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A B S T R A C T

The share of renewable energies has to increase significantly in the ongoing energy transition. Such a shift
in production technology is expected to have noticeable effects on the energy sector’s input structure that is
required for its output. This study examines how changes in a country’s energy mix affect its energy sector’s
input coefficients within an input–output framework, using Austria’s renewable expansion act as a case study.
Predicting input coefficients can be time-consuming and often relies on trends in past data. Our empirical
approach is based on a fractional econometric model using panel data on the energy mix and input structures
of energy sectors for 26 European countries, and can be efficiently and readily applied to the 26 countries
covered in the model. We illustrate the prediction of input coefficients for Austria’s energy sector in 2030. We
find that input shares from the energy sector to itself would remain high, while mining inputs would decrease.
Our model also predicts that increasing the share of renewable energy sources comes with a significant decrease
in the share of labor inputs, mainly because operating renewable energy technologies requires less labor
than operating non-renewable ones. The presented method allows to assess renewable energy policy plans
to anticipate the effects of structural changes in national energy sectors.
1. Introduction

In 2021, Austrian policy makers passed the so-called renewable
expansion act, which aims at increasing national energy production
from renewable sources by 27 terawatt-hours (TWh) [1]. By invest-
ing approximately one billion euros per year until 2030 via market
bonuses and investment subsidies, the bill targets solar (+11 TWh),
wind (+10 TWh), hydro power (+5 TWh) and biomass (+1 TWh) as
part of the package.

Research suggests that subsidies can leverage substantial investment
in renewable energy sources [2–4]. But it remains unknown how the in-
put structure of the Austrian energy sector1 would look like in the case
that the bill fulfills its purpose. Predictions of future input coefficients
can be helpful in a number of applications, as input–output structures
are employed in many economic models and are also frequently used
to assess economic, social, and environmental effects of policies. In our
case, the predicted structural change can be used to assess the effects
of alternative policies before a renewable expansion law is passed.

∗ Corresponding author.
E-mail address: wimmer@ihs.ac.at (L. Wimmer).

1 For better readability, we use the term energy sector for NACE Rev. 2 sector D35 (see Section 3.1.1).
2 In this study, the term energy mix refers to the shares of energy products used for the production of electricity and steam (heat) in NACE Rev. 2 sector D35.

To answer this question and to address this research gap, we present
a novel approach for modeling the input structure of the energy sector,
assuming that the targeted energy mix2 is reached by 2030. Using the
Fractional Multinomial Logit (FMNL) model and panel data on input
coefficients and energy mixes of 26 European countries and comparing
the predictions to the related literature, we show that our method is a
reliable and efficient approach in predicting future input coefficients,
which can also complement existing methods and can be used to
disaggregate sectors. We find that the Austrian energy sector would
undergo major changes: While demand for inputs from the energy
sector itself would remain high, our results suggest that labor and
mining inputs would decrease significantly. The marginal effects of
our model indicate that changes in the input structure are driven by
a combination of increasing the share of renewable energy sources that
require less labor and, conversely, reducing the share of labor-intensive
non-renewable energy sources in the energy mix.

As all member states of the European Union have agreed to cut
greenhouse gas (GHG) emissions by 55% until 2030 [5], other EU
vailable online 28 November 2022
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countries will very likely also implement policies that target major
transitions in national energy sectors. With our novel and time-efficient
approach being readily replicable and applicable to 26 European coun-
tries, we provide policy makers and scholars with a tool that allows to
anticipate and adapt to possible future developments in national energy
sectors before implementing major policy interventions.

2. State of research

In input–output statistics, the current production technology is rep-
resented by technical and primary input coefficients [6]. While the
first describe the inputs per unit received from other sectors, the latter
represent value added per unit, i. e., the costs per unit for wages,
production taxes less subsidies, depreciation and profits.

In the short term, it is assumed that these coefficients are quite
stable. In the long run, this is usually not the case. Using energetic
building retrofits as an example, Hartwig and Kockat [7] show that the
technology and thus the input–output tables used can have considerable
effects on the estimation of economic impacts.

