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Abstract

This paper develops residual-based monitoring procedures for cointegrating polynomial regres-
sions, i. e. , regression models including deterministic variables, integrated processes as well as
integer powers of integrated processes as regressors. The regressors are allowed to be endoge-
nous and the stationary errors are allowed to be serially correlated. We consider five variants of
monitoring statistics and develop the results for three modified least squares estimators for the
parameters of the CPRs. The simulations show that using the combination of self-normalization
and a moving window leads to the best performance. We use the developed monitoring statistics
to assess the structural stability of environmental Kuznets curves (EKCs) for both CO2 and SO2

emissions for twelve industrialized country since the first oil price shock.
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1 Introduction

This paper develops residual-based monitoring procedures for structural change in cointegrating

polynomial regressions (CPRs), using the terminology of Wagner and Hong (2016). CPRs are

regression models that include as explanatory variables deterministic terms, integrated processes

and integer powers of integrated processes. The regressors are allowed to be endogenous and the

stationary errors are allowed to be serially correlated. Structural change – at an unknown point

in time – can occur in two facets: First, the relationship may turn into a spurious relationship.1

Second, the parameters of the relationship may change. The developed monitoring statistics extend

those of Wagner and Wied (2017) in two dimensions. First, a variety of monitoring statistics is

considered, including self-normalized versions and moving window detectors.2 Second, the approach

is extended from cointegrating linear to cointegrating polynomial regressions.

All considered monitoring statistics are based on parameter estimation for the CPR relationship

over a calibration period known to be – or at least assumed to be – free of structural change, an

approach to monitoring inspired by Chu et al. (1996). With regressors that are potentially en-

dogenous and errors that are potentially serially correlated, appropriately modified least squares

estimators have to be employed to allow for the construction of nuisance parameter free limiting

distributions of the detectors obtained by scaling out a scalar long-run variance parameter. We

consider the CPR-versions of three well-known estimators: Fully Modified OLS (FM-OLS) consid-

ered in the CPR context in, e. g. , Wagner and Hong (2016), Dynamic OLS (D-OLS) considered for

more general functions in Choi and Saikkonen (2010), and IM-OLS considered in Vogelsang and

Wagner (2014b).3 In the general CPR case, however, even the usage of the mentioned modified

least squares estimators is not sufficient for nuisance parameter free limiting distributions and the

assumption of full design, using the terminology of Vogelsang and Wagner (2014b), is required.

Full design means that the limiting distributions of the modified estimators can be written as

the product of a regular non-random matrix and a functional of standard Brownian motions and

1In the CPR setting the concept of spurious regression has to be interpreted a bit wider than in cointegrating
linear regression settings. If, e. g. , the polynomial degree of a CPR relationship increases at a certain point in time
but one continues to consider a CPR relationship with an unchanged polynomial degree, then the error term of this
spurious relationship contains higher order powers of an integrated process and is thus not integrated, as in the usual
form of spuriousness considered in linear cointegration.

2Some of these possibilities have been mentioned in Wagner and Wied (2017, Footnote 4), but have not been
explored in full detail and systematically.

3The settings considered in Choi and Saikkonen (2010) and Vogelsang and Wagner (2014b) are discussed in a bit
more detail in Footnote 11.
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deterministic components. This allows to construct monitoring statistics, based on the residual

limit processes, which are proportional up to a scalar long-run variance to functionals of standard

Brownian motions and deterministic components. Scaling out the long-run variance, either by self-

normalization or by standardization, then leads to nuisance parameter free limiting distributions

of the monitoring statistics. Note that full design, albeit not generally prevalent in the CPR case,

holds in a variety of empirically relevant settings, including cointegrating linear regressions, coin-

tegrating polynomial regressions where only one of the integrated regressors occurs as regressor

also with higher order powers, and Translog-type relationships (see, e. g. Christensen et al., 1971).

Environmental Kuznets curves (EKCs), which are the focus of our paper, typically include only

one integrated regressor and its power and are, therefore, of full design.

We perform a detailed simulation study of the five considered variants of the monitoring proce-

dure in combination with the three mentioned parameter estimation methods. The performance

dimensions considered include null rejection probabilities, (empirical) size-corrected power as well

as detection delays. It turns out that the combination of self-normalization and a moving window

leads almost throughout to the best performance in terms of lowest over-rejections, whilst exhibit-

ing very favorable size-corrected power properties and short delays. The choice of the estimator,

FM-, D-, or IM-OLS, affects the results in particular for small samples. IM-OLS mostly leads to

smaller over-rejections under the null hypothesis than FM-OLS, which in turn outperforms D-OLS.

With respect to size-corrected power IM-OLS is outperformed, as expected, by both FM-OLS and

D-OLS. Also, the delays are often a bit smaller for FM-OLS than for IM-OLS. Since the differences

are often relatively small, there is no clear choice between IM-OLS and FM-OLS.

We use the developed monitoring tools to assess the stability of environmental Kuznets curves

(EKCs) for CO2 and SO2 emissions for twelve countries using a calibration period 1946–1973 and

a monitoring period 1974–2016. The EKC hypothesis postulates an inverted U-shaped relationship

between the level of economic development and pollution or emissions.4 Brock and Taylor (2005)

or Kijima et al. (2010) provide survey discussions of the links between economic activity or growth

4The term EKC refers by analogy to the inverted U-shaped relationship between the level of economic development
and the degree of income inequality postulated by Kuznets (1955) in his 1954 presidential address to the American
Economic Association. Since the seminal contributions of, e. g. , Grossman and Krueger (1991; 1993; 1995) or Shafik
and Bandyopadhyay (1992), the literature – both theoretical as well as empirical – has become voluminous and
continues to grow rapidly. Already early survey papers like Yandle et al. (2004) count more than 100 refereed
publications on the subject.
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and the environment.5 We thus use our monitoring tools to assess whether and if so when the

relationship between emissions and economic activity has changed after the first oil price shock,

which has led to fundamental changes in economic activity triggered not least by changing energy

prices, but also by changes in environmental legislation that has been put in place in the 1970s.6

