
IHS Working Paper 44
January 2023

Fully Modified Least Squares
Estimation and Inference for

Systems of Cointegrating
Polynomial Regressions

Martin Wagner



Author(s)

Martin Wagner
Editor(s)

Robert M. Kunst
Title
Fully Modified Least Squares Estimation and Inference for Systems of 
Cointegrating Polynomial Regressions

Institut für Höhere Studien - Institute for Advanced Studies (IHS)
Josefstädter Straße 39, A-1080 Wien
T +43 1 59991-0
F +43 1 59991-555
www.ihs.ac.at
ZVR: 066207973

License 

„Fully Modified Least Squares Estimation and Inference for Systems of 
Cointegrating Polynomial Regressions“ by Martin Wagner is licensed under 
the Creative Commons: Attribution 4.0 License 
(http://creativecommons.org/licenses/by/4.0/)
All contents are without guarantee. Any liability of the contributors of the IHS 

from the content of this work is 
excluded.

All IHS Working Papers are available online: 
https://irihs.ihs.ac.at/view/ihs_series/ser=5Fihswps.html
This paper is available for download without charge at: 
https://irihs.ihs.ac.at/id/eprint/6431/

http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
https://irihs.ihs.ac.at/view/ihs_series/ser=5Fihswps.html


Fully Modified Least Squares Estimation and Inference for Systems

of Cointegrating Polynomial Regressions

Martin Wagner ∗

Department of Economics

University of Klagenfurt, Austria

&

Bank of Slovenia

Ljubljana, Slovenia

&

Institute for Advanced Studies

Vienna, Austria

Abstract

We consider fully modified least squares estimation for systems of cointegrating polynomial re-
gressions, i. e., systems of regressions that include deterministic variables, integrated processes
and their powers as regressors. The errors are allowed to be correlated across equations, over
time and with the regressors. Whilst, of course, fully modified OLS and GLS estimation coincide
– for any regular weighting matrix – without restrictions on the parameters and with the same
regressors in all equations, this equivalence breaks down, in general, in case of parameter restric-
tions and/or different regressors across equations. Consequently, we discuss in detail restricted
fully modified GLS estimators and inference based upon them.

JEL Classification: C12, C13, Q20

Keywords: Fully Modified Estimation, Cointegrating Polynomial Regression, Generalized
Least Squares, Hypothesis Testing

1 Introduction

We discuss fully modified least squares estimation for systems of cointegrating polynomial regres-

sions (CPRs), i. e., systems of regressions that contain deterministic variables, integrated processes

and their powers as regressors. The errors are allowed to be correlated across equations, over time

and with the regressors. CPRs are widely-used, e. g., in the vast environmental Kuznets curve (see,

e. g., Grossman and Krueger, 1993 or Wagner, 2015) and material Kuznets curve literatures (see,

∗Correspondence to: Department of Economics, University of Klagenfurt, Universitätsstrasse 65–67, 9020 Klagen-
furt, Austria. Email: Martin.Wagner@aau.at
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e. g., Grabarczyk et al., 2018).1

The paper first provides, in Section 2.2, system version results of Wagner and Hong (2016) for

fully modified OLS (FM-OLS) estimation, as originally introduced for linear cointegrating regres-

sions by Phillips and Hansen (1990) and studied in detail for single equation CPRs in Wagner and

Hong (2016).2 The second contribution of the paper, in Section 2.3, is a detailed consideration of

fully modified generalized least squares (FM-GLS) estimation under parameter restrictions. It is a

well-known algebraic fact – first considered in Zellner (1962) for a system of seemingly unrelated

regressions (SUR) in a “classical” setting – that without parameter restrictions and identical re-

gressors in all equations, (FM-)OLS and (FM-)GLS estimation coincide for any regular weighting

matrix. In case of restrictions and/or different regressors across equations GLS becomes relevant.3

We also consider Wald-type hypothesis tests based on the restricted FM-GLS estimator and close

with (i) a discussion concerning equivalence of FM-OLS and FM-GLS under restrictions and (ii) dis-

cussing the links to the seemingly unrelated cointegrating polynomial regression analysis developed

in Wagner et al. (2020).4

2 Theory

2.1 Setting and Assumptions

We start with considering unrestricted systems of cointegrating polynomial regressions (SCPRs)

where all equations include the same set of regressors:

yt = ΘDDt + ΘXXt + ut, t = 1, . . . , T (1)

= ΘZt + ut

xt = xt−1 + vt,

1Other applications include the intensity-of-use literature (see, e. g., Labson and Crompton, 1993) or the exchange
rate target zone literature (see, e. g., Svensson, 1992).

