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Abstract
The “superstar economy” is characterized by payoff functions that depend in a discontinuous
way on the quality level of the corresponding products and services. Firm A might generate
much higher returns than firm B, although A’s product is only marginally superior to B’s
product. We look at an investor who considers to invest into start-ups that want to become
active in one particular technological segment. Consequently only the very best few projects
generate high returns. The investor is faced with a sequence of investment opportunities,
observes the objective relative rankings of the corresponding projects seen so far, and must
decide whether and how much to invest into the currently observed opportunity. Returns are
realized at the end of the investment horizon. We derive the value functions and optimal
investment rules for risk-neutral and risk averse investors. Under weak assumptions, the
expected infinite horizon utility exceeds that of initial wealth. We show that for a risk-neutral
investor “invest all or nothing”, depending on the project’s ranking and time of occurrence,
is an optimal strategy. For a risk-averse investor the optimal rule is non-linear and path
dependent. A simulation study is performed for risk-neutral and log-utility investors.

Keywords Economics of superstars · Optimal stopping · High-risk investments

JEL Classification: C60 · C81 · G24

The authors appreciate helpful comments from participants of the 8th Austrian Stochastic Days 2020 in
Graz. The authors thank two anonymous referees and the editor Frank Riedel for comments and suggestions
that improved the exposition of the paper. The authors gratefully acknowledge financial support from the
Jubiläumsfonds of the Oesterreichische Nationalbank under Grant No. 17656.

B Leopold Sögner
soegner@ihs.ac.at

Martin Meier
m.meier@bath.ac.uk

1 Department of Economics, University of Bath, United Kingdom

2 Institute for Advanced Studies, Vienna, Austria

3 Vienna Graduate School of Finance (VGSF), Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11579-023-00337-9&domain=pdf
http://orcid.org/0000-0001-5388-0601


Mathematics and Financial Economics

1 Introduction andmotivation

The rapid growth of products and services marketed via the Internet increases the importance
of considering revenues and profits generated by so called “superstars” or “superstar firms”.
Examples are music streaming, search engines, Internet market places, news websites, where
on the supply side goods can be marketed worldwide at almost zero marginal cost. At the
same time consumers are often able to pick the—according to their perception—best product
at no higher cost than the second best, third best etc. For example, since prices for streaming
a film or listening to music on a particular platform are often fixed, there is no good reason
to stream the second best film instead of the best (according to the consumer’s preferences),
listen to the second best orchestra performing a particular piece of music instead of the best,
etc. This is so, regardless of how small the perceived difference in quality between the films,
orchestras, etc. is. Hence the ranking between competing artists, films, services, etc. becomes
more important than the absolute quality level per se. Another important example are internet
search engines. A keyword-search is “cost-less" (respectively the cost is always the same,
users give away their data) and there is no good reason to use the second best search-engine
instead of the best—at least this was the perception of most consumers during the early up
to quite recent days of the internet economy.

By contrast, in the physical goods economy prices differ largely depending on quality
levels or characteristics—that is why most of us are more likely to drive a medium-sized
vehicle than a luxury car. Goods of similar quality can be sold at similar prices achieving at the
same time similar market shares. Hence, for physical goods the payoffs depend continuously
on the perceived quality level of these goods (see also heterogenous versions of the Cournot
and the Bertrand model, e.g., [12] Chapter 16). Therefore, investing into firms that are active
in the physical goods economy is much more predictable and less risky than investing into
new economy firms.

Typically financing of projects related to Internet firms is performed by business angels and
venture capitalists. In contrast to investment problems considered in the standard corporate
finance literature, the investor is confronted with payoffs which depend on the rank of the
corresponding project as already described in the above paragraphs. She faces cash flows
arsing from investment projects where the main market share goes to the “winner”. Already
the second-best makes a much smaller profit compared to the “winner”, let alone the lower-
ranked competitors.

Gompers et al. [11] performed a survey among 885 venture capitalists. They [in their
Table 5] compare the relevance of several factors, such as the team, the business model, the
product, the market, etc. and find out that the founding team is the most important factor
in the evaluation process. In addition, regarding valuation methods a bulk of venture capital
firm use the net present value method or the internal rate of return, however “... 9% do not
use any financial metrics”. By these two issues, a plausible way to approximate this behavior
in a model is that investors are only able to rank the corresponding projects. Especially if the
management team is very important, measuring the ability of a team on a cardinal scale is
not very realistic, a ranking seems to be more plausible and provides an additional argument
to consider rank dependent investment strategies.

As motivated by the above paragraphs, we study investment problems for superstar
projects, that is, investment projects with rank dependent payoffs. To simplify the analy-
sis, the financial resources the investor is able to spend is considered to be fixed, for example
already provided by an investment fund. Entrepreneurs submit their business proposals. The
venture capital investor is able to compare the corresponding projects with respect to their
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relative quality. That is, the relative rank of a project is observed. The profitability of a par-
ticular investment depends on its realized ranking among all projects. That is, the rank of
the chosen project at the end of the investment horizon. Hence, the investment problem con-
sidered is different from standard portfolio optimization problems investigated in Finance
(for a brief overview, see, e.g., [2] diversification effects can be expected by investing into
multiplie investment opportunities in standard problems, while in our model investing into
the best assests only is important). Due to competition among investors for superstar projects,
the investor is forced to be quick with her decision. Taking this to the extreme, she has to
decide onwhether and howmuch to invest before she receives the next proposal. Based on the
superstar property only those n alternatives with the highest quality characteristic generate
positive returns in the future. Given these assumptions, this article obtains optimal investment
strategies.

This article is related to the economics of superstars literature, finance literature, and to the
mathematical literature on so called “secretary problems”: Older literature on the economics
of superstars, such as Frank and Cook [9], considers optimal remuneration schemes and
when/where they are rank dependent (see, e.g., Pancs [21]). So calledwinner-take-all markets
(see, e.g., [9]) are characterized by returns depending chiefly on the relative ranking of
competitors and much less on the absolute quality of the products. Instead of looking at
optimal payoffs schemes as discussed in the economics of superstar literature, the focus of
this article is on optimal investment schemes when the expected payoffs strongly depend on
the ranking of the corresponding investment project.

Recently Opp [20] developed an interesting dynamic equilibrium model describing the
venture capital market. The framework considered in Opp [20] allows to obtain asset prices
and returns in closed form. In particular, Opp [20] also derives equilibrium prices and abnor-
mal expected returns. In Opp [20] at each point of time the most productive entrepreneur
is selected (see Section 1.3.3 and 1.3.4 in Opp [20]). By contrast, in our model the n best
projects generate returns at the end of the investment horizon T . The main task of the investor
in our model is to optimally select the investment opportunities, where an investment project
can turn out to be completely disastrous, if too many better projects appear in the unforeseen
future.

Korteweg and Nagel [14] claim that linear factor pricing methods—as applied in standard
asset pricing—are quite difficult to be applied to venture capital investing. As an alternative
they propose to use stochastic discount factors and applied thismethodology to empirical data
from venture capital funds and individual investment projects. First, Korteweg andNagel [14]
inferred strong positive abnormal returns arsing from venture capital investments, while for
venture capital funds these abnormal returns are close to zero. Probably a lot of the abnormal
return generated by the corresponding investment projects is soaked up by costs arsing for the
venture capital firm to evaluate business plans, select projects, and support the enterprises,
etc. Hence, finding good investment projects is complicated, especially if the decision has to
be quite fast due to competition with other venture capital firms. Second, the authors used
data from Sand Hill Econometrics to apply their evaluation method to empirical data. The
data base considers cash flows from already realized investment projects, while this papers
models the time period before and obtains optimal investment rules. In this paper we also
perform a simulation study to get some further insights into the investment behavior implied
by our optimal rules. To do this, estimates of the expected gross returns become necessary.
To get estimates for gross returns of superstar projects we use estimates from Cochrane [7]
in our simulation study.

In the Mathematics literature investment decisions where only the winner (n = 1) obtains
a positive return are solved inBruss and Ferguson [3]. The casewhere the two best alternatives
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(n = 2) generate a positive return is considered in Łebek and Szajowski [15]. To the best of
our knowledge these two articles are the only papers that consider investment models with
rank dependent payoffs. The optimal investment strategy for the linear case with general n
is related to Mucci [18]’s solution of the secretary problem with generalized payoffs. That
paper is a generalization of the classical secretary problem with rank dependent payoffs (see
the seminal paper of [5]). In the latter two articles exactly one secretary has to be chosen,
while in former papers and in the current article a budget exists which can be invested into
multiple alternatives and need not be invested at all. In all the previously cited articles of this
paragraph the returns are non-stochastic. In this article we allow for stochastic returns and
extend the results obtained in Bruss and Ferguson [3] and Łebek and Szajowski [15] to the
case where the n best alternatives result in a positive payoff.

This article is organized as follows: Sect. 2 describes the investment problem inmore detail
and provides an almost closed form solution for an investor with a monotone increasing and
continuous Bernoulli utility function. Then Sect. 3 investigates the risk-neutral case for n ≥ 1
projects and deterministic returns. Section4 considers stochastic returns. Finally, Sect. 5
presents results from a simulation study to investigate how optimal investment behavior
changes with the attitude towards risk and the number of time periods considered.

2 The investment problem

In this section we follow Bruss and Ferguson [3] and consider t = 1, . . . , T periods of time.
An investor is endowed with initial wealth w0 > 0. At each period of time an investment
opportunity, described by a uniformly i id random variable Xt on the unit interval [0, 1]
occurs. The randomvariable Xt describes the unobservedquality level of the project occurring
at time t . Let ρt (Xs) := ∑t

v=1 1Xv≥Xs , s ≤ t , and ρT (Xs) := ∑T
v=1 1Xv≥Xs denote the

relative (at period t) and the absolute rank of Xs . Correspondingly, for a realization xs , ρt (xs)

and ρT (xs) denote the realized relative rank of xs at time t , respectively the realized final
rank. Hence the largest draw arising in 1, . . . , t has relative rank 1 and the second best relative
rank 2, etc. At time t , the period where the kth best observation (of the draws that occurred
so far) was realized is denoted by τ k

t . Note that τ
k
t depends on x1, . . . , xt and is therefore a

function of time t .
In any period t the investor can invest any amount bt , with 0 ≤ bt ≤ wt−1 into the risky

project showing up at this moment. But at time t the investor cannot invest in projects that
occurred in one of the previous periods (recall is impossible). We assume that at time t the
investor remembers past investments bs and the current relative ranks of the past realizations
xs , s ≤ t − 1. However, she never observes the values xs , but only the ranks among the
past realizations.1 The investment history at time t is bt−1 := (b1, . . . , bt−1) ∈ R

t−1
≥0 . By

investing bt the remaining budget is wt = wt−1 − bt .
Returns can be deterministic or stochastic. In the deterministic case the gross-returns

per unit invested are described by
(
β i

t

)
t=1,...,T ; i=1,...,n . In more detail, β

j
t abbreviates the

deterministic return per unit invested in period t , if the draw of period t becomes the overall
j-th best draw at time T . This is of course a simplifying assumption reflecting the idea that
the selection period is relatively short compared to the future point in time when the returns
finally realize as often observed with high-risk investment projects. If the lifetimes of the
investment projects are different, this can be accounted for by discounting the payoffs to a

1 By contrast in the so called full information case—briefly considered in Sect. 3 and the Appendix F—the
investor is able to observe xt and therefore to compare the absolute quality levels xs , s ≤ t .
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common reference period. To keep the notation simple these discount factors are already
contained in the β i

t , that is:

Remark 1 A deterministic discount factor δ, δ ∈ (0, 1], can be included in a straightforward
way by considering β

j
t = β̃ jδt or B j

t = B̃ jδt , etc. Stochastic discount factors δt , and time
dependent β̃ j , B̃ j can incorporated accordingly.

Our model has the following limitations: First, in contrast to what is often observed on the
venture capital market, we abstract from investment stages. Second, we need to assume that
there are no returns obtained before the last investment opportunity occurs. As long as all
returns realize after the last investment opportunity shows up, differences in the time points
of the realization of the returns can accounted for by choosing the β t

j (or B j
t ) accordingly.

In this case, β t
j (or B j

t ) can also describe an accumulated return.
Suppose that the best n, n ≤ T , projects yield a strictly positive return (almost surely

non-negative and strictly positive with positive probability, in the case of stochastic returns).
In the stochastic case considered in Sect. 4, the returns are denoted by

(
Bi

t

)
t=1,...,T ; i=1,...,n .

