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Abstract

In this paper we analyze with game-theoretic tools economic situations where
two players know that in a world of certainty cooperation would make both play-
ers better off compared to a situation of non-cooperation, i.e. the sum of payoffs
in case of non-cooperation is strictly less than the surplus emerging from cooper-
ation. In case of complete information cooperation will always occur, but as we
show, in case of incomplete information non—cooperation may be an equilibrium
outcome - despite of gains from trade. We characterize in a simple bargain-
ing framework the two pooling and the three separating equilibria in terms of
prior probabilities. Furthermore we characterize implied rent payments and the

influence of bargaining power on the division of the surplus.

Zusammenfassung

In dieser Arbeit untersuchen wir spieltheoretisch okonomische Situationen
in denen zwei Spieler wissen, dafl unter Sicherheit Kooperation beide Spieler
besserstellen wiirde - verglichen mit Nicht-Kooperation. D.h., die Summe der
Auszahlungen im Falle der Nicht-Kooperation ist strikt kleiner als der Surplus
der aus der Kooperation entsteht. Bei vollstindiger Information wird es daher
immer zu Kooperation kommen. Jedoch kann, wie wir zeigen werden, in einer
Situation mit unvollstindiger Information Nicht-Kooperation ein Gleichgewicht
- sein, obwohl es immer "gains from trade” gibt. Wir charakterisieren in einem ein-
fachen Verhandlungsmodell die beiden pooling und die drei separierenden Gleich-
gewichte als Funktion der a priori-Wahrscheinlichkeiten, sowie die implizierten
Rentenzahlungen und den Einflu von Verhandlungsmacht auf die Aufteilung des

Kooperationssurplus.
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1 Introduction

A lot of economic interactions involve bargaining in which players have the pos-
sibility of concluding a mutually beneficial agreement in preseuce of a conflict of
interest. How agreements are reached and how the bargaining surplus is divided

is the central issue of bargaining.

In this paper we analyze with the help of a non-cooperative game-theoretic
bargaining model economic situations where two players know that in a world of
certainty cooperation would make both players better off. If they would cooperate
they could find a division of the gains from cooperation which would make each
of them better off compared to a situation of non-cooperation. Put differently,
the sum of the payoffs they get in case of non-cooperation is less than the profit
resulting from cooperation — there are gains from trade in any case. ”Coopera-
tion” can be understood fairly general. Intuition suggests that in bargaining over
the division of the cooperation surplus each player only agrees on the cooperation
if he gets at least what is available for him in the case of non-cooperation. This
payoff is the players’ "outside option™ payoff or, equivalently, his reservation pay-
off or opportunity cost. Outside option payoffs may be independent or depend

on the type of the opponent. However. it is a lesson from bargaining theory that

"We are indebted to Prof. Werner Giith, Martin Husz, Christian Keuschnigg, Arno Riedl

and especially to Klaus Ritzberger for a lot of helpful discussions and comments.



the outcome depends quite heavily on the specification of the bargaining process.
As for example Shaked and Sutton 1984}, Sutton [1986] and Osborne and
Rubinstein [1990] have shown, the possibility of an outside option will in general

influence the division of the bargaining surplus.

The purpose of this paper is to analyze in a framework of incomplete informa-
tion the influence of the outside option payoffs, identified as bargaining power,
on the division of the surplus from cooperation and to characterize the outcome
in terms of bargaining power and prior probabilities. To tackle this problem
a simple two-stage game is analyzed where in the first stage a player makes a
"take—it—or—leave-it”-offer and in the second stage the other player accepts or
rejects the offer. In case of an acceptance cooperation occurs and the players get
their agreed- upon shares of the surplus. Non-agreement implies that each player
gets his outside option payoff. For simplicity, we assume that there are only two
possible outside option payoffs (i.c. two possible tvpes) for cach plaver: the pay-
off may be "high™ or "low™. These payoffs and the probabilities with which they

occur are assumed to be common knowledge.

If there are gains from trade and if there is complete information, every game-
theoretic solution concept of such a bargaining will have cooperation as an equi-
librium outcome. Furthermore, the responder in such an ultimatum game will
get just his reservation payoff. However, if the bargaining parties only have in-
complete information about the reservation payoff of the opponent, the situation
may be different. We show that cooperation under uncertainty does not always
happen — contrary to cooperation under certainty. With incomplete informa-
tion non-agreement may be an equilibrium outcome (despite of gains from trade)
and the bargaining outcome may therefore be inefficient. Furthermore, under
uncertainty the equilibrium payoffs may include a rent for the responder, i.e. an
overpayment relative to his reservation payoff. The equilibria of the game are
characterized in terms of the prior probabilities. Bargaining power, identified by
the size of the outside option pavoff. influences the probability intervals where an
equilibriumn exists.

The paper is organized as follows: After the description of the model and the
assumptions in the next Section, Section 3 presents some examples which can

be discussed within our framework. Section 4 states and discusses the results



comprising sequential pooling and separating equilibria. A short discussion of
the influence of bargaining power is also contained in this section. Section 5 gives

a summary. All proofs are delegated to the Appendix.

2 The model

There are two players who know that in a given economic environment coopera-
tion would make them strictly better off as compared to non-cooperation. The
players are of two possible types, i.e. they may be "weak” or "strong”. Whether
they are weak or strong is determined by nature. The meaning of weak and
strong depends on the specific economic situation which has to be analyzed, i.e.
the type depends on the outside options (the payoff a player gets in a situation of
non-cooperation). Hence, we will characterize the types by their outside option
payoffs. The structure of the game is as follows: Nature decides the types of
the players and each player learns its type but not the type of the other player.
The combination of types may determine the possible outside option payoffs in a
situation of non- cooperation. The players now have to decide whether to coop-
erate or not. Cooperation yields a known payoff which has to be divided. One
player makes a proposal which can be accepted or rejected by the other player. If
the.other player accepts. cooperation starts and the players get their respective
agreed-upon division of the cooperation payoff. If they disagree, bargaining ends.
In the latter case they receive their outside option payoffs. After this informal

description we will give a more formal one.

First, nature decides with probability p; that player ¢, : = 1,2 is "weak”, (pi =
prob(z = weak)). With probability (1 — p;) player ¢ is "strong”. Each player
learns his type but not the type of the other player. A player is labelled i,, if
he is weak and i, if he is strong. This description implies that there are four
possible combinations of types: both players may be weak (1., 2,,), both players
may be strong (1,, 2,) and one player may be weak and the other strong ((1,,
2,) or (lu, 2,)). At the next stage (the bargaining stage) we consider a very
simple bargaining situation, where the players bargain over the division of the
cooperation surplus II,. One player, labelled player 1, demands z, 0 < z < II,,.

If this demand is accepted by player 2 cooperation will start and each player



gets his respective profit share of the cooperation surplus. If player 2 refuses
the proposal, cooperation does not take place and the players get their outside
option payoffs. All payoffs are measured in von Neumann-Morgenstern utility.