There are multiple options to project technological change in an
input–output framework. One option is to use trend analysis to extrap-
olate coefficient changes from historic data into the future, e. g., by
describing technology penetration by logistic growth curves. While this
approach is rather simple from a methodological point of view and the
required data are usually readily available, it suffers from the major
disadvantage that it is conceptually impossible to predict fundamental
technological changes from past trends. The second option, according
to Faber et al. [8], is to predict future coefficients based on expert
judgement. This can be done by relying on engineering data or experts’
assessments of the change of technical coefficients relative to a base
year. This method yields more realistic results, especially in the case of
fundamentally different technologies, but is rather labor intensive and
data might not be available or reliable.

Pan [9] proposed a dynamic input–output model, which includes
endogenous technical progress and deployment. Coefficients in this
model change from an old to a new set of technologies over time,
depending on investment in research and development and in the
capital stock. In another study, Pan and Koehler [10] apply this ap-
proach to wind power in the UK. Gurgul and Lach [11] develop a
similar model to forecast the inter-industry linkages of sectors in the
Polish economy. Hartwig et al. [12] combine bottom-up energy demand
models with an input–output based macroeconomic model and apply
it to energy efficiency policy options in Germany. In the scenario
approach applied by Wiebe et al. [13] specific elements of the input–
output system are manually adjusted according to exogenously given
scenario specifications. Among others, these include adaptations of
final demand for renewable energies and corresponding investments
as well as technical and primary input coefficients of the relevant
sectors. Faber et al. [8] and Wilting et al. [14] combine trend analysis
and detailed information on specific technologies to adjust coefficients
and evaluate the effects of technological change on Dutch production
and air emissions.

In the national accounts and in input–output statistics (such as the
FIGARO tables used in this study) sectors are usually represented as
aggregates and may include heterogeneous activities, which can lead
to a considerable aggregation bias. As Lenzen [15] points out, using
disaggregated data is usually superior, even if based on few real data
points. As technical change in the electricity sector currently mostly
resembles shifts between production technologies from fossil electricity
generation towards renewables, disaggregated generation technologies
can also help to account for technological change within the energy
sector. This disaggregation can be done by determining the input
coefficients for the relevant technologies based on expert judgement
and engineering data [16]. Examples include Vendries Algarin et al.
[17] for the U.S., Duarte et al. [18] for Spain, Allan et al. [19] for
2

Scotland, Wolfram et al. [20] for Australia and Wiedmann et al. [21] a
for wind power in the UK. The latter two studies combine input–
output data with process data from life cycle databases in hybrid Life
Cycle Assessment methods to estimate carbon footprints for individual
electricity generation technologies. These approaches, however, re-
quire extensive research on the most relevant production technologies
involved.

A model specifically designed to allow for different technologies
within an industry is the rectangular choice-of-technology (RCOT)
model [22–24], which uses rectangular tables with potentially multiple
columns, i. e., production technologies, per industry, and enables con-
straints regarding the availability of primary inputs. A linear program-
ming technique is used to find the optimal mix of production. Kätelhön
et al. [25] combine the RCOT model with consequential life cycle
assessment and stochastic elements.

Some input–output databases like EXIOBASE [26] or the GTAP-
Power Data Base [27,28] already provide specific coefficients for var-
ious electricity generation technologies, but not all sectors and coeffi-
cients are empirically validated.

As a complementary and time-efficient approach, we propose to
predict future input coefficients of the energy sector using econometric
methods and panel data, as described in the following sections. We
argue that our approach comes with several advantages compared to
the other methods presented in this section, as it can be readily applied
to a large set of countries and does not rely on expert judgements.
Moreover, our method is more flexible than a trend analysis based on a
single country, as our econometric model also captures the information
about technological changes that already occurred in other countries.
The method can also be used to disaggregate the energy sector and
help to cross-validate, triangulate, and thereby corroborate predictions
resulting from the other methods.

3. Data and methodology

3.1. Description of variables

We use Eurostat [29,30] data to derive the input coefficients (de-
pendent variables) and the energy mix (independent variables) for our
econometric model. Our final data set consists of 285 observations.
For every year3 from 2010 to 2020 it contains observations for all EU-
28 countries except Malta and Cyprus, which we exclude due to data
issues.