2For brevity, the focus in this paper is on FM-OLS estimation and Wald-type hypothesis testing only. Both,
specification and (non-)cointegration tests are not considered here. The specification tests considered in Wagner
and Hong (2016, Propositions 3 and 4) can be extended rather straightforwardly to the present setting. A system
extension of (non-)cointegration tests is not feasible in general, see also Wagner (2022).

3From the perspective of a “big encompassing model” with all variables considered as regressors in all equations,
considering different regressors in different equations simply amounts to imposing exclusion (or zero) restrictions.
From this perspective, the issue of OLS and GLS equivalence boils down to restrictions being in place or not.

4The reference to the SUR literature is mainly due to the fact that, to the best of my knowledge, restricted fully
modified estimation has not been “written down in full detail” in the single equation or systems literature that focus
on OLS-type estimation. It could very well be, however, that I have missed such contributions.
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with yt := (y1t, . . . , ynt)
′, Zt := (D′t, X

′
t)
′ with Dt := (D1t, . . . , Dqt)

′, xt := (x1t, . . . , xmt)
′, Xt :=

(X ′1t, . . . , X
′
mt)
′, Xit := (xit, . . . , x

pi′
it )′ for i = 1, . . . ,m and integers pi ≥ 1. Denoting with p :=∑m

i=1 pi, the parameter matrix Θ = [ΘD,ΘX ] ∈ Rn×(q+p).

For the (n+m)-dimensional error process {ξt}t∈Z := {[u′t, v′t]′}t∈Z we assume that ξt =
∑∞

j=0Cjεt−j

with
∑∞

j=0 j||Cj || < ∞, det(C(1)) 6= 0 and {εt}t∈Z a strictly stationary ergodic martingale dif-

ference sequence with natural filtration Ft = σ
(
{εs}t−∞

)
and (conditional) covariance matrix

Σ := E(εtε
′
t|Ft−1) > 0. Furthermore, we assume that supt≥1 E (||εt||r|Ft−1) < ∞ a.s. for some

r > 4.

For a discussion concerning these or similar sets of sufficient assumptions for the required functional

limit theory see, e. g., Wagner and Hong (2016). Nonsingularity of C(1) excludes cointegration in

xt, which in a linear context amounts to stating that the triangular system representation is based

on a correctly specified dimension of the cointegrating space and this assumption is also routinely

employed in, e. g., the CPR context.

The assumptions are sufficient for an invariance principle to hold for {ξt}t∈Z, i. e.,:

T−1/2
brT c∑
t=1

ξt ⇒ B(r) =

(
Bu(r)
Bv(r)

)
= Ω1/2W (r) (2)

for 0 ≤ r ≤ 1, with (by assumption) positive definite long-run covariance matrix:

Ω =

(
Ωuu Ωuv

Ωvu Ωvv

)
:=

∞∑
j=−∞

E(ξt−jξ
′
t), (3)

partitioned according to the partitioning of ξt. For later usage, we also define the half long-run

covariance ∆ :=
∑∞

j=0 E(ξt−jξ
′
t), partitioned analogously to Ω.

