynamics, including the replicator dynamics only as a special
case. Secondly, many economic applications call for multi-population,
rather than single-population dynamics. For instance, the player roles
may be those of "buyers” and "sellers”, each type of individual being
drawn from his or her ”player role population”. Moreover, in most ap-
plications, the game will not be symmetric and may involve more than
two players. Thus one is lead to study a broader class of evolution-
ary selection dynamics in n-player games, in which each player role is
represented by one distinct population - the topic of the present paper.

Just as in the standard replicator dynamics of biological evolution-
ary game theory, the player populations are infinite and individuals are
randomly drawn to play the game - one individual from each player-
population. Each individual is at each instant ”programmed” to a par-
ticular pure strategy available to the player whose role he plays. Hence,
at each instant every player-population can be divided into as many
sub-populations as there are pure strategies for the player in question.
The only constraint imposed on the evolutionary selection mechanism
is that the induced dynamics be aggregate monotonic [Samuelson and
Zhang, 1992]. In such a dynamics, the composition of each population
moves away from currently worse to currently better strategies in the
following sense: If one mixed strategy currently earns a higher payoff
than another, then the direction of the vector of growth rates is closer
to the first mixed strategy than to the second. This condition is more
restrictive than the simpler condition of monotonicity. The latter re-
quires sub-populations associated with currently better pure strategies
to grow at higher rates than sub-populations associated with currently
worse pure strategies (see Section 2 below for exact conditions.)

The aforementioned positive results from the symmetric setting carry
over to asymmetric settings. In particular, it is known that every Nash
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equilibrium constitutes a stationary population state and that all sta-
tionary states which are not Nash equilibria are unstable [Friedman,
1991, Samuelson and Zhang, 1992]. In this sense, the evolutionary
approach provides not only a foundation for the kind of rationality and
coordination of expectations inherent in the notion of Nash equilibrium:
It even selects among Nash equilibria also in this general case. More-
over, even if a stationary state is unstable, but it is a limit point of
some evolutionary dynamic path starting from some initial population
state in which all strategies in the game are used, then again this state
has to be a Nash equilibrium. In this sense, all convergent evolutionary
selection paths lead to (aggregate) behavior meeting the requirements
of Nash equilibrium play.

There i1s a caveat to these positive results, however. It is that few
Nash equilibria are stable in multi-population dynamics - in contrast to
single-population dynamics in symmetric games. More precisely, only
strict Nash equilibria are asymptotically stable in the replicator dynam-
ics as applied to n-player normal-form games [Ritzberger and Vo-
gelsberger, 1990, Proposition 1]. And virtually only strict equilibria
are asymptotically stable in aggregate monotonic selection dynamics in
~such games [Samuelson and Zhang, 1992, Theorem 4 and Corollary
1]. Consequently, many games posess no (asymptotically) stable equi-
librium at all. Hence, the connection between evolutionary selection in
n-player games and rational and coordinated play (in the sense of Nash
equilibrium play) is weaker than it may first appear.

However, the present paper brings a positive message which contrasts
with these negative observations. Rather than focusing on stability prop-
erties of individual population states, or, equivalently, (mixed) strategy
combinations, we consider stability properties of a certain class of sets
of population states (strategy combinations), namely those which cor-
respond to boundary faces of the mixed-strategy space of the game [for
an alternative set-valued approach to dynamic stability see: Thomas,
1985]). More precisely, a subset of mixed strategy combinations belongs
to this class if it is the Cartesian product of sets of mixed strategies (one
set for each player), each of which consists of all mixtures from some
subset of the player’s pure strategy set. In other words, if each player-
population were to use pure strategies only from some subset of pure
strategies, but in population shares varying over time, then the popula-
tion state would still remain in the boundary face spanned by these pure
strategies. One extreme end of this spectrum of sets of mixed-strategy
combinations are all singleton sets. These correspond to individual pure-
strategy combinations (minimal boundary faces). The opposite extreme
is the set of all mixed-strategy combinations in the game (the maximal
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boundary face).

Our main result is a full characterization of all boundary faces which
are (set-wise) asymptotically stable in aggregate monotonic selection
dynamics. The characterizing criterion is that the set in question be
"closed” under a certain correspondence which we call the "better-reply”
correspondence (in analogy with the well-known best-reply correspon-
dences used in non-cooperative game theory). This "new” correspon-
dence assings to each mixed-strategy combination o those pure strate-
gies for each player which give that player at least the same payoff as
he has in o. Such pure strategies are thus (weakly) better replies to o
than o itself is. Clearly all (pure) best replies are ”better” replies in this
sense, so the image of any strategy combination under the better-reply
correspondence always contains the image of the (pure) best-reply cor-
respondence. We call a {product) set of pure strategies closed under the
better-reply correspondence if the image under this correspondence of
every mixed strategy combination with support in the set is contained
in the set [in analogy with sets ”closed under rational behavior”, see:
Basu and Weibull, 1991]. For instance, a singleton set which consists
of a strict Nash equilibrium is closed under the better-reply correspon-
dence. There always exist sets which are closed under the better-reply
correspondence, and there even exists minimal such sets. Moreover, ev-
ery minimal such set is a fized set under the better-reply correspondence
in the sense that not only does it contain all the better replies of every
mixed-strategy combination with support in the set; it contains no pure
strategy which is not a better reply to any mixed-strategy combination
with support in the set.

Our result on dynamic evolutionary stability of sets can now be re-
stated more precisely as follows. If a (product) set of pure strategies
is closed under the better-reply correspondence, then the associated
boundary face of mixed strategy combinations is asymptotically stable
in every aggregate monotonic selection dynamics. Conversely, if a (prod-
uct) set of pure strategies is such that the associated boundary face is
asymptotically stable in some aggregate monotonic selection dynamics,
then the set is closed under the better-reply correspondence.

As suggested above, this result has a positive implication for the con-
nection between evolutionary selection and rationality in the sense of
Nash equilibrium play. It will be shown that any asymptotically stable
boundary face contains some essential component set of Nash equilibria,
and hence a set which is strategically stable in the sense of Kohlberg
and Mertens [1986]. Hence, every (product) set of pure strategies
which is closed under the better-reply correspondence is asymptotically
stable, and, moreover, it contains a set of Nash equilibria which is strate-
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gically stable. In summary: Although few individual strategy combina-
tions are asymptotically stable in multi-population evolutionary selec-
tion dynamics, there are subsets of strategy combinations which are,
as sets, asymptotically stable in a bread class of evolutionary selection
processes. Moreover, these sets contain sets of Nash equilibria which
meet the very stringent rationality requirements inherent in the non-
cooperative notion of strategic stability.