3.1.1. Input coefficients
The variables of interest in this study are input coefficients de-

rived from the Full International and Global Accounts for Research in
Input–Output analysis (FIGARO) provided by Eurostat [30]. These tables
connect all EU-27 countries, 18 main trading partners, and the rest
of the world as an aggregate unit at a detailed level of 64 industries.
Industries, also often referred to as sectors, are structured according to
NACE Rev. 2 [31].

In our analysis, we focus on the relative monetary shares of the
inputs and value added of sector D35, officially designated as ’electricity,
gas, steam and air conditioning supply’, which is, for better readability,
referred to as the energy sector, sector D35 or sector D in this study.

As the number of predictable input sectors is constrained by the
number of observations in our data set, we aggregate the 64 available
input sectors to a total of 32 input sectors plus two separate value added
components4 (see first column in Table 1 for the aggregate sectors).
Labor value added (VA-L) contains labor inputs; Rest value added (VA-
R) contains all other value added components, such as depreciation and

3 Except for the UK in 2020, for which no energy mix data was available
et.

4 Input coefficients do not include inputs required for investments, which
re considered as final demand. Depreciation for investments is taken into
ccount as a part of value added.
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Table 1
Input coefficients of the Austrian energy sector in percent.
Source: [30].

Sector(s) Name 2010 2020 Difference

A Agriculture 0.22 0.23 0.01
B Mining 3.85 3.39 −0.46
C10–12 Food, beverages and tobacco 0.08 0.05 −0.03
C13–15 Textiles, apparel and leather 0.02 0.01 −0.01
C16–18 Wood, paper and printing 0.43 0.25 −0.18
C19 Coke and refined petroleum 0.79 0.30 −0.49
C20–21 Chemicals and pharmaceuticals 0.15 0.13 −0.02
C22–23 Rubber, plastic, non-metallic minerals 0.31 0.20 −0.11
C24–25 Basic and fabricated metals 0.56 0.33 −0.23
C26 Computers, electronics and opticals 0.16 0.07 −0.09
C27 Electrical equipment 1.64 0.35 −1.29
C28 Machinery and equipment 0.39 0.27 −0.12
C29–30 Motor vehicles and other transport equipment 0.06 0.05 −0.01
C31–33 Furniture, other manuf., repair and installation 1.17 0.88 −0.29
D Energy 53.82 62.97 9.15
E Water supply, waste and sewerage 1.55 1.39 −0.16
F Construction 1.12 1.00 −0.12
G Wholesale and retail trade 1.75 1.85 0.10
H Transport and storage 2.80 1.97 −0.83
I Accommodation and food service 0.62 0.39 −0.23
J58–60 Publishing, motion picture, music and broadc. 0.09 0.07 −0.02
J61 Telecommunications 0.19 0.12 −0.07
J62–63 Information technology 0.50 0.43 −0.07
K Finance and insurance 2.13 2.39 0.26
L68 Real estate 0.37 0.36 −0.01
M Professional, scientific and technical activities 1.49 1.06 −0.43
N Administrative and support service activities 0.81 1.39 0.58
O84 Public administration, defense and social security 0.14 0.21 0.07
P85 Education 0.29 0.13 −0.16
Q Human health and social work 0.02 0.02 0.00
R-S Arts, entertainment, recreation and other services 0.05 0.04 −0.01
T-U Households and extraterritorial organizations 0.00 0.00 0.00
VA-L Labor value added 8.03 7.75 −0.28
VA-R Rest value added 14.42 9.95 −4.47
Total Sum of all sectoral and value added components 100.00 100.00 0.00
operating surplus. VA-L and VA-R together form the residual between
total input and intermediate input from other sectors.

In addition, the aggregation of import and domestic input sectors is
necessary for computing technical input coefficients. This aggregation
step comes with the disadvantage that our model cannot take trade into
account separately and treats all inputs (whether domestic or imported)
as the same (see, e. g. Wiebe et al. [13],Wolfram et al. [20],Wiedmann
et al. [21], who face similar restrictions). As a last step, we convert the
values to shares, which add up to 1. Table 1 shows the input coefficients
of the Austrian energy sector in the first (2010) and in the last year
(2020)5 of the panel. Moreover, the change between the years is shown
n the 5th column. For better readability, the coefficients are multiplied
y 100. As can be seen in the table, most inputs came from the energy
ector (D) itself; this input also showed the highest increase between
010 and 2020. Gross value added, especially the non-labor residual
A-R, decreased substantially. The mining (B) and manufacturing (C)
ectors all showed a decrease as input providers between 2010 and
020.