The extensive form of this game is given in Fig. 1.
Fig. 1

Notice that the proposal of player 1 is labelled z;, t = w,s. Player 2 (in pure
strategies) can respond by accepting (R = 1, t = w,s) or rejecting (R; = 0,
t = w,s) the proposal. The strategy set of player 1 is the interval [0,]II,,] and
player 2’s strategy set is {0,1}. The strategy set of the whole game therefore is
[0,11,,] x {0, 1}. If the propousal is accepted player | gets «,, or &y and player 2
the rest of the cooperation surplus Il,,, 1.e. (Il,, —2,) or (I1,, — z,), respectively.
If the proposal is not accepted the outside option payoffs result. As described
above, four combinations of types are possible. Hence. four possible outside option
payoffs for each player can result. These outside option payoffs are labelled IT',

i, I, and II*, ¢ = 1,2. Concerning these outside option payoffs the following
notational convention will take place: If two strong players are matched (1,,2,)
their outside option payoffs are denoted IT, : = 1,2. If two weak players are
matched (1,,2,), their outside option payoffs are denoted I, 7 = 1,2. In the
cases where a weak player ¢ and a strong player j are matched (74, Js, 2 # J) the
payoffs are denoted I} and Hfz, 1 # 3. The payoff of a weak player : matched
with a strong player j is always denoted II} and the payoff of a strong player ¢
matched with a weak player j is II,. Next we will make some assumptions about

these outside option payofls:
Assumption 1 (i) [1} > 118 > 1L (id) 11 > 11 > 11 0 = 1.2

Assumption 1 (1) says that a strong player ¢, matched with a weak player j, gets
strictly more than a weak player ¢ who is matched with a strong player j. The
payoff of a strong player z, matched with a weak player j, 11}, is greater than or
equal to player i's payoff if matched with a strong player j, (II*). Furthermore,
a strong player :, matched with a weak player j, gets more than a weak player 1,
matched with a weak player j: I} > II!. The payoff of a weak player i, matched
with a weak player j, [T!, is greater than or equal to the payoff of a weak player



¢ matched with a strong player ;. (115). This is (ii). Notice that our definition
of types allows for the possibility that the outside option payoffs depend only on
the player’s own type (IIj, = II{; [T! = IT{). In this case, our definition of the
types simply says that a strong player has a strictly greater outside payoff than a
weak player (i.e. IT, = II} > II{ = II}). Furthermore, if the outside option payoff
depends on the type of the other player, we allow for the possibility that a strong
player 7z, who is matched with a strong player j, has a lower outside payoff than
a weak player 7 who is matched with a weak player j, (i.e. (II! < IT!). We also
do not rule out the converse. Our definition of the types only requires that the
payofl a weak player i can get if matched with a strong player 7, (i.e. IIY), is the
lowest possible payoff for player 7 and. Conversely, the payoff a strong playeri ?
can get if matched with a weak player j, (i.e. II%), is the highest possible payoft
player ¢ can get. The next assumption is the ”gains from trade” assumption which
assures that cooperation is possible for all matching of types (i.e. bargaining over

cooperation surplus always makes sense):

Assumption 2 Il,, > max ([1} 4+ 1% [0} + 117 [ + 103 I+ [12).

3 Examples

This section discusses some examples which may illustrate our model.

EXAMPLE 1: A widespread model in the Industrial Organization literature is
the duopoly model. Two firms interact either by quantity or price competition.
In the standard model of oligopoly, the Cournot-model, firms interact by choos-
ing quantities which are, under some conditions on the profit function, strategic
substitutes.! This implies that the profit of a monopolist is always at least as high
as the sum of the duopolists’ profits. With complete information this creates a
strong incentive for duopolists to merge and to become a monopolist. Incomplete
information about the pavoff of the other firm may change this incentive substan-
tially. Consider for example a case where each firm has only some conjectures
about the costs or the capacity of the other firm. If non- agreement in the bar-

gaining over the division of the monopoly profit occurs firms play a Cournot—game

!See Tirole [1988] or Geanakoplos, Bulow and Klemperer [1985].



under incomplete information. For illustrative purposes assume that a homoge-
nous goods’ market is characterized by a linear inverse demand and that the firms
produce at constant marginal costs. However, assume further that the firms may
have capacity constraints which are less than the Cournot Nash--quantity. A
weak firm then corresponds to a capacity-constrained firm and a strong firm is
unconstrained. If after non-agreement in a subsequent duopoly game two un-
constrained firms are matched, each firm gets the unconstrained Cournot-Nash
profit of II¢. If two weak firms are matched each gets IT:. A matching of a weak
firm with a strong firm yields the weak firm IT! and the strong one II%. Then one
can show that the Cournot-profits indeed satisfy Assumption 1 (see Gachter
and Kirchsteiger [1991]). The bargaining in our model may in this case be

interpreted as a takeover offer.

Notice that this model with its assumptions also allows for cooperation of firms
which are not necessarily engaged in the same market, i.e. it is also suited for
analyzing vertical integration or joint ventures.? In this case the outside option

payoffs can be assumed to be independent.

EXAMPLE 2: One of the first examples of using an outside option in a bar-
gaining was in the context of wage bargaining (Shaked and Sutton [1984]).
As already discussed in our model the rejection of a demand can also be viewed
as an outside option player 2 has which leaves both players with their outside
option or reservation payoffs. Consider a wage bargaining between a firm and
a representative worker whom the firm intends to employ. It is quite realistic
to assume that the outside option payoff of the worker is the wage he can earn
elsewhere or the unemployment benefit he or she could get or just his reservation
wage. The outside option payoff of the firm is the profit the firm gets without
the additional worker. It is even more realistic to assume that the firm does not
know exactly the outside opportunities of the worker and that the worker has only
some conjectures about his contribution to the profit of the firm. Furthermore
one can assume that the outside options of the worker and the firm, respectively,

are independent, i.e. I} = [I! and [I} = [T}, ; = 1,2. As already discussed, in this

2For more on models of cooperative behavior in industrial markets see Jacquemin and
Slade [1989]. Models of vertical integration are discussed in Tirole [1983] aud for more on

Joint ventures as a special legal form of a cooperative agreement see Mariti and Smiley [1983].



case Assumption 1 reduces to I > I} and Assumption 2 becomes (after a slight
rearrangement) II,, — I} > IT?. Let us identify player 1 with the firm and player
2 with the worker. Then Assumption 2 says that the minimal net profit of the
firm resulting from the employment of a strong—~type worker exceeds the highest
possible reservation wage the firm must pay. If this inequality were violated the
firm would not be interested in employing an additional worker if this worker
were a strong type. The bargaining stage depicts price-taking behavior of the
worker. If the worker agrees on the proposed wage he is employed and gets his

agreed-upon wage and the firm gets their profit share.

4  The results

In this section the main results, i.e. the solutions of this model are given. Since
our game does not have proper subgames, our solution concept is the sequential
equilibrium concept by Kreps and Wilson [1982]. A sequential equilibrium
consists of a sequentially rational strategy vector (z*, R*) and a system of beliefs
p”. Strategies have to be such that each player behaves optimally in each of his
information sets given the beliefs. The beliefs are derived by Bayes’ rule and must
be consistent with the equilibrium strategies. We derive two classes of equilibria,
sequential pooling and sequential separating equilibria. A pooling equilibrium
1s an equilibrium where both types of player 1 play the same strategy. In our
game this means that player 2 cannot infer the type of player 1 if he observes his
proposal. In a separating cquilibrium player 2 learns the type of player 1 after
his proposal. We restrict ourselves 1o pure strategies. In deriving the results
we proceed as follows: First the properties of equilibrium behavior (Lemma 1)
are characterized after deriving the conditions for best responses. Proposition
1 summarizes this subsection by stating the possible candidates for equilibrium.
Lemma 2 gives a further characterization of some equilibrium candidates. In
the next two subsections the pooling and separating equilibria, respectively, are

derived, depending on the probabilities p;.