The material is organized as follows. Section 2 contains notation and
basic definitions. Section 3 provides, in a unified and sometimes more
general form, essentially known results on point-wise stability (except
Theorem 1 and Proposition 2). In Section 4 we elaborate on a class of
corresponcences which we call behavior correspondences, of which the
best-reply and better-reply correspondences are instances, and we relate
sets closed under such correspondences to the notions of strict and non-
strict Nash equilibrium. Our main result is given in Section 5. Most
proofs of results in Section 3 have been relegated to the Appendix.

2. NOTATION AND DEFINITIONS

Let I' be a normal-form game with player set N’ = {1, 2, ..., n}, for
some positive integer n, and with S = X;earS; as the set of pure strategy
combinations s = (1, S2, ..., Sp), where each set S; consists of K; pure
strategies s¥, k = 1,2, ..., K;, available to player : € . The set of
mixed strategies of player ¢ is thus the (K; — 1)-dimensional unit simplex
A;={o; e RE | K 5k =1}, and A = x;enA; is the polyhedron of
mixed strategy combinations ¢ = (o7 ,..., 0,) in the game. We identify
each pure strategy s¥ € S; with the corresponding unit vector ef e
(hence S; is the subset of vertices of A;). The support of some mixed
strategy o; € A; is denoted by supp(o;) = {s¥ € S; | 0¥ > 0}. The
mapping u: S — R will give the payoffs on pure strategy combinations,
and the (multilinear) expected payoff function U: A — R” is defined in
the usual manner.

Let 8 = X;enBi: A — S be the pure best-reply correspondence which
maps mixed strategy combinations to their pure best-reply strategy com-
binations. More precisely, for each player : € A and strategy combina-
tion o € A,

Bi(o) = {s¥ € S; | Ui(os, s¥) > Ui(o_s, s4), Vs € Si}.

The correspondence assigning mixed best replies is denoted 3 = Xig N Bi,
where

Bi(o) = {5 € A; | supp(&;) C Bi(a)}.

It is well known that both 8 and 3 are u.h.c. correspondences on A.
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A Nash equilibrium is a strategy combination o € A which is a fixed
point of 8. The set of Nash equilibria of a game I will be denoted

ED)={ceA|oef)}

A strict Nash equilibrium is a strategy combination ¢ € A which is
its unique best reply, i.e. such that {s} = B(¢). Clearly every strict
equilibrium o € E(T") is pure, so one may view it as a fixed point of 3
in S.

The replicator dynamics is defined by the following (quadratic) system
of ordinary differential equations on the polyhedron A (time indices
suppressed ):

6F =ofUi(o_i, s5) = Ui(o)], Vk=1,..., K;, Vie N.

As a consequence of the Picard-Lindlof Theorem this system has a
unique solution o(., 0°): ® — A through every initial state d° € A,
o(t, 0°) € A denoting the state at time ¢ € ®. Moreover, the polyhe-
dron A, as well as its interior int(A), is (both positively and negatively)
invariant in this dynamics, i.e. if the initial state ¢° is in A (resp. int(A))
then so is every future and past state o(¢, o°).

A regular selection dynamics on A is a system of ordinary differential
equations

of = fFo)ok, VEk=1,... K, VieN,
with fi: A —» REi Vi e N, and f = Xienfi is such that

(i) f is Lipschitz continuous on A,

(11) fi(O')'O',' =0,V0’€A,Vi€/\/.1

An aggregate monotonic selection dynamics (AMS) is a regular selec-
tion dynamics such that for all € A" and all o}, o} € A;

Ui(o—;, o) > Ui(o—i, o) = fi(o) -0} > fi(o) ol

for all o € A [cf. Samuelson and Zhang, 1992, p.369]. A weaker con-
dition is to require the above implication to hold only for pure strategies
o; = s; € S; and o} = s} € S;. Such a dynamics is called monotonic.

By a straightforward generalization of Theorem 3 in Samuelson and
Zhang [1992, pp.374] it can be shown that any AMS can be written in
the form

fFo) =wilo) [Uilo_s, s¥) = Ui(0)], Vk=1,...,K;, VieN,

1 This definition can be shown to be equivalent to the one given by Samuelson and
Zhang [1992, pp.368].



for some (strictly) positive function w;: A — R, for every : € V. Since
f and all U; are Lipschitz continuous, every w; must be Lipschitz contin-
uous for all ¢ € M. The class of all AMS’s is thus given by all Lipschitz
continuous ”player-specific reparametrizations of time” in the replicator
dynamics, the latter being the special case w;(0) =1, Vo € A, Vi e N.

Given some regular selection dynamics on the polyhedron A of mixed
strategy combinations, a set A C A is called positively invariant if any
solution path starting in A remains in A for the entire future, o(¢, 0°) €
A, Vo° € A, Vt € Ri. Tt is called negatively invariant if any solution
path in A has been in A for the entire past, o(t, 0°) € A, Vo° € A,
Vt € ®_. The set A is called invariant if it is both positively and
negatively invariant. A point 0* € A is called stationary (or a rest point
or a critical point) if {o*} C A is an invariant set.

A closed invariant set A C A is said to be stable (or Lyapunov stable),
if the solution curves remain arbitrarily close to A for all initial states
sufficiently close to A. Formally, a neighbourhood B of a closed set A C A
is an open set containing A, and:

DEFINITION. A closed invariant set A C A is stable (or Lyapunov sta-
ble), if for every neighbourhood B' of A there exists a neighbourhood B"
of A such that o(t, 0°) € B' for all ° € B" N A and all t > 0.

A more stringent stability notion is that of asymptotic stability. It
requires on top of (Lyapunov) stability that the set A be a local attrac-
tor in the sense that all dynamic paths starting sufficiently close to A
converge to A over time. Formally:

DEFINITION. A closed invariant set A C A is asymptotically stable if
it is stable and there exists some neighbourhood B of A such that
o(t, 0°) —rteo A, for all 0° € BN A2

Since any stationary point ¢ € A forms a closed subset of A, the
above definitions also cover stability notions for points. The induced
stability criteria for points coincide with the standard definitions [see
e.g. Hirsch and Smale, 1974, pp.185].

If initial states on the boundary of A are ignored, then one obtains
two weaker notions. The first is a global stability criterion:

DEFINITION. A closed invariant set A C A is called globally stable if
o(t, 0°) — im0 A, Voo € int(A).