2.2 Estimation and Inference

Combining all observations for t = 1, . . . , T leads to:

Y = ΘZ + U (4)

Y ′ = Z ′Θ′ + U ′, (5)

with Y = (y1, . . . , yT ), Z = (Z1, . . . , ZT ) and U = (u1, . . . , uT ). As already mentioned above, it

is known since Zellner (1962) that for systems of equations (that are linear in parameters) with

identical regressors in all equations, OLS estimation coincides (algebraically) with GLS estimation

3



for any (regular) weighting matrix.5 Consequently, without parameter restrictions and identical

regressors it suffices to consider the system version of the single equation fully modified OLS esti-

mator developed in Wagner and Hong (2016). For later use (when restrictions are imposed), it is

convenient to also consider the vectorized versions of (4) and (5):

vec(Y ) = (Z ′ ⊗ In)vec(Θ) + vec(U) (6)

vec(Y ′) = (In ⊗ Z ′)vec(Θ′) + vec(U ′). (7)

Equations (6) and (7) are referred to as vectorized by observation and equation, respectively. To

discuss OLS and FM-OLS estimation, several (sequences of) scaling matrices need to be defined.

For the deterministic regressors, we assume that there exists a scaling matrix GD = GD(T ) such

that T 1/2GDDbrT c ⇒ D(r) for 0 ≤ r ≤ 1, with
∫ 1
0 D(r)D(r)′dr positive definite.6 The scaling

matrix corresponding to the regressor vector Xt is given by GX = GX(T ) := diag(GX1 , . . . , GXm),

with GXj := diag(T−1, . . . , T−
pj+1

2 ) for j = 1, . . . ,m. These matrices are combined in G :=

diag(GD, GX1 , . . . , GXm). By definition, T 1/2GZbrT c ⇒ J(r) := (D(r)′,

Bv1(r)′, . . . ,Bvm(r)′)′, with Bvj (r) := (Bvj (r), . . . , Bvj (r)
pj )′, 0 ≤ r ≤ 1, for j = 1, . . . ,m.

Clearly, as in the single equation case, the OLS estimator is also consistent in the system case with

a limiting distribution that is, in general, contaminated by so-called second-order bias terms. This

leads to the fully modified OLS (FM-OLS) estimator, which necessitates the definition of a few more

quantities: First, define y+t := yt− Ω̂uvΩ̂
−1
vv ∆xt and Y + := (y+1 , . . . , y

+
T ). Note that Ω and ∆ – and

a fortiori their sub-blocks – can be consistently estimated based on [û′t,∆x
′
t]
′, with ût denoting the

OLS residuals of estimating (1). Consistency of OLS in conjunction with a usual set of assumptions

on kernels and bandwidths (compare, e. g., Jansson, 2002) directly leads to consistency of long-run

covariance estimation. Throughout the paper, we thus assume that long-run covariance estimation

is consistent without further mentioning. Second, define an additive bias correction term:

M̂+ := M̂u − Ω̂uvΩ̂
−1
vv M̂v, (8)

with:

M̂u :=

 0 . . . 0 ∆̂u1v1T 2∆̂u1v1

∑T
t=1 x1t . . . pm∆̂u1vm

∑T
t=1 x

pm−1
mt

...
...

...
...

...

0 . . . 0 ∆̂unv1T 2∆̂unv1

∑T
t=1 x1t . . . pm∆̂unvm

∑T
t=1 x

pm−1
mt


5Note that for simplicity we use the terminology GLS for any variant of weighted least squares and not only – as

in a classical setting – when weighting takes place with the inverse of the covariance matrix of the errors.
6The standard example is Dt = (1, t, . . . , tq−1)′ with GD = diag(T−1/2, . . . , T−(q−1/2)) and T 1/2GDDbrTc ⇒

D(r) = (1, r, . . . , rq−1)′.
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and M̂v defined analogously to M̂u, with ∆̂uivj , i = 1, . . . , n replaced by ∆̂vivj , i = 1, . . . ,m.

Proposition 1 Let the data be generated by (1) with the stated assumptions in place. The FM-OLS

estimator of Θ, defined as:

Θ̂+ := (Y +Z ′ − M̂+)(ZZ ′)−1, (9)

with M̂+ as given in (8) is consistent and its limiting distribution is given by:7

(
Θ̂+ −Θ

)
G−1 ⇒

∫ 1

0
dBu·v(r)J(r)′

(∫ 1

0
J(r)J(r)′dr

)−1
, (10)

with Bu·v(r) := Bu(r)− ΩuvΩ
−1
vv Bv(r).