.1.2. Energy mix
As our analysis targets sector D35 as a whole, the energy mix

aptured by our independent variables has to cover energy used for the
roduction of both electricity and steam (heat). Data for the energy
ix comes from the Eurostat [29] Energy Statistics Database. We use

information from the variables nrg_ind_peh and nrg_ind_pehcf on gross

5 We did not find any noticeable differences in the input coefficients
etween the years 2019 and 2020 (outbreak of the SARS-Cov-2 virus and
ollowing supply chain disruptions in many sectors).
3

production of electricity and heat by main producers for each energy
product.6

We aggregate the data, which has been published in Standard In-
ternational Energy Product Classification [32], to the ten most important
energy products in our data set. The rest contains energy from geother-
mal sources, tide, wave, ocean, ambient heat (heat pumps) and heat
from chemical sources.

The 2nd and 3rd column of Table 2 show the energy mix for Austria
for 2010 and 2020. The most important energy product for Austria
is (pumped) hydro power, which approximately made up half of the
energy mix in both years, followed by natural gas and liquid and solid
biofuels, whereas the other seven energy products only make up small
fractions of the mix. As can be seen in the 4th column, a decrease in the
share of non-renewable combustible energy products can be observed,
which was offset by an increase in renewable energy production.

For predicting the Austrian input coefficients in 2030, we calculate
an energy mix target for 2030, which is shown in the 6th column of
Table 2. We derive this target by adding the planned 27 TWh increase
(5th column) to the energy mix of 2020, which was the most recent
data available.

3.1.3. Control variables
We introduce three additional control variables in our model.

We use terajoules of final consumption of natural gas7 [29,33, vari-
ablesnrg_cb _gas, demo_pjan] for energy use to account for the gas sector

6 In this study, we use the terms energy product, energy source and energy
(production) technology interchangeably, as they all can be connected to our
explanatory variables.

7 In our prediction we assume consumption in Austria to remain unchanged
between 2020 and 2030, as it remained nearly constant between 2010 and

2020.
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Table 2
Energy mix of the Austrian energy sector for selected years.
Source: [29].

Energy product 2010 2020 𝛥 ‘10-’20 Increase Target 2030
Unit % % %-points TWh %

(Pumped) hydro 49.92 52.65 2.73 5 44.44
Wind 2.54 7.96 5.42 10 14.95
Solar 0.13 2.43 2.30 11 11.64
Coal and peat 6.71 0.97 −5.74 0 0.74
Natural gas 23.80 18.75 −5.05 0 14.24
Oil and shale 2.46 0.21 −2.25 0 0.16
Biogas 0.82 0.69 −0.13 0 1.41
Liquid and solid biofuel 11.71 13.51 1.80 1 10.26
Nuclear 0.00 0.00 0.00 0 0.00
Other 1.91 2.84 0.93 0 2.16
Total (TWh) 81.13 85.28 4.15 27 112.28

within NACE sector D35. GDP per capita [34, variable nama_10_pc]
expressed in purchasing power standards8 controls for general differ-
ences in productivity between countries and years. Absolute size of the
energy sector expressed as TWh of production of heat and electricity by
main producers [29] allows us to make assumptions about the future
size of the energy sector. With this variable, the (non-linear) relations
between sector size and input fractions can be predicted.9 Once sector
size is converted into total output, the fractions can also be transformed
into absolute values of the sector within the input–output tables of an
economy, and the accounts can be balanced [37].

Additionally, we introduce dummy variables for years and coun-
tries to control for any unobserved country- and year-specific charac-
teristics. These other characteristics capture differences and changes
(between countries and/or years) in input prices, geographical and
annual climate conditions, country-specific productivity, and economic
development, among others.