We assume that Bi
t only depends on t , the rank of the corresponding Xt , and the (unobserved)

realized value of Xt . For any realization xs with absolute rank ρT (xs) larger than n the return
is equal to zero. Note that by these assumptions on the returns the payoffs of the investment
projects become more discontinuous. While small changes in technological shocks usually
have small impacts on asset prices and returns in production based asset pricing models (see,
e.g., [4] Chapter 7), in our model small changes in shocks Xt can have large effects if the
ranking changes.

Next, we describe the n(n + 1)/2-dimensional vector of potential payoffs yt−1 coming
from past investments. Let yt

i |� ≥ 0 denote the payoff of the currently i-th best alternative—

after Xt realized—if it becomes �-th best at T . For example, yt
1|1 = β1

τ 1t
bτ 1t

is the payoff

resulting from the corresponding investment bτ 1t if the current best alternative (i.e. xτ 1t
, where

τ 1t ≤ t) remains the best at time T , yt
1|2 = β2

τ 1t
bτ 1t

is the payoff if the current best alternative

becomes the second best at T , yt
2|2 = β2

τ 2t
bτ 2t

is the payoff if the current second-best alternative

remains the second-best at T , etc.
Note that yt

i |� where � < i is infeasible (since “better draws stay better”), while yt
i |� = 0

for all � > n by the assumption that only the best n projects can result in a positive return
and the returns of all other projects are zero. If t < n the corresponding yt

j |· with t < j ≤ n
are set to zero. Let �i denote the final rank (at time T ) of the i-th best observation at time t .
Hence, �i ≥ i and �i ≤ i + T − t given that there are T − t remaining draws. For any pair
yt

i |�i
, yt

j |� j
, where i < j , we get �i < � j . By considering the current n best draws after Xt

realized, we obtain n(n+1)
2 terms yt

j |� j
:= β

� j

τ
j

t
b
τ

j
t

≥ 0 and the lower triangular n × n matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
τ 1t

bτ 1t

β2
τ 1t

bτ 1t
β2

τ 2t
bτ 2t

β3
τ 1t

bτ 1t
β3

τ 2t
bτ 2t

β3
τ 3t

bτ 3t

...
...

...
. . .

βn
τ 1t

bτ 1t
βn

τ 2t
bτ 2t

βn
τ 3t

bτ 3t
. . . βn

τ n
t

bτ n
t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

yt
1|1

yt
1|2 yt

2|2
yt
1|3 yt

2|3 yt
3|3

...
...

...
. . .

yt
1|n yt

2|n yt
3|n . . . yt

n|n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=: Yt . (1)

The remaining upper triangular part of this matrix is zero since yt
j |� j

= 0 for all � j < j . To

obtain the row vector yt ∈ R
n(n+1)/2 the lower triangular part of Yt is vectorized, in formal

terms

yt =
(

yt
1|1, . . . , yt

1|n, yt
2|2, . . . , yt

2|n, . . . , yt
n−1|n−1, yt

n−1|n, yt
n|n
)

.

The following paragraph describes the transition of Yt−1 to Yt : Depending on the real-
ization of Xt , Yt−1 changes to Yt in period t . Consider a realization xt with realized rank

ρt (xt ) = j and let β j :n
t :=

(
β

j
t , . . . , βn

t

)
. Recall that τ t = (

τ 1t , . . . , τ n
t

)�
denotes the points

of time where the xs , s ≤ t , with the ranks 1, . . . , n had realized. If the rank of xt is larger
than n, then τ t−1 remains the same: τ t = τ t−1. If xt has rank j , 1 ≤ j ≤ n, then we obtain

the new τ t =
(
τ 1t−1, . . . , τ

j−1
t−1 , t, τ j

t−1, . . . , τ
n−1
t−1

)�
. This update of τ t−1 is abbreviated by

τ t−1(xt ) resulting in the new τ t . If the agent invests bt , then the new matrix of payoffs is
provided by

Yt = Yt−1

(
bt β

j :n
t

)
, where the function

Yt−1

(
bt β

j :n
t

)
:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yt−1
1|1

yt−1
1|2 yt−1

2|2
.
.
.

.

.

.
. . .

yt−1
1| j−1 yt−1

2| j−1 . . . yt−1
j−1| j−1

yt−1
1| j yt−1

2| j . . . yt−1
j−1| j β

j
t bt

yt−1
1| j+1 yt−1

2| j+1 . . . yt−1
j−1| j+1 β

j+1
t bt yt−1

j | j+1
.
.
.

.

.

.

.

.

.

.

.

.
. . .

. . .

yt−1
1|n yt−1

2|n . . . yt−1
j−1|n βn

t bt yt−1
j |n . . . yt−1

n−1|n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yt
1|1

yt
1|2 yt

2|2
yt
1|3 yt

2|3 yt
3|3

.

.

.

.

.

.

.

.

.
. . .

yt
1|n yt

2|n yt
3|n . . . yt

n|n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

The dimension ofβ j :n
t determines the column j where btβ

j :n
t is inserted in (2). If ρt (xt ) > n,

then Yt = Yt−1. We obtain the new vector of payoffs yt by vectorizing Yt−1

(
btβ

j :n
t

)
. An

alternative approach to storing yt is to work with the investment histories bt = (b1, . . . , bt ).
By means of bt and τ t , yt can be obtained in a straightforward way.

The investor maximizes expected utility. The Bernoulli utility function u(·) is mono-
tone increasing and continuous [that is, we allow for risk-averse, risk-neutral or risk-loving
behavior].

Venture capitalists and business angels are typical investors in high-risk investment
projects. Venture capital firms can be considered as institutionalized investors that have vari-
ous opportunities to diversify, such that we consider them as risk-neutral investors. Business
angels usually have less opportunities to diversity, hence we consider them as risk-averse.2

The remaining budget after period T −1 iswT −1 and the information on prior investments
is provided by yT −1. Then, the term VT −1 (wT −1, yT −1) denotes the conditional expected
utility when applying an optimal investment strategy in period T .3

2 We thank one anonymous referee for this comment.
3 For the existence of expected utility for the deterministic and the stochastic case see Appendix D.
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Accordingly, Vt−1(wt−1, yt−1) denotes the conditional expected utility of the final wealth
given that the investor applies an optimal investment strategy from t onward [subject to an
investment history described by wt−1 and yt−1]. After investing bt , the remaining budget
becomes wt = wt−1 − bt and yt−1 becomes yt , as already described above. In particular, the
value functions Vt (·) for t = T and t = T − 1 are

VT (wT , yT ) = u(wT +
n∑

j=1

yT
j | j ) and

VT −1(wT −1, yT −1) = T − n

T
u

⎛

⎝wT −1 +
n∑

j=1

yT −1
j | j

⎞

⎠

+ 1

T

n∑

j=1

u

⎛

⎝wT −1 max{1, β j
T } +

j−1∑

i=1

yT −1
i |i +

n−1∑

i= j

yT −1
i |i+1

⎞

⎠ . (3)

To see this, note that at t = T there are no more steps to go and we obtain a final wealth of
wT + yT

1|1 + · · · + yT
n|n . wT is the remaining non-invested budget, and yT

j | j the payoffs of
the first to n-th best alternatives, when there are no further steps to go. If there is still one
step to go, that is t = T − 1, we get wT −1 + yT −1

1|1 + · · · + yT −1
n|n if the last draw XT has

a (final) rank larger than n. The probability of this event is T −n
T . With a probability of 1/T

we get a draw of rank j , where j ≤ n. In this case the current best j − 1 draws remain the
j − 1 best, the realization xT becomes the j-th best, while the current j-th to n-th best draws
become the j + 1 to n + 1-th best. The payoff of the n + 1-th best draw is zero by the model
assumptions. At t = T the best strategy is to invest all the remaining budget wT −1 into this
alternative, if and only if the relative (= absolute) rank of xT is equal to j ≤ n and β

j
T ≥ 1.

For example, with a probability of 1/T the T -th draw becomes the best one. In this case the
former best draw becomes the new second best, yielding the payoff yT −1

1|2 , while the former
second best becomes third best, etc. For the value function we get the recursion

Vt−1(wt−1, yt−1)

= max

{
t − n

t
, 0

}

Vt (wt−1, yt−1)

+1

t
max0≤bt ≤wt−1Vt

(
wt−1 − bt , yt−1

(
btβ

1:n
t

))+

+1

t
max0≤bt ≤wt−1Vt

(
wt−1 − bt , yt−1

(
btβ

2:n
t

))+
...

+1

t
max0≤bt ≤wt−1Vt

(
wt−1 − bt , yt−1

(
btβ

min{n,t}):n
t

))

= max

{
t − n

t
, 0

}

Vt (wt−1, yt−1)

+1

t

min{n,t}∑

j=1

max0≤bt ≤wt−1Vt

(

wt−1 − bt , yt−1

(
btβ

j :n
t

))

. (4)

The current value described in (4) is obtained as follows: The first term accounts for draws
worse than the n-th best, in which case wt = wt−1 and yt = yt−1. The probability of this
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event is t−n
n [provided that t > n and zero else]. The further n terms consider expected

utility contributions arising if the relative rank of the draw xt is j = 1, . . . , n. If xt is the
j-th best, the payoffs resulting from investing bt in this opportunity are described by btβ

j :n
t ,

in addition, in this case, we have yt
i+1|k = yt−1

i |k for i = j, . . . , n − 1, k = i + 1, . . . , n, and

yt = yt−1

(
btβ

j :n
t

)
.

For t = 0 we get

V0(w0) = max0≤b1≤w0V1
(
w0 − b1, b1β

1:n
1 , 0, . . . , 0

)
. (5)

For t = 1, we have τ 1t = 1, τ 2t , . . . , τ n
t = 0, yt = y1 =

(
y11|1, . . . , y11|n, 0, . . . , 0

)
, and for

n > 1 we get4

V1
(
w1, y11|1, . . . , y11|n, 0, . . . , 0

)

= 1

2
1(ρ2(x2)=1)max0≤b2≤w1V2

(
w1 − b2, b2β

1:n
1 , y11|2, . . . , y11|n, 0, . . . , 0

)

+1

2
max0≤b2≤w1V2

(
w1 − b2, y11|1, . . . , y11|n, b2β

2:n
1 , 0, . . . , 0

)

while for n = 1 we obtain

V1
(
w1, y11|1, . . . , y11|n , 0, . . . , 0

)

= 1

2
1(ρ2(x2)=1)max0≤b2≤w1V2

(
w1 − b2, b2β

1:n
1 , y11|2, . . . , y11|n , 0, . . . , 0

)

+ 1

2
V2

(
w1, y11|1

)
. (6)

The value functions Vt (wt , yt ), t < n, also follow from (4) in the same way, where the last
n − t columns of Yt are zero.

Suppose that we follow the strategy “do nothing in the periods > t”. Before Xt+1 real-

izes the decision maker knows wt and yt =
(

yt
1|1, . . . , yt

n(t)|n, 0, . . . , 0
)�

, where n(t) :=
min{n, t}. If we do nothing in the remaining periods, we obtain wt + yt

1|�1 + · · · + yt
n(t)|�n(t)

,
where � j , j = 1, . . . , n(t), are the final ranks for best n(t) draws at the end of period t . The
probabilities of these ranks � j , j = 1, . . . , n(t), are

pt
(
�1, . . . , �n(t)

) =

(
T − �n(t)

t − n(t)

)

(
T
t

) . (7)

These probabilities are derived in Appendix A. Then, the conditional expected utility of the
strategy “do nothing in the remaining periods > t” is given by

Wt (wt , yt ) :=
∑

�1,...,�n(t):
0<�1<···<�n(t)≤T −t+n(t)

pt
(
�1, . . . , �n(t)

)
u

⎛

⎝wt +
n(t)∑

j=1

yt
j |� j

⎞

⎠ . (8)

Let Z
(
�1, . . . , �n(t)+1;wt − bt+1, yt (bt+1 · β

j :n
t+1)

)
:= (wt − bt+1) + yt

1|�1 + · · · +
yt

j−1|� j−1
+β

� j
t+1bt+1+ yt

j |� j+1
+· · ·+ yt

n(t)|�n(t)+1
denote a final payoff for the strategy where

4 Eq. (6) follows from (4). For n = 1, the matrix Yt = y11|1.
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bt+1 > 0 is invested, if past and current investments have final ranks �1, . . . , �n(t)+1 [and the

time-t + 1 draw has rank j at period t + 1] while Z
(
�1, . . . , �n(t)+1;wt , yt (0 · β

j :n
t+1)

)
:=

wt + yt
1|�1 + · · · + yt

j−1|� j−1
+ 0 + yt

j |� j+1
+ · · · + yt

n(t)|�n(t)+1
is the payoff for the strategy

“doing nothing” after time t if past (up to and including time t) investments have final ranks
�1, . . . , � j−1, � j+1, . . . , �n(t)+1. Endowed with this notation for our investment problem we
get:

Theorem 1 Consider a monotone increasing and continuous utility function u(·) and the
conditional expected utility of the strategy “do nothing in the periods > t” defined in (8).
For t = 0, 1, . . . , T , the value function Vt (wt , yt ) satisfies

Vt (wt , yt ) = Wt (wt , yt ) + rt (wt , yt ) . (9)

The residual terms rt (wt , yt ) are obtained as follows: rT (wT , yT ) = 0 and the rt (wt , yt ),
t = T − 1, . . . , 1, follow from the recursion

rt (wt , yt ) =max

{
t + 1 − n

t + 1
, 0

}

rt+1(wt , yt )

+ 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[

rt+1

(
wt − bt+1, yt

(
bt+1β

j :n
t+1

))

+
∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

) (
u
(

Z̃
)

− u
(

Z
(
�1, . . . , �n(t)+1; wt , yt (0 · β

j :n
t+1)

))) ]

(10)

where Z̃ = Z
(
�1, . . . , �n(t)+1;wt − bt+1, yt (bt+1β

j :n
t+1)

)
. We have rt (wt , yt ) ≥ 0 for all

t = 1, . . . , T and W0(w0) = w0. The optimal investments bt+1, t = 0, 1, . . . , T − 1, are the
maximizers of the expressions inside the squared brackets in (10). If β

j
t < 1 for all t and j ,

then bt = 0 for all t = 1, . . . , T . β
j

t ≥ 1 for some t and j is necessary but not sufficient for
bt > 0.