The limiting distribution given in (10) is a zero-mean Gaussian mixture distribution since Bv(r)

and Bu·v(r) are independent by construction. This is the basis for asymptotic standard chi-squared

or normal inference. For hypothesis testing, it is convenient to consider vectorized quantities, in

particular vectorized by equation. Thus, consider θ := vec(Θ′), for which (9) and (10) directly

imply:

θ̂+ = vec
(

(ZZ ′)−1(ZY +′ − M̂+′)
)

(11)

=
(
In ⊗ (ZZ ′)−1

)
vec
(
ZY +′ − M̂+′

)
=

(
In ⊗ (ZZ ′)−1

) (
(In ⊗ Z)vec(Y +′)− vec(M̂+′)

)
and:

(
In ⊗G−1

) (
θ̂+ − θ

)
⇒ vec

((∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r)

′

)
.

(12)

The limiting distribution given in (12) is – conditional upon J(r) – distributed as

N
(

0,Ωu·v ⊗ (
∫ 1
0 J(r)J(r)′dr)−1

)
. Because Θ̂+, or equivalently in vectorized form θ̂+, contain el-

ements that converge at different rates, obtaining results for Wald-type test statistics requires a

condition on the constraint matrix R (in case of linear hypotheses) that is not required when all

estimated coefficients converge at the same rate (for more details see, e. g., Vogelsang and Wagner,

7This might be an unnecessary clarification since this is standard integration notation in mathematics (but less
often seen in econometrics texts): The (i, j)-element of

∫ 1

0
dBu·v(r)J(r)′ is equal to

∫ 1

0
Jj(r)dBu·v,i(r).
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2014, Wagner and Hong, 2016 or Wagner et al., 2020).8 A sufficient condition on R is to assume

that there exists a scaling matrix GR = GR(T ) ∈ Rs×s such that:

lim
T→∞

G−1R R(In ⊗G) = R∗, (13)

with R∗ ∈ Rs×n(q+p) of full row rank s.

Proposition 2 Let the data be generated by (1) with the stated assumptions in place. Consider s

linearly independent linear restrictions collected in:

H0 : Rvec(Θ′) = Rθ = r, (14)

with R ∈ Rs×n(q+p) of full row rank s, r ∈ Rs and suppose there exists a scaling matrix GR such

that condition (13) holds. Then it holds that the Wald-type statistic:

TW := (Rθ̂+ − r)′
(
R
(

Ω̂u·v ⊗
(
ZZ ′

)−1)
R′
)−1

(Rθ̂+ − r) (15)

is asymptotically chi-squared distributed with s degrees of freedom under the null hypothesis. In

case s = 1, a t-type statistic:

Tt :=
Rθ̂+ − r√

R
(

Ω̂u·v ⊗ (ZZ ′)−1
)
R′

(16)

is asymptotically standard normally distributed under the null hypothesis.

2.3 Estimation and Inference under Restrictions

The cointegrating regression literature does not focus on restricted estimation. Consequently, since

without parameter restrictions and with identical regressors OLS and GLS coincide, fully modified

GLS estimation is typically not discussed. An exception is the seemingly unrelated regression

cointegration literature, see, e. g., Moon (1999), Moon and Perron (2005), Park and Ogaki (1991)

or Wagner et al. (2020). In SUR systems with potentially altogether different regressors across

equations, GLS estimation becomes relevant. Using the terminology of the SUR cointegration

literature, choices considered as weighting matrices include Ŵ = In, i. e., OLS estimation, Ŵ =

Ω̂−1uu , refereed to as modified SUR estimator, or Ŵ = Ω̂−1u·v, referred to as fully modified SUR

estimator by, e. g., Park and Ogaki (1991).9

8Early discussions of the matter are already contained in, e. g., Park and Phillips (1988, 1989) or Sims et al.
(1990). Considering only linear restrictions allows to obtain closed form solutions.