4.1 Properties of equilibrium behavior

Let z = (z,,z,) be a pure strategy of player 1. where z,, t = w, s, denotes the
demand of a weak or a strong player 1, respectively. A strategy of player 2 is
given by R = (Ry(z), Rs(x)), where Ri(z) = 1, t = w,s if a type of player 2
accepts the demand z. Otherwise R,(z) = 0.

The beliefs of player 2 are given by u(z), t = w, s which denote the probability
of being matched with a weak player 1, given player 1’s demand z. Let b =
(bu(z),bs(x)) be a (possibly mixed) strategy of player 1 where b,/(z), t = w,s
denotes the probability that type ¢ of player 1 demands z. Then from the Bayesian

rule follows:

B B N plbw(x)
”“’,(x) = ps(z) = plz) = prbu(z) 4+ (1 — p1)bs(2)

This implies that the beliefs of plaver 2 are independent of his tvpe for all z which

Vz :b,(x)or by(z) >0, (4.1)

are demanded with positive probability. Furthermore, consistency of beliefs (as
a requirement for sequential equilibria) implies that the beliefs of player 2 are
independent for all r including those which are played by both types of player
1 with zero probability.> Therefore the beliefs of player 2 are independent of his
own type, 1.e. py () = po(r) = p(z) for all r.

The expected payoff of a weak-type player 2 is given by (notice that in the
following we denote the erpected payoff by &, (i = 1,2, t = w,s); the outside
option payoffs are denoted as described above):

Qo (Ry(z),p(z)) = I, —2z Vz:R,(z)=1
B2u(Rul2),u(z) = w0+ (1= u(@)F Vo:Ry(s)=0 (42)

R, (x) being a best response requires:
1 Vo : [, — o> p(a)1? + (1 — p(2))IT?
Ry(r)=4¢0 VoI, — o < p{x)12 4+ (1 — p(x))0? (4.3)
ro € {0.1} Vool — o= pu(o)12 4+ (1 = p(2)I1?
The expected payoff of the strong type of player 2 is given by
q)Zs(Rs(m)w ,u(x)) = I, -z Vz: Rs(l’) =1
Doy (Rs(2), p{z)) = w(@)I} + (1 — p(z)II* Vz: Ry(z)=0 (4.4)

3For a discussion of this issue see Fudenberg and Tirole [1991]. p.331 and 338.
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Rs(z) is a best response if:

1 Vo : I, —z > p(z)I} + (1 — w(z))?
Ry(z)=1¢ 0 Vo : [, —z < p(2)I} + (1 — u(z))? (4.5)
rs €{0,1} VeI, —a = p(a)3 + (L — p(x))II2

Define a set Q% = {2 : R,(z) = 1} and similatly Q° = {z : Ry(z) = 1}. Let X¥
denote the highest demand which player 2,, does not reject and similarly X* the
highest demand which player 2, does not reject. In order to guarantee that X"
and X? exist we assume that r, = r, = 1.* Otherwise player 1 would have to

maximize over open sets and no equilibrium would exist. From (4.3) and (4.5),

I, -I* < X¥“<I, — IT?
M,—-M; < X°<I,-0* (4.6)

Then, because of Assumption 1
I <I2, M<I} = X°<Xv
= Q°COv (4.7)
The relationship 0 < X* < X* < [I,, will be central in all following arguments.
The expected pavoff of a weak player I, given his strategy r, is:
Tw if x, € °
P1u(2w) = § p2zy + (1 —p)II} if 2, € Q¥ and z,, ¢ N° (4.8)
ng}, + (1 - p2)H11 if Loy $ Qv
This is the expected payoff of 1, who will accept every demand z,, € Qv.
If z,, € Q¥ but z,, ¢ Q° player 2 will accept if he is weak which happens with
probability p, and reject if he is strong. A rejection gives player 1,, his reservation

payoff IT}. If x,, ¢ Q% both types of player 2 will reject and the expected payoff
of a weak player 1 therefore is p,II} + (1 — po)II}.

With similar arguments one gets the expected payoff of player 1,:
Ts ifz, € Q°
Pis(zs) = { pozs + (1 — o)1} ifz, € Q¥ and 2, ¢ Q° (4.9)
pall) + (1 = )T il ¢ Q

*This assumption is also needed in Proposition 1.



The next step in deriving our results is, with the help of (4.1) — (4.9), to
find strategies which cannot be an equilibrium behavior. This will lead us to a
proposition about the candidates for equilibria in this game. All proofs of the

following lemmas and propositions are stated in the Appendix.

Lemma 1 (1) Let z, € 0°, 2z, < X°, t = w, s, be a strategy of player 1,. Then
this strategy is strictly dominated by another strategy =} = X°.

(i1) Let z;, t = w,s. be a strategy of player 1, with ¥, € Q% but z, ¢ Q° and
r, < X¥. Then x, 1s strictly dominated by another strategy =}, = Xv.

(i) Lel x, be a stralegy of player 1, with x, ¢ Q¥. Then z,, is strictly dominated
by another strategy x, = X“.

(4.7) implies that both types of player 2 will reject every demand z. ¢ Q*. Let
us denote these "excessive” demands as z.. For all types of player 1 and all types
of player 2 all these z. are payoff—equivalent, because they are always rejected by
player 2. Therefore it is enough to consider only a typical element z. ¢ Q%. The

following proposition makes a statement about the candidates for equilibria:

Proposition 1 (i) Given the best responses of player 2 (see (4.3) and ({.5)), the
equilibrium demands of player 1 have to be (z, = X*) or (z, = X"¥) if player 1
is weak and (zs = X°) or (x, = XV) or (zs = z.) if player [ is a strong type.

(it) Demands such.that the weak type of player [ demands z,, = X* and the

strong type of player | demands ry = X° cannot be equilibrium demands.

Notice that Proposition | implies that r,, r;, = |, because otherwise equilib-
rium demands X%, X° would be the greatest elements of open sets, which do
not exist (player | would have to optimize over an open set which is impossible).
From Proposition 1 follows that there are five candidates for equilibria: first, we
have two pooling equilibria — both types of player | demand X* (see Proposition
2) and both demand X (Proposition 3). Propositions 4 ~ 6 prove the separating
ones — player 1,, demands X°® and player 1, demands X* (Proposition 4); 1,
demands X° and 1, z. (Proposition 5) and 1, demands X™ and 1, demands
z. (Proposition 6). Notice that two equilibrium candidates involve ”excessive”
demands z. which will, in equilibrium, be rejected by both types of player 2.

These demands are characterized in the following Lemma 2.

10



Lemma 2 (i) If a weak player |, demands X° and a strong player 1, demands
z. ¢ ), the consistency of beliefs of a weak player 2,, implies that x, > I, —IIZ.
(i) If z, = X¥ and if z, = z., the consistency of beliefs of player 2 implies that
z. > I, — IT7.

The content of Lemma 2 is that in those two equilibria in which the strong type
of player 1 demands so much that both types of player 2 reject (see Proposition
1 and 5 and 6, resp.), this "excessive” demand must be greater than II,, — I12.
The next two subsections prove the equilibrium candidates stated in Proposition
1.