In our model, we use Austria and the year 2020 as the baseline
categories. By doing so, we essentially assume that unobserved char-
acteristics in 2030 were the same as in 2020. We argue that the year
2020, which was our most recent year in the data set, is our best
predictor for unknown year-specific characteristics in 2030. Please note
the limitation that some of these unobserved characteristics, such as
climate conditions, are highly likely to change between 2020 and 2030,
whereas our model assumes year-specific characteristics of 2020 to be
persisting also in the future.

3.2. Fractional multinomial logit model

We want to model the 𝑗th input coefficient of the energy sector in
a specific country and a specific year 𝐘𝑖 as a function of the energy
mix and other characteristics 𝐗𝑖 of the same year and country. We also
have to consider all input coefficients 𝐲𝑖,−𝑗 , excluding the coefficient of
interest itself. This can be formally written as

𝑦𝑖𝑗 = 𝑓 (𝐗𝑖, 𝐲𝑖,−𝑗 ) (1)

, where 𝑓 (⋅) is some function of yet unknown form. Because of the
nature of our problem we need some model that both ensures that
0 ≤ 𝑦𝑖𝑗 ≤ 1 and ∑𝑀

𝑚=1 𝑦𝑖𝑚 = 1, where 𝑀 is the number of input
coefficients.

We estimate the relationship in (1) using the Fractional Multinomial
Likelihood (FMNL) method. It is the multinomial generalization of
research by Papke and Wooldridge [38], who proposed an econometric
method for binary fractional response variables via Quasi-Maximum-
Likelihood estimation; for an excellent comprehensive overview of frac-
tional regression models, see Ramalho et al. [39]. These models have

8 We assume a growth in GDP per capita of 15% between 2020 and 2030
n Austria for our prediction, as projected by the OECD [35,36].

9 We assume a sector size of 112.28 TWh of production in Austria, see
able 2.
4

been applied in a variety of studies, including the analysis of enterprise
financing in transition economies [40], industrial organization [41], or
the estimation of national energy ladders [42] and Engel Curves [43],
and have also been proposed in relative efficiency evaluation [44],
among others.

The essential feature of the FMNL method is that it allows to
estimate not only one but 𝑀 dependent variables, which are estimated
simultaneously. Another feature is that for each observation 𝑖 the 𝑦s are
ound between 0 and 1 and sum up to 1. The 𝑦s of an observation can

also be interpreted as fractions. As this is also true for input coefficients,
FMNL is an ideal method for the purpose of our study. Note that Eqs. (2)
to (5) below are obtained from literature by Papke and Wooldridge
[38], Ramalho et al. [39] and Wulff [45].

Assume we have 𝐼 observations and

(𝑦𝑖𝑗 |𝐗𝑖) = 𝐺(𝐗𝑖𝛽𝑗 ) (2)

here 𝑦𝑖𝑗 is the 𝑗th fraction of the 𝑖th observation. 𝐗𝑖 is the vector
of 𝐾 independent variables and 𝛽𝑗 the vector containing 𝐾 regression
oefficients. Note that for every fraction 𝑚 = 0,… ,𝑀 , there is one set

of 𝐾 coefficients.
𝐺(⋅) is some function satisfying 1 < 𝐺(𝑧) < 0 for all 𝑧 ∈ R. For

binary response variables, the logistic function is an obvious choice
for 𝐺(⋅) [39]; for multinomial applications, the equivalent is the multi-
nomial logit function. Usually, one fraction is treated as the baseline.
Assume we select the first fraction as the baseline,10 which implies
𝛽⊤1 = (0, 0, 0,… , 0) and

𝐺(𝐗𝑖𝛽𝑗 ) =
𝑒𝑥𝑝(𝐗𝑖𝛽𝑗 )

∑𝑀
𝑚=1 𝑒𝑥𝑝(𝐗𝑖𝛽𝑚)

=
𝑒𝑥𝑝(𝐗𝑖𝛽𝑗 )

1 +
∑𝑀

𝑚=2 𝑒𝑥𝑝(𝐗𝑖𝛽𝑚)
. (3)

The corresponding multinomial likelihood function is

𝑙𝑛(𝐿𝑖) =
𝑀
∑

𝑚=1
𝑦𝑖𝑚𝑙𝑛(𝐺(𝐗𝑖𝛽𝑚)). (4)

We use the quasi-maximum-likelihood estimator from

𝛽𝑚 = arg max
𝛽𝑚

𝐼
∑

𝑖=1
𝑙𝑛(𝐿𝑖) (5)

s it is a consistent estimator for 𝛽𝑚 if our choice for 𝐺(⋅) is indeed the
rue functional form, as shown by Papke and Wooldridge [38].