9To be precise, the weighting matrices are given by In⊗IT = InT , Ω̂−1
uu ⊗IT and Ω̂−1

u·v⊗IT for the three considered
cases.
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To obtain a closed-form solution for the restricted estimator, we consider only linear restrictions

on the parameter vector θ, i. e.,:

θ = Hγ + h, (17)

with H ∈ Rn(q+p)×d of full column rank d and h ∈ Rn(q+p).10 Analogously to the discussion above,

we need to posit a condition on the constraint matrix to arrive at a zero mean Gaussian mixture

distribution. More specifically, we assume that there exists a scaling matrix GH = GH(T ) ∈ Rd×d

such that:

lim
T→∞

(In ⊗G−1)HGH = H∗, (18)

with H∗ ∈ Rn(q+p)×d of full column rank d.

Proposition 3 Let the data be generated by equation (1) with the stated assumptions in place and

θ fulfilling the (explicit) restrictions posited in (17). Suppose that there exists a matrix GH such that

condition (18) holds. The restricted fully modified generalized least squares (FM-GLS) estimator

θ̃+R of θ with (symmetric) weighting matrix Ŵ is defined as:

θ̃+R := Hγ̃+ − h, (19)

with:

γ̃+ :=
(
H ′(Ŵ ⊗ ZZ ′)H

)−1
× (20)(

H ′
(

vec
(

(ZY +′ − M̂+′)Ŵ
)
− (Ŵ ⊗ ZZ ′)h

))
.

For T →∞ and Ŵ →W > 0, it holds that:

G−1H
(
γ̃+ − γ

)
⇒

(
H∗′

(
W ⊗

∫ 1

0
J(r)J(r)′dr

)
H∗
)−1
× (21)(

H∗′vec

(∫ 1

0
J(r)dBu·v(r)

′W

))
.

The limiting distribution of γ̃+ given in (21) is – conditional upon J(r) – distributed as N
(
0,Σγ̃+γ̃+

)
,

with:

Σγ̃+γ̃+ := A−1BA−1 (22)

A := H∗′
(
W ⊗

∫ 1

0
J(r)J(r)′dr

)
H∗

B := H∗′
(
WΩu·vW ⊗

∫ 1

0
J(r)J(r)′dr

)
H∗.

10The two formulations of restrictions, either implicit via Rθ = r or explicit via θ = Hγ + h are, as is well-known,
closely related. Starting from the explicit formulation, denote with H⊥ ∈ Rn(q+p)×n(q+p)−d a matrix of full column
rank that fulfills H ′⊥H = 0. Then, R = H ′⊥ and r = H ′⊥h provide an implicit (re)formulation of the restrictions.

7



A consistent estimator of Σγ̃+γ̃+ is immediately available and asymptotically chi-squared or stan-

dard normally distributed test statistics follow, under conditions (18) and (24), similarly to Propo-

sition 2.11

Proposition 4 Let the data be generated by (1) with the assumptions discussed in place and with

the true parameter vector θ = Hγ+h, with condition (18) in place, fulfilling k linearly independent

linear restrictions, i. e.,:

Rγγ = rγ , (23)

with Rγ ∈ Rk×d of full column rank k and rγ ∈ Rk. Furthermore, assume that there exists a scaling

matrix Gγ ∈ Rk×k such that:

lim
T→∞

G−1γ RγGH → R∗γ (24)

with R∗γ ∈ Rk×d of full row rank k and that Ŵ →W > 0, then the Wald-type statistic:

TW :=
(
Rγ γ̃

+ − rγ
)′ (

RγÂ
−1B̂Â−1R′γ

)−1 (
Rγ γ̃

+ − rγ
)
, (25)

with:

Â := H ′
(
Ŵ ⊗ ZZ ′

)
H (26)

B̂ := H ′
(
Ŵ Ω̂u·vŴ ⊗ ZZ ′

)
H, (27)

is asymptotically chi-squared distributed with k degrees of freedom under the null hypothesis. In

case k = 1 a t-type statistic that is asymptotically standard normally distributed under the null

hypothesis analogously to Proposition 2.