4.2 Pooling Equilibria

For analyzing the equilibria we have to define some conditions about the param-
eters p; and p; which have to be satisfied for existence of the equilibrium. As
1t will be seen during the proofs these conditions are necessary and sufficient
to guarantee that the expected profits of player 1 are indeed maximized if he
uses the proposed equilibrium strategies. For the existence of the first pooling

equilibrium, Conditions 1 and 2 have to be met.
CONDITION 1: T, — py I} — (1 — py)I12 — poll} — (1 — po)IIL > 0
Notice that the lefthand-side of Condition | is decreasing in p; as well as in
p2 because II; > II? and [I} > II! by Assumption 1. Notice further that for
P = p2 = 0, Condition 1 holds with strict inequality because I1,, — I12 — IT! > 0
by Assumption 2. This implies that Condition 1 holds for low prior probabilities
1, p2 by continuity.
CONDITION 2: I, = py T} — (1= py )12 = py[TL — py T12 = (1 — p ) TI] = (1 —p,)ITE > 0
Notice that for py = p, = 0 Condition 2 holds with strict inequality. This

implies that there is a parameter region where Conditions | aud 2 together hold.

Proposition 2 If p; and p, are such that Conditions 1 and 2 hold, the follow-
ing strategy-combination (z~, R™) and the beliefs p*(z) are a sequential pooling
equilibrium:

" = (zy,x;) with 2, =z} =1, — p 01} — (1 — p,)II2 (4.10)

w?
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R = (R, .R) with

P 1 V:U:Hm—mZleg-f-(l—pl)ng

w 0 Vz:ll,—z<pII2+ (1= p)II?

o= 4L Vel — e 2 Il (1 pyli? (4.11)

s 0 V:C:Hm——x<p1ﬂf21+(1“Pl)H3 .
p(z) = m

This pooling equilibrium is an equilibrium in which both types of player 1
demand exactly z7 =z}, = X* = II,, — py[I} — (1 — py)I12. This implies that
both types of player 2 get a share of p;II2 + (1 — p;)II? and will therefore agree —
cooperation occurs for all kinds of possible matchings of types. Furthermore, the
weak type of player 2 gets a rent, i.e. an overpayment relative to his expected
reservation payoff p;I12 + (1 — p;)II}, whereas a strong player 2 gets just his
expected outside option payoff. The reason for this is that in this equilibrium
the probability that player 2 is weak is relatively low and that is why player 1
accepts that a weak plaver 2 gets an overpayment. No type of player 1 risks a
rejection. Therefore for high probabilities that player 2 is strong cooperation will
always occur.

As it 1s proved in the Appendix, Condition | and 2 are indeed necessary
and sufficient for this equilibrium. Condition 1 guarantees that the equilibrium
demand X° gives a strong player 1 a greater expected pavoff than an excessive
demand z. (see (6.2) in the Appendix). Condition 2 guarantees that X* gives a
strong player 1 a greater expected payoff than a demand of X™ (see (6.1) in the
Appendix). Notice the logic of the argument: if the parameters (i.e. the prior
probabilities) are such that Conditions 1 and 2 are satisfied then these conditions
are necessary and sufficient for the proposed equilibrium behavior. Comparing
Condition 1 and 2 shows that Condition 1 is binding if and only if
I, — I} — II?

12 — 117

I; >, ~ plﬂj — (1 = p)II} &= p, > (4.12)

Notice that it is possible that the righthand side of (4.12) is greater than 1. In
this case. ouly Counditiou 2 is binding for the whole parameter region. Notice
further that the lefthand side of Condition 1 is decreasing in p; and p,. An

increase in p; decreases X° (if p; increases, player 2 wants a greater share of the

12



cooperation surplus) and an increase in p; increases the expected payoff of an
excessive demand. This implies that if Condition 1 is binding, p; and p, have to
be relatively small. For a p; such that Condition 2 is binding ((4.12) does not
hold), p; has to be low, too. To see this, notice that for p, = 1 Condition 2 cannot
hold irrespectively of p;. Notice further that the lefthand side of Condition 2 is
decreasing in p, if (4.12) does not hold, i.e. if the inequality in (4.12) is reversed®.
Because p, is the probability that X will be accepted Condition 2 holds for a
low p;. The influence of p, on Condition 2 is ambiguous, because an increase of
p1 decreases X* as well as X°. The result of these considerations is summarized
in Fig. 2. In Fig. 2(a) the payoffs are such that only Condition 2 is binding
(i.e. the righthand side of (4.12) is greater than 1). In Fig. 2(b) the payoffs are
such that Condition 1 is also binding for a certain parameter region. A strategy

combination as in Proposition 2 is an equilibrium if {p;, p) is in the shaded areas.
Fig. 2
Notice that Fig. 2 is just an example but it is "generic” in the sense that

different levels of outside option payoffs produce different probability regions but

qualitatively the same picture.

A last remark concerns uniqueness. Because of the consistency of beliefs and
the best response of player 2, the equilibrium demand X* (and therefore the
payoffs) are unique. However, the equilibrium behavior of player 2 and especially
the highest demand player 2,. just accepts (X™) are not unique because it depends
on the assumed perturbation 6.° This implies that the parameter interval of
the pooling equilibrium where both types of player | demand X* is not unique.
Different beliefs of player 2 about the probability of a type of player 1 making a
mistake lead to different parameter regions where X° is an equilibrium demand.
If, for example, player 2 believes that 1, makes mistakes with a lower probability
than 1., u(z) increases for all z # I, — p;[12 — (1 — py)I1? which leads X*

to decrease. This weakens Condition 2 and z* is an equilibrium demand in a

5dL/d p2 = =l —p1 M2 —(1~p)II})+ 0! < —0} + 0! < 0, where L denotes the lefthand
side of Condition 2.
®Notice that in a sequential equilibrium it suffices to find some sequence of completely mixed

strategies b¢ which support the equilibrium in question. There may be other sequences of mixed

strategies which lead to the same outcome.



greater parameter region of p;. On the other hand, & is an equilibrium in a
smaller parameter region if player 2 believes that 1, makes mistakes with a higher

probability than 1,,.

To summarize, if p; and p; are small which means that both players are likely
to be strong, even a strong player 2 accepts a relatively high demand, i.e. X*
is high. Furthermore, no type of player 1 risks a rejection. Hence, for high

probabilities that the opponent is strong an agreement will always occur.

For the next pooling equilibrium, Conditions 3 and 4 have to be met.

CONDITION 3: po[Il,, — py 112 — (1 — p )] + (1 — po) 1! — poll} — (1 — pg)IIL > 0
which is the same as 1, — pi[12 = (1 — p) 17 = 11} >0

CONDITION +: py[ll = pr = (1= p ) U+ (L= p) 1] =L +py U+ (1 —py )12 > 0

Proposition 3 [f the prior probabilities py and py are such that Conditions 3
and 4 hold, the following strategy-combination (z~. R*) and the beliefs u*(z) are

a sequential pooling equilibrium:

™ = (zl,x) with 2, =z% =1, — pI1* — (1 — py)II? (4.13)

S

(R, R) with
B - {1 Vz : I, — x> pI2 + (1 — py ) IT?
v 0 Va:T, —z < p 2+ (1 —p)IT?
{ Ve il — ¢ > pll + (1 = po)1I
{

1 2
7 ; (4.14)
0 Va:ll, —e<pIl} + (1 -p)lI ¢

In this pooling equilibrium both types of player | demand X% = Il,,, — p;[12 —
(1 — py)[I7. This implies that cooperation will occur if player 2 is weak, whereas
non-cooperation occurs if player 2 is strong, because the offered share of p,I1% —
(1 — p1)I1}7 is less than his expected reservation payoff and therefore it will be
rejected. A weak player 2 gets just his expected outside option payoff. The

possibility of cooperation does not depend on the type of player 1. The reason for
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this result is that in this equilibrium both types of player | risk a rejection because
the probability that player 2 is strong is relatively low, although, according to
Assumption 2, player | would have profited from agreement even with a strong—
type player 2. Non-cooperation can be an equilibrium outcome even if there are

gains from trade for both parties.