Taking into account that the polynomial functional form should probably be interpreted more as an

approximation to an underlying relationship of unknown form rather than as a true relationship, of

course, implies a trade-off (at least in-sample) between finding structural breaks and approximation

with a higher polynomial degree.7 Against this background it may be interesting to use monitoring

tools to study whether and at which point in time, the EKC relationship needs to be modelled with

more curvature: Over the calibration period 1946–1973 for most countries (as minimum polynomial

degree) a cointegrating linear relationship prevails.8 This is not a too big surprise, since about until

the mid 1970s, economic activity expanded roughly in line with emissions in many countries. Only

thereafter and triggered – as mentioned – by price, technical and legislative changes the economic

activity and pollution start to be decoupled to a certain extent. From a CPR perspective this could

mean either a structural change in the parameters of a relationship of given degree or a change to

a relationship with a higher polynomial degree, e. g. , from a linear to a quadratic relationship. For

both CO2 and SO2 emissions for nine of the twelve countries structural breaks are detected. The

detected break points are in some cases quite late, which most likely reflects the delays inherent in

monitoring procedures. The evidence, when considering also the full sample, is mixed with respect

to structural change in the parameters but unchanged polynomial degree or structural change also

with respect to the polynomial degree. The monitoring decisions lead to, as a simple empirical

cross-check, good results in the following sense: For those country-pollutant combinations where

no structural break is detected, using the specification and parameter values from the calibration

period leads to good fit also for the full period until 2016, with obviously even better fit when

5The long list of theory contributions presenting specific models that lead to EKC-type behavior under certain
assumptions includes Andreoni and Levinson (2001), Arrow et al. (1995), Brock and Taylor (2010), Cropper and
Griffiths (1994), Jones and Manuelli (2001), Selden and Song (1995) or Stokey (1998).

6This means that we use our monitoring tools for an ex-post analysis rather than “true” online monitoring.
7This is obvious, since one can achieve perfect fit with a polynomial of degree sample size minus one. There is

an ongoing discussion in the EKC literature concerning appropriate functional form and estimation strategies (see,
e. g. Bertinelli and Strobl, 2005; Millimet et al., 2003; Schmalensee et al., 1998). Inverted U-shaped relationships
are also considered, e. g. , in the intensity-of-use intensity of use or material Kuznets curve (MKC) literature that
investigates the potentially inverted U-shaped relationship between GDP and energy or metals use per unit of GDP
(see, e. g. Grabarczyk et al., 2018; Guzmán et al., 2005; Labson and Crompton, 1993; Stuermer, 2018) for which the
tools developed in this paper may also be useful.

8A cointegrating linear relationship implies tautologically that CPRs with higher polynomial degrees are also
present, albeit with (theoretically) zero coefficients to the higher order powers.
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re-estimating the relationship over the full sample.

The paper is organized as follows: Section 2 contains the setting, assumptions, monitoring statis-

tics and asymptotic results. Section 3 discusses finite sample simulation results. Section 4 presents

the monitoring application to CO2 and SO2 emissions data. Section 5 briefly summarizes and

concludes. Appendix A contains all proofs. In addition, four supplementary appendices are avail-

able: Supplementary Appendix B discusses local asymptotic power properties. Supplementary

Appendix C contains additional finite sample simulation results and Supplementary Appendix D

presents additional empirical results. Supplementary Appendix E includes tables with critical val-

ues for the detectors for a broad variety of specifications relevant for EKC-type analysis. MATLAB

code – including the critical values for the mentioned variety of specifications – for the monitoring

statistics developed in this paper is available upon request.9

We use the following notation: Definitional equality is signified by := and ⇒ denotes weak

convergence. bxc denotes the integer part of x ∈ R and diag(·) denotes a diagonal matrix. For a

vector x ∈ Rn we use ‖x‖2 =
∑n

i=1 x
2
i and for a matrix M ∈ Rm×n we use ‖M‖ = supx

‖Mx‖
‖x‖ . E(·)

denotes the expected value and L is the backward-shift operator, i. e. , L{xt}t∈Z = {xt−1}t∈Z. The

first-difference operator is denoted with ∆ := 1− L. We denote the k-dimensional identity matrix

with Ik. A Brownian motion with covariance matrix specified in the context is denoted by B(r)

and W (r) denotes a standard Brownian motion.

2 Theory

2.1 Model, Assumptions and Parameter Estimation

We consider monitoring – using the terminology of Wagner and Hong (2016) – a cointegrating

polynomial regression (CPR), i. e. , a regression of the form:

yt =

{
D′tθD +X ′tθX + ut, t = 1, . . . , brT c,
D′tθD,1 +X ′tθX,1 + ut, t = brT c+ 1, . . . , T,

(1)

xt = xt−1 + vt, t = 1, . . . , T, (2)

with xt := [x1t, . . . , xkt]
′ ∈ Rk and Xt := [x′t, x

2
kt, . . . , x

pk
kt ]
′ ∈ Rp with p = k−1+pk, the deterministic

trend function Dt ∈ Rq, the parameter vectors θD, θD,1 ∈ Rq and θX , θX,1 ∈ Rp. Furthermore we

define the combined parameter vectors θ := [θ′D, θ
′
X ]′, θ1 := [θ′D,1, θ

′
X,1]

′ ∈ Rq+p.

9The MATLAB code can be straightforwardly modified to other specifications to obtain additional critical values;
under the assumption of full design.
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Under the null hypothesis no structural change occurs, that is θ1 = θ and {ut}t∈mZ is an I(0)

process, with detailed assumptions specified below, throughout. Under the alternative hypothesis,

either some parameters change or the relation turns spurious, i. e. , {ut}t∈mZ turns into an I(1)

process for every θ ∈ Rq+p, or both at a sample fraction brT c that has to be – as discussed in the

introduction – larger than bmT c for some 0 < m < 1.10 In formal terms:

H0 :

{
θ1 = θ ∀ r ∈ [m, 1) and

ut is I(0) for t = 1, . . . , T

H1 :


∃ r ∈ [m, 1) : θ1 6= θ or

∃ r ∈ [m, 1) : ut, t = 1, . . . , brT c is I(0) and

ut, t = brT c+ 1, . . . , T, is I(1).