Global stability is less demanding than a globalized version of asymp-
totic stability in two respects: First, trajectories starting on the bound-

?The notation o(t,0°) —¢_.c0 A is used to mean inf,¢ 4 ||o(¢, 0°) — a|]| —¢— oo 0,
where || .|| denotes the Euclidean metric.



ary of A need not converge to the globally stable set. Second, the Lya-
punov stability criterion may be violated, because some trajectories may
start close to the globally stable set but move far away from it before
approaching it. The following criterion is a local version of the previous
definition:

DEFINITION. A closed invariant set A C A is weakly asymptotically
stable if there exists a neighbourhood O of A such that o(t, 0°) — ¢~
A,Vo° € Onint(A).

3. STABILITY FOR POINT-VALUED SOLUTIONS

From the representation of AMS’s it is clear that the set of rest points
agrees for all AMS’s. In particular ¢ € A is a rest point in some AMS
if and only if it is a rest point in the replicator dynamics. Moreover, a
Nash equilibrium is a rest point in any AMS (but not vice versa).

The first result establishes that a rest point which is not a Nash equi-
librium is not even (Lyapunov) stable [see also: Bomaze, 1986, and The-
orem 6 of Samuelson and Zhang, 1992, p.380]. Moreover, it reveals a
connection between Nash equilibria and convergence of trajectories [see
also: Nachbar, 1990]. Call a stationary point & € A reachable, if for
some AMS

Jo° €int(A): o(t, 0°) — 1m0 T .

PROPOSITION 1. (a) If5 € A is a stable stationary point in some AMS,
then o € E(T).
(b) If & € A is reachable, then ¢ € E(T).

(PROOF: See Appendix.)

This result establishes an apparently close connection between evolu-
tionary selection and rational behavior in the sense of Nash equilibrium
play. First, whenever a population state is stable with respect to evolu-
tionary forces it constitutes a Nash equilibrium. Second, even if it is not
stable, but attracts some (interior) dynamic path, then again it will be a
Nash equilibrium. However, it is known that in multi-population interac-
tions few states are indeed stable. In particular, no interior population
state is asymptotically stable in the replicator dynamics [cf. Amann
and Hofbauer, 1985; Hofbauer and Sigmund, 1988, p.282].

LEMMA 1. If ¢ € int(A), then & is not asymptotically stable in the
replicator dynamics.

(PROOF: See Appendix.)

Each boundary face of A can be thought of as a smaller game of its
own, derived from I' by deleting all unused pure strategies. Moreover,
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the replicator dynamics of these reduced games is just the replicator
dynamics of I restricted to the corresponding boundary face of A, and
each boundary face is invariant under the replicator dynamics. As a
consequence of this, the (relative) interior of each boundary face satisfies
the requirements of Lemma 1. This shows:

COROLLARY 1. Any asymptotically stable pomt; in the replicator dy-
namics is a pure strategy combination.

In other words: No mixed strategy combination (in which at least one
player randomizes) is asymptotically stable in the replicator dynamics.
This evolutionary instability of mixed equilibria parallels the well known
”epistemological” instability of mixed equilibria in the non-cooperative
approach [van Damme, 1987, p.19; Harsanyi, 1973]: In a mixed equi-
librium somie player can choose another mix than the one prescribed by
the equilibrium, without risking losses of expected payoff, given that the
other players stay with their equilibrium mix. Hence, if other players
anticipate this possibility, then they may want to change their strate-
gies, etc.- That is to say that mixed equilibria are self-enforcing only with
respect to themselves, not necessarily even with respect to a neighbour-
hood.

The observed evolutionary instability of mixed equilibria is an impor-
tant step towards the following characterization of asymptotic stability
in the replicator dynamics [which for the case of the replicator dynamics
is a slight sharpening of Theorem 4 and Corollary 1 in Samuelson and
Zhang, 1992, pp.377].

THEOREM 1. An equilibrium & € E(T') is asymptotically stable in the
replicator dynamics if and only if it is a strict equilibrium.

(PROOF: See Appendix.)

It is well known that the single population replicator dynamics for
symmetric two-player games can have asymptotically stable rest points
“which are interior. A typical instance of this occurs when the ”"Hawk-
Dove” game is played by a single population. This is a 2 X 2 game which
has three equilibria; one symmetric mixed Nash equilibrium and two
asymmetric strict equilibria. Hence, the two strict equilibria sit off the
diagonal of the state space A (the unit square). In the two-populations
replicator dynamics the mixed equilibrium is a saddle point and hence
unstable. However, the convergent saddle path is the diagonal of A,
and it is precisely on this diagonal that the single-population dynamics
takes place, producing an asymptotically stable and completely mixed
rest point.



Theorem 1 says that nothing that is not unambiguously self-enforcing
with respect to a neighbourhood of itself can be asymptotically stable.
So how about equilibria which are self-enforcing with respect to a neigh-
bourhood, but not unambiguously so? Such a notion is known as a
robust equilibrium [Okada, 1983]. A Nash equilibrium & is called ro-
bust, if there exists some neighbourhood O of & such that & € §(c°),
Vo® € ONA. In other words: While a strict equilibrium is the unique
best reply to every nearby strategy combination, a robust equilibrium
need only be a best reply to nearby strategy combinations.

One might, therefore, expect that for robust equilibria the weaker
(Lyapunov) stability criterion is satisfied. This turns out to be true.

- However, for this weaker stability notion and robust equilibria no equiv-
alence result is yet known. What we can say is weaker, but it applies to

all AMS:

PROPOSITION 2. Every robust equilibrium is stable in any AMS. More-
over, for every robust equilibrium there exists a neighbourhood O such

that, in any AMS, o(t, 6°) — 0o E(T')NO,Ve° € ONA.
(PROOF: See Appendix.)

Theorem 1 and Proposition 2 reveal an intimate relationship between
dynamic stability properties and the "robustness” of the best replies
used in an equilibrium. It is, therefore, not surprising that the connec-
tion between mere Nash equilibrium and dynamic stability properties is
weak. In this sense Proposition 1 is too optimistic. As a matter of fact,
for a large class of games there are no dynamically stable equilibrium
points. For instance, many models of strategic interaction are formal-
ized as games in extensive form. Any Nash equilibrium which does not
reach all information sets of such a game is non-strict, and hence not
asymptotically stable in the replicator dynamics, by Theorem 1.

4. SETS CLOSED UNDER SOME BEHAVIOR CORRESPONDENCE

Let ® be the class of u.h.c. correspondences ¢ = X;earp;: A — S such
that 3(¢o) C (o) for all ¢ € A (weak inclusion). Correspondences ¢ € ¢
will henceforth be called behavior correspondences. For any correspon-
dence ¢: A — S, and any nonempty set A C A, p(A) C S denotes the
(nonempty) union of all images (o) with o € A, i.e. p(A) = Uyeap(0).