Condition 3 guarantees that the expected payoff a strong player 1 gets if he
demands X* is greater than the expected payoff of an "excessive” demand z,.
Condition 4 guarantees that the expected payoff of a demand X¥ of a weak
player 1 is greater than his expected payoff when demanding X*. To investigate
the relation between Condition 3 and Condition 4 notice first that Condition 3
is only a constraint on p;:

I, —II} - 10}
1z — I1?

p < (4.15)

Notice that it is possible that Condition 3 is not binding at all, i.e. that the
righthand side of (4.15) is greater than 1. If player 2 is strong. nonagreement
occurs irrespectively whether player | demands X* or .. because X* > X*
the highest demand a strong player just accepts. Therefore p, plays no role for
Condition 3. But an increase of p; decreases X'* (if p, increases, player 2 wants
a greater share of the cooperation surplus) which implies that a demand X¥
becomes less profitable for player 1. Furthermore, if p, = 0, Condition 4 cannot
hold irrespectively of the value of p;. If p, = 1, Condition 4 holds irrespectively of
the value of p;. Furthermore, the lefthand side of Condition 4 is unambiguously
increasing in p, if Condition 3 holds.” A rise in p» increases the possibility that
demand X is actually accepted (because X* is the highest demand a weak
player 2 just accepts) and therefore increases the expected payoff from a demand
X*. However, a rise in p; decreases X* and X* and its effect on Condition 4 is
therefore ambiguous.® The relationship between Condition 3 and 4 is summarized

in Fig. 3(a) and 3(b):
Fig. 3

“dL)dpy = [, — p U2 = (1 = p)Ii} — ) > U, —p 12— (1 = p))lIf — U} >0. L denotes
the lefthand side of Condition 4 and the expression after the strict inequality is Condition 3.
8d L/d p1 = po(IIf — 112) + [} — 0O > [<]o.
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In Fig. 3(a) we show a situation where only Condition 4 is binding (i.e. the
righthand side of (4.15) is greater than 1), where in Fig. 3(b) Condition 3 is also
binding. Again notice that these pictures are just examples, although ”generic”

ones.

Concerning uniqueness, similar arguments to above apply. The stated equi-
librium demands (and hence the payoffs) are unique. However, X*, the amount
a strong player just accepts. depends on the assumed perturbation ¢ and hence
the parameter region within which the proposed equilibrium exists.

A strategy combination as stated in Proposition 3 is an equilibrium if py is high
enough that also a weak player | risks noncooperation (because the probability
of noncooperation, 1 — p; is low). but on the other hand p; is low enough that a
demand acceptable for a weak player 1 (X*) is high enough that a strong player

1 does not make an excessive demand.

Notice that for all conditions for pooling equilibria, (Conditions 1 — 4), p,
plays no role if the outside option of player 2 does not depend on player 1’s type,
Le if I} =I12, II? = IT3. In this case, p; plays of course no role for the acceptance
behavior of player 2. This situation is equivalent to a situation where player 2

already knows the type of player 1.

After this analysis of pooling equilibria we proceed in the next subsection by

analyzing separating equilibria.

4.3 Separating Equilibria

The structure of the arguments used in this subsection is quite similar to those
used in the analysis of pooling equilibria. As before, we proceed by stating
conditions which have to be satisfied for the existence of a separating equilibrium.
Conditions 5 and 6 are necessary and sufficient for the existence of the first
separating equilibrium.

ConpiTION &: I1,, — I} — po(IL,, — 1) — (1 — po)II} >0

Notice that the lefthand side of Condition 5 is decreasing in p,. For p, = 0,
Condition 5 holds, for p, = 1, it does not.

CONDITION 6: pa(Il,, = IT}) + (1 — po)IT} = 11,, + 112 > 0

c
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The lefthand-side of Condition 6 is increasing in p» and, contrary to the former
condition, Condition 6 holds for p, = 1. Furthermore, a comparison between
these conditions reveals that Condition 6 holds with strict inequality if Condition
5 holds with equality. This implies that there exists an intermediate rdnge of
values of p; for which both, Condition 5 and 6 hold.

Proposition 4 If p; is such that Conditions 5 and 6 hold, the following strategy-

combination (z*, R*) and the beliefs u*(z) are a separating sequential equiltbrium:
e =(zy,2;) with z, =M, -1 and 2} =1, — II? (4.16)
R = (R, R}) with

I Vol — x> 11
0 Vo:Il, -M’<z<,-1II?

N

[}

(el

R, = .
U oafz: I, —z =117
0 otherwise
1 Vz:1I, — 2 > 12
R = y = (4.17)
0 otherwise
0 ife =1L, I
(z) = 4.18
wl { 1 otherwise ( )

This separating equilibrium is a case where a strong type of player 1 demands
zy = X¥ =1, — II} and a weak type z* = X* = II,, — II2. A strong-type
player 2 will accept the proposal of a weak- type player 1 because it gives him
just TIZ, whereas the offer of a strong tvpe would leave him with IT? which he will
therefore reject. A weak player 2 gets a rent of [12 — II? if the offer comes from

a weak player |: otherwise he gets just his reservation payoff.

Condition 5 guarantees that the expected payoff of a weak player 1 when
demanding X* is at least as high as when demanding X*. Condition 6 ensures
that player 1, has no incentive to deviate from his strategy of demanding X"
(and risking a rejection by a strong-type player 2) because his expected payoff
is at least as high as when demanding X* or z.. Because this is a separating
equilibrium, the type of player 1 is revealed by his demand. Player 2 knows the
type of player 1 (u(z}) = 0 and p(z7) = 1). This knowledge determines X* and
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X7, respectively, and p; does not occur in the equilibrium demands. Therefore p,
plays no role for the acceptance behavior of player 2. The value of p;, however,
is important for the existence of this separating equilibrium. p, must be such
that a strong type of player 1 has an incentive to risk a rejection of his offer

(i.e. Condition 6 holds)'® whereas a weak player | does not have this incentive

(Condition 5 holds).

A last remark concerns the consistency requirement. With (4.16), X and
X°* are independent of the assumed perturbations. However, for the consistency
requirement of the beliefs it is necessary that player 2 assumes that the pertur-
bations of a weak player 1 are much more likely than mistakes of a strong player.
If not, i.e. if u(x) is (sufficiently) below 1 for all z : 1T, — II} > = > II,,, — II2,
R? would not be a best response anymore which implies that X* would increase
(see (4.5) and (4.6)). This in turn would contradict the requirement of consis-
tent beliefs. Hence, the perturbations have to be such that p(z) = 1 for all
z: [, —[? >z > I, — 1. This equilibrium is not uniformly perfect (for
a definition see Giuth [1992]). As the proof of this equilibrium reveals, to be
sequential all separating equilibria need asymmetric perturbations.

To summarize, in this equilibrium nonacceptance only occurs if both players

are strong.

For the next separating equilibrium three conditions have to be met.
CONDITION 7: poII} + (1 = pg )12 — pyo(I,, — T12) + (1 — py)IIE > 0 which is the
same as [} — II, + 12 >0

This condition cannot hold if the outside options do not depend on the type
of the other player, i.e. if II? = I1? and II} = [I!, because we have assumed that
I, > I} + IT2.