For the proof see Appendix B.
The above theorem is an extension of Bruss and Ferguson [3] and Łebek and Szajowski

[15], who consider the cases n = 1 and n = 2, respectively. We observe a split of the value
function Vt (wt , yt ) into two parts. The term Wt (wt , yt ) is the expected utility, that after
period-t uncertainty has resolved and period-t investments have been made, the investor
expects to receive, if from that moment on she would passively lean back without investing
any of the non-invested remaining budget wt . This is the expected utility coming from past
and present investments. As (8) shows, this term is easy to compute. The term rt (wt , yt ) is
the additional expected utility that the investor expects to receive if she would instead invest
optimally in the future, that is, in all the remaining periods. Since “leaning back" is always
a feasible strategy, this additional expected utility must be non-negative.

For the optimal investment strategies we observe: (i) The maximization problem arsing
from the term in squared brackets in (10) is non-linear in the investments bt+1. Hence, in
general, we get some optimal b∗

t+1, where 0 ≤ b∗
t+1 ≤ wt . By contrast, for the risk-neutral

case considered in Sect. 3, we show that a “bang-bang” strategy, that is b∗
t+1 is either 0 or

wt = w0, is an optimal strategy.
(ii) Consider the case of constant relative risk-aversion. In a purely static standard invest-

ment problem the optimal investment weights b/w, do not depend on the size of w. In the

123



Mathematics and Financial Economics

current investment model the investment weights bt/wt do not only depend on the rela-
tive rank of xt and time t , but also on prior investments bt−1. To see this, note that prior
investments enter via yt−1 into the utility maximization problem contained in the recursions
(10).

(iii) Let us now consider the case when the number of periods considered becomes large.
For linear utility, Bruss and Ferguson [3] [see Example 2.3.1] derived a closed form expres-
sion for the value function when the number of periods T → ∞. In this case, given an initial
wealth w0 and a return β1

k = β1 > 1 the value function is w0β
1 exp(−(β1 − 1)/β1) > w0.

Hence, even if the number of periods approaches infinity the investor expects to receive a
strictly positive net return. As an example, for β1 = 2 and an initial wealth of w0 = 1,
the value function becomes β1 exp(−(β1 − 1)/β1) = 1.21306. To consider the non-linear
case we proceed as follows: In the classical secretary problem the goal is to maximize the
probability to get the element with rank one when only the relative ranks are observed.
Lindley [16] has shown that it is optimal to reject the first r∗ options and then take the first
alternative where the realized relative rank is equal to one. The number r∗ follows from
r∗ = min{1 ≤ r ≤ T |∑T

k=r+1
1

k−1 ≤ 1}. If we let the number of periods T → ∞, r∗

becomes T
e . With this strategy the probability of selecting the overall best approaches 1

e for
T → ∞. Using this, let us briefly remark on the case when T approaches infinity: Assume
that β1

t ≥ 2, for all t and the utility function u(·) is continuously differentiable. Consider the
investment strategy: “Invest η > 0 in the first investment opportunity with relative rank 1
occurring at times larger than T

e , and otherwise do not invest at all”. According to the solution
of the classical secretary problem, the investor invests in the opportunity with absolute rank
1 with a probability of 1

e . In this case the investor receives a payoff of w0 + (β1
t − 1)η.

With probability 1
e the opportunity with rank 1 occurred among the first T

e periods and hence
the investor will not invest and will end up with a final wealth of w0. With the remaining
probability of e−2

e the investor invests and receives at least w0 − η. This strategy yields
the expected utility of 1

e u
(
w0 + (β1

t − 1)η
) + 1

e u (w0) + e−2
e u (w0 − η). As e−2

e < 1
e ,

for some small η > 0 and a monotone increasing and continuously differentiable utility
function u(·), the inequality 1

e u
(
w0 + (β1

t − 1)η
) + 1

e u (w0) + e−2
e u (w0 − η) > u(w0)

is satisfied. If there are further positive payoffs β
j

t > 1, j > 1, the expected utility
of this strategy is larger and hence the condition on β1 can be relaxed. Note that this
inequality is independent of T . Obviously the expected utility of the above described
strategy is a lower bound for the expected utility of the optimal strategy. Hence, we
have:

Remark 2 Under the above assumptions on the β1
t and the utility function, the expected utility

of the optimal strategy will be strictly larger than u(w0), even if T approaches infinity. In
particular in the risk-neutral case, β1

t > 1, for all t , is sufficient for an expected payoff larger
than w0, also for T → ∞.

One of the most unrealistic features of our model is that investment opportunities must be
taken up immediately. One could modify this by allowing for each opportunity a fixed time
window (e.g., 3 periods), in which the decision maker could invest in this opportunity. So,
in period t one can invest into the opportunities that appeared in the periods t − 2, t − 1,
and t . Then not much would change qualitatively. Of course, the investor would always wait
till the last moment before investing in a given opportunity, to get as much information as
possible.
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3 Risk neutrality

This section considers the linear case, where u(·) is the identity function and the investor
maximizes expected wealth. The risk-neutral case is mainly import for institutional investors
such as venture capital firms. Suppose that the investor either invests 0 or the remaining
budget wt (which will turn out to be a feature of some optimal strategy for a risk-neutral
investor). Then, by applying this strategy at t , the remaining budget wt is either equal to
w0 [such that b1, . . . , bt−1 = 0 and y j |� j = 0] or the remaining budget is wt = 0. In the
second case the investor already invested bs = w0 in some period s, where 1 ≤ s ≤ t − 1.
Hence,Yt−1 contains at most one non-zero column. The non-zero entries arew0β

ρt−1(xs ):n
s =

(
yρt−1(xs )|ρt−1(xs ), . . . , yρt−1(xs )|n

)�. For ranks larger than n the return of the investment is
zero and knowledge of the rank of xs is irrelevant. For the strategies “doing nothing in the
remaining periods > t” and “invest w0 or 0” we obtain

Wt (wt , yt )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0 , if bs = 0 for all s = 1, 2, . . . , t

and wt = w0,

w0
∑n(t)

�=ρt (xs )
pt ({ρT (xs ) = �}|ρt (xs )) β�

s , if bs = w0 at s ∈ {1, . . . , t}
and wt = 0.

(11)

The probabilities pt ({ρT (xs) = �}|ρt (xs)) that xs has final rank � = ρt (xs), ρt (xs) +
1, . . . given that its current rank [immediately after Xt realizes] is ρt (xs) follows from (7).5
That is,

pt ({ρT (xs ) = �}|ρt (xs ) = j) =

(
� − 1
j − 1

)(
T − �

t − j

)

(
T
t

) for � = j, . . . , j + T − t . (12)

We recursively define the additional value that one obtains when investing an amount of 1
optimally after period t . For t = T we have cT = 0. For t < T we get

ct−1 =max

{
t − n

t
, 0

}

ct

+ 1

t

min{n,t}∑

j=1

max

{ n(t)∑

�= j

pt ({ρT (Xt ) = �}|ρt (Xt ) = j)
(
β�

t − 1
)

, ct

}

. (13)

The residual term ct is the expected contribution per unit of remaining capital to the value
function by investing optimally instead of investing nothing in the last T − t periods. In the
proof of Theorem 2 we observe that ct = rt (1, 0). Then, for the linear case we obtain:

Theorem 2 Consider a risk-neutral investor where u(·) is the identity id(·).
(i) An optimal investment strategy is “invest bt = wt = w0 at the first time t where

n(t)∑

�=ρt (xt )

pt ({ρT (xt ) = �|ρt (xt )})
(
β�

t − 1
)

≥ ct

and 0 else“.

5 Note that these are negative hypergeometric distribution probabilities (see, e.g., Chow et al. [5], Ferguson
[8][Chapter 2], and Chapter [13][page 47, equation 1.19]).

123



Mathematics and Financial Economics

(ii) The value function Vt (wt , yt ) satisfies

Vt (wt , yt ) = Wt (wt , yt ) + wt ct

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0(1 + ct ) , if bs = 0 for all s = 1, . . . , t

and wt = w0,

w0
∑n

�=ρt (xs )
pt ({ρT (xs ) = �}|ρt (xs )) β�

s , if bs = w0 for one s ∈ {1, . . . , t}
and wt = 0.

(14)

For proof see Appendix C.
The value function Vt (wt , yt ) is the sum of the conditional expected utility of the strategy

“we do nothing in the remaining periods > t” Wt (wt , yt ) and the contribution of investing
the remaining budget optimally in the remaining periods, i.e. wt ct . We observe that, if it
is optimal to invest a positive amount, then it is also optimal to invest the whole remaining
budgetw0. The secretary problemwith generalized payoffswas already investigated inMucci
[18]. The chief difference to our model under risk-neutrality is that in the secretary problem
a candidate has to be hired, while in our model the investor has the option of non-investing.

Remark 3 Note that the residual term in the risk-neutral case, rt (wt ) = wt ct , does not depend
on prior realizations of the random variable Xs , s ≤ t . By contrast, in the general case the
residual term is of the form rt (wt , yt ) [see Eq. (10)]. Hence, in the linear case the complexity
of the optimization problem is reduced enormously, also from a computational point of view
as observed in Sect. 5.

Let us now assume that β1
t ≥ β2

t ≥ · · · ≥ βn
t ≥ 0, for all t = 1, . . . , T . It is intuitive that

if the risk-neutral investor finds it optimal to invest at time t all her remaining budget in the
current draw given that this draw has relative rank j , then she finds it also optimal to invest
all her budget, if the draw at t has relative rank i with i < j . Her position is better in the
latter scenario. This implies that for each point of time there exists a threshold dt , such that
the investor (upon having not invested before) invests all her budget at time t if the time-t
draw has relative rank dt or smaller.

Now let us assume in addition that the β
j

t do not depend on time. That is, there are
β1 ≥ β2 ≥ · · · ≥ βn ≥ 0, such that β

j
t = β j , for all j = 1, . . . , n and all t = 1, . . . , T .

Then it is also intuitive that if the risk-neutral investor finds it optimal to invest at time t all
her remaining budget in the current draw of relative rank j , then she finds it also optimal to
invest all her remaining budget at a later time, if that later draw has relative rank j . The reason
for this is that in later periods there are less possibilities for the rank of a past investment to
increase. This results in the following remark:

Remark 4 Consider a risk-neutral investor and assume that β1
t ≥ β2

t ≥ · · · ≥ βn
t ≥ 0, for all

t = 1, . . . , T .

1. Then there are rank-thresholds dt , t = 1, . . . , T with 0 ≤ dt ≤ n such that upon not
having invested so far, the investor invests all the budget w0 in period t if ρt (xt ) ≤ dt . If
ds = 0 for some period s, then this means that the investor never invests in that period.

2. If we assume in addition that the β
j

t do not depend on time, then these rank-thresholds
are non-decreasing over time. That is 1 ≤ t < s ≤ T implies dt ≤ ds . That means, these
thresholds become less and less stringent over time.

For the cases T = 3 and T = 5 Appendix F obtains these thresholds for the case where
β1

t = 3 and β2
t = 2, for all t . For T = 3 we get d1 = 0, d2 = 1, and d3 = 2, while for T = 5

the thresholds are d1 = d2 = 0, d3 = d4 = 1, and d5 = 2. That is, given the returns β1 = 3
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and β2 = 2 and an investment horizon of T = 3 periods, the investor never invests at t = 1,
she/he invests all the remaining wealth at t = 2 if the relative rank of the second draw is one,
while she/he does not invest at t = 2 if the rank of the draw is two. At t = 3, the investor
invests all the remaining wealth if the rank of the third draw is one or two, otherwise she/he
does not invest.