Remark 1 Note that the regression model given in (1) is a special case of the CPR model con-

sidered in Wagner and Hong (2016), since only one of the integrated regressors, w.l.o.g. xkt, is

allowed to enter the regression model with powers larger than one. Whilst this is, obviously, re-

strictive compared to the case where higher order powers of all elements of xt can be present as

regressors, this special case covers environmental and material Kuznets curves and similar applica-

tions. The mathematical reason for considering this special case is that it allows for – potentially

up to a scalar nuisance parameter that can be consistently estimated and scaled out – nuisance

parameter free limiting distributions of the considered detectors that can be simulated. In the ter-

minology of Vogelsang and Wagner (2014b) a cointegrating polynomial regression needs to exhibit

full design to allow for asymptotic standard inference by scaling out a scalar long-run variance.

This is the case for EKC-type relationships with only one integrated regressor present with powers

larger than one, but also for some other economically relevant more general cases of CPRs, e. g. ,

Translog functions (see, e. g. Christensen et al., 1971). Given our focus on EKCs we abstain from

formulating the results here in the most general form; the required extensions are straightforward.

For even more general specifications that do not exhibit full design, a sub-sampling approach may be

considered relying upon similar arguments as discussed in Wagner and Hong (2016, Proposition 6).

The performance of sub-sampling based procedures, however, suffers particularly from short sample

periods; as also illustrated by the simulations reported in Wagner and Hong (2016). Consequently,

a sub-sampling based approach cannot be expected to perform well in a monitoring context.

10Effectively, {ut}t∈Z being an I(0) process in this paper means that it satisfies Assumption 2. An I(1) process is
a process that does not fulfill Assumption 2, but where the first difference does.
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The results developed below rest upon the following assumptions:

Assumption 1 There exists a sequence of q×q scaling matrices GD(T ) and a q-dimensional vector

of functions D(z), with
∫ s
0 D(z)D(z)′ds <∞ for 0 ≤ s ≤ 1, such that for 0 ≤ s ≤ 1 it holds that:

lim
T→∞

√
TG−1D (T )DbsT c = D(s). (3)

If, e. g. , Dt := (1, t, t2, . . . , tq−1)′, then GD(T ) := diag(T 1/2, T 3/2, T 5/2, . . . , T q−1/2) and D(z) =

(1, z, z2, . . . , zq−1)′. In relation to the integrated regressors and the powers we need a scaling matrix

GX(T ) := diag(T × Ik, T 3/2, . . . , T
pk+1

2 ) later.

Assumption 2 The process {ηt}t∈Z := {[ut, v′t]′}t∈Z is generated under the null hypothesis as:

ηt = C(L)ξt =
∞∑
j=0

Cjξt−j , t ∈ Z, (4)

with Cj ∈ R(k+1)×(k+1), j = 0, 1, . . . , and the conditions:

det(C(1)) 6= 0,

∞∑
j=0

j‖Cj‖ <∞ and ‖C0‖ <∞. (5)

Furthermore, we assume that the process {ξt}t∈Z is a strictly stationary and ergodic martingale

difference sequence with natural filtration Ft = σ({ξs}t−∞), E(ξtξ
′
t|Ft−1) = Σξξ > 0 with in addition

supt≥1 E(‖ξt‖a|Ft−1) <∞ a.s. for some a > 4.

The assumptions on the deterministic components, the regressors and error terms are similar

to the assumptions used in Wagner and Hong (2016) and, more implicitly, in Wagner and Wied

(2017). In particular Assumption 2 is sufficient for a functional central limit theorem to hold for

{ηt}t∈Z:

1√
T

bsT c∑
t=1

ηt ⇒ B(s) =

[
Bu(s)
Bv(s)

]
= Ω1/2W (s), 0 ≤ s ≤ 1, (6)

with the positive definite long-run covariance matrix Ω :=
∑∞

j=−∞ E(ηt−jη
′
t) andW (s) := [Wu·v(s),Wv(s)

′]′

a (k + 1)-dimensional vector of standard Brownian motions. We also define the half long-run co-

variance matrix ∆ :=
∑∞

j=0 E(ηt−jη
′
t). The matrices Ω and ∆ are partitioned according to the

partitioning of B(s), i. e. ,

Ω =

[
Ωuu Ωuv

Ωvu Ωvv

]
, ∆ =

[
∆uu ∆uv

∆vu ∆vv

]
. (7)
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Using, e. g. , the Cholesky decomposition of Ω yields:

Ω1/2 =

[
ωu·v λuv

0 Ω
1/2
vv

]
, (8)

where ω2
u·v := Ωuu − ΩuvΩ

−1
vv Ωvu and λuv := Ωuv(Ω

1/2
vv )−1. The conditional long-run variance ω2

u·v

is a key quantity that needs to be estimated for all but the two self-normalized detectors.

Where needed, consistent long-run covariance estimation is performed non-parametrically, re-

quiring the choice of both a kernel function and a bandwidth parameter. The inputs in the non-

parametric estimation are the OLS residuals from estimating (1) over the calibration period and

the first difference of xt over the same period. For consistent long-run covariance estimation it

suffices to assume (following, e. g. , Jansson, 2002):

Assumption 3 The kernel function k(·) satisfies:

(i) k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| <∞,

(ii)
∫∞
0 k̄(x)dx <∞, where k̄(x) = supy≥x |k(y)|.

Assumption 4 The bandwidth parameter MT ⊆ (0,∞) satisfies limT→∞(M−1T + T−1/2MT ) = 0.

All our monitoring statistics discussed in the following subsection are based on consistent pa-

rameter estimators that are required to lead to limiting distributions that are nuisance parameter

free up to a scalar parameter, the conditional long-run variance ω2
u·v, that can (asymptotically) be

scaled out, either by scaling by a consistent estimator, which we refer to later as standardized, or

by self-normalization.

As indicated, estimation takes place on the calibration sample t = 1, . . . , bmT c for some 0 < m <

1 that is known to be generated under the null hypothesis. This approach to monitoring, based

on parameter estimation on a calibration sample known to be – or at least assumed to be – free

of structural change has been popularized in the econometrics community by the seminal work of

Chu et al. (1996).