CONDITION 8: 1, — 1} — po([l,, — [12) — (1 — p)II} >0

®This is true for all separating equilibria just by definition of separating equilibria.

Y9f I, < 13 + I}, which can only be the case if the outside profits depend on the type of
the other player, Condition 6 liolds for any pa. In this special case |; always has an incentive
to risk a rejection even if he meets a strong player 2 with certainty (ps = 0). This is caused
by the fact that X°, the highest demand acceptable for 2, is very low (Il,, — II7) because 2,

believes that such a low demand is made by a weak player 1.
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The lefthand side of Condition 8 decreases with p,. For p2 = 0, this condition
holds; if p, = 1 it does not.

CONDITION 9: poll} + (1 — po)IIE =TI, + I3 > 0

The lefthand side of Condition 9 increases with p2. If Condition 7 holds,
Condition 9 holds for p, = 1. For p, = 0. Condition 9 may also hold!! (in this
case Condition 9 is no longer a binding condition for the existence of the following
equilibrium). Notice further that if Condition 7 holds and Condition § is satisfied
with equality, Condition 9 also holds. This implies that there is an intermediate

range of values of p, where both, Conditon 8 and 9 hold if Condition 7 holds.

Proposition 5 If Conditions 7 - 9 hold, the following strateqy-combination

(z*, R*) and the beliefs u*(z) are a separating equilibrium:

2" = (z7,2,,) with z;=1z.>, 1] and 2z =1L, I} (4.19)

R* = (R, R) with

o 1 Vz:II, —z>1I2
v 0 otherwise
R* _ 1 \V/l' . Hv,n - X 2 r[i (4 20)
? 0 otherwise
(2] 0 o=r (4.21)
T = .
# 1 otherwise

This equilibrium is a case where player 1, has to make an "excessive” demand
to convince player 2 that he is a strong type (see (4.21) — in all other cases player
2 believes that player | is weak). This excessive demand leads to a rejection by
both types of player 2. Contrary to the behavior of a strong type, the demand
of a weak type of player 1, z7 = X° = [I,, — 12 is "small enough” that both
types of player 2 will accept — the strong player 2 gets just his reservation payoff
and the weak type gets a rent. This is just what is expressed by Conditions 7
- 9 (see the proof in the Appendix); 7 and 9 being conditions on the optimality

of an excessive demand. The former states that a strong type of player 1 has no

'1We have not ruled out this by Assuniption 2.
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incentive to deviate to X%, whereas the latter means that demanding X*® would
result in a lower expected payoff. Condition 8 is necessary and sufficient for a

weak players’ behavior of not risking a rejection.

For this being an equilibrium, the probability p, that player 2 is weak, has to
be small enough such that a weak player has no incentive to risk nonacceptance
(i.e. Condition 8 must hold), and at the same time it has to be at least as high -
that a strong player 1 has no incentive to demand an z, which is accepted by both
types of player 2 (i.e. p, must be such that Condition 9 holds). Furthermore,
player 2,,. facing an offer z < TI,, — II?. would have to believe that this offer
was made by a weak type of plaver | (see (4.21)). To put it differently, player
I, has to make an “excessive” demand to conviuce plaver 2 that he is strong.
Condition 7 states that ll,, — 12 < ). i.e. the highest acceptable demand for
a weak player 2 under his assumption that such a demand comes from a weak
player 1 (X* = I1,, — [12) is less than the outside option payoff of a strong player
1 (matched with a weak player 2). Therefore a strong player 1 has no incentive to
make an offer which is acceptable for a weak player 2, given this players’ beliefs

that such an offer is always made by the weak player 1.

The perturbed strategy b and the resulting induced and consistent beliefs
play a crucial role for this equilibrium because they determine the acceptance
boundary X (see (4.3), (4.3) and (4.6)). If player 2 believes that both types of
player 1 tremble with the same probability, X% would increase and then player
1, would not have any longer an incentive to make an excessive demand. To
summarize, in this equilibrium an agreement will be reached (i.e. cooperation
will occur) if player 1 is weak (irrespectivelv of the tvpe of player 2). Otherwise
the offer will be rejected. In this equilibrium there is a possibility that also a

weak type ol player 2 rejects the offer of a strong player 1.

For the third separating equilibrium we need Condition 10.
CONDITION 10: py(Il,, — I13) + (1 — po)I1} — 1L, + [12 >0
Notice that Condition 10 is just the opposite of Condition 8 and the lefthand

side of Condition 10 is increasing in p;. For p; = 0 Condition 10 does not hold;

if po = 1, 1t is satisfied.



Proposition 6 [/ Conditions 7 and 10 hold, the following strategy- combination

(z, R") and the beliefs u*(x) are a separating equilibrium:

" = (z3,2;) with zi =12, >, -1} and 2z} =TI, — 12 (4.22)

w?rYs

R = (R,,R:) with
R = 1 Ve :1I, —z > II?

' 0 otherwise
P 1 VeI, —2z2>112 (4.23)

° 0 otherwise

0 ifr=nux.
(z) = 4.24
wi { 1 otherwise ( )

This separating equilibrium shows the same behavior of a strong player | than
in the former equilibrium and a different of a weak player 1. A strong player
1, demands so much that both types of player 2 reject. Player 1,, however,
demands zj, = X* = I, — II? contrary to the former equilibrium where he
demands z}, = X°® = II,,, — II;, i.e. in this equilibrium a weak player 1 demands
more than in the former equilibrium. In this equilibrium also a weak type of
player 1 risks a rejection, because a strong player 2 will reject the offered 2. A

weak type gets just his outside option payoff.

For this being an equilibrium the probability p, must be such that Condition
10 holds, i.e. the expected payoff of demanding X* = II,, — 12 must be at
least as high as the expected payoff of demanding X*. In this case player 1,
has an incentive to risk a rejection by a strong player 2. If player 1, demands
X" and if player 1, demands something else, then X is independent of the off-
equilibrium beliefs of player 2. i.e. independent of b* and the resulting beliefs
p(xr),e — 0. X" is in this case as low as possible. Because of this low X¥
and because 11} > Il,, — [1}. player I, has no incentive to demand X* and his
expected payoff is greater if he makes an “excessive” demand. 5¢ is on the one
hand important for the determination of X*. If u(z) is (sufficiently) below 1 for
all z : I, = I} < z < I, — I1%, then player 2, would accept an offer greater
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than II, — II}, which in turn would strengthen Condition 10 implying that the
parameter section for which (z*, R*) of Proposition 6 being an equilibrium would
be smaller. If, on the other hand, 4 would be such that u(z) is sufficiently
below 1, for all z : I, — [1? < z < II,, — I1?, R, would not be a best response
anymore, which would imply that X increases. This in turn would contradict the
requirement of consistent beliefs. Hence, for (z*, R*) being an equilibrium, the

perturbations have to be such that yx(z) =1 for all z : [1,, — 1 < z < II,, — 02

In this equilibrium an agreement (and hence cooperation) will only occur if
two weak players meet. Otherwise they will not agree and there will be no

cooperation.

A comparison of Proposition 5 and 6 reveals that Condition 7 is crucial for
these equilibria. If the outside option payoffs do only depend on the player’s
own type, Condition 7 cannot hold (see Assumption 1) - and the equilibria of
Proposition 5 and 6, i.e. equilibria where player 1, demands so much that this
demand z. will be rejected for sure, do not exist. In this case only one separating
equilibrium exists, where player 1 risks rejection (by demanding X*), whereas
player 1, does not (he demands X°). All separating equilibria do only exist if
player 2 has some kind of asymmetric beliefs. 1.c. if he believes that player 1,
“trembles” with a higher probability than player 1,. Thus no uniformly perfect

separating equilibria exist.