Let P be the set of all nonempty product sets X C S, ie. X =
XienXi, where X; C S;, Vi € N. For any nonempty set X; C S,
let A;(X;) be the set of all mixed strategies with support in X;. For
any X € P, let A(X) = x;enxAi(X;). Basu and Weibull [1991] call
a set X € P closed under rational behavior (curb) if it contains all its
best replies, i.e. if B(A(X)) C X, and call it tight if B(A(X)) = X.
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More generally: given any behavior correspondence ¢ € ®, we here call
a set X € P closed under ¢ if o(A(X)) C X and a fized set under ¢
if o(A(X)) = X.3 Clearly X € P is a curb set if it is closed under
some behavior correspondence ¢ € ®, by B(A(X)) C p(A(X)) C X. A
set X € P is a minimal closed set under ¢ if it is closed under ¢ and
contains no proper subset which is closed under .

The following lemma generalizes some basic properties of curb sets to
sets which are closed under some behavior correspondence. The proof

follows Basu and Weibull [1991].

LEMMA 2. (a) If X € P is a minimal closed set under ¢ € ®, then it is
a fixed set under .

(b) For every ¢ € ® there exists a minimal closed set.

(¢) If a singleton set X = {s} is closed under some ¢ € ®, thens € S
is a strict Nash equilibrium.

PROOF: (a) Suppose X € P is a minimal closed set under ¢ € ®, but
X # o(A(X). Then there is some player 1 € N such that ¢;(A(X)) U
Y; = X, for some nonempty ¥; C S; with YN X, = @. Let Z; =
wi(A(X)), and, Vj #1, let Z; = X;. Clearly p(A(Z)) C o(A(X)) C Z,
so X is not minimal - a contradiction.

(b) By ¢(A) C S the nonempty collection @ C P of sets X € P which
are closed under some given ¢ € & is finite and partially ordered by set
inclusion, and hence contains at least one minimal such set.

(c¢) If a singleton set X = {s} is closed under ¢ € &, then @ # S(s) C
¢(s) C {s}, and so B(s) = {s}, i.e. s € S is a strict Nash equilibrium. §

" The next result is a key observation for the subsequent analysis. Es-
sentially it provides a generalization of a property of strict equilibria
which non-strict Nash equilibria lack, and which, in a sense, is the con-
verse of the defining property of Nash equilibrium. While a strategy
‘combination o € A is defined as a Nash equilibrium whenever it is con-
tained in its set of best replies, {c} C B(c), only strict equilibria have the
complementary property of containing all their best replies, (o) C {c}.
In the first case unilateral deviations are non-profitable; some may be
costly and others costless. In the second case all unilateral deviations
are costly. Not surprisingly, strict equilibria, therefore, satisfy all the
requirements that the refinement literature has asked for. In particular,
every strict equilibrium is pure (a vertex of A) and it is the unique best
reply not only to itself but (by continuity of the payoff function) also to

3The terminology is motivated by the fact that a fixed set for a correspondence is
the direct generalization of a fixed point of a function, when the correspondence is
viewed as a function from the power set into itself [cf. Berge, 1963, p.113].
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all strategy combinations in some neighbourhood of itself. Formally, if
o € E(T) is strict, then there is some neighbourhood U of o such that
B(U N A) C {c¢}. Hence, such an equilibrium is robust to all sufficiently
small perturbations of the players’ beliefs about each others’ play.

The following lemma generalizes this observation, first, from the best-
reply correspondence to all behavior correspondences, and, second, from
individual strategy combinations to sets of strategy combinations. As a
special case the result holds for all curb sets.

LEMMA 3. If X € P is closed under some ¢ € ®, then there exists a
neighborhood U of A(X) such that p(UNA) C X.

PROOF: Suppose p(A(X)) C X and there is no neighborhood U of
A(X) such that o(U/NA) C X. Let Y be the complement of X in S, and
identify X and Y with the associated sets of vertices of A. Then X and Y
are disjoint closed subsets of A. By hypothesis, Y is nonempty and there
exists a sequence {07 }S2; from A converging to some point ¢° € A(X)
such that ¢(o7) contains some point from Y, for all 7 =1, 2, ... Since
@ is w.h.c. and Y is closed, this implies that also ¢(o°) contains some
point from Y. But Y is disjoint from X and hence ¢(o°) is not a subset
of X - a contradiction. |

The next result establishes basic relationships between sets which are
closed under some behavior correspondence and the set of Nash equilib-
ria. Recall that the set E(T") C A of Nash equilibria of any normal-form
game [ is the union of finitely many, disjoint, closed, and connected sets,
called connected components [Kohlberg and Mertens, 1986, Propo-
sition 1]. The following observation is trivially valid for any behavior
correspondence ¢ € ®: Every connected component C' C E(I') is con-
tained in the boundary face A(X) spanned by some set X € P which
is closed under ¢ (just let X = S). Proposition 3(a) below establishes
the partial converse that for any X € P which is closed under some
behavior correspondence each connected component of Nash equilibria
is either disjoint from or contained in the boundary face spanned by
X. Proposition 3(b) shows that every boundary face spanned by a set
X € P which is closed under some behavior correspondence contains
a set of Nash equilibria which satisfies some of the strongest known
refinement criteria, essentiality [van Damme, 1987, p.266], hyperstabil-
ity, and strategic stability [Kohlberg and Mertens, 1986, p.1022 and
p.1027].

PROPOSITION 3. (a) If X € P is closed under some behavior correspon-
dence ¢ € ® and C' is a connected component of Nash equilibria, then

either C CA(X) or CNA(X) = 0.
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(b) If X € P is closed under some ¢ € ®, then A(X) contains an essen-
tial connected component of Nash equilibria and, hence, a hyperstable
set and a strategically stable set of Nash equilibria.

PROOF: (@) Suppose X € P is closed under ¢ € ®, and let C C E(T)
be a connected component of Nash equilibria such that C N A(X) # @.
By Lemma 3 there exists a neighborhood U of A(X) such that (U N
A) C X. Suppose C is not a subset of A(X). Then there exists some
0° € C NU which does not belong to A(X). But 8(¢°) C ¢(¢°) C X,
so 0° ¢ B(c°), a contradiction to ¢° being a Nash equilibrium.

(b) If X € P is closed under ¢ € ®, then it is closed under 8 € ®, by
B(A(X)) C o(A(X)) C X. Thusfor all 0 € A(X) and all i € N

Sf ¢ X, = Ui(O'_,', Sf) < maX&,.EA,.Ui(O'_,‘, é'i).