Finally, let us compare the limited information to the full information case in a small
example (all the calculations are provided in Appendix F, the case where only the best draw
results in a positive return was already investigated in Bruss and Ferguson [3]).We once again
consider T = 3 and β1 = 3, β2 = 2. For the limited information case, that is where the
decision rule has to be rank dependent, we get the thresholds d1 = 0, d1 = 1 and d2 = 2 and
an expected wealth of 7/3 ≈ 2.33. For the full information case, that is if the investor is able
to observe xt at t , an agent invests into the first draw if and only if x1 ≥ 0.679449. At t = 2
she invests all the remaining wealth if and only if the relative rank is one and x2 ≥ 1−x1

2 .
At t = 3 all the remaining wealth is invested if the rank of the third draw is either 1 or 2,
otherwise we do not invest. By applying this strategy under full information, the expected
wealth is 2.59603. That is, already for a small number of periods the fully informed investor
expects an additional wealth of approximately 0.2627. Hence, if an investor is only able to
rank the projects compared to evaluating them quantitatively (observing xt ) the difference is
quite costly.

4 Stochastic returns

Suppose that the returns per unit are random variables. These random variables are
B j
1 , . . . , B j

T , j = 1, . . . , n, the realizations are abbreviated β
j

t . The stochastic analogon

of β
j :n
t is B j :n

t . All the returns are realized and therefore known by the investor after T . We

assume P

(
B j

t > 0
)

> 0 and P

(
B j

t ≥ 0
)

= 1 for all j = 1, . . . , n and t = 1, . . . , T .

We assume that the distribution of the return B j
t is allowed to depend on t , the final rank

j = ρT (Xt ), and the realization of Xt . The results of Sect. 2 can be extended to this stochas-
tic case. Here, the deterministic returns are replaced by the stochastic returns B j

t . The utility

of the final wealth u
(
wt +∑min{n,t}

j=1 yt
j |�1 + · · · + yt

j |�n(t)

)
has to be replaced by the condi-

tional expectation 6 of u
(
wt +∑min{n,t}

j=1 Y t
j |�1 + · · · + Y t

j |�n(t)

)
, whereY t

j |� are the stochastic
analogons of yt

j |� considered in (1). We assume that the corresponding expected values and

conditional expectations exist in the following.7 Let

Et
(
Wt (wt ,Yt )

) :=
∑

�1,...,�n(t):
0<�1<···<�n(t)≤T −t+n(t)

pt
(
�1, . . . , �n(t)

)

·Et

⎛

⎝u

⎛

⎝wt +
min{n,t}∑

j=1

Y t
j |�1 + · · · + Y t

j |�n(t)

⎞

⎠

⎞

⎠ (15)

6 The conditioning information consists of the realized relative ranks of the past investment projects and the
investment histories at time t .
7 Note that for the linear case finite expectation of B j

t is sufficient for the existence of the value function. For
the non-linear case, the existence of the corresponding conditional expectation depends on both the stochastic

properties of B j
t and the properties of the utility function u(·). See Appendix D.
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denote the utility contribution of the strategy “do nothing in the remaining peri-
ods > t”. In the stochastic setup the vector yt becomes the random vector Yt ,
with coordinates Y j |�. In addition, the stochastic payoffs when investing bt are

Zt

(
�1, . . . , �n(t);wt−1 − bt ,Yt−1(btB

j :n
t )

)
:= (wt−1 − bt ) + Y t−1

1|�1 + · · · + Y t−1
j−1|� j−1

+
B

� j
t bt + Y t−1

j |� j+1
+ · · · + Y t−1

n(t)−1|�n(t)
denote a final payoff for the strategy where we invest

bt > 0, while Zt (�1, . . . , �n(t);wt−1,Yt−1(0 · B j :n
t )) := wt−1 + Y t−1

1|�1 + · · · + Y t−1
j−1|� j−1

+
0 + Y t−1

j |� j+1
+ · · · + Y t−1

n(t)−1|�n(t)
. Endowed with this notation for our investment problem we

obtain:

Theorem 3 Consider the investment problem investigated in Theorem 1, with stochastic
returns B j

t replacing the deterministic payoffs β
j

t . The value contribution of “doing nothing
in the remaining periods > t” follows from (15). For t = 0, 1, . . . , T , the value function
Et (Vt (wt ,Yt )) satisfies

Et (Vt (wt ,Yt )) = Et
(
Wt (wt ,Yt )

)+ Et (rt (wt ,Yt )) . (16)

For the residual term we get rT (wT ,YT ) = 0 and the recursion

Et (rt (wt ,Yt )) =max

{
t + 1 − n

t + 1
, 0

}

Et
(
rt+1(wt ,Yt )

)

+ 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[

Et

(
rt+1

(
wt − bt+1,Yt

(
bt+1B

j :n
t+1

)))

+
∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

)
Et

([
u
(

Z̃
)

− u
(

Z
(
�1, . . . , �n(t)+1; wt ,Yt (0 · B j :n

t+1)
))])]

(17)

where Z̃ = Z
(
�1, . . . , �n(t)+1;wt − bt+1,Yt (bt+1B

j :n
t+1)

)
. Et (rt (wt ,Yt )) ≥ 0 for all

t = 0, 1, . . . , T . The optimal investments bt+1, t = 0, . . . , T − 1, are the bt+1 solving the
maximization problems max0≤bt+1≤wt Et [·] in (17).

For a risk-neutral investors Theorem 3 implies

Corollary 1 Consider a risk-neutral investor where u (·) is the identity. Suppose that B j
t only

depends on the realized rank of the random variable Xt . Then, we can follow the deterministic
case investigated in Theorem 2. That is for any Xt with final rank j the expected return is
β

j
t = E(B j

t ). This reduces the numerical burden in the simulation analysis where we need
not approximate the conditional expectation terms by means of numerical integration.

Finally, we show that for a time invariant distribution of the returns, the value function
is non-increasing in T . Hence, in a market with more superstar candidates it is harder to
successfully invest.

Theorem 4 Consider a monotone increasing and continuous utility function u(·) and let
T ≥ n ≥ 1 and w0 > 0. Let ET

0 (V0(w0)) denote the expected value function of the T
period problem. Suppose that the distribution of B1

t , . . . , Bn
t does not depend on t. Then

E
T
0 (V0(w0)) ≥ E

T +1
0 (V0(w0)).
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Proof The following arguments are based on Chow et al. [5] and Assaf and Samuel-Cahn
[1]. Consider the T + 1 period problem, but where the investor is told at the beginning in
which period the draw with final rank T + 1 will occur. Obviously the value of this modified
problem is at least as high as the original T + 1 period problem. By ignoring the period of
the worst draw, the investor faces the same problem as a T period investor. 
�

5 Simulation analysis and optimal investment

In this section we perform a simulation study for risk-neutral investors as well as risk-
averse investors with Bernoulli utility function u(w) = ln(w). These cases are motivated
by possibly different risk attitudes of venture capital firms and business angels. The initial
wealth is w0 = 1. For the non-linear case the computation of the residual term rt (wt , yt ) is
numerically intensive. To see this, for each t , t = 1, . . . , T , we have to obtain the optimal
investment strategy bt , given various wt−1 and yt−1. That is, we construct a grid for wt−1

and possible prior investments bt−1 = (b1, . . . , bt−1) resulting in yt−1. In particular, we
work with a grid of 20 points including the end points 0 and w0 = 1, such that wt−1 and
bt are multiples of 1/(20 − 1) = 0.0526. More details are provided in Appendix E. By
starting with rT = 0, the residual terms Et (rt (wt , yt )) can be obtained recursively, for
t = T , T − 1, . . . , 1. For the linear case, the term ct is computed within seconds. Since the
computational burden increases rapidly in T and n, we work with n = 2 and T = 5, 10
and 20. For the linear case we additionally consider T = 50. The number of Monte-Carlo
replications is M = 5000. 8

Note that the random variables B1
t and B2

t represent the gross-returns. Performing the
simulation study with realistic values, requires estimates of the distribution of the gross
returns B�

t . Estimates of sample means based on empirical data are e.g. provided in Korteweg
and Nagel [14][Table IV]. According to literature, the log-normal distribution provides a
reasonable approximation of the return distribution. To approximate returns we use estimates
of log-returns provided in Cochrane [7][Table 4; ’Parameter estimates in the round-to-round
sample’],where the samplemean of the log-returns is 0.2 and the estimated standard deviation
is 0.84, such that the mean arithmetic net-return is close to 1.73 and the sample variance is
1.36.

By using these numbers we have a first estimate for gross-returns of superstar projects.
Up to our knowledge more precise estimates on the expected gross-returns of the first best,
the seconds best, etc. and the corresponding variances are not available. In the following
simulation study we assume that the first best has a gross-return higher than the expected
gross-return following from Cochrane [7][Table 4], while the second best has an expected
return below this value. In particular, the expectation of the gross-returns B1

t should be larger
than the estimate 1 + 1.73 obtained in Cochrane [7], while the expectation of B2

t should be
smaller that 2.73. In particular, we assume that B1

t is log-normally distributed with mean
parameter 0.8 and variance parameter σ 2 = 0.82, while B2

t is log-normally distributed with
mean parameter μ2 = 0.2 and variance parameter σ 2 = 0.82, for all t = 1, . . . , T . The
arithmetic gross-returns B1

t have an expectation of exp
(
μ1 + 1

2σ
2
) = 3.0649 and vari-

ance
(
exp

(
σ 2
)− 1

)
exp

(
2μ1 + σ 2

) = 8.24, while B2
t has expectation exp

(
μ2 + 1

2σ
2
) =

1.6820 and variance
(
exp

(
σ 2
)− 1

)
exp

(
2μ2 + σ 2

) = 2.54, respectively. The probability
P
(
B1

t ≤ 1
) ≈ 15.87% while P

(
B2

t ≤ 1
) ≈ 40.13%. By the properties of the log-normal

8 The software package Matlab was used.
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distribution P
(

B j
t > 0

)
> 0. Hence, in our simulation study we allow for realizations of B j

t

which are smaller than one [negative net-returns] also for investment projects with final best
or second best rank with positive probability. By the properties of the log-normal distribution
the returns B j

t are positive (almost surely).

Table 1 presents the sample mean (mean), the sample standard deviations (sd), the
minimum (min), the median, and the maximum (max) of realizations of the final wealth,
wT + Y T

1|1 + Y T
2|2 = wT + bτ T

1
B1

τ T
1

+ bτ T
2

B2
τ T
2
, the realizations of the final payoff, Y T

1|1 + Y T
2|2,

and the final non-invested budget wT . For a risk-averse investor with logarithmic Bernoulli

utility function we additionally consider realizations of final utility u
(
wT + Y T

1|1 + Y T
2|2
)

=
ln
(
wT + Y T

1|1 + Y T
2|2
)
[by “final” we mean the point of time, when all investment decisions

haven taken place and the random variables B1
t and B2

t are realized].
Table 1 shows that for the linear and the risk-averse case the sample means of the final

wealth are decreasing in T . The mean final payoff in the linear case and mean final utility
in the non-linear case decrease as expected from Theorem 4. In addition, Table 1 presents
the minimum, the maximum and the median of the realized final wealth, the final payoff and
the non-invested budget. 9 Since in the linear case—conditional on investing—the investor
invests all budget w0, we observe a minimum final budget of 0. The maximum of the non-
invested final budget is wT = w0 = 1. Hence, with T = 5, 10, 20 and 50, we observe paths
of the random variable Xt , t = 1, . . . , T , where the investor does not invest. The maxima of
the realizations of wT + Y T

1|1 + Y T
2|2 and Y T

1|1 + Y T
2|2 obtained for the linear case are almost

the same, differences are due to sampling effects. Comparing the linear to the risk-averse
case—as can be expected by economic intuition—the mean final wealth is smaller while the
average non-invested budget wT is larger for the risk-averse investor (for any fixed T ). In
addition, we observe investment paths where the risk-averse investor invests all the remaining
budget available. This happens if the relative rank is one and the number of remaining steps
to go is one or zero, or if the relative rank is equal to two and there is no further step to go.
For a final rank of xT ≤ 2, the decision of a log-utility investor to spend all the remaining
budget into this risky alternative depends on the distribution of the returns and the remaining
budget wT −1 (recall that the returns B1

T and B2
T are random variables).