4.4 The influence of bargaining power

In this simple bargaining model bargaining power amounts to the level of the
outside option payoff. Obviously, the higher a players’ outside option payoff the
higher his bargaining power. In deriving the equilibria, conditions as functions of
the prior probabilities p; were stated which have to be simultaneously satisfied for
the existence of an equilibrium in question. The probability intervals which sat-
isfy a certain set of conditions are determined by the levels of the outside options.
Different outside option payoffs determine different probability intervals. There-
fore Fig. 2 and 3 are just examples but "generic” ones. Bargaining power, i.e. the
outside option payoffs, determines only the regions where a certain equilibrium

exists. Which equilibrium actually prevails depends on the prior probabilities p;.
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In the following the influence of bargaining power is discussed in a framework
where the reservation payoffs do not depend on the type of the opponent (see
Example 2). This is a special case of our model which reduces the complexity
of the game quite substantially and therefore allows to gain some insights about
the influence of bargaining power which are harder to cémprehend in the more

general case.

If the outside options payoffs are independent only three kinds of equilibria
exist: the two pooling ones and the separating equilibrium of Proposition 4.
Performing the necessary calculations for the probability intervals of the equilibria

shows the following: The pooling equilibrium of Proposition 2 exists if

I, -1} -1}
5 < pi = L - 4.2
The pooling equilibrium of Proposition 3 exists if
I, - - I}
> o _ i
P2 > ps 0, — T2 = 10! (4.26)

The separating equilibrium of Proposition 4 exists if p, lies between p3* (the lower

bound) and p; (the upper bound). This is summarized by Fig. 4:
-Fig. 4

Notice that the probability regions for the equilibria overlap. If the probability
that player 2 is weak is below p3* only the equilibrium described by Proposition 2
exists. Similarly, if the probability is above p; only the equilibrium of Proposition
3 exists. The separating equilibrium lies between p3* and p3 but in this interval
also the two pooling equilibria exist. Once again this picture is just an example
but it is "generic” in the sense that different levels of outside option payoffs
produce different probability regions but qualitatively the same picture. To be
more concrete, with (4.25) and (4.26), a higher reservation payoff (i.e. a higher
bargaining power) of the strong player 2, I1?, shifts. ceteris paribus, both o
and p3* downwards, i.e. the region where the equilibrium of Proposition 3 exists
becomes larger whereas the region of Proposition 2 shrinks. The opposite happens
if the reservation payoff of a weak-type player 2, IT1?, becomes higher: both jou
and p; shift upward.'? The same happens with higher outside option payoffs

12The greater the difference between the reservation payoffs of player 2’s types, the higher the
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of player 1. However. contrary to the former cases. a changed outside option
payoff of oue type of player 1 changes the interval where Proposition 4 holds.
Notice once again that bargaining power, i.e. the reservation payoffs, determines
only the regions where a certain equilibrium exists. Which equilibrium actually

prevails depends on the prior probabilities p;.

5 Summary and Conclusions

In this paper we analyzed how uncertainty (incomplete information) influences
the possibility of cooperation and how the cooperation surplus (the gains from
trade) is divided if an agreement is reached. The model we used is quite general
in the assumptions about the payoffs, i.e. it only defines what "weakness” and
"strongness” in terms of outside option payoffs mean (where it is allowed that
these payvoffs depend on the type of the opponent: independency is a special case)
and it assumes that there are always gains from trade. However, the model is
quite restrictive concerning the "bargaining™ stage which in fact is an ultimatum
game — a "take-it-or-leave-it”—offer. In our opinion this does not pose a serious
problem because all bargaining models are to some extent artificial and secondly,
we are interested only in finite bargaining games and have therefore chosen the
most tractable one — the one-stage bargaining. This allows us to exactly char-
acterize the possible bargaining outcomes in terms of bargaining power which
influences the likelihood of the occurrence of a certain equilibrium and this is
what we intended to do in this paper. Furthermore, in economic applications

(see the section on Examples) this stage has suitable interpretations.

Cooperation under uncertainty may result in an overpayment and in an ineffi-
cient outcome: an equilibrium may entail the possibility of a rejection despite of
gains from trade. This inefficiency result is typical for bargaining under incom-
plete information (see e.g. Chatterjee [1985]). Qur approach. however, allowed

us to identify and to characterize these outcomes in terms of bargaining power.

possible rent paid to the weak-type player 2. A higher rent can be due to a higher reservation
payoff of a strong type or a lower reservation payoff of the weak type. Both reasons shift p3

and p3* downwards.



6 Appendix

Proof of Lemma 1: (i) and (ii) follow directly from (4.8) and (4.9), respectively. The proof of
(iii) is as follows: The expected payoff of player 1,, is @1, (2w) = palll4(1 —p2)1I} if he demands
zy and @y (z7,) = pa X¥ + (1 — p2)I1} if he dernands z,,. Because of (4.6), X¥ > II,, — 112 and
because [I,, — 12 > [} (see Assumption 2), (iii) follows. O

Proof of Proposition 1: Part (i) follows straightforwardly from Lemma 1. (i) £ = ((zo =
X*¥),(zs = X*)) being an equilibrium behavior would require:

i

@1 (X™)
D, (XY)

P2 XY + (1= po)II} > X° = &1,(X°)
P2 XY + (1= p2)l; < X* = ®1,(X°)

Because I} < I}, these conditions lead to a contradiction, which proofs the proposition. O

Proof of Lemma 2: (i) Demands 2, = X*, and z. ¢ Q¥ imply that the beliefs of player 2
become p(z.) = 0. If z, < II,, — I}, this would, according to (4.3), imply that Ry, (z.) = 1
which further implies that z, € QY (from the definition of Q*). But this contradicts the
assumption that z. ¢ Q*. The proof of (ii) works analogously. O

Proof of Proposition 2: Let 6°(z) be a completely mixed strategy with

L=1Ilpe ifz=1In—pi — (1 —p)I2

€ otherwise

b, (z) = bi(z) = {

Then )

The perturbed strategies induce consistent beliefs given by

€ x = i€
r#zr,=zI)) = — =
:u’( # S u) p16+(1—p1)5 pl
) ulz=z =z) = il —Mme) =p
* et pl(l—'nmf)“}'(l_pl)(l_ﬂnx{)

Therefore consistent beliefs are given by:
limp(z) = plz)=pr V z

With these beliefs, the best response of player 2 is given by (4.11) (see (4.3) and (4.5)) and
therefore £* = X, i.e. both types of player 1 demand exactly X*. From (4.11), X is given
by X*¥ = II, — p1112 — (1 — p1)II} and Lemma 1 tells us that z* = X* being a best response
of player 1 requires

O1,(X°) > P, (XY) (6.1)
(Dls(‘\’s) Z (I)ls(l'e) (62)

Notice that the lefthand side of Condition 2 is equal to @;,(X*) —®,,(X") and the lefthand
side of Condition 1 is equal to ®,(.X*)—®,(z.). This implies that (6.1) and (6.2) are satisfied.
Furthermore, it is required that

Bry(X°) > By (X¥) (6.3)
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which is the same as

My = prI; = (1= )T > po[lly — prII) — (1 = p1)II7] + (1 — po)TI}
Because I} < I1!, Condition 2 implies (6.3). O

Proof of Proposition 3 (Sketch): The proof of this proposition is very similar to the proof
of Proposition 3 and will therefore only be briefly stated. It can be shown that the beliefs
p(z) =py forall z are consistent. With these beliefs, the best response of player 2 is given
by (4.14) (see (4.3) and (4.5)) and therefore z* = X%, i.e. both types of player 1 demand
exactly X*¥. From (4.13), X* is given by X* = II,,, — pII} — (1 — p;)II? and Lemma 1 tells
us that it can never be a best response of player 1 to demand X* < < X¥ or less than X°.
Therefore £* = N being a best response of player 1 requires

Q. (NY) > @ (N (6.4)
This 1s the same as
p2(llm — pi 115 = (1 = p)IF] + (1 — p2) I} > O — pi113 ~ (1 — py )12

Because of Condition 4, (6.4) is satisfied. Furthermore, the profit of a strong player when
demanding X has to be al least as high as by demanding X*. i.c.