By continuity (and the maximum theorem) there exists a neighbour-
hood O of the game I' = (5, u) under consideration in the space of
normal form games I = (S, v) such that the above implication holds
for all games in O. Consequently, for all games I = (S, v) € O one
has (,(A(X)) C X, i.e. X € P is also closed under the best reply
correspondence [, of the game I''. The reduced game I'x = (X, u),
where players are restricted to the strategy spaces X;, Vi € N, has
an essential component of Nash equilibria Cx C E(I'x) [cf. Kohlberg
and Mertens, 1986, Proposition 1]. In other words: For every ¢ > 0
there exists a neighbourhood O% of I'x = (X, u) such that for every

v = (X, v) € O% there exists some o’ € E(I"y) within distance ¢ from
Cx C A(X) (in the Hausdorff metric). Then

O ={I"=(5,v) € O[Tk = (X, v) € Ok}

defines a neighbourhood of I' = (S, u), and any I = (S, v) € O° has
some o' € E(I'y) within distance ¢ from Cx. But, since IV € O,
Bu(A(X)) € X and so ¢' € E(I'). Moreover, B,(A(X)) C X implies
Cx C E(T), so Cx is an essential component for the game I'. Every es-
sential component contains a hyperstable set, and every hyperstable set
contains a strategically stable set by standard arguments [cf. Kohlberg
and Mertens, 1986, p.1022]. I

An important role in the analysis below will be played by the "better-
reply” correspondence v = Xienvi: A — S, defined by

vi(o) = {si € Si | Ui(0-i, 5i) 2 Ui(0)}, VieN.

Evidently 7 is w.h.c. and B;(0) C 7;(o) for all players i € A and strategy
combinations ¢ € A, so v € ®. In other words: < is the behavior
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correspondence which assigns to each strategy combination o € A those
pure strategies which give at least the same payoff as o;. Such strategies
s; are thus (weakly) better replies to o than o; is. Moreover, v;(o) always
contains some pure strategy from the support of o;. In particular, if
o is a Nash equilibrium, then v;(o) contains the whole support of o;,
and ideed one then has y(¢) = f(¢). As a consequence, a singleton
set X = {s} is closed under v if and only if s € S is a strict Nash
equilibrium. More generally, this is true for all behavior correspondences
the images of which are (weakly) contained in the images of the "better-
reply” correspondence:

COROLLARY 2. If ¢ € & is such that (o) C v(c), Vo € A, then a
singleton set X = {s} € P is closed under ¢ if and only if s € S is a
strict equilibrium.

PROOF: Lemma 2(c) covers the "only if” part. If ¢ € A is a strict Nash
equilibrium, then ¢ = s is pure and 3(s) = v(s) = {s}. Thus ¢(s) = {s}
for all ¢ € ® which satisfy ¢(s) C y(s), Vs € S. I

Figure 1 illustrates when closedness under v has cutting power. It
depicts a 2-player game with three strategies for each player. The game
has three equilibria, one of which (in the lower right corner) is strict.
Whether the set X = {s], s?} x {sl, s2} will be closed under v depends
on the parameter z. If = is negative, then the set X is closed under ~.
If z is non-negative, it is not. However, for all z < 2 the set X is closed
under the best-reply correspondence 3.

5. ASYMPTOTICALLY STABLE SETS

We are now in a position to state our main result on evolutionary
attractors. It establishes the equivalence between a pure strategy set
X € P being closed under v and the associated boundary face A(X) C A
being asymptotically stable in any aggregate monotonic selection dy-
namics (AMS). In view of Lemma 2(b) this implies that a set X € P
is fired under v if and only if the associated boundary face A(X) is a
minimal asymptotically stable boundary face of the polyhedron A.

THEOREM 2. Ifaset X € P is closed under v, then A(X) is asymptot-
ically stable in any AMS. If X € P is such that A(X) is asymptotically
stable in some AMS, then X is closed under ~.

PROOF: Suppose first v(A(X)) C X. Then there is some neighborhood
B of A(X) such that y(BN A) C X, by Lemma 3. There exists some
¢ > 0 such that B contains the "¢-slice” B(¢) = {0 € A | infsea(x) [lo—
7|l < €}. For any player i € NV, let Y; be the complement to X; in S;. If
Y, is empty, oi(t, 0°) € Ai(X:) = A;,Vo° € A, Vt. Otherwise, for every
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s¥ €Y, and o € B(e)NA, with o ¢ A(X), we have U;(o_;, s¥) < Ui(o),
since y(B(e) N A) C X. But this implies

of =wi(o)of [Ui(o_s, sF) - Ui(o)] <0

for all o € B(e) N A with of > 0. Hence of(t, 0°) —t—00 0, Vo €
B(e) N A, implying 0;(t, 0°) — 400 Ai(X;). In order to establish the
Lyapunov stability property of A(X): For any neighborhood B’, let
the neighborhood B be an ¢'-slice B(¢') C B', and apply the above
argument. This proves the "only if” part.

Second, assume X is not closed under 4 € ®. Then there is some pure
strategy combination § € X, player 1 € N and pure strategy s§¥ ¢ X;
such that U;(5-;, sF) > U;(3), since otherwise U;(s—;, s}) — Ui(s) < 0,
Vs € X,Vie N and Vs] € S;, which would imply U;(o_;, s!)—U;(o) <
0,Vo € A(X), Vi € N and Vs € S;, which is equivalent to X being
closed under 4. Let s* = (3_;, s¥), and let X* € P be defined by
X¥ ={5;},Yj #4,and X} = {5, sF}, i.e. A(X*) is the one-dimensional
boundary face (or edge) spanned by the two pure-strategy combinations
5 and s*. Moreover, U;(s*) — U;(5) > 0, and, since U; is linear in s;,
Ui(o—i, s¥) = Ui(o) > 0, Yo € A(X*). Clearly A(X*) is invariant
under any AMS. Hence, for any initial state 0° € A(X™) the solution
path through ¢° has 6f > 0, in any AMS, implying that o(t, 0°) does
not approach A(X) as t — oo. The two boundary faces A(X*) and
A(X) having the point & = § in common implies that A(X) is not
asymptotically stable. i

Applying Proposition 3(b), Theorem 2 implies that any asymptoti-
cally stable boundary face contains some set of Nash equilibria which is
strategically stable in the sense of Kohlberg and Mertens [{1986].

COROLLARY 3. If X € P is such that A(X) is asymptotically stable in
some AMS, then A(X) contains an essential component of Nash equi-
libria and thus also a strategically stable set.

It should be mentioned that the last inclusion, that A(X) contains a
strategically stable set, is also an immediate implication of Theorem 3
in Swinkels [1992]. This Theorem states that, if a set A C A is (1)
asymptotically stable in some myopic adjustment dynamics (including
all AMS) and has (2) a basin of attraction which contains a convex
neighborhood of A, then A contains a strategically stable subset.