Note that for the risk-neutral case and our assumption that the expectation of B1
t is larger

than two, the argument of Remark 2 applies here. That is, for T → ∞ the expected payoff is
larger than the initial wealth w. In line with this, our simulation analysis shows that also for
T = 50, the average final wealth remains significantly above the initial wealth w = 1 and
the drop from T = 10 to T = 50 is rather small [around 4%].

By considering the Tables 2, 3, 4 and 5, we are able to have a closer look at the structure
of the optimal investment paths. The tables show the average amounts invested at t in an
investment alternative where the realized rank at t is 1 (or 2) [invest rank 1/invest in rank
2 in the corresponding tables]. For the log-utility case we also report the average of the
corresponding amounts invested at period t (amount best/amount second best; for the linear
case these amounts are equal to the average investments since w0 = 1 and conditional on
investing to invest all is optimal). For the log-utility case, we report the sample average of
bt/wt and the corresponding sample means if the rank is 1 or 2, respectively.

Consider for example the case where T = 5. A risk-neutral investor invests for the first
time at t = 3 if the relative rank of the realization of X3 is equal to one. In the case of a

9 Note that the final wealth wT + Y T
1|1 + Y T

2|2 remains strictly positive in the risk-averse case. The value
0.0000 for T = 20 and log-utility in Table 1 is actually small but strictly larger than zero.
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Table 1 Descriptive statistics: we consider n = 2, and stochastic returns B1 and B2

Mean sd Min Median Max

T = 5, linear

Final wealth 2.2091 1.5681 0.0000 2.1596 4.9518

Payoff 1.9023 2.5229 0.0000 2.1596 4.9518

Final budget wT 0.3068 0.2127 0.0000 0.0000 1.0000

T = 10, linear

Final wealth 1.9672 1.8974 0.0000 1.7612 4.9519

Payoff 1.7278 2.5427 0.0000 1.7612 4.9519

Final budget wT 0.2394 0.1821 0.0000 0.0000 1.0000

T = 20, linear

Final wealth 1.9458 1.8384 0.0000 1.6614 4.9528

Payoff 1.6628 2.5768 0.0000 1.6614 4.9528

Final budget wT 0.2830 0.2030 0.0000 0.0000 1.0000

T = 50, linear

Final wealth 1.8894 1.8824 0.0000 1.5822 4.9529

Payoff 1.6124 2.5755 0.0000 1.5822 4.9529

Final budget wT 0.2770 0.2003 0.0000 0.0000 1.0000

T = 5, log-utility

Final wealth 2.0425 0.6938 0.1953 1.9729 4.9519

Payoff 1.8084 1.0217 0.0000 1.7744 4.9519

Final budget wT 0.2341 0.1055 0.0000 0.0000 1.0000

Final utility 0.6234 0.1998 −1.6333 0.6795 1.5998

T = 10, log-utility

Final wealth 1.8570 0.6659 0.0643 1.7432 4.9345

Payoff 1.5291 1.0568 0.0000 1.5106 4.9345

Final budget wT 0.3279 0.1277 0.0000 0.1579 1.0000

Final utility 0.5128 0.2451 −2.7444 0.5557 1.5963

T = 20, log-utility

Final wealth 1.8075 0.6924 0.0000 1.6640 4.9258

Payoff 1.4324 1.1117 0.0000 1.3827 4.9258

Final budget wT 0.3751 0.1342 0.0000 0.2105 1.0000

Final utility 0.4733 0.3691 −36.7368 0.5092 1.5945

The random variables B1 and B2 follow log-normal distributions with mean parameters 0.8 and 0.2 and a
variance parameter of 0.82. This figure presents the sample mean (mean), the sample standard deviations (sd),
the minimum (min), the median and the maximum (max) of realizations of the Final Wealth wT + Y T

1|1 +
Y T
2|2, the final Payoff Y T

1|1 + Y T
2|2, the remaining budget wT , and for a log-utility investor the Final Utility

u
(
wT + Y T

1|1 + Y T
2|2
)

= ln
(
wT + Y T

1|1 + Y T
2|2
)
. Results are obtained from 5, 000 simulation runs

risk-neutral investor all budget, i.e. w0 = 1, is invested at t = 3. The probability that the
relative rank of X3 is equal to one is 1

3 . The number observed, 0.3264, is close to 1
3 . At t = 4

the investor invests in 17.14% of the random draws. Note that the probability that X4 has
relative rank of one is 1/4. Since with a probability of 1

3 the risk-neutral investor invested all
the budget before t = 4, the probability that the relative rank of X4 is one and the investor did
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Table 2 Investment paths: We consider n = 2, T = 5 and stochastic returns B1 and B2

t 1 2 3 4 5

Risk-neutral

Invest rank 1 0.0000 0.0000 0.3264 0.1714 0.1006

Invest rank 2 0.0000 0.0000 0.0000 0.0000 0.0948

Log-utility

Invest rank 1 0.0000 0.4852 0.3378 0.2358 0.1510

Amount best 0.0000 0.3158 0.5823 0.6279 0.5402

Invest rank 2 0.0000 0.0000 0.3326 0.2532 0.1528

Amount second best 0.0000 0.0000 0.0798 0.3486 0.4682

bt /wt 0.0000 0.3158 0.3961 0.8099 0.9785

bt /wt rank 1 0.0000 0.3158 0.6960 1.0000 1.0000

bt /wt rank 2 0.0000 0.0000 0.0916 0.6329 0.9573

The random variables B1 and B2 follow log-normal distributions with mean parameters 0.8 and 0.2 and a
variance parameter of 0.82. This table presents the average amounts invested at t in an investment alternative
where the realized rank is 1 (2) (invest rank 1/invest in rank 2). For the log-utility case we also report the
average of the corresponding amounts invested at period t (amount best/amount second best; for the linear
case these amounts are equal to the average investments since w1 = 1 and “all or nothing” is optimal). In
addition, we report the sample average of bt /wt and the corresponding sample means if the rank is 1 or 2,
respectively. Results are obtained from 5, 000 simulation runs

not invest before is 1
4
2
3 = 1

6 ≈ 0.1667. The value observed, 0.1714, is close to 1
6 . For t = 5

the investors starts to invest into the second best opportunity. The probabilities for the best
and second best in this period are 1

5 each time. With probability 1
2 no investment happened in

the first four periods. Thus, the corresponding probabilities to invest into the best or second
best alternative in t = 5 are 1

2
1
5 = 1

10 each time. The corresponding numbers in the first and
the second row of Table 2 are close to these values. With T = 10, 20 and 50, for the linear
case investments in rank 1 follow from the probabilities that the relative rank is equal to one
and the investor did not invest before. For T = 10, the probability that X4 has rank one is
1
4 , etc. In addition, we observe that the risk-neutral investor starts to invest in periods larger
than T /3 [of course this empirical observations depends on the distributions chosen for B1

t
and B2

t ].
Next, we consider the log-utility investor: For T = 5 the investor already starts to invest at

t = 2 if the relative rank is one. This happens with probability 1
2 and the amount b2 = 0.3158

is invested. The relative frequencies where the risk-averse investor invests into an alternative
with rank equal to one is close to 1

2 at t = 2. For t ≥ 3 the numbers in the ’invest rank 1’ row
are higher than in the risk-neutral case. This is caused by the fact that the risk-averse investor
did not invest all the budget available at t = 2. The investor invests on average 0.5823 if the
relative rank of x3 is one and 0.0798 if the relative rank of x3 is two. The final rows show
the proportions of the remaining budget invested in the current best or current second best
alternative. Note that for t ≥ 3 the optimal investments b3 also depend on the distribution of
Y 2
1|1, Y 2

1|2 and Y 2
2|2. The ratio bt/wt is increasing in t for both, investing into the first best and

investing into the second best draw, respectively.
Compared to the risk-neutral case, the risk-averse agent starts to invest in earlier periods.

For example for T = 10, if the relative rank of x3 is one the amount invested is b3 = 0.0526
at t = 3. Hence, the risk-averse investor already invests smaller amounts into alternatives
with rank one in earlier stages of the investment process. Since the expected returns are quite
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high, all the remaining budget is invested at t = T if the relative rank (= final rank) of xT

is one [to see this bt/wt = 1 for t = T with a rank of one]. For xT with a rank of two we
observe that bT /wT is close but not equal to one. This effect is caused by paths where a
larger wT is available. For the given payoff distribution of B2

T the investor need not invest
all the remaining budget. In our case, the probability that P

(
B2

T ≤ 1
) ≈ 40.13%. Hence, for

a sufficiently large remaining budget wT −1, the risk-averse investor need not invest all the
remaining wT −1.

6 Conclusion

In this article we consider superstar investment problems, where the payoff function depends
on the final ranking of the project. Our model investigates high-risk investment opportunities,
where an investor is only able to rank the projects seen so far. Investment decisions have to take
place immediately after a project shows up. Returns realize at the end when all investment
decisions have been taken. Only for a small number of superstars positive returns can be
expected.

We obtain the value function and the optimal investment rules for expected utility investors
for deterministic as well as stochastic returns. In any case (e.g. risk-neutrality and risk-
aversion) the value can be split up into the expected utility given that the investor does nothing
in the remaining periods and the additional gain arising from investing the remaining budget
optimally. We prove that—as might be expected—the value function is non-increasing in
the investment horizon. What is perhaps more surprising is that the expected utility of our
optimal strategy is strictly larger than the utility of the initial endowment, even if the number of
projects approaches infinity (where we keep the returns of the n best investment opportunities
constant).

We show that for the risk-neutral case a simple rank-threshold strategy is optimal for time
invariant returns. These rank thresholds are decreasing over time. That is, the conditions to
invest are less and less demanding. To invest “all or nothing” – conditional on whether such
a threshold is satisfied—is an optimal strategy.

For a risk-averse investor the optimal strategy becomes non-linear. The optimal investment
in period t depends on the rank of the current project and the prior investments. For the special
case of log-utility, except for very last few periods (at most n periods), it is never optimal to
invest all the remaining wealth.

We numerically implement our optimal strategies for a risk-neutral and a log-utility
investor. The number of superstars in our simulation analysis is two. The assumed distri-
bution of the returns is based on estimates in Cochrane [7]. In line with our theoretical
findings, we observe that the value function is decreasing in the number of investment peri-
ods. On average the risk-neutral investor invests a larger share of the initial budget available
than a log-utility investor. The risk-averse investor starts to invest earlier, but the amounts
invested are smaller than in the risk-neutral case, where—upon investing—without loss of
generality all the total budget available is invested.

In the next steps the model considered in this article could be modified to become more
realistic. For example, we assumed that due to competition the investor is forced to decide
immediately whether to invest into the current investment project. This assumption could be
relaxed by allowing the investor to decide to invest into the current project today and in the
nextm > 0 periods. A further possiblemodification is to considermultiple investment rounds
as observed on the venture capital market. To do this, a second signal could be includedwhich
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is correlated with the ranking of the project in question, where the investor—after some time
span—has to decide to either quit investing into the corresponding project or to impute further
capital.

Throughout our analysis the number of time periods (i.e. the number of possible investment
projects) is fixed at T . Hence, instead of working with a deterministic number of projects, an
extension would be to describe the number of projects by a random variable. A starting point
to investigate problems with a stochastic number of projects could be Bruss and Ferguson
[3][Section 6].

A further interestingway to extend our approach is to consider ambiguity-averse investors.
For the classical secretary problem Chudjakow and Riedel [6] obtained an optimal threshold
strategy also for ambiguity-averse agents. The optimal strategy was obtained by applying
the optimal stopping results derived in Riedel [22]. An extension to the full information
best choice problem—originally investigated in Gilbert and Mosteller [10] – was obtained
in Obradović [19].

A natural way to extend our approach is to augment the approach of Chudjakow and
Riedel [6] to the investment problem considered in this article. Thereby the question arises
whether under risk-neutrality and ambiguity-aversion a strategy of the form “invest all or
nothing (conditional on time and rank)” is still optimal and under which assumptions the
investment thresholds are shifted to earlier or later periods. While we are optimistic that the
risk-neutral case can be extended to ambiguity-aversion (at least for deterministic returns),
we expect that the non-linear case becomes even more involved.
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A Probabilities

We use the convention that

(
p
q

)

= 0 for p < q and �0 = k0 = 0.
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Definition 1 Let 1 ≤ k1 < k2 < · · · < km ≤ t denote the m realized ranks in ascending
order and 1 ≤ �1 < �2 < · · · < �m ≤ T − t + km . Define

pt (�1, . . . , �m |k1, . . . , km ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

(
T

t

) , if ki ≤ �i , for all i = 1, . . . , m,

0 else .