The cointegration literature provides a variety of modified ordinary least squares estimators of θ

with the required asymptotic properties, see, e. g. , Wagner (2018) for a survey. All these estimators

commence from the fact that the OLS estimator of θ is consistent with – in case of regressor

endogeneity and error serial correlation – a limiting distribution that is contaminated by second
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order bias terms. These second order bias terms are removed, one way or another, by the various

modifications of OLS. In this paper we consider three modified OLS estimators: Fully Modified

OLS (FM-OLS), Dynamic OLS (D-OLS) and Integrated Modified OLS (IM-OLS). These three

estimators have originally been developed for cointegrating linear regressions: FM-OLS in Phillips

and Hansen (1990), D-OLS in Saikkonen (1991), Phillips and Loretan (1991) or Stock and Watson

(1993) and IM-OLS in Vogelsang and Wagner (2014a). The extensions to the CPR setting are

discussed for FM-OLS in Wagner and Hong (2016), for D-OLS in Choi and Saikkonen (2010) and

for IM-OLS in Vogelsang and Wagner (2014b).11

Our brief discussion of the three estimators first necessitates the definition of a few more quan-

tities, i. e. , Zt := [D′t, X
′
t]
′ and y+t,m := yt −∆x′tΩ̂

−1
vv,mΩ̂vu,m, with the second subscript m indicating

that estimation of the long-run covariances is – as mentioned – also based on the calibration sample

t = 1, . . . , bmT c. Furthermore, define:

A∗m :=

 0q×1
bmT c∆̂+

vu,m

M∗m

 , M∗m := ∆̂+
vku,m

 2
∑bmT c

t=1 xkt
...

pk
∑bmT c

t=1 xpk−1kt

 , (9)

with ∆̂+
vu,m := ∆̂vu,mΩ̂−1vv,m∆̂vv,m and ∆̂+

vku,m
:= ∆̂vku,mΩ̂−1vv,m∆̂vvk,m.

Long-run covariance estimation uses the OLS residuals of (1) from estimation over the calibration

period t = 1, . . . , bmT c in conjunction with the first differences of the integrated regressors, i.e.,

η̂t,m := [ût,m, v
′
t]
′, with ût,m denoting the OLS residuals here:

∆̂m :=
1

bmT c

bmT c−1∑
h=0

k

(
h

MT

) bmT c−h∑
t=1

η̂t,mη̂
′
t+h,m, (10)

Σ̂m :=
1

bmT c

bmT c∑
t=1

η̂t,mη̂
′
t,m, (11)

Ω̂m := ∆̂m + ∆̂′m − Σ̂m. (12)

In both the finite sample simulations as well as the application we use for long-run covariance

estimation, in line with Assumptions 3 and 4, the Bartlett kernel with bandwidth chosen according

to Newey and West (1994).

11To be precise, Choi and Saikkonen (2010) propose an extension of the dynamic regression approach, adding leads
and lags of the first differences of the integrated regressors, to a more general setting than CPRs. Given that the
CPR model is linear in parameters, D-OLS can be extended relatively straightforwardly, without the need to resort to
modified nonlinear least squares type estimators. Vogelsang and Wagner (2014b) consider an extension of IM-OLS to
general multivariate polynomials allowing also for arbitrary cross-products of powers of integrated regressors. Stypka
and Wagner (2020) extend the FM-OLS estimation principle to this more general polynomial-type setting.
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With all required quantities defined, the FM-OLS estimator computed over the calibration sample

is given by:

θ̂Fm :=

bmT c∑
t=1

ZtZ
′
t

−1bmT c∑
t=1

Zty
+
t,m −A∗m

 . (13)

While FM-OLS is based on a two-part nonparametric transformation to remove endogeneity

and serial correlation related bias terms from the limiting distribution of the OLS estimator, D-

OLS is based on a more “classical projection and orthogonalization” argument by performing OLS

estimation in an augmented version of the CPR regression (1), with leads and lags of the first

differences of xt added as regressors to “clean the limiting distribution”. The D-OLS regression –

estimated by OLS over the calibration sample – is given by:

yt = Z ′tθ +

d2∑
j=−d1

∆x′t−jΘj + ut, (14)

with the number of leads (d1) and lags (d2) chosen to ensure consistent parameter estimation of

θ with a limiting distribution that is – up to a scalar – nuisance parameter free. In general this

requires that d1, d2 → ∞ at suitable rates. More specifically, in our finite sample simulations

and the application, we choose leads and lags using the AIC-type criterion of Choi and Kurozumi

(2012). The resultant OLS estimators of θ and Θ̂j from (14) estimated over the calibration sample

are referred to as θ̂Dm and Θ̂D
j,m, respectively.

The third estimation principle addresses endogeneity correction by partial summation. Define

for a sequence zt, t = 1, . . . , T the partial summed variable by Szt :=
∑t

j=1 zj , t = 1, . . . , T . Then

the IM-OLS regression – estimated by OLS over the calibration sample – is given by:

Syt = SZ′t θ + x′tϕ+ Sut . (15)

The OLS estimators of θ and ϕ from (15) estimated over the calibration sample are referred to as θ̂Im

and ϕ̂I
m, respectively. Note that endogeneity correction in the IM-OLS estimator does not require

any leads-lags or kernel-bandwidth choices, as it suffices to simply add the original integrated

regressor vector xt to the partial summed regression.

The key input for the monitoring statistics discussed in the following subsection are the resid-

ual (processes) obtained with these three estimators. In particular, the asymptotic null behav-

ior of the residual (partial sum) processes is the key ingredient to derive asymptotic properties
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of any of our variance-ratio type monitoring statistics. This result is formalized in the follow-

ing lemma, whose formulation requires to define some additional (asymptotic) quantities first,

i. e. , Wv(s) := [Wv1(s),Wv2(s), . . . ,Wvk(s),W 2
vk

(s), . . . ,W pk
vk (s)]′, J(s) := [D(s)′,Wv(s)

′]′, f(s) :=

[
∫ s
0 D(z)′dz,

∫ s
0 Wv(z)

′dz, Wv(s)
′]′ and F (s) :=

∫ s
0 f(z)dz.

Lemma 1 Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in place.

Furthermore, let long-run covariance estimation be performed under Assumptions 3 and 4 and let

lead-lag choices be made as discussed in Choi and Kurozumi (2012).