The minimal sets in the class P are evidently the singleton sets which
contain only one pure strategy profile. Theorem 2 has the implication
that these are asymptotically stable in all AMS if and only if they are
strict equilibria. Moreover, one can show that if a mized (not pure)
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strategy profile is asymptotically stable in some AMS, then this property
can be destroyed by choosing some other AMS.

COROLLARY 4. (a) A strict equilibrium is asymptotically stable in any
AMS. If a pure strategy combination is asymptotically stable in some
AMS, then it is a strict equilibrium.

(b) For every rest point & € A which is not a pure strategy combi-
nation there is an AMS in which & is not asymptotically stable.

PrOOF: (a) This claim follows directly from Theorem 2.

(b) Suppose & € A is not a vertex of A. Then & belongs to the
(relative) interior of some boundary face of A with positive dimension.
By Lemma 1 it can then not be asymptotically stable in the replicator
dynamics. i

Reconsider the payoff bi-matrix in Figure 1. We have already noted
that the product set X = {s}, s?} x {sl, s2} € P is not closed under
the better-reply correspondence v, for z > 0. Hence, for such payoff
values A(X) is not asymptotically stable in any AMS. Figures 2 and 3
illustrate some computer simulations of solution paths to the replicator
dynamics starting near A(X) and converging to the strict equilibrium
s = (s3, s3). Here z = 1.9, and p; resp. ¢; denote the population shares
using the j-th pure strategy, for y = 1, 2, 3, for player roles 1 resp.
2. Note that the restriction of this game to mixed-strategy profiles in
the boundary face A(X) is, by itself, a constant-sum game with value
1—2/2 < 1, whenever z > 0. If we would let z be negative, then X
would be closed under 4, and the constant-sum ”subgame” would have
its own domain of attraction, just like a strict equilibrium. (In fact, the
game would then be a kind of generalized co-ordination game.)

The payoff bi-matrix in Figure 4 has been obtained from the payoff
bi-matrix in Figure 1 by deletion of the second player’s third strategy.
The payoff z is taken to be any number between 0 and 2. This new
game illustrates the possibility that a boundary face of the polyhedron
of mixed strategy profiles may attract the whole interior of the polyhe-
dron, i.e. it may be globally stable without being asymptotically stable.
To see this, first note that the first player’s third strategy is strictly dom-
inated (by mixing the first two strategies with equal probability). Hence,
from any interior initial state, and under any AMS, the population state
converges to the boundary face spanned by X = {s!,s?} x S € P,
the set of rationalizable strategies [Bernheim, 1984, Pearce, 1984] or,
equivalently, the maximal closed set under 8 in this game, by Theorem
2 in Samuelson and Zhang [1992]. However, X is not closed under
the better-reply correspondence v. For example, near the vertex where
player 1 uses strategy si and player 2 uses strategy s2, both strategies
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s? and s} are better replies for player 1. (And likewise near the vertex
where 1 plays strategy s? and 2 plays strategy si.)

To see that A(X) is not asymptotically (or Lyapunov) stable, let
5 = (s}, s3) and set s* = (s3, s2). On the edge connecting these two
vertices, player 1’s payoff increases from —z to 0. Hence, solution curves
through any point on this edge, in any AMS, converge to s* (cf. the proof
of Theorem 2). By continuity, solution curves starting in the interior,
but close to 5 will move far away from A(X) before they approach this
boundary face. Figure 5 shows a computer simulation of the replica-
tor dynamics with z = 1.95. Although the value of the constant sum
"subgame” is as low as 0.025, it attracts all interior solution paths.

The payoff bi-matrix in Figure 6 examplifies the possibility that a
product set of pure strategies which is not closed under the best-reply
correspondence 3 (nor, a fortiori, under the better-reply correspondence
v) may nevertheless be globally stable, i.e. have the whole interior of the
polyhedron A of mixed-strategy combinations as its domain of attrac-
tion, in all AMS dynamics. To see this, first note that, in any game, for
any player 1 € N, strategies s¥, st ¢ S,, state o € 1nt(A), and regular
dynamics, one has

dof/al) _ o
= [ff(o) fh(a)]‘"l,;-

o

Applying this to strategies s%, s3 € S} in the game of Figure 6 one sees
_ that, along any interior solution curve to any AMS, the ratio o3/ ‘71
decreases monotomcally over time towards zero, and likewise for o3 / ol

In particular, for any o € int(A) there exists some time 7' > 0 such that,
for all t > T, each of these two ratios remain smaller than 1/2 forever.
However, this implies that both ¢} and ¢l increase monotonically from
time T onwards. For at any interior state o we have

o1 = wi(0)(1 ~ o1)(0F — 203) + 0} ailo],
and likewise for ¢3. Hence, both 61(¢) and ¢3(¢) are strictly positive for
allt > T.

Since the ratio o} (t)/a?(t) converges to zero over time, and o2(¢) is
bounded, we have 03(¢) —¢_o 0, for ¢ = 1,2. Thus, all interior
solution paths o(¢, 0°) are convergent. Moreover, if the limit state 7 € A
has 53 < 1, then 62 > 0 and hence there is some ¢ > 0 such that

1 > (1 —ol)o! along any interior solution path after some time T as
above. Consequently, o] converges to 1. In sum, every interior solution
path to an AMS is convergent, and the limit state belongs to the closed
set

A={oc€A|d} =03=0, 0f =1 and/or o) =1}.
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The game being symmetric, any symmetric initial state (i.e. with 01(0) =
02(0)) induces symmetric solution curves. Figure 7(a) shows computer
simulations of such solutions in one player’s mixed-strategy simplex [a
similar diagram for single-population dynamics is given in Nachbar,
1990, Fig.1]. Figure 7(b) shows projections of some asymmetric solution
curves.

Note that while the global attractor in the game in Figure 4 is a set
closed under § (for ¢ < 2), the global attractor A C A in the game
of Figure 6 is a subset of the boundary face spanned by the product
set X = {s}, s?} x {si, s%}, which is not closed under . Hence, it is
not the case that global stability of a boundary face implies that the
corresponding product set of pure strategies is closed under the best-
reply correspondence (3. For such a purpose, the images under 8 (and,
a fortiori, under v) are too large.

At this stage of our research we do not know whether the local converse
holds, viz. whether closure under § implies weak asymptotic stability.
But computer simulations suggest that this is not the case, at least
when there are three or more players (and hence the set of rationaliz-
able strategies differs from the set of iteratively strictly undominated
strategies).