Interpretation of coefficient estimates of FMNL models is not straig-
tforward, as for every independent variable 𝐗𝑘 there are 𝑀 marginal
ffects (ME). ME statistics that have a similar interpretation as the
oefficients of continuous variables in a classical linear model (ME =
𝐲∕𝛿𝐗) can be derived from the estimates. For a summary of the most
mportant ME statistics and their interpretation, see Wulff [45].

Estimations were performed in Stata [46], using the fmlogit-module
y Buis [47]. Standard errors were clustered by countries.

.3. Workflow summary

Fig. 1 gives an overview of the steps described in Section 3. First, (1)
ata is obtained from Eurostat databases, then (2) subsetted, filtered,
nd transformed for (3) being used as the dependent, independent,
ontrol- and dummy-variables. Data is then (4) merged by country and
ear and observations with bad data quality are removed manually. The
esulting (5) data set, consisting of 285 observations, is then passed
o the (6) FMNL model, which yields the (7) coefficient estimates.
hese can be used to (8, 9) derive marginal effects or, when (10)
aking certain assumptions, to (11) forecast (12) input coefficients of

he Austrian energy sector, (13) perform sectoral disaggregations and
14) in-sample predictions.

10 For our application, this is sector D.



Energy 265 (2023) 126178L. Wimmer et al.
Fig. 1. Workflow summary.
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4. Results and discussion

4.1. Predictive power of the model

Before we discuss the actual FMNL estimation results, we take a look
at how well the model fits our data and how the targeted energy mix
affects the predicted input coefficients of the Austrian energy sector
in 2030. Fig. 2 shows these input coefficients. White columns are the
historical values as of 2010, while light gray columns depict current
values in 2020, and the black columns represent the fitted values
for 2020 using our FMNL model and the energy mix of 2020. We
do not observe sizable differences between the actual and estimated
coefficients for any of the sectors, which indicates that our model
provides a reasonable fit for the response variables at hand. Fig. A.1
in the Appendix provides additional metrics on prediction quality for
selected sectors.

By using the target energy mix for 2030, we are now able to predict
the future input coefficients of the Austrian energy sector. These are
represented by the blue columns in Fig. 2. We observe notable differ-
ences compared to 2020 only for a few sectors. We will in the following
focus on sectors whose predicted input shares in 2030 turn out to be
significantly different from their 2020 shares (at the 90% level) and
are at the same time among the ten sectors with predicted input shares
of at least 1% and can therefore be considered economically relevant
for the energy sector. This would leave us only with the mining sector
(B) and labor (VA-L). In addition, we will show and discuss the energy
sector itself (D) as it continues to provide about two thirds of its inputs.

We see a continuing decrease for the mining sector (B). Its input
coefficient decreases as energy production shifts from carbon-based to
renewable sources. Inputs from the energy sector itself (D) continue to
make up the highest share of all inputs. The slight increase of input
coefficients from D is in line with the pattern for Austria over the
last years, but statistically insignificant (as indicated by the error bars
in Fig. 2). The labor share (VA-L), on the other hand, is expected to
decrease substantially, as electricity generation from renewable energy
sources such as wind or solar power generally comes with lower or
almost zero marginal costs (see, e. g. Blazquez et al. [48]).

4.2. Austria’s renewable expansion act

In the following, we present FMNL estimation results for the three
selected sectors to allow for a detailed analysis of the predictions
5

Table 3
Marginal effects.