Based on estimation over the calibration period t = 1, . . . , bmT c – with the estimators θ̂Fm, θ̂Dm and

θ̂Im as discussed before – denote the FM-OLS residuals by:

ûF
t,m := y+t,m − Z ′tθ̂Fm, (16)

the D-OLS residuals by:

ûD
t,m := yt − Z ′tθ̂Dm −

d2∑
j=−d1

∆x′t−jΘ̂
D
j,m (17)

and the IM-OLS residuals by:

Ŝu,It,m := Syt − SZ′t θ̂Im − x′tϕ̂I
m. (18)

For T →∞ it holds under the null hypothesis for m ≤ s ≤ 1 that:12

1√
T
Ŝu,FbsT c,m :=

1√
T

bsT c∑
t=2

ûF
t,m ⇒ ωu·v

(
Wu·v(s)−

∫ s

0
J(z)′dz

(∫ m

0
J(z)J(z)′dz

)−1 ∫ m

0
J(z)dWu·v(z)

)
=: ωu·vW̃u·v,m(s) (19)

1√
T
Ŝu,DbsT c,m :=

1√
T

min{bsT c,T−d1}∑
t=d2+2

ûD
t,m ⇒ ωu·vW̃u·v,m(s) (20)

1√
T
Ŝu,IbsT c,m :=

1√
T

bsT c∑
t=2

∆Ŝu,It,m ⇒ ωu·v

(
Wu·v(s)− f(s)′

(∫ m

0
f(z)f(z)′dz

)−1 ∫ m

0
[F (m)− F (z)]dWu·v(z)

)
=: ωu·vP̃u·v,m(s). (21)

12For the asymptotic results the lower bounds of the summations could all be set equal to t = 1. We, however, start
the sums with the first residual actually available for computations, at the expense of potentially making matters
appear overly complicated, at least in terms of notation, but replicable for implementation by the reader.

11



The lemma shows that indeed all three partial sum processes of the residuals converge to processes

that are (i) functionals of standard Brownian motions, Wv(r) and Wu·v(r), and (ii) proportional to

ωu·v, a scalar nuisance parameter that can be consistently estimated and hence scaled out from the

limit processes or that can be eliminated by self-normalization. The limiting null distributions of

test statistics based on the (normalized) limit processes consequently can be obtained by simulating

the corresponding functionals of standard Brownian motions. Note that the FM-OLS and D-OLS

residual partial sum processes converge to the same limiting process, which is a consequence of

these two estimators having identical limiting distributions.

2.2 The Monitoring Statistics

Similarly to Wagner and Wied (2017) the starting point of our monitoring statistics is to combine

the approach of Chu et al. (1996) with variance-ratio statistics that diverge under the alternative.

More specifically, the underlying variance-ratio (full sample) statistic motivating the construction of

our monitoring statistics is the Kwiatkowski et al. (1992) stationarity test, respectively the related

Shin (1994) cointegration test.13 Using our notation, the (full sample) Shin-statistic is given by:

TShin :=
1

ω̂2
u·v

 1

T

T∑
t=1

(
1√
T

t∑
i=1

ûi

)2
 (22)

=
1

ω̂2
u·v

(
1

T

T∑
t=1

(
1√
T
Ŝui

)2
)
,

with ût denoting the residuals from (full sample) estimation with, e. g. , FM-OLS or D-OLS. In case

that IM-OLS is used for estimation, the resultant residuals are already partial summed quantities,

i. e. , one immediately obtains (by construction) quantities to insert into the expression in the second

line of (22). The test statistic given above converges under the null hypothesis to a functional of

standard Brownian motions, which is as expected when considering (22), where convergence to

the squared integral of a standard Brownian motion follows immediately from our assumptions if

instead of ût the errors ut were used (and scaling would take place by a consistent estimator of

ω2
u). Using ût instead of ut leads to a similar result, but with a different (specification dependent)

functional of standard Brownian motions after scaling out ω2
u·v rather than ω2

u. To be precise, when

13For completeness note that the Shin (1994) test has been considered in the CPR setting in Wagner and Hong
(2016). In principle, of course, also other variance-ratio type statistics for the null hypothesis of stationarity – or
cointegration – could serve as building blocks, e. g. , the test statistic of Busetti and Taylor (2004) or Kim (2000)
more or less directly leads, when extended and considered for monitoring, to a self-normalized detector similar to
Ĥm

sn.
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using FM-OLS or D-OLS for parameter estimation the limiting null distribution will be a function

of W̃u·v,m(r). When using IM-OLS for parameter estimation the limiting null distribution will be

a function of P̃u·v,m(r), see Proposition 1 below.

The above test statistic (22) can be easily seen to diverge under the alternative hypothesis of a

structural break occurring after the calibration period. Consider, e. g. , the FM-OLS residuals (with

the argument entirely analogous for all estimators) using our already established notation:

ûF
t,m := y+t,m − Z ′tθ̂Fm (23)

= ut − v′tΩ̂−1vv,mΩ̂vu,m −D′t(θ̂FD,m − θD)−X ′t(θ̂FX,m − θX)

1√
T

bsT c∑
t=2

ûF
t,m =

1√
T

bsT c∑
t=2

ut −
1√
T

bsT c∑
t=2

v′tΩ̂
−1
vv,mΩ̂vu,m −

1√
T

bsT c∑
t=2

D′t(θ̂
F
D,m − θD) (24)

− 1√
T

bsT c∑
t=2

X ′t(θ̂
F
X,m − θX)

Now, suppose that at some time point brT c > bmT c a structural change occurs. If, e. g. , {ut}t∈Z
turns from being I(0) to I(1), then the first term in (24) diverges for s > r. Similarly, the third or

fourth term (or both) diverge in case of change in the parameter vector, i. e. , when θ1 6= θ, as of

course θ̂Fm → θ, because of parameter estimation on the calibration sample.