In case W = Ω−1u·v, the asymptotic covariance matrix of γ̃+ simplifies to:12

Σγ̃+γ̃+ =

(
H∗′

(
Ω−1u·v ⊗

∫ 1

0
J(r)J(r)′dr

)
H∗
)−1

. (28)

This also implies, of course, corresponding “simplifications” of the test statistic given in Proposi-

tion 4, i. e., the test statistic defined in (25) simplifies to:

TW =
(
Rγ γ̃

+ − rγ
)′(

Rγ

(
H ′(Ω̂−1u·v ⊗ ZZ ′)H

)−1
R′γ

)−1 (
Rγ γ̃

+ − rγ
)
. (29)

11Note for completeness that the limiting distribution of θ̃+R is by definition singular.
12Denoting the limiting covariance matrix of θ̂+ considered in Proposition 1 with Σθ̂+θ̂+ , it follows in case W = Ω−1

u·v
that Σγ̃+γ̃+ = (H∗′Σ−1

θ̂+θ̂+
H∗)−1.
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Remark 1 In the unrestricted case, i. e., when all equations contain the same set of regressors

and without parameter restrictions, GLS-type estimation coincides with OLS-type estimation for

any regular weight matrix. This is seen immediately by setting H = In(q+p) and h = 0 in the

expressions for the restricted estimator in Proposition 3. It is also easy to see that this equivalence

extends to restricted estimation that corresponds to, e. g., eliminating the same set of regressors

from all equations. In this case, it holds that H = In⊗H, with H a selection matrix of dimensions

corresponding to the number of regressors/parameters excluded. This simplifies γ̃+ as defined in (20)

to:13

γ̃+ =
(
Ŵ ⊗HZZ ′H′

)−1 (
vec(H(ZY +′ − M̂+′)Ŵ )− (Ŵ ⊗HZZ ′)h

)
, (30)

with asymptotic covariance matrix Σγ̃+γ̃+ = Ωu·v⊗
(
H′
∫ 1
0 J(r)J(r)′drH

)−1
, which coincides exactly

with the limiting distribution of the unrestricted FM-OLS estimator in the smaller model.

A similar result also prevails more generally whenever H = In⊗H, even when H is not a selection

matrix, as long as a condition like (18) holds with a limiting full rank matrix of the form H∗ =

In ⊗ H∗, with H∗ not necessarily equal to H in general. This highlights that OLS- and GLS-type

estimation coincide also under general linear restrictions, as long as identical restrictions that

fulfill (18) are put on the parameters in all equations.

Remark 2 The results of this paper are very closely related to the seemingly unrelated CPR results

of Wagner et al. (2020). This is most easily seen by considering, using the notation of Wagner et

al. (2020), identical regressors in all equations, i. e., Zi,t = Zt for i = 1, . . . , N : Then, the OLS

estimator of θ, “organized” in the same way in both papers, as defined in equation (10) of Wagner et

al. (2020) – of course – coincides with the OLS-estimator considered (only implicitly) in this paper.

Furthermore, the FM-SOLS estimator defined in equation (13) of Wagner et al. (2020) coincides,

in the unrestricted identical regressors case, with the FM-OLS estimator defined in Proposition 1

of this paper. The FM-SUR estimator defined in equation (14) in Wagner et al. (2020) simplifies

to FM-OLS as well in the identical regressors case, for the same (algebraic) reason as discussed

for the system case in this paper. Note that Wagner et al. (2020) only consider a special type of

parameter restrictions that they refer to as partial pooling, corresponding to a situation where a

subset of the parameters corresponding to “similar” variables (e. g., the logarithm of GDP squared)

are restricted to be identical over a subset of equations (e. g., countries). This kind of restrictions,

13In this case, the matrix GH in (18) is given by In ⊗Gs, with Gs having as its diagonal elements the elements of
G corresponding to the non-excluded elements of θ. This, in turn, implies that H = In ⊗H = H∗.

9



of course, fulfill our condition (18).