Labor (VA-L) dydx std. err. p-value

Hydro −0.3719 0.2493 0.136
Wind −0.5453** 0.2759 0.048
Solar −0.6545*** 0.2531 0.010
Coal −0.4526* 0.2517 0.072
Gas −0.4173* 0.2360 0.077
Oil −0.4189* 0.2382 0.079
Liquid and solid biofuel −0.3039 0.2365 0.199
Biogas 0.1606 0.3561 0.652
Nuclear −0.4081 0.2482 0.100

Energy (D) dydx std. err. p-value

Hydro 2.3229** 1.1371 0.041
Wind 2.7090** 1.2369 0.029
Solar 2.7931*** 1.0676 0.009
Coal 2.4582** 1.1481 0.032
Gas 2.4521** 1.0909 0.025
Oil 2.3449** 1.0836 0.030
Liquid and solid biofuel 2.0020** 1.0186 0.049
Biogas 1.7240 1.8041 0.339
Nuclear 2.1323* 1.1524 0.064

Mining (B) dydx std. err. p-value

Hydro −0.0821 0.1622 0.613
Wind −0.2174 0.1651 0.188
Solar −0.0377 0.1618 0.816
Coal −0.0836 0.1578 0.596
Gas −0.1097 0.1614 0.497
Oil −0.0633 0.1476 0.668
Liquid and solid biofuel −0.0390 0.1524 0.798
Biogas −0.1917 0.2607 0.462
Nuclear −0.0461 0.1584 0.771

*𝑝 < 0.1.
*𝑝 < 0.05.
**𝑝 < 0.01.

resented above. Coefficients of FMNL models11 are hard to interpret.
s we have presented predictions for Austria before, we focus now on
arginal effects at the Austrian energy mix in 2020. We will first show
arginal effects and then explain what they mean in the context of the
ustrian renewable expansion act and the changing energy mix until
030. Table 3 presents the results for the three selected sectors.

11 Tables of raw FMNL coefficients are available from the authors upon
request.
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Fig. 2. Input coefficients (historic 2010 vs. actual 2020 vs. fitted 2020 vs. predicted 2030) of Austria’s energy sector. Error bars indicate confidence intervals at the 90% threshold
for the three selected sectors’ 2030 predictions. B and VA-L are significantly different from 2020 values; D is not. All other sectors are either insignificant and/or predicted to be
below 1%.
Most of the marginal effects for the labor share (VA-L) are nega-
tive and statistically significant. This finding might at first not seem
particularly intuitive as any kind of energy production should require
some amount of labor and thus produce value added. What is more
important, however, is the net effect: An increase in the contribution
of one energy source to the energy mix must come with a decrease in
another. The interesting feature here is that solar power stands out, as
it shows the largest marginal effect (in absolute terms). If the share of
solar power in the energy mix is increased by 1 percentage point (pp),
this would come with a decrease of the labor share of 0.65 pp. As this
must be offset by a reduction in the share of at least one other energy
source by 1 pp, the net effect must be negative as all other coefficients
are greater than −0.65. If, for example, solar replaces coal, the net
effect is −0.20. Would it replace oil or gas, the net effect would be
−0.24. This explains the decline of our predicted labor share for 2030
in Fig. 2. As Austria is going to massively increase its solar share and
therefore reduces the relative share of many other energy sources in its
energy mix, its labor share is predicted to drop by more than 3 pp until
2030. Similar but smaller effects apply for wind power.

All marginal effects for the energy sector’s (D) input shares show
positive values and most of them are statistically significant. This
implies that most changes in the energy mix will have some impact on
the share of inputs provided by the energy sector. Again, solar and wind
power show the largest marginal effects. If solar power gains weight in
the energy mix, this would come with an increase of the input share
of sector D. As any other energy source has to be reduced accordingly
in the energy mix, the net effect must be slightly positive, as all other
coefficients are smaller than 2.8. This phenomenon explains the small
6

increase in the Austrian energy sector’s input share for 2030 in Fig. 2
(compared to the actual value of 2020). Behind this result is the fact
that companies of the same sector now interact with one another where
companies from different sectors have interacted before. For example:
A coal-fired power plant needs inputs from mining, manufacturing, etc.,
and will also have to pay, e. g., transmission fees to other companies
of its own sector (D). An existing wind park of the same capacity, on
the other hand, does not require large amounts of inputs from other
sectors for its operation. Hence, transmission fees now make up for a
larger share of inputs.