We consider for each of the three considered estimators – neglecting for notational brevity the

dependence of the residuals and thus the test statistics on the estimation method – five monitoring

statistics:

Ĥm(s) :=
1

ω̂2
u·v,m

 1

T

bsT c∑
i=bmT c+1

(
1√
T
Ŝui,m

)2
 (25)

Ĥm
d (s) :=

1

ω̂2
u·v,m

 1

T

bsT c∑
i=bmT c+1

(
1√
T
Ŝui,m

)2

− 1

T

bmT c∑
i=1

(
1√
T
Ŝui,m

)2
 (26)

Ĥm
sn(s) :=

∑bsT c
i=bmT c+1

(
Ŝui,m

)2
∑bmT c

i=1

(
Ŝui,m

)2 (27)

Ĥm,n
mov(s) :=

1

ω̂2
u·v,m

 1

T

bsT c∑
i=max{1,bsT c−bnT c+1}

(
1√
T
Ŝui,m

)2
 (28)

Ĥm,n
mov,sn(s) :=

∑bsT c
i=max{1,bsT c−bnT c+1}

(
Ŝui,m

)2
∑bmT c

i=1

(
Ŝui,m

)2 (29)
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The monitoring statistic Ĥm(s) given in (25) is of the same form as the monitoring statistic used in

Wagner and Wied (2017) considered here in the CPR context. The monitoring statistic Ĥm
d (s) given

in (26) – with a term calculated only over the calibration sample subtracted – is of a similar form

as used in Chu et al. (1996). The third variant Ĥm
sn(s) given in (27) is a self-normalized statistic,

for which under the null hypothesis both the numerator and denominator converge (appropriately

scaled) to functionals of standard Brownian motions proportional to ωu·v, which is hence scaled

out in the ratio. Long-run covariance estimation is known to be a notoriously problematic aspect

in unit root and cointegration analysis and therefore test statistics that do not require this step

may exhibit better performance. The fourth considered variant is a moving window statistic Ĥm,n
mov

given in (28) with n denoting the moving window (sample fraction or) length. The key difference

between the moving window detector and the expanding window detectors is that Ĥm,n
mov is based

on a constant number of residual partial sums for all values of s. This construction increases,

under the alternative hypothesis, the impact of post-break residuals on the test statistic, which is

ex ante expected to lead to faster detection of structural breaks. The performance of the fourth

variant will depend on the length of the moving window, to be chosen in applications. Finally,

the fifth monitoring statistic Hm,n
mov,sn given in (29) combines self-normalization and moving window

estimation, with the performance as for the fourth variant expected to depend upon the moving

window length.14 The following proposition summarizes the asymptotic behavior of the monitoring

statistics under the null hypothesis.

Proposition 1 Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in

place. Furthermore, let long-run covariance estimation be performed under Assumptions 3 and 4

and let lead-lag choices be made as discussed in Choi and Kurozumi (2012).

In case parameter estimation is performed with FM-OLS or D-OLS the limiting process Q̃u·v,m(s)

below equals W̃u·v,m(s) and in case parameter estimation is performed by IM-OLS it equals P̃u·v,m(s).

The defined monitoring statistics converge under the null hypothesis for T → ∞, in particular it

14To be precise, only when using Ĥm
sn(s) or Ĥm,n

mov,sn(s) in conjunction with D-OLS or IM-OLS no long-run co-
variance estimators are required, whereas estimated long-run covariances are required for FM-OLS estimation. For
D-OLS still lead-lag length choices have to be made and only when using Ĥm

sn(s) or Ĥm,n
mov,sn(s) in conjunction with

the IM-OLS estimator no kernel/bandwidth or lead-lag choices have to be made. In this case, the only choice to
still be made when using Ĥm

sn(s) is the length of the calibration sample, a choice required throughout. In case of
Ĥm,n

mov,sn(s) both the calibration sample length m and the moving window length n have to be chosen.
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holds that:

Ĥm(s)⇒
∫ s

m
Q̃2
u·v,m(z)dz =: Hm(Q̃u·v,m, s) (30)

Ĥm
d (s)⇒

∫ s

m
Q̃2
u·v,m(z)dz −

∫ m

0
Q̃2
u·v,m(z)dz =: Hmd (Q̃u·v,m, s) (31)

Ĥm
sn(s)⇒

∫ s
m Q̃

2
u·v,m(z)dz∫m

0 Q̃2
u·v,m(z)dz

=: Hmsn(Q̃u·v,m, s) (32)

Ĥm,n
mov(s)⇒

∫ s

max{0,s−n}
Q̃2
u·v,m(z)dz =: Hm,nmov(Q̃u·v,m, s) (33)

Ĥm,n
mov,sn(s)⇒

∫ s
max{0,s−n} Q̃

2
u·v,m(z)dz∫m

0 Q̃2
u·v,m(z)dz

=: Hm,nmov,sn(Q̃u·v,m, s) (34)

It is widely-used practice in monitoring to base the decision not on monitoring statistics as just

defined, but on monitoring statistics divided by a weighting function, g(s) say. For chosen weighting

function g(s) – with 0 < g(s) < ∞ – the null hypothesis is rejected, if the weighted monitoring

statistic
∣∣∣ Ĥ(s)
g(s)

∣∣∣ is larger than a critical value c for the first time. We denote this point in time as

detection time τm, i.e.:

τm := min
s:bmT c+1≤bsT c≤T

{∣∣∣∣∣Ĥ(s)

g(s)

∣∣∣∣∣ > c

}
, (35)

with Ĥ(s) short-hand notation for any of the considered detectors. In case no structural change is

detected, i. e. ,
∣∣∣ Ĥ(s)
g(s)

∣∣∣ ≤ c for all m ≤ s ≤ 1, we set τm =∞. A finite value of τm not only indicates

a structural break but also contains information about the location of the potential break point.