3 Summary and Conclusions

We contribute to the fully modified estimation literature in three related aspects. First, we provide

the system version results of the FM-OLS estimator, as well as inference based upon it, for systems

of CPRs with identical regressors in all equations. This extends the Wagner and Hong (2016) results

from the single equation to the system of equations case. For this setting it follows analogously to

Zellner (1962) that OLS and GLS estimation coincide for any weighting matrix. This equivalence

breaks down in general in case of parameter restrictions and/or different regressors across equations.

Therefore, we secondly consider in detail restricted FM-GLS estimators and inference based upon

them. The FM-GLS estimators in general exhibit sandwich-type limiting covariance matrices unless

W = Ω−1u·v. Third, we discuss conditions for asymptotic equivalence of FM-OLS and FM-GLS under

restrictions and we also relate the results of this paper to the seemingly unrelated CPR analysis

developed in Wagner et al. (2020).
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Appendix: Proofs

Proof of Proposition 1: The result presents the system version of the FM-OLS estimator of θ

and its asymptotic properties derived for the single equation case with n = 1 in Wagner and Hong

(2016, Proposition 1) and follows from combining the individual equation results.

Proof of Proposition 2: Under the null hypothesis and condition (13) it holds that:

G−1R (Rθ̂+ − r) = G−1R R(In ⊗G)(In ⊗G−1)(θ̂+ − θ)⇒ R∗Z, (31)

with Z denoting the random variable (limiting distribution) given in (12). Conditional upon J(r),

R∗Z is (under the null hypothesis) distributed as N
(

0, R∗(Ωu·v ⊗ (
∫ 1
0 J(r)J(r)′dr)−1)R∗′

)
. Under

condition (13) it furthermore holds that:

G−1R R
(

Ω̂u·v ⊗ (ZZ ′)−1
)
R′G−1R ⇒ R∗

(
Ωu·v ⊗

(∫ 1

0
J(r)J(r)′dr

)−1)
R∗′. (32)

The asymptotic chi-squared null distribution for TW as defined in (15) now follows directly from

combining the above two results and noting that conditional convergence to a chi-squared distri-

bution that is (by definition) independent of J(r) amounts to unconditional convergence.

Proof of Proposition 3: Given that restricted fully modified estimation is not usually considered,

we look at the OLS, GLS and FM-GLS estimators for γ in turn. Starting from (7) and inserting

θ = Hγ + h leads to:

vec(Y ′)− (In ⊗ Z ′)h = (In ⊗ Z ′)Hγ + vec(U ′), (33)

from which, as a starting point, the OLS estimator of γ immediately follows as:14

γ̂ :=
(
H ′(In ⊗ ZZ ′)H

)−1 (
H ′
(
vec(ZY ′)− (In ⊗ ZZ ′)h

))
. (34)

Analogously, also the GLS estimator of γ with weighting matrix Ŵ – more precisely Ŵ ⊗ IT –

follows from standard calculations, e. g., (Ŵ ⊗ Z)vec(Y ′) = vec(ZY ′Ŵ ):

γ̃ :=
(
H ′(Ŵ ⊗ ZZ ′)H

)−1 (
H ′
(

vec(ZY ′Ŵ )− (Ŵ ⊗ ZZ ′)h
))

. (35)

14Equation (33), of course, is algebraically a system of equations with dependent variable vec(Y ′)− (In⊗Z′)h and
regressors (In ⊗ Z′)H.
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Given the GLS-estimator in (35), it follows from straightforward calculations that the fully modified

transformations amount to replacing vec(ZY ′Ŵ ) with vec
(

(ZY +′ − M̂+′)Ŵ
)

, which leads to γ̃+

as defined in (20). Under the asymptotic full column rank condition (18), the limiting distribution

given in (21) follows using similar arguments and derivations as underlying Proposition 1, itself

based on Wagner and Hong (2016, Proposition 1).

Proof of Proposition 4: The result follows analogously to the result for the Wald-type statistic for

linear hypotheses on θ derived in Proposition 2. An additional complication is that two asymptotic

full rank conditions, one related to the matrix H relating γ and θ, given in (18), and one related

to the restrictions Rγ , given in (24), have to hold. Also, of course, Â and B̂ need to be properly

scaled to converge, compare (32) in the proof of Proposition 2.
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