If ki = i , for all i = 1, . . . , m, we simply write pt (�1, . . . , �m) for

pt (�1, . . . , �m |k1, . . . , km). Note that since

(
s
0

)

= 1, for any s = 0, 1, . . . , we have

pt (�1, . . . , �m) =

(
T − �m

t − m

)

(
T
t

) . (18)

Consider m realized relative ranks k1, . . . , km of some of the Xs , s ≤ t at time t . In the
following we obtain the joint conditional probability that these particles have final ranks
1 ≤ �1 < · · · < �m ≤ T − t + km after period T .

Proposition 1 Let m ≤ t , then pt (�1, . . . , �m |k1, . . . , km) is the probability that draws that
have relative ranks 1 ≤ k1 < k2 · · · < km ≤ t at time t, have final ranks 1 ≤ �1 < �2 · · · <

�m ≤ T − t + km at time T .

Proof To establish Proposition 1 we apply backward induction: Consider the final period T .
If 1 ≤ k1 = �1 < k2 = �2 · · · < km = �m , this probability has to be 1. Indeed,

pT (�1, . . . , �m |�1, . . . , �m) =

(
T − �m

T − �m

)
∏m

i=1

(
�i − �i−1 − 1
�i − �i−1 − 1

)

(
T
T

) = 1. (19)

Since we did not prove yet that the pt (. . . |k1, . . . , km) are probability distributions, we also
need to consider the case that ki �= �i for at least one i = 1, . . . , m and show that then
pT (�1, . . . , �m |k1, . . . , km) = 0. If there is an i = 1, . . . , m such that ki > �i , then let j be
the smallest such index such that k j > � j . Hence, � j − � j−1 − 1 < k j − k j−1 − 1, in which
case

(
� j − � j−1 − 1
k j − k j−1 − 1

)

= 0

If there is an index i such that �i > ki , then let j be the largest such index. If j < m

then � j+1 − � j − 1 < k j+1 − k j − 1 and hence,

(
� j+1 − � j − 1
k j+1 − k j − 1

)

= 0. If j = m, then

T − �m < T − km such that

(
T − �m

T − km

)

= 0. This shows that in the case t = T , we have

pT (�1, . . . , �m |k1, . . . , km) =
{
1 if k j = � j for j = 1, . . . , m and

0 else .
(20)
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In the following induction step we show if the formula (7) is correct for some t + 1 with
t+1 ≤ T andm ≤ t , it is also correct for t . This, togetherwith the case t = T , then also shows
that the pt (. . . |k1, . . . , km) are probability distributions. The draw at time t + 1 can either
have relative rank strictly larger than km . This happens with probability

t+1−km
t+1 . Conditional

on this event, the probability that the drawswith relative ranks k1, . . . , km at time t [and hence
also at time t + 1], have final ranks �1, . . . , �m at time T is pt+1 (�1, . . . , �m |k1, . . . , km).
Or the draw xt+1 at time t + 1 has relative rank ρt+1 (xt+1) such that k j−1 < ρt+1 (xt+1) ≤
k j for some 1 ≤ j ≤ m, then the draws that had relative ranks k1, . . . , km at
time t now have relative ranks k1, . . . , k j−1, k j + 1, k j+1 + 1, . . . , km + 1 at time

t + 1. This happens with probability
k j −k j−1

t+1 . Conditional on that event the probabil-
ity that the draws with relative ranks k1, . . . , km at time t have final ranks �1, . . . , �m
is pt+1

(
�1, . . . , � j−1, � j , . . . , �m |k1, . . . , k j−1, k j + 1, . . . , km + 1

)
. Hence the probability

that the draws with relative rank k1, . . . , km at time t have final rank �1, . . . , �m is according
to the induction hypothesis equal to

t + 1 − km

t + 1
pt+1 (�1, . . . , �m |k1, . . . , km)

+
m∑

j=1

k j − k j−1

t + 1
pt+1

(
�1, . . . , � j−1, � j , . . . , �m |k1, . . . , k j−1, k j + 1, . . . , km + 1

)

= t + 1 − km

t + 1

(
T − �m

t + 1 − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

(
T

t + 1

)

+
m∑

j=1

k j − k j−1

t + 1

[
∏m

i=1, i �= j

(
�i − �i−1 − 1
ki − ki−1 − 1

)](
� j − � j−1 − 1

k j + 1 − k j−1 − 1

)(
T − �m

t + 1 − (km + 1)

)

(
T

t + 1

)

= t + 1 − km

t + 1

T −�m−t+km
t+1−km

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

T −t
t+1

(
T
t

)

+
m∑

j=1

k j − k j−1

t + 1

� j −k j −(� j−1−k j−1)

k j −k j−1

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

T −t
t+1

(
T
t

)

=

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

(
T
t

)
T − �m − (t − km) +∑m

j=1 � j − k j − (� j−1 − k j−1)

T − t

=

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

(
T
t

)
T − �m − (t − km) + �m − km

T − t

[Recall that �0 = k0 = 0]

=

(
T − �m

t − km

)
∏m

i=1

(
�i − �i−1 − 1
ki − ki−1 − 1

)

(
T
t

)
T − t

T − t
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= pt (�1, . . . , �m |k1, . . . , km) . (21)


�
The induction step in the proof above has shown in particular the following

Lemma 1 Let 1 ≤ �1 < · · · < �n(t) ≤ T − t + n(t).

pt
(
�1, . . . , �n(t)|1, . . . , n(t)

) = t + 1 − n(t)

t + 1
pt+1

(
�1, . . . , �n(t)|1, . . . , n(t)

)+

1

t + 1

n(t)∑

j=1

pt+1
(
�1, . . . , � j−1, � j ,

. . . , �n(t)|1, . . . , j − 1, j + 1, . . . , n(t) + 1
)
.

B Proof of Theorem 1

In this section we prove Theorem 1. As a first step we show:

Lemma 2 Let T ≥ n and n(t + 1) = min{n, t + 1}. Then,

Wt (wt , yt ) = t + 1 − n(t + 1)

t + 1
Wt+1(wt , yt ) + 1

t + 1

n(t+1)∑

j=1

Wt+1

(
wt , yt (0 · β

j :n
t+1)

)
. (22)

Proof By the definition of Wt (wt , yt ) provided in (8), we get

W t (wt , yt ) =
∑

�1,...,�n(t):
1≤�1<···<�n(t)≤T −t+n(t)

pt
(
�1, . . . , �n(t)|1, . . . , n(t)

)
u

⎛

⎝wt +
n(t)∑

i=1

yt
i |�i

⎞

⎠

[apply Lemma 1]

=
∑

�1,...,�n(t):
1≤�1<···<�n(t)≤T −t+n(t)

⎡

⎣ t + 1 − n(t)

t + 1
pt+1

(
�1, . . . , �n(t)|1, . . . , n(t)

)
u

⎛

⎝wt +
n(t)∑

i=1

yt
i |�i

⎞

⎠+

1

t + 1

n(t)∑

j=1

pt+1
(
�1, . . . , �n(t)|1, . . . , j − 1, j + 1, , . . . , n(t) + 1

)
u

⎛

⎝wt +
j−1∑

i=1

yt
i |�i

+
n(t)∑

i= j

yt
i |�i

⎞

⎠

⎤

⎦ .(23)

Note that

pt+1
(
�1, . . . , �n(t)|1, . . . , j − 1, j + 1, . . . , n(t) + 1

)

=

(
T − �n(t)

t + 1 − n(t) − 1

)(
� j − � j−1 − 1

j + 1 − ( j − 1) − 1

)

(
T

t + 1

)

=

(
T − �n(t)

t + 1 − n(t) − 1

)

(
T

t + 1

) (� j − � j−1 − 1)
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=
∑

�: � j−1<�<� j

pt+1
(
�1, . . . , � j−1, �, � j , . . . , �n(t)|1, . . . , j − 1, j, j + 1, . . . , n(t) + 1

)

(24)

By setting �̂i = �i , for 1 ≤ i ≤ j − 1 �̂ j = � and �̂i = �i−1, for j + 1 ≤ i ≤ n(t) + 1,
we get

∑

�: � j−1<�<� j

pt+1
(
�1, . . . , � j−1, �, � j , . . . , �n(t)|1, . . . , j − 1, j, j + 1, . . . , n(t) + 1

)

=
∑

�̂ j : �̂ j−1<�̂ j <�̂ j+1

pt+1

(
�̂1, . . . , �̂n(t)+1|1, . . . , n(t) + 1

)
. (25)

Hence,

pt+1
(
�1, . . . , �n(t)|1, . . . , j − 1, j + 1, , . . . , n(t) + 1

)
u

⎛

⎝wt +
j−1∑

i=1

yt
i |�i

+ 0 +
n(t)∑

i= j

yt
i |�i

⎞

⎠

=
∑

�̂ j : �̂ j−1<�̂ j <� j+1

pt+1

(
�̂1, . . . , �̂n(t)+1|1, . . . , n(t) + 1

)
u

⎛

⎝wt +
j−1∑

i=1

yt
i |�̂i

+ 0 +
n(t)+1∑

i= j+1

yt
i−1|�̂i

⎞

⎠ .

(26)

Note that if n(t) = n, then �̂n(t)+1 = �n(t) > n and hence yt+1
n(t)+1|�̂n(t)+1

= 0. Next,

∑

�1,...,�n(t)≤T −t+n(t)

∑

�: � j−1<�<� j

pt+1
(
�1, . . . , �n(t)|1, . . . , j − 1,

j + 1, , . . . , n(t) + 1) u

⎛

⎝wt−1 +
j−1∑

i=1

yt
i |�i

+ 0 +
n(t)∑

i= j

yt
i |�i

⎞

⎠

=
∑

�̂1,...,�̂n(t)≤T −t+n(t)

pt

(
�̂1, . . . , �̂n(t)+1|1, . . . , j, . . . , n(t) + 1

)

×u

⎛

⎝wt−1 +
j−1∑

i=1

yt
i |�̂i

+ 0 +
n(t)+1∑

i= j+1

yt
i−1|�̂i

⎞

⎠

= Wt

(
wt−1, yt−1

(
0 · β

j :n
t

))
. (27)

Also, note that

Wt+1 (wt , yt ) =
∑

�1,...,�n(t):
1≤�1<···<�n(t)≤T −t−1+n(t)

pt+1
(
�1, . . . , �n(t)|1, . . . , n(t)

)
u

⎛

⎝wt +
n(t)∑

i=1

yt
i |�i

⎞

⎠ .

Finally,

Wt (wt , yt ) =
∑

�1,...,�n(t):
1≤�1<···<�n(t)≤T −t+n(t)

pt
(
�1, . . . , �n(t)|1, . . . , n(t)

)
u

⎛

⎝wt +
n(t)∑

i=1

yt
i |�i

⎞

⎠

= t + 1 − n(t)

t + 1
Wt+1 (wt , yt ) + 1

t + 1

n(t)∑

j=1

Wt+1

(
wt , yt

(
0 · β

j :n
t+1

))
. (28)
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Now, either n ≤ t and we have n(t +1) = n(t) = n. Or n > t and then n(t)+1 = n(t +1) =
t + 1. In this case, we have

Wt+1

(
wt , yt

(
0 · β

n(t+1):n
t+1

))
= Wt+1 (wt , yt ) .

In both cases it follows that

Wt (wt , yt ) = t + 1 − n(t + 1)

t + 1
Wt+1(wt , yt ) + 1

t + 1

n(t+1)∑

j=1

Wt+1

(
wt , yt (0 · β

j :n
t+1)

)
.


�
Having shown the recursion for Wt (wt , yt ), we can now turn to:

Proof of Theorem 1 Equation (9) defines the residual term rt (wt , yt ) = Vt (wt , yt ) −
Wt (wt , yt ). Hence, it remains to show that the recursion Eq. (4) and the function defined
in (8) result in this residual term for all time periods considered. To do this, we use the left
hand side of the recursion equation, i.e. Vt (wt , yt ), and subtract the left side in (22), i.e.
Wt (wt , yt ). In addition we subtract the right side of the Eq. (22) from the right hand side in
(4). This results in the following equation

rt (wt , yt ) = max

{
t + 1 − n

t + 1
, 0

} [
W t+1(wt , yt ) + rt+1(wt , yt ) − W t+1(wt , yt )

]

+ 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[

W t+1

(
wt , yt (bt+1β

j :n
t+1)

)
+ rt+1

(
wt , yt (bt+1β

j :n
t+1)

)

−W t+1

(
wt , yt (0 · β

j :n
t+1)

) ]

= max

{
t + 1 − n

t + 1
, 0

}

rt+1(wt , yt ) + 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[
W t+1

(
wt − bt+1, yt (bt+1β

j :n
t+1)

)
− W t+1

(
wt , yt (0 · β

j :n
t+1)

)
+ rt+1

(
wt , yt (bt+1β

j :n
t+1)

)]
.