Weighting function and critical value have to be chosen so that under the null hypothesis it holds

that:

lim
T→∞

P(τm <∞) = lim
T→∞

P

(
min

s:[mT ]+1≤[sT ]≤T

{∣∣∣∣∣Ĥ(s)

g(s)

∣∣∣∣∣ > c

}
<∞

)

= lim
T→∞

P

(
sup

s:[mT ]+1≤[sT ]≤T

∣∣∣∣∣Ĥ(s)

g(s)

∣∣∣∣∣ > c

)
(36)

= P
(

sup
m≤s≤1

∣∣∣∣H(s)

g(s)

∣∣∣∣ > c

)
= α,

with α denoting the chosen significance level, and H(s) short-hand notation for the limit corre-

sponding to the considered monitoring statistic. Considering only positive and bounded weighting

functions, see also Aue et al. (2012, Assumption 3.6), allows to derive the required result given above

based on the developed asymptotic null behavior of the monitoring statistics and the continuous

mapping theorem.
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Proposition 2 Let the data be generated according to (1) and (2) with Assumptions 1 and 2 in

place. Furthermore, let long-run covariance estimation be performed under Assumptions 3 and 4

and let lead-lag choices be made as discussed in Choi and Kurozumi (2012). In addition assume

that the weighting function g(s) is continuous and bounded. Then there exist critical values c =

c(α, g,m, n) such that for any 0 < α < 1 it holds that:

lim
T→∞

P
(
τm(Ĥ(s), g(s), c) <∞

)
= α (37)

Clearly, the choice of a weighting function g(s) impacts the performance of monitoring procedures

and has to combine two opposing goals: (i) small size distortions under the null hypothesis and (ii)

small delays under the alternative hypothesis, that is, detection of a break as soon as possible after

the break. The discussion in Chu et al. (1996, Section 3) makes clear that it is in general, even

in more standard regression models, impossible to derive analytically tractable optimal weighting

functions (from a certain class of functions), e. g. , with respect to minimal expected delay.15

Given the lack of analytical results concerning optimal choices of weighting functions we have

performed a large number of preliminary simulations using a range of candidate weighting func-

tions.16 The starting point of these considerations is Wagner and Wied (2017), who choose

the weighting function in relation to the expected value of the monitoring statistics, resulting

in g(s) = s3 in case Dt = 1 (intercept only) and g(s) = s5 in case Dt = [1, t]′ (intercept

and linear trend). In case of a linear trend we have in addition experimented with g(s) ∈

{1, s10, s5(0.5+m), s5(0.85+m)2 ,
√
m(1 + s−m

m ), s√
m

(
s−m
s

)1/2}, with the last two functions inspired by

Horváth et al. (2004).17 It turns out that no weighting, i. e. , g(s) = 1 does not lead to favorable

performance compared to g(s) = s3 or s5. The function s10 is chosen by “extrapolation” of the fact

that s5 works better than s0 = 1. The idea of the third and fourth functions is – merely the result of

some experimentation and heuristics – to make the detector more sensitive by increasing the value

of the statistic whilst at the same leaving the critical values effectively unchanged. The effects are

15Aue et al. (2009) derive the limiting distributions of the delay time for a one-time parameter change in a linear
regression model with stationary errors for a simple class of weighting functions depending only upon a single (tuning)
parameter. The situation is much more involved in our context and any result concerning asymptotic distributions of
delay times will depend upon intricate crossing-probability calculations involving complicated functions of Brownian
motions. Results in this direction therefore appear to be very hard to obtain, for us at least.

16We have performed the type of simulations reported in Section 3 investigating the performance with respect to
null rejection probabilities, size corrected power and detection times for all weighing functions discussed here. The
simulations in Section 3 report the results based on the overall best performing weighting function, s3 (intercept only)
and s5 (intercept and linear trend).

17In the intercept only specification the set of functions considered is given by {1, s6, s3(0.5+m), s3(0.85+m)2 ,
√
m(1+

s−m
m

), s√
m

(
s−m

s

)1/2}. The observations are similar for both specifications of the deterministic component.
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to a certain extent as expected, without, however, leading to overall better performance. Taking

s6 = (s3)2 or s10 = (s5)2 as weighting functions does indeed lead, e. g. , to earlier detection times,

however, often also to detections in cases when there is no structural change, i. e. , these functions

lead to larger over-rejections under the null hypothesis. The two functions s5(0.5+m), s5(0.85+m)2 ,

where we have also experimented with other powers and values, try to strike a balance between

earlier rejections and size distortions. Altogether, however, the simple functions s3 and s5 perform

most stably over a variety of configurations, in terms of comparably low size distortions under the

null as first priority and short delays in the detection times.18 Finally, the two functions inspired

by Horváth et al. (2004), where we have also experimented with different powers, lead to essentially

the same null rejection probabilities and size corrected power as, e. g. , s3 or s5, but lead to partly

substantially bigger delays than the other weighting functions. Therefore, we stick to the weighting

functions already used also in Wagner and Wied (2017), i. e. , the end point of the considerations is

the starting point. As mentioned, it remains an open challenge to make progress on finding optimal

weighting functions for the monitoring problem and detectors considered in this paper, or more

generally when monitoring cointegrating relationships.

It remains to characterize the asymptotic behavior of the proposed monitoring procedures under

the relevant alternatives in our setting: First, the error process {ut}t∈Z changes its behavior from

I(0) to I(1), i. e. , it changes to being an integrated process and second, there are breaks in (some

of) the parameter values. For both cases we consider the asymptotic behavior against fixed and

local alternatives, with the local alternatives having to be specified, as always, in line with the

convergence rates of parameter estimation.

Proposition 3 Let the data be generated for t = 1, . . . , brT c according to (1) and (2) with As-

sumptions 1 and 2 in place. Furthermore, let long-run covariance estimation be performed under

Assumptions 3 and 4 and let lead-lag choices be made as discussed in Choi and Kurozumi (2012). In

addition assume that the weighting function g(s) is continuous, positive and bounded. Furthermore,

Ĥ(s) denotes again any of the considered monitoring statistics.

(a) Let

(i) {ut}t∈Z be an I(1) process from brT c+ 1 onwards, or

18More specifically, the simpler functions lead to the lowest over-rejections almost throughout, the “race” in terms
of size-corrected power is relatively even, and in some cases the more complicated weighting functions, in particular

s3(0.85+m)2 or s5(0.85+m)2 lead to slightly smaller delays.
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(ii) θ1 6= θ, with the condition

lim
T→∞

1√
T

T∑
t=brT c+1

D′t(θD − θD,1) = ±∞ (38)

fulfilled.