The marginal effects for the mining sector’s (B) inputs to the energy
sector are negative. It must be noted, though, that all of them are very
small and statistically insignificant. Still, the interpretation logic would
be the same as above. An increase in the share of one energy source
would come with a decrease of the share of another energy source.
The largest marginal effect (in absolute terms) is for wind energy: If
the share of wind in the energy mix increases by 1 pp, the input share
from the mining sector would decrease by 0.22 pp. If the fraction of
electric energy currently provided by wind was before generated using
coal, the net effect would be −0.13. The mining share would always
decrease through an increase in wind energy, no matter what it were
to replace.

How can these results be interpreted in the context of Austria’s
renewable expansion act and the planned change in the energy mix
until 2030? The main feature of the change in the energy mix is the
increase of the shares of renewable energy sources (especially solar
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and wind energy by about 16 pp in total12) and the decrease of the
relative contribution of non-renewable energy production (in particular
hydro power and natural gas by about 13 pp in total). We find that the
increased production from renewable energy sources (especially wind
and solar power) and the replacement of fossil-based energy sources
comes with smaller input shares from the mining sector and from labor,
while slightly increasing the input share from the energy sector itself.

To further consolidate the empirical results of this study, we have
added multiple robustness tests. Fig. A.2 in the Appendix compares
actual and fitted input shares for the years 2010, 2015 and 2020. We
see clearly that our predicted input shares for 2030 follow time trends
that have already been observed during the last decade. Figs. A.3 to A.5
in the Appendix provide hypothetical predictions if the aspired shares
of hydro, wind or solar power would be 100%, respectively (for 2030,
keeping everything else constant). While our results for hydro and wind
power seem perfectly plausible, we find rather unlikely input shares for
100% solar power. Hence, this analysis shows the possibility of using
our approach to decompose the energy sector according to different
energy production technologies, but also its limitations. If the aspired
energy is too far out of support of the data, the findings of the 100%
predictions cannot be trusted.

5. Conclusion and policy implications

This study proposes a novel approach that allows to predict struc-
tural changes in national energy sectors. Input coefficients are ex-
plained by the energy mix in a fractional multinomial logit (FMNL)
model. We illustrate the model application to evaluate the effects of
Austria’s renewable energy expansion act and predict the future input
coefficients resulting from the policy. An in-sample prediction of input
coefficients shows that the model delivers a reasonable fit for the
response variables, i. e., the input coefficients of the energy sector.
The approach presented in this study allows to use information about
fundamental technological changes that already occurred in countries
with high renewable energy shares to predict structural changes in
other countries. The method is time-efficient and can also complement
other methods to predict input coefficients. Moreover, it can be used
to disaggregate the energy sector under the condition that this dis-
aggregation is supported by the underlying data on which the model
builds.

Prediction results show that Austria’s energy sector would obtain
slightly more inputs from the energy sector itself if the targeted energy
mix was reached in 2030, while inputs from the mining sector and
the labor share are expected to decrease significantly. Marginal effects
of the model show that the changes in the input structure are mainly
driven by the increase in the share of renewable energy sources, which
are less labor intensive than non-renewable energy sources.

Our approach is readily applicable to the 26 European countries
covered by the model and enables policy makers and scholars to
analyze country-specific (renewable) expansion plans. This helps to
assess the potential economic, social, and environmental consequences
of plans before corresponding acts are passed, for example with the
help of input–output models and corresponding impact analyses. The
method can also be employed for predicting changes in other sectors,
building on sector-specific explanatory variables that are adequate to
model and predict their input structures, which could be at the focus
of future research.
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Appendix

See Figs. A.1–A.5.
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Fig. A.2. Input coefficients (actual 2010, 2015, 2020 vs. fitted 2010, 2015, 2020 vs. predicted 2030) of Austria’s energy sector.

Fig. A.3. Input coefficients of Austria’s energy sector (assumption: hydro = 100).

Fig. A.4. Input coefficients of Austria’s energy sector (assumption: wind = 100).

Fig. A.5. Input coefficients of Austria’s energy sector (assumption: solar = 100).
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