It remains to show that Wt+1

(
wt − bt+1, yt (bt+1β

j :n
t+1)

)
− Wt+1

(
wt , yt (0 · β

j :n
t+1)

)
is

equal to

∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

)
[

u
(

Z
(
�1, . . . , �n(t)+1; wt − bt+1, yt (bt+1β

j :n
t+1)

))

−u
(

Z
(
�1, . . . , �n(t)+1;wt , yt (0 · β

j :n
t+1)

)) ]

By using the definition of Wt+1

(
wt − bt+1, yt (bt+1β

j :n
t+1)

)
provided in (8), we obtain

Wt+1

(
wt − bt+1, yt (bt+1β

j :n
t+1)

)
− Wt+1

(
wt , yt (0 · β

j :n
t+1)

)

=
∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

)
u

⎛

⎝wt − bt+1 +
j−1∑

i=1

yt
i |�i

+ β
j

t+1bt+1 +
n(t)∑

i= j

yt
i |�i+1

⎞

⎠

−
∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

)
u

⎛

⎝wt +
j−1∑

i=1

yt
i |�i

+ 0 +
n(t)∑

i= j

yt
i |�i+1

⎞

⎠

[ Note thatZ
(
�1, . . . , �n(t)+1; wt − bt+1, yt (bt+1β

j :n
t+1)

)
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:= (wt − bt+1) + yt
1|�1 + · · · + yt

j−1|� j−1
+

β
� j
t+1bt+1 + yt

j |� j+1
+ · · · + yt

n(t)|�n(t)+1
and

Z(�1, . . . , �n(t)+1); wt , yt (0 · β
j :n
t+1)) := wt + yt

1|�1 + . . .

+yt
j−1|� j−1

+ β
� j
t+10 + yt

j |� j+1
+ · · · + yt

n(t)|�n(t)+1
]

=
∑

�1,...,�n(t)+1:
0<�1<···<�n(t)+1)≤T −t+n(t)

pt+1
(
�1, . . . , �n(t)+1

) [
u
(

Z
(
�1, . . . , �n(t)+1; wt − bt+1, yt (bt+1β

j :n
t+1)

))

− u
(

Z
(
�1, . . . , �n(t)+1; wt , yt (0 · β

j :n
t+1)

))]
. (29)


�

C Proof of Theorem 2

Proof of Theorem 2 Consider rt (wt , yt ) obtained in Theorem 1. For the risk-neutral case u(·)
is equal to the identity map.

This yields u
(

Z
(
�1, . . . , �n(t)+1;wt − bt+1, yt (bt+1β

j :n
t+1)

))
− u

(
Z
(
�1, . . . , �n(t)+1;

wt , yt (0 · β
j :n
t+1)

))
= Z

(
�1, . . . , �n(t)+1;wt − bt+1, yt (bt+1β

j :n
t+1)

)
− Z

(
�1, . . . , �n(t)+1;

wt − 0, yt (0 · β
j :n
t+1)

)
= bt+1

(
β

� j
t+1 − 1

)
.

For t = T we get rT = 0, which is of course proportional to wT . Next we consider
t = T − 1, where

rT −1(wT −1) = 1

T

n∑

j=1

max
0≤bT ≤wT −1

[ ∑

�1,...,�n :
0<�1<···<�n≤n+1

pT (�1, . . . , �n) bT

(
β

� j
T − 1

) ]

.(30)

From (30) we observe that bT = wT −1 is optimal if
(
β

� j
T − 1

)
> 0. For

(
β

� j
T − 1

)
< 0

bT = 0 if optimal, while for
(
β

� j
T − 1

)
= 0 any bT ∈ [0, wT −1] is optimal [that is we have

a correspondence]. In the following we assume that bT = wT −1 if
(
β

� j
T − 1

)
≥ 0. Based

in this result, we observe that rT −1(wT −1) = wT −1rT −1(1) = wT −1

(
β

� j
T − 1

)
. Note that

for the linear case rT −1(wT −1, yT −1) obtained in the non-linear case, becomes independent
of yT −1, hence we write rT −1(wT −1). By a standard induction step we observe that also
rt (wt , yt ) does not depend on yt . Therefore we write rt (wt ). Next, for any t , t = 1, . . . , T ,
we have to show rt (wt ) = wt rt (1). We assume that this relationships holds for t + 1 and
show that it also hold for t . We consider

rt (wt )

= max

{
t + 1 − n

t + 1
, 0

}

wt
︸︷︷︸

=wt+1 for bt+1=0

rt+1(1)

+ 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[ ∑

�1 ,...,�n(t+1) :
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt+1
(
�1, . . . , �n(t+1)

)
bt+1

(
β

� j
t+1 − 1

)
+ (wt − bt+1)
︸ ︷︷ ︸

wt+1

rt+1 (1)

]

= max

{
t + 1 − n

t + 1
, 0

}

wt rt+1(1)
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+ 1

t + 1

min{t+1,n}∑

j=1

max
0≤bt+1≤wt

[

(wt − bt+1) rt+1 (1) + bt+1

∑

�1 ,...,�n(t+1) :
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt+1
(
�1, . . . , �n(t+1)

) (
β

� j
t+1 − 1

) ]

︸ ︷︷ ︸
=:S(wt ,bt+1)

.

(31)

The term S(wt , bt+1) is affine linear in bt+1. We observe that investing bt+1 = wt

if
∑

�1,...,�n(t+1):
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt+1
(
�1, . . . , �n(t+1)

) (
β

� j
t+1 − 1

)
≥ rt+1 (1) and zero

else is an optimal strategy. Consider (31). The maximum of the term S(wt , bt+1) is

wt
∑

�1,...,�n(t+1):
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt+1
(
�1, . . . , �n(t+1)

) (
β

� j
t+1 − 1

)
if we invest bt+1 =

wt and wt rt+1(1) if bt+1 = 0. Hence,

max
0≤bt+1≤wt

S(wt , bt+1) = wt max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rt+1(1),
∑

�1,...,�n(t+1) :
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt+1
(
�1, . . . , �n(t+1)

) (
β

� j
t+1 − 1

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

rt (wt ) = max

{
t + 1 − n

t + 1
, 0

}

wt rt+1(1)

+ 1

t + 1

min{t+1,n}∑

j=1

wt max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rt+1(1),
∑

�1,...,�n(t+1) :
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt
(
�1, . . . , �n(t+1)

) (
β

� j
t+1 − 1

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= wt rt (1). (32)

We had already shown that the residual term fulfills rt (wt , 0) = wt rt (1, 0). In Eq. (13)
we defined ct . Note that ct = rt (1, 0). For any period > t we observe that given some
wt , the investment strategy invest all the remaining budget wt is optimal if S(wt , bt+1) is
maximized with some bt+1 > 0, otherwise it is optimal to invest zero. This results holds for
all t = 1, . . . , T . Hence, investing all the remaining budget is optimal for all t ≥ 1, which
of course implies that investing all or nothing is optimal.

Next, considerWt (wt , yt ) obtained in Theorem 9. From the above paragraphs we already
know investing all or nothing is an optimal strategy. Therefore, we get

Wt (wt , yt ) =
∑

�1,...,�n(t+1):
0<�1<···<�n(t+1)≤T −t−1+n(t+1)

pt
(
�1, . . . , �n(t+1)

)
wt +

n(t+1)∑

j=1

yt
j |� j

=
{

w0 , if we did not invest before or att,

w0
∑n(t+1)

j=ρt (xs )
pt ({ρT (xs) = j}) β

j
s , if we invested beforew0ats ≤ t,

(33)

where pt ({ρT (xs) = �}) is provided by (12). Note that Proposition (1) applied to the case
m = 1, yields pt ({ρT (xs) = �}). Hence, also Wt (wt , yt ) and Vt (wt , yt ) are proportional to
Wt (1, yt ) and Vt (1, yt ), respectively. 
�
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DOn the existence of expected utility

This sectiondiscusses the existence of expectedutility for deterministic and stochastic returns.
In the main text this existence is assumed.

Deterministic Returns: We consider a utility function u : R≥0 → R ∪ {−∞}. This
function is continuous, monotone increasing and satisfies u(w0) > −∞. The final wealth
is provided by wT + = wT + yT

1|1 + · · · + yT
n|n = wT +∑T

t=1 btβ
ρT (xt )
t . Since 0 ≤ β�

t ≤
max{1,maxt,� β�

t } =: βmax, we observe that wT + ∈ [0, βmaxw0
]
.

Hence, u (βmaxw0) > −∞. By contrast u (wT +) can be unbounded from below, for
example, in the case of log-utility. Since E (u(w0)) = u(w0) > −∞, a strategy where
E (u (wT +)) = −∞ cannot be optimal. In other words, the strategy b1 = 0, . . . , bT = 0 is
better than a strategy b1, . . . , bT where u (wT +) = −∞ with strictly positive probability.
An optimal strategy, say b∗

1, . . . , b∗
T , is at least as good as the strategy over never investing,

that results in u(w0). Hence, for log-utility the investor does not choose a strategy where the
probability P (wT + = 0) > 0. Consequently, for deterministic returns the expected utility
exists. There is a non-empty subset of strategies containing the optimal strategy.

Stochastic Returns: In this case wT + = wT + Y T
1|1 + · · · + Y T

n|n = wT +∑T
t=1 bt BρT (xt )

t ,
while wT + ≥ 0 an upper bound as in the deterministic case need not exist.

Risk-neutrality: In the case of a risk-neutral agent, we work with the identity function

for u(x). Then, 0 ≤ E (wT +) = E

(
wT +∑T

t=1 bt BρT (xt )
t

)
≤ w0 + w0E

(∑T
t=1 BρT (xt )

t

)
.

Hence, E
(
B�

t

)
< ∞, for all t and �, is sufficient for the existence of E (wT +).

Risk-aversion: In this case the utility function u(x) is concave. Suppose thatE
(
B�

t

)
< ∞,

for all t and �, as in the risk-neutral case. Then, by Jensen’s inequality E (u (wT +)) ≤
u (E (wT +)). Since E (wT +) exists under the above assumptions and only strategies where
E (wT +) ≥ w0 can be optimal,we observe that−∞ < u(w0) ≤ u (E (wT +)) < ∞. As in the
non-stochastic case there can be strategies where E (u (wT +)) = −∞. Since −∞ < u(w0),
these strategies can be excluded a-priori. Hence, by the assumption E

(
B�

t

)
< ∞, for all t

and �, the existence of E (u (wT +)) follows for all optimal strategies.
Risk-loving or general continuous and monotone utility function: In the case where u(x)

is convex or can be S-shaped, inverse S-shaped, etc. In this case neither E (u (wT +)) =
+∞ nor E (u (wT +)) = −∞ can be excluded a-priori. Even worse, strategies resulting in
E (u (wT +)) = +∞ if this is possible, are optimal is this case. Hence, in general, for a
monotone increasing and continuous u(x) the existence E (u(wT +)) has to be checked on a
case by case basis. A sufficient for the existence of E (u(wT +)) would be bounded support
of B�

t for all t , �.

E Simulation study

In the following we describe how the residual term residual terms rt (wt , yt ) is obtained. As a
byproduct we obtain optimal investments bt as function of the history yt−1, the current budget
wt−1 (before investment takes place at t) and the realized rank ρt (xt ). The main numerical
burden in our simulation study is to obtain the residual terms rt (wt , yt ) for various wt and
prior investments resulting in yt . To do this we consider a grid on the interval [0, w0], with
a step width of κ := 1/(γ − 1)w0, such that 0 and w0 are end points of this grid. In our
simulation runs we work with w0 = 1 and γ = 20, resulting in κ = 0.0526. wt and bt are
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only allowed to be multiples of κ , where bt = λbκ , wt = λwκ and λb, λw are integers ≥ 0
and ≤ γ = 20.