For example, consider the three-player 3 x 2 x 2 game of Figure 8
(player 1 chooses tri-matrix, player 2 row, and player 3 column). For
any fixed pure strategy of the first player, players 2 and 3 face a sym-
metric 2 x 2 game. When player 1 uses her first strategy (si), the first
strategies of players 2 and 3 (s} and s}, respectively) are strictly domi-
nant. However, if players 2 and 3 would use those strategies, then player
1’s best reply is to switch to her second strategy. But when player 1 uses
her second strategy (s?), the second strategies of players 2 and 3 (s3 and
s2) are strictly dominant, and if they would use these, player 1’s best
reply is her first strategy. When player 1 uses her third strategy (s?),
finally, players 2 and 3 face a game of pure coordination.

It is not difficult to show that the first player’s third strategy is never
a best reply. Hence, the product set X = {si, sj} x S2 x S3 € P
obtained by taking all players’ first two strategies constitutes a curb set,
i.e. it is closed under §. In fact, this is the maximal fixed set under g, or,
equivalently, the set of rationalizable strategies in the game. But one can
show that the excluded strategy, s3, is not strictly dominated. (Though
s3 is never a best reply against a mixed strategy combination, it is best
against a correlated strategy of players 2 and 3 with support (s}, s3) U
(s%, s2) C S_;.) Hence, it is a priori possible that the population share
using strategy s3 does not tend to zero along some interior solution paths.
If this is the case even for (interior) trajectories starting arbitrarily close
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to the boundary face spanned by X, we have established that a set closed
under 3 need not be weakly asymptotically stable.

Indeed, computer simulations produce precisely such trajectories, see
Figure 9 for an example. Since players 2 and 3 always earn identical
payoffs, the diagonal o, = o3 is invariant (i.e. if the population shares
initially are the same, they will remain so forever). The diagram shows a
solution curve for which initially o (0) = (0.05, 0.90, 0.05), and 02(0) =
o3(0) = (0.15, 0.85), plotted in three-dimensional space with o} on the
"horizontal” axis, o7 on the vertical axis, and o5 = ¢ on the ”depth”
axis. The boundary face spanned by X is the sloping square. As one sees
in this diagram, after a few initial rounds the solution curve swirls out
towards a perpetual motion near the edges of the polyhedron, recurrently
moving virtually as far away from the face spanned by X as it is possible.
The only trajectory that can be shown to converge to the boundary
face spanned by X is a trajectory that starts in {o € A | 0} = 0} =
1/2, o} = 02} and remains in this set forever, eventually converging to

the exact mid-point of the face spanned by X, a Nash equilibrium.

6. CONCLUSIONS

The support lent by standard evolutionary game theory to the Nash
equilibrium paradigm in non-cooperative game theory is largely spuri-
ous. For although all Lyapunov stable states in any aggregate mono-
tonic selection dynamics consitute Nash equilibria, and the limit point
of any convergent aggregate monotonic selection path is a Nash equi-
librium, virtually only strict equilibria are asymptotically stable in such
selection dynamics. In extensive form games, all Nash equilibria whose
paths do not reach all information sets of the game are non-strict, and
hence virtually no state is asymptotically stable in aggregate monotonic
selection dynamics (operating on the normal form of the game).

In the present study, we contrast this weak point-wise connection be-
tween evolutionary selection and Nash equilibrium behavior with a fairly
strong set-wise connection. More specifically, we show that if a (prod-
uct) subset of pure-strategy combinations (one pure-strategy subset for
each player) is closed under a certain correspondence which we call the
better-reply correspondence, then the associated boundary face of the
space of mixed strategy combinations is set-wise asymptotically stable.
In other words, if initially only few individuals use (pure) strategies
which are not in the (product) subset in question, then all these popula-
tion shares will converge to zero over time, in any aggregate monotonic
selection dynamics. In this sense, such subsets of pure strategies are
robust to the forces of evolutionary selection. Conversely, if a bound-
ary face of the space of mixed-strategy combinations is asymptotically
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stable in some aggregate monotonic selection dynamics, then it is closed
under the better-reply correspondence. In this sense, closedness under
the better-reply corresondence characterizes set-wise asymptotic stabil-
ity. Every game possesses at least one (product) set of strategies which
is closed under the better-reply correspondence, and there always exists
at least one minimal such set.

The set-wise connection between evolutionary selection and Nash equi-
librium behavior is that every asymptotically stable boundary face of the
space of mixed-strategy combinations contains an essential component
of Nash equilibria. That is: It contains a closed and connected set of
Nash equilibria such that every nearby normal-form game (in the space
of normal form games over the same set of pure strategies) has a nearby
Nash equilibrium. This is one of the most stringent set-wise refinements
in the non-cooperative game theory literature, implying the perhaps
more well-known set-wise refinement of strategic stability in the sense of
Kohlberg and Mertens [1986].

In sum: (1) Every normal-form game possesses at least one boundary
face which is asymptotically stable. (2) Such boundary faces are char-
acterized by closure under the better-reply correspondence. (3) Every
such boundary face contains a set of Nash equilibria meeting the most
stringent demands imposed by non-cooperative game theory. As far as
one bases evolutionary predictions on (set-wise) asymptotic stability of
(product) subsets of pure-strategy combinations, the predictive power
of evolutionary explanations thus depends on the cutting power of the
better-reply correspondence. In some games, this cutting power is low,
in others high. Moreover, the attractor contained in an asymptotically
stable boundary face may be significantly smaller than the full boundary
face. In this last case, evolutionary explanations may have more predic-
itve power than our present approach reveals. Note, however, that the
present method is always able to identify the smallest boundary face con-
taining a set which is an attractor in (all) aggregate monotonic selection
dynamics.

Since in general aggregate monotonic selection dynamics can be rather
complicated, the approach via closedness under behavior correspon-
dences provides a powerful tool for the analyses of evolutionary selection.
It allows the researcher to identify attractors without having to study the
dynamics explicitely. On top of this shortcut it also provides an insight
into the relation between the dynamics and solution concepts based on
(variants of) rational behavior. In this sense, it is a formalization of
Friedman’s {1953] "as if” approach.

The results obtained so far, however, raise several further issues. For
example, can this approach be generalized to a wider class of selection
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dynamics? Can similar methods be used to identify boundary faces
which meet weaker stability criteria, such as (set-wise) Lyapunov sta-
bility or (set-wise) weak asymptotic stability? If so, what is the re-
lationship to closedness under the best-reply correspondence, or, more
generally, closedness under other behavior correspondences, the images
of which are contained in the images of the better-reply correspondence?
(Closedness under such correspondences is a weaker requirement than
closedness under the better-reply correspondence.) At this stage of our
research we can, with minor exceptions, only guess about the answers
to these and related questions (see discussion of examples in Section
5). Hence, there are important avenues open for further research on
the fundamental issue of how the rationalistic economics paradigm, or
some modification thereof, can be justified on grounds of evolutionary
selection.