1 (XY) > 1, (XF)

which is

Pollm = pr1I5 = (1= p)TIF] + (1= p2)lIg 2 My = py 15 ~ (1 = p)II;

Because of (6.4) and II? > T2, this is valid. For a best response it is also required that

D1,(X") 2 Pra(ze)
or, equivalently
Pl = prII5 = (1= po) 7] + (1= po)IIE > pall, + (1 = p2)II;
This is just Condition 3. O

Proof of Proposition 4: The proof of this separating equilibriurn is typical for all others and
will therefore be stated in full length. Let 6(x) be a completely mixed strategy- combination:

b (2) = 1 — e ifx:qm—ﬂi
€ otherwise
be(z) = 17— N, ifr= 1_lm — 17
€ otherwise
Notice that )
hrré b(z) =<~
—



The perturbated strategies induce the following consistent beliefs:

: x - PLe Pi
(e F e, £2z) = = —p 1l
wle# o # 2 pre+(l—pi)e?  pr+(1-p)e o
¢ - * P1€
=1z, #£z,) = —c—0 0
p]_(l —Hmé)

—emo 1

pi(z =z, # z7) pi(1=Tme) + (1~ p1)e?)

Therefore consistent beliefs are given by

0 ifz=1,, — H,2
1 otherwise

lim u(2) = p*(z) = {

Now we have to show that R* is a best response of player 2 given his beliefs w*(z) (see
(4.18). According to (4.2) and (4.4) we calculate the expected payoff of player 2 if he rejects,
Le. @3 (R4 (z) = 0), t = w,s and we then check whether this expected payoff is greater than the
expected payoff if player 2 accepts the offer I1,, — z, i.e., for finding the optimal best response
of player 2 we use (4.3) and (4.5) respectively. We first analyze the case where player 2 is a
strong type:

iz <My -0 = p(z) = 1 = ®a(Ry(z) = 0) = [1;. Since 1} < [y — 2 => R (z) =
1.

2l = <2< Uy~ U = p(z) = | = Doy(Ry(z) = 0) = ;. Since I? >
Oyp —2 = R} (z) = 0.

z:z =, —17 = p(z) = 0 = @ay(R,(z) = 0) = [12. Since 1> ly—z = R (z) = 0.

z:2> My — 07 = p(z) = 1 = o, (Ry(z) = 0) = II;. Since 1} > z = R(z) = 0.

The analysis of these cases shows that the stated R is indeed a best response. The next
step is to analyze the best response behavior of a weak player 2,,:

z:x<I, - H?, = p(z) =1 = Ogpy( Ry () =0) = Hz. Since HZ <Ilp—2z= Rl(z)=
1.

gl =I5 <z < [y -} = p(z) = 1 = By (Ry(z) = 0) = M2 Since 2 >
Iy -z = R;(.’E) = 0.

=11, = pz)=0 = 5y (Ry (z) = 0) = I17. Since m<i,-z= R (z) =
1.

zix >y, — 07 = p(z) = 1 == By (Ru(z) =0) =02 Since M2 > 02> M, — 2 =
R (z)=0. ’

Therefore, the stated R, is indeed a best response of player 2,,.

Proposition 4 claims that 2} = X* and z}, = X*, i.e. in this separating equilibrium a
strong player 1 demands X™ and a weak player 1 demands X°*. We now have to show that this
1s a best response of player 1. The asserted behavior requires for player 1, that

Pruw(X®) 2 ®ro(XY) = U ~ O} ~ po(Ily — 7)) = (1 = po)II} >0

-

Because of Condition 5. this is satisfied.

For player I, optimal behavior requires
@15 (X¥) 2 €1(X°) &= p2(lly — ) + (1 = p)A} ~ [, + 11} > 0

Because of Condition 6, this is satisfied.

A third condition for a best response in this equilibrium is that the expected payoff of a
strong player 1 when demanding X,, is at least as high as when he demands z,

P1:(XY) 2 Pis(ze)
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or equivalently
P2l = I7) + (1 = po) 11} = pall}y = (1 = p2)I1} > 0 = I, — 7 > [}
This is true by assumption. O

Proof of Proposition 5 {Sketch): This proof is very similar to the proof of Proposition 4 and
1s therefore only briefly stated. Similar arguments as in the proof of Proposition 4 show that

beliefs given by
. 0 ifz=u=,
pi(z) =

1 otherwise

are indeed consistent. Furthermore, similarly to above it can be shown that R* is a best response
of player 2, given his beliefs u(z) as in (4.21). According to Proposition 5 we consider the case
where a strong type of player 1 demands z, = £, and a weak type r,, = .X*. These demands
being best responses require

P10 (X°) > 1u(XY) & My — I = pa(Ily, — M2) — (1 — p2)TI} >0

Because of Condition 8 this is satisfied. The optimality of the "excessive” demand z, of player
1; requires

B1,(ze) > B1,(XY) <= polly + (1 — po)I} > po(lly — T2) + (1 = p)II2
Condition 7 implies that this is satisfied. The optimality of demand z,. further requires
@15(2.) 2 01, (X*) == polly + (1 — po)II} > M, — T3

Because of Condition 9 this is satisfied. This analysis of the hest response hehavior of player 1
completes the proof. O

Proof of Proposition 6 (Sketch): The proof is very similar to the proof of Proposition 4 and
1s therefore only briefly stated. Similar arguiments as in the proof of Proposition 4 show that

beliefs given by
. 0 ifz=2=z
pr(z) =

1 otherwise

are indeed consistent. Sirnilarly to above one can proof that the stated K™ is a best response to
p#*(z). What remains to be shown is that z* is a best response to R*. In {4.22) we consider a
case where 1, demands z; = z. > X" and 1,, demands 2z, = X*. These demands being best
responses require

Pi5(ze) 2 P1s(XY) =

p2Il} + (1 = p2)I1} — pa(Ilm = I12) — (1 = po)II} > 0
Because of Condition 7 this is satisfied. Furthermore, for a best response it is required that
@1 (XY) > @14 (X°) = po(Il = 12) + (1 — po)I} — M, + I3 >0 (6.5)

Because of Condition 10 this is also satisfied. The last requirement of the claimed strategy
being a best response is

®y5(z.) 2 @1, (X°) = pally + (1 = po)Il} = [, + 11} > 0 (6.6)

Because II} > 1}, and because 11} > [, — lIZ (Condition 7). (6.5) implies (6.6). This proves
that the asserted strategies are indeed best responses and hence Proposition 6. O

(V]
o
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