From Theorem 1 it follows that rT = 0. In the final investment step the optimal bT has
to be obtained for various ranks of XT . The ranks 1, . . . , n are relevant for the investment
decision, bT = 0 for a rank > n. In particular, optimal investments have to be obtained for
all γ = 20 possible values of wT −1 and n relevant ranks of XT . Then, for example with
t = T and n = 2, for the n opportunities with the lowest n ranks we observe three relevant
cases: (i) the ranks remain the same, (ii) the current best becomes second best and (iii) the
current second best third best or the current best remains the best and the current second best
becomes third best. For a general t there can be at most T (T − 1)/2 cases. For general n

we get

(
T
n

)

such opportunities. To construct an object of the same dimension for each t

in our numerical tool, we consider T (T − 1)/2 opportunities for n = 2, where we know
that some of them are infeasible for t close to T . In addition, by working with γ grid points
γ n investment constellations are possible (some of them are infeasible, e.g. is the sum of

the amounts invested in t are larger than the budget available in t). Hence, γ ×
(

T
n

)

× γ n

scenarios have to be considered. Some of them are of course infeasible (e.g., ifwt−1−bt < 0
or the rank cannot become possible since the number of steps to go is too low). By solving
for the optimal bt (approximately optimal since bt is forced to be a number of the grid
considered), we obtain rT −1(wT −1, yT −1). In a next step we use the recursion (10) to obtain

rT −2(wT −2, yT −2), given rT −1(wT −1, yT −1) and the γ ×
(

T
n

)

× γ n scenarios which have

to be considered. For each possible scenario the optimal bt on the grid have to be obtained.
We do this by evaluating at bt = λbκ , where λbκ ≤ wt−1 and take that bt where a maximum
is obtained. Note that we assume that the returns depend on the rank only and not on t (With
payoffs depending on time the numerical complexity would increase additionally). Then this
recursive procedure (10) is used to derive rt−2(wt−2, yt−2). Hence, the numerical complexity

is given by (γ ×
(

T
n

)

×γ n)T , where for larger T and n a lot of possible outcomes at T and

their corresponding probabilities have to be calculated. Therefore, we work with a relatively
small γ , T = 5, 10, 20 and n = 2.

After we have obtained rt (wt , yt ), we already know the optimal investment strategy bt

given a history yt−1, a budget wt−1 and a realized rank ρt (xt ). Hence, to derive samples of
investment paths we only have to draw for each path T iid. uniformly distributed random
variables on the unit interval. Then for each t the realized relative rank of x1, . . . , xt has to be
obtained. The optimal bt follows from the recursive procedure used to obtain rt (wt , yt ). After
considering these optimal investment decisions for t = 1, . . . , T , the investor obtains the
corresponding final payoff wT +∑n

j=1 yT
j | j . For the stochastic case Et (rt (wt , yt )) obtained

by choosing the optimal bt in each investment step. For the stochastic case the random
variables B1

τ T
1
, . . . , Bn

τ T
n
realize at T .

The number of Monte-Carlo replications is M = 5000. 10

10 The software package Matlab was used.
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F Optimal strategies for small T

The following subsection obtains the optimal investment rules for the limited information
case for a risk-neutral investor for T = 3 and T = 5 respectively. We set β1

t = 3 and
β2

t = 2, for all t . We know from Sect. 3 that investing all the remaining wealth is an optimal
strategy for risk-neutral investors. By time invariant β j , the investment thresholds, denoted
dt in Remark 3, can be obtained by comparing the expected payoffs if we invest in the
corresponding period to the expected payoffs if we do not invest. In addition, we obtain the
optimal investment strategy for the full information case under risk-neutrality for T = 3. In
this case the investor observes xt , at t = 1, . . . , T . Also in the full information case investing
all or nothing is an optimal strategy (for a proof see [17]).

F.1 Full versus limited information for T = 3

Limited Information: At t = T = 3 an investor invests all the remaining wealth if the relative
= absolute rank of the draw x3 is equal to 1 or 2, for a rank of 3 the agent does not invest.
Hence, d3 = 2 (invest if the relative rank is ≥ 2).

At T = 2: (2.i) Suppose that the realized relative rank of x2 is ρ2(x2) = 1. If the agent
invests, then she/he expects

2/3 ∗ 3 + 1/3 ∗ 2 = 1/3 ∗ (6 + 2) = 8/3

while if she/he does not invest the expected payoff is

1/3 ∗ 3 + 1/3 ∗ 2 + 1/3 ∗ 1 = 1/3 ∗ (3 + 2 + 1) = 2 < 8/3.

Hence, ρ2(x2) = 1 results in investing all the remaining wealth. (2.ii) Suppose that ρ2(x2) =
2. Then, investing at t = 2 results in an expected wealth of

1/3 ∗ 2 + 2/3 ∗ 0 = 1/3 ∗ (2) = 2/3

while we still expect a payoff of 2 if we do not invest. Hence, d2 = 1 (invest if the relative
rank at t = 2 is 1).

Finally at t = 1 the relative rank of the first draw has to be equal to 1. The rank statistics
are uniformly on {1, . . . , T }, hence P (ρ3(X1)) = j) = 1/3, j = 1, . . . , 3. The expected
payoff is

1/3 ∗ 3 + 1/3 ∗ 2 + 1/3 ∗ 0 = 1/3 ∗ (5) = 5/3.

If we proceed we get

1/2 ∗ 8/3 + 1/2 ∗ 2 = 1/6 ∗ (8 + 6) = 14/6 = 7/3 > 5/3

where 8/3 is the expected payoff we get if ρ2(x2) = 1 (see above) and 2 the expected payoff
if ρ2(x2) = 2, both events has a probability of 1/2. This results in d0 = 0 (do not invest at
t = 1). That is, we get d1 = 0, d2 = 1, d3 = 2, the expected wealth is V0(1) = 7/3.

Full Information: In this case the investor observes the realization of Xt in period t . At
t = T = 3 an investor invests all the remaining wealth if the relative = absolute rank of the
draw X3 is equal to 1 or 2, for a rank of 3 the agent does not invest. Hence, d3 = 2 (invest
if the relative rank if ≥ 2). Hence, the result remains the same as in the limited information
case for t = T .
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At T = 2: (2.i) Suppose that the realized relative rank of x2 is ρ2(x2) = 1. Hence, x2 ≥ x1
and x1 has relative rank 2. If the agent invests, then she/he expects

3x2 + 2(1 − x2) = 2 + x2

while if she/he does not invest the expected payoff is

3(1 − x2) + 2(x2 − x1) + 1x1 = 3 − x2 − x1.

Comparing these terms shows that we invest if the rank of x2 is one and x2 ≥ 1−x1
2 .

(2.ii) Now suppose that the relative rank of x2 is 2 and therefore x1 > x2. If the agent
invests, then she/he expects

2x2 + 0(1 − x2) = 2x2

while if she/he does not invest the expected payoff is

3(1 − x1) + 2(x1 − x2) + 1x2 = 3 − x2 − x1.

Now the agent also invests if the rank of x2 is two and x2 ≥ 3−x1
3 = 1 − x1

3 .
Finally, we consider T = 1 where x1 has rank 1. If we invest we expect

3x21 + 4(1 − x1)x1.

(1.i) Conditional on the case x1 ≥ x2, x2 is uniformly distributed in the interval [x1, 1]. If
we do not invest at t = 1 but invest at t = 2, we expect

1

1 − x1

∫ 1

max
(
1−x1
2 ,x1

)(2 + x2)dx2

︸ ︷︷ ︸

=:I1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1,max

(
1 − x1

2
, x1

)

︸ ︷︷ ︸
a1

,1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

while if we do not invest in t = 1 and t = 2 we expect

1

1 − x1

∫ max
(
1−x1
2 ,x1

)

x1
(3 − x1 − x2)dx2

︸ ︷︷ ︸
=:I2(x1,x1,a1)

.

(1.ii) Next conditional on the case x1 < x2, x2 is uniformly distributed in the interval
[0, x1). If we do not invest at t = 1 and invest at t = 2, we now expect

1

x1

∫ x1

min
(
1− x1

3 ,x1
) 2x2dx2

︸ ︷︷ ︸

=:I3

⎛

⎜
⎜
⎜
⎜
⎝

x1,min
(
1 − x1

3
, x1
)

︸ ︷︷ ︸
a3

,x1

⎞

⎟
⎟
⎟
⎟
⎠
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while if we neither invest in t = 1 nor in t = 2 we expect

1

x1

∫ min
(
1− x1

3 ,x1
)

0
(3 − x1 − x2)dx2

︸ ︷︷ ︸
=:I4(x1,0,a3)

.

Then the expected payoff if we do not invest at t = 1 is given by (1 −
x1)
[

1
1−x1

I1 (x1, a1, 1) + 1
1−x1

I2 (x1, x1, a1)
]
+x1

[
1
x1

I3 (x1, a3, x1) + 1
x1

I4 (x1, 0, a3, )
]

=
I1 (x1, a1, 1) + I2 (x1, x1, a1) + I3 (x1, a3, x1) + I4 (x1, 0, a3, ). The above integrals result
in the three cases:

1. x1 ≥ 3/4, in which case max
(
1−x1
2 , x1

)
= x1 and min

(
1 − x1

3 , x1
) = 1 − x1

3 . In this

case the second integral I2 is zero. By comparing 3x21 + 4(1 − x1)x1 to I1 (x1, a1, 1) +
I2 (x1, x1, a1) + I3 (x1, a3, x1) + I4 (x1, 0, a3, ), we break even at x1 ≈ 0.6822 < 3/4.
Hence, we always invest into the first draw if x1 ≥ 3/4.

2. 1/3 ≤ x1 < 3/4, in which case max
(
1−x1
2 , x1

)
= x1 and min

(
1 − x1

3 , x1
) = x1. In this

case the second and the third integral are zero, that is I2 = I3 = 0. We break even at
x1 ≈ 0.679449. Hence, we always invest into the first draw if x1 ≥ 0.679449 (and we do
not invest for 0.679449 > x1 ≥ 1/3).

3. x1 < 1/3, where max
(
1−x1
2 , x1

)
= 1−x1

2 and min
(
1 − x1

3 , x1
) = x1. In this case the

third integral I3 = 0 is zero. We break even x1 ≈ 0.7802. Hence, we do not invest into
x1.

By the above cases we get the value function for t = 1 and an initial budget of 1 in the
full information case:

V1(1, x1)
f ull in f ormation =

⎧
⎪⎨

⎪⎩

3x21 + 4(1 − x1)x1 if x1 ≥ 0.6798449 =: aI ,

I2(x1, 1/3, aI ) if 1/3 ≤ x1 < aI ,

I3(x1, 0, 1/3) if x1 < 1/3 .

(34)

Hence, for the full information case the optimal investment strategy is given by

• Invest at t = 1 if and only if x1 ≥ 0.679449.
• Invest at t = 2 if x2 ≥ x1 and x2 ≥ 1−x1

2 or if x2 < x1 and x2 ≥ 1 − x1
3 .• Invest if the rank of x3 is ≤ 2.

Are we investing into x2 of rank 2 at t = 2? If x1 is 2/3 and therefore close to aI ,
x2 ≥ 1 − 1/3(2/3) = 7/9 > aI (also if x1 = aI we get x2 ≥ 1 − aI /3 > aI ). Therefore,
for the given returns β1 = 3 and β2 = 2 the investor does not invest into x2 if the realized
rank is equal to two.

Finally we obtain the value function for t = 0 by means of

V0(1)
f ull in f ormation =

∫ 1

0
V1(1, x1)

f ull in f ormationdx1 = 2.59603 . (35)

F.2 Thresholds dt for T = 5

Limited Information: This works in a similar way to the case where T = 3. At t = T = 5,
all the remaining wealth is invested if the relative = absolute rank of the draw x5 is equal to
1 or 2, for a ranks of ≥ 3 the agent does not invest. Hence, d3 = 2 (invest if the relative rank
if ≥ 2).
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At T = 4: (4.i) Suppose that the realized relative rank of x4 is ρ2(x2) = 1. If the agent
invests, then she/he expects

4/5 ∗ 3 + 1/5 ∗ 2 = 1/5 ∗ (12 + 2) = 14/5 = 2.8

while if she/he does not invest the expected payoff is

1/5 ∗ 3 + 1/5 ∗ 2 + 3/5 ∗ 1 = 1/5 ∗ (3 + 2 + 3) = 8/5 = 1.6 < 2.8.

Hence, ρ4(x4) = 1 results in investing all the remaining wealth. (4.ii) Suppose that ρ4(x4) =
2. Then, investing at t = 2 results in an expected wealth of

3/5 ∗ 2 + 2/5 ∗ 0 = 6/5 = 1.2 < 1.6

while we still expect a payoff of 2 if we do not invest. Hence, d4 = 1 (invest if the relative
rank at t = 4 is 1).

For T = 3 and a relative rank of x3 of 1, we get

3/5 ∗ 3 + 3/10 ∗ 2 = 1/10 ∗ (3 ∗ 2 ∗ 3 + 6) = 24/10 = 2.6.

If we do not invest the expected payoff is

1/4 ∗ 2.8 + 3/4 ∗ 1.6 = 1.9 < 2.6.

Since dt are non-decreasing in t , we get d3 = 1 (see Remark 3)).
For T = 2 and a relative rank of x2 of one we get

2/5 ∗ 3 + 2/10 ∗ 2 = 2.

If we do not invest the expected payoff is

1/3 ∗ 2.4 + 2/3 ∗ 1/4 ∗ 2.8 + (2/3 ∗ 3/4 ∗ 1/5)1.6 > 2.

Hence d1 = d2 = 0.
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