APPENDIX

PROOF OF PROPOSITION 1: (a) Suppose ¢ € A is a rest point and
g ¢ E(T'). From the property that & is a rest point it follows that
Ui(5-i, s?) = Ui(7) for all s* € supp(d;). Since & ¢ E(T') there exists
some ¢: € N and s¥ ¢ supp(5;) such that U;(G—;, s¥) > Uy(3). By
continuity of the payoff function there exists a neighbourhood U of &
such that U;(o_;, s¥) > Ui(o) for all ¢ € & N A. Hence, ¥ > 0 for all
AMS and all o € Y Nint(A), so & is unstable. -

- (b) Assume that & € A is reachable from ¢° € int(A). Again we
have that & is a rest point implies U;(5—;, s?) = U;(3), Vs? € supp(&;).
Suppose there exists ¢ € M and s¥ ¢ supp(&;) such that

U,'(é'_i, Sf) - Ui(a') =€,

for some € > 0. By continuity of U; and o(t, 0°) —;_.o & there exists
some T > 0 such that

Ui(o—i(t, 0°), s¥) = Uia(t, o°)) > g- Vi>T.
Let w;(c) denote the shift factor for player ¢ in the underlying AMS.

Since w; is continuous and positive, and A is compact, 3§ > 0: w;(o) >
6, Vo € A. Consequently, for all ¢t > T

) k)
af(t, %) > —25 af(t, o’) =

be(t =T
— okt %) > (T, o) erp( D)),
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where o¥(T, °) > 0, because int(A) is positively invariant in any AMS.
But thls would imply that o¥(t, 0°) — ;. +00, a contradiction.
Thus, for all s¥ ¢ supp(7;) and all i € A one has Uy(G—;, s¥) < U(5),
soo € E(T). 1

PROOF OF LEMMA 1: * Let b: A — RM M =3,/ Ki, be the right
hand side of the replicator equation on A. Clearly b induces a vector
field bon A. Let & € int(A) be a rest point and consider, instead of the
vector field b, the modified vector field f on int(A) defined by

. 1 - Ki
(o) = —Ub(a), where P(o) = H H of.

P( ) i€EN k=1

Clearly, P(o) > 0 on the interior of A, so multiplying gby P(c)~! does
not alter the solution curves in int(A) (it is merely a reparametrization
of time). In particular, the differential equation ¢ = 5(0) has the same
rest points and the same qualitative stability properties in int(A) as the
replicator equation.

Observe that to take partial derivatives which remain in the simplex
we have to use directional derivatives. The directional derivative of a
differentiable function ¢: int(A;) — R at some point o; € int(A;) in the
direction towards a vertex s¥ of A; is

dg(o;)
Ook

1

8g(ai, s¥) = — o; - grad(g(oy)).

Application to b and  gives, Vi € N, k = 1,'. ., K
Bbf(a, s¥y = (1- 20?)[Ui(a_,‘, s’?) —Ui(o)], and,

kg, sy = P(o)"1[0b% (0, sk bk(a)
aCi(’ z)_P() [abz(v 1) P()
= P(0)7![8b{ (0, sf) = (1 — of Ki)(Ui(o—i, sF) — Ui(0))] =

= P(o)"Y(Ki = 2)[Ui(o—i, s7) = Ui(o)] o .

OP(a, s¥)] =

Hence, the modified vector field ¢ is divergence free on int(A):

div((o) = ZZ@C (o, s*

€N k=1

*This proof first appeared in Ritzberger and Vogelsberger [1990], where details
can be found. The technique is borrowed from Amann and Hofbauer [1985], who
apply it to similar replicator equations [see also: Hofbauer and Sigmund, 1988,
pp.-281-2]. We are grateful to Erwin Amann for making us a.wa.re’of this idea.
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Assume that & € int(A) is an asymptotically stable rest point of the
replicator dynamics. Then it is an asymptotically stable rest point of
& = ((o). Denote by &(t,0°) a solution to 6 = ((o), with 6(0,0°%) =
c® € int(A). Let U C int(A) be a (relative) neighbourhood of & such
that ¢® € U = 6(¢,0°) —t00o & € U. Assign to U a volume V =
J,;do # 0 and set V(0) = V. Define

Ut)y={oc e Alo=d(t c°),0° €elU}.

Then by Liouville’s theorem [see e.g. Hofbauer and Sigmund, 1988,
pp.170, 281] the volume V(t) of U(¢) is given by

V(t) = /u(t) divg?(a)da =0.

But then V(t) = constant = V(0) # 0, Vt € R,. On the other hand,
lim; .o U(t) = & by the assumption of asymptotic stability and the
_construction of . The latter, however, implies lim; .o, V(t) = 0, i.e. a
“contradiction to continuity of V(¢). I

PROOF OF THEOREM 1: ® (i) First assume that & € E(T) is asymptot-
ically stable. By Corollary 1 it must then be pure and by Corollary 4(a)
it must be a strict equilibrium.

- (i1) If & € E(T) is strict, then it is asymptotically stable by Corollary
4(a). 1 ' ~
PROOF OF PROPOSITION 2: Assume that there exists a neighbourhood
O of & such that & € f(c°), Voo € ONA. Choose @' C O to be a
convex neighbourhood of & such that ¥ >0 = of >0, Ve € O,
Vk=1,..., K;,Vi € N. Define the function Vz: O'NA — R, by

K
V(o) = — Z Z&f In(c¥) >0,
iEN k=1

which is continuously differentiable on ©'. Again using directional deri-
vatives as in the proof of Lemma 1, it follows from

Qi
haE

V(o s5) =1~

Q
.o

5This result was first proved by Ritzberger and Vogelsberger [1990]. Here it
follows from stronger results proved in Sections 4 and 5. Note that the results in
Sections 4 and 5 do not rely on Theorem 1.
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and the fact that V; is a strictly convex function with convex domain
O' N A that ¢ = & is the unique minimum of Vj.
Taking the time derivative of V5 yields

d

V&(U) = I

V,;(O’) = Z w,'(O')[U,'(O') — U,'(O'_,', 0_',')] < 0,

tEN

where w;(c), Vi € N, are the player-specific shift factors from the un-
derlying AMS. Hence, V; is a local Lyapunov function, implying that &
is a stable rest point for any AMS.

Moreover, from & € B(U), Vo € O'N A, it follows that V,—,(U) =0
implies ¢ € (o) , and hence o € E(T"). Thus V(o) < 0 for all o €
O' N A which satisfy o ¢ E(T"). Therefore, o(t, 0°) —i—0o E(T) N O’
Vo° € O'NA, as required. I
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