Then the monitoring procedures are consistent, i. e. , for any 0 < c <∞ it holds that

lim
T→∞

P(τm(Ĥ(s), g(s), c) <∞) = 1. (39)

(b) Let

(i) {ut}t∈Z = {u0t }t∈Z for all t ≤ brT c, with {u0t }t∈Z satisfying Assumption 2 and

ut = u0t +
δ

T

t∑
i=brT c+1

γi, (40)

for all t > brT c, where {u0t }t∈Z and {γt}t∈Z are independent processes and where {γt}

fulfills an invariance principle with long-run variance ω2
γ > 0 and δ > 0;

(ii) θD,1 = θD + G−1D (T )∆θD from brT c + 1 onwards with GD(T ) as in Assumption 1 and

∆θD fulfilling ∫ 1

r
D(z)′dz∆θD 6= 0; (41)

or

(iii) θX,1 = θX +G−1X (T )∆θX from brT c+ 1 onwards with ∆θX 6= 0.

Then for any 0 < ε ≤ 1 − α and the critical value 0 < c(α) < ∞ from Proposition 2 there

exists a δ = δ(c, g), ∆θX = ∆θX (c, g) or ∆θD = ∆θD(c, g) such that

lim
T→∞

P(τm(Ĥ(s), g(s), c) <∞) ≥ 1− ε. (42)

The local asymptotic power (LAP) properties of the procedures with respect to break type, esti-

mation method, self-normalization and window size of the moving window detectors, are discussed

in some detail in Supplementary Appendix B.19 The LAP results carry over by and large to similar

relative performance findings in the finite sample simulations presented in Section 3, e. g. , in case of

I(1) breaks a small moving window leads to both highest LAP as well as highest size-corrected finite

19Figures 1 to 7 in Supplementary Appendix B display corresponding LAP results.
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sample power. Another example are power differences across estimation methods, with IM-OLS

dominated by FM-/D-OLS in terms of LAP and also in finite sample size-corrected power for large

sample sizes.

The critical values depend on the specification in several ways: on the specification of the de-

terministic component, the number of I(1) regressors, the highest power of the single integrated

regressor that enters the CPR with higher powers, the detector, the estimation method and – as

indicated by Proposition 2 – the weighting function, the calibration fraction and, for the moving

window detectors, the window size. Supplementary Appendix E provides tables containing criti-

cal values for the usual deterministic components, i. e. , an intercept only and intercept and linear

trend, and up to four integrated regressors, of which one regressor enters the model with up to power

three. Furthermore, the critical values are available for all considered detectors, FM-/D-OLS and

IM-OLS estimation and significance levels of 0.01, 0.025, 0.05, 0.1. The weighting function g(s) is

set to s3 and s5, depending on the deterministic specification. Critical values are available for a fine

grid of the calibration fraction m ranging from 0.1, 0.11, . . . , 0.9. For the moving window detectors,

critical values are available for the window sizes equal to 10%, 20% and 30% of the sample size.20

It remains to clarify the “meaning” of m and T for the monitoring procedures (see also p. 967

in Wagner and Wied, 2017). It is convenient to interpret T as the sample size including the out-

of-sample monitoring period. Let T0 denote the length of the actually available sample – in our

application in Section 4 T0 = 71 with annual data from 1946–2016. Then, denote T = T0 +H, with

H > 0 indicating that out of sample monitoring is intended and H = 0 indicating that monitoring

takes place on a historic data set, as in Section 4. The fact that the critical values depend on

m, and the moving detectors on n, means that a decision has to be made about the length of

the calibration period, potentially the length of the moving window and about the out-of-sample

monitoring period H prior to the analysis. The latter necessity renders our procedure a closed-end

monitoring procedure. The calibration period will be chosen as large as possible (as a sub-sample

1, . . . , TC of 1, . . . , T0) to increase the precision of the parameter estimates while avoiding the risk

of having a structural break in the calibration period. Now, m is given by m = TC
T0+H

. Thus,

choosing H larger implies that m is smaller, which in turn implies that the critical values are larger

(since they are decreasing in m). This decreases ceteris paribus, despite asymptotic size control,

the empirical rejection probabilities under both the null and the alternative. This is the reason

20Altogether this makes for more than 400 pages of tables. However, of course these are embedded in the available
MATLAB code.
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why one should choose the monitoring period as short as possible, a calibration period as large as

possible and an out-of-sample monitoring period as short as possible.

Finally, similar as in Wagner and Wied (2017), the procedures are consistent also against a variety

of other forms of structural changes, with all results following more or less straightforwardly from

the construction principle. Of course, the finite sample performance may be relatively poor in some

cases.

Remark 2 The developed monitoring procedures are, in addition to the results provided in Propo-

sition 3, also consistent against the following types of structural change:

(i) The process {ut}t∈Z changes its behavior from I(0) to being a near-integrated process, compare

Phillips (1987), from brT c+ 1 onwards. In this case, effectively, under the alternative func-

tionals of Wiener processes will be replaced by functionals of Ornstein-Uhlenbeck processes.

The rates of divergence are the same as for the I(1) alternative.

(ii) Similarly, consistency also prevails in case {ut}t∈Z changes its behavior from brT c+1 onwards

to being fractionally integrated, compare Davidson and de Jong (2000), with fractional inte-

gration parameter 0 < f < 1/2. In this case, contrary to item (i) the divergence rate under

the alternative changes and depends upon f , since under this alternative 1
T 1/2+f

∑bsT c
t=brT c+1 ut

converges to a fractional Brownian motion. Thus, the smaller f , the more difficult it will be

be to detect this form of structural change.

(iii) The approach can also be employed for detecting bubbles. In the recent literature, a bubble is

often characterized as a period where the behavior of a time series has switched to explosive

behavior, compare, e. g. , Phillips et al. (2011), Phillips et al. (2015a; 2015b) and Phillips and

Shi (2018). Thus, our procedure allows to detect (the beginning of) a bubble by considering the

first difference of the series, since in the absence of a bubble the first differences are stationary,

whereas in case of explosive behavior also the first differences exhibit explosive behavior.

(iv) In relation to the previous item, with bubbles typically considered to be temporary rather than

permanent phenomena, it has to be noted that our procedures will be consistent in detecting

episodes of I(1) or explosive behavior, as long as these episodes have asymptotically positive

length. E. g. , in the case of only one period under the alternative it has to hold that this

period occurs over a sub-sample of the form br1T c, . . . , br2T c with r1 < r2. It is immediate

that consistency generalizes to multiple periods of this form.
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3 Finite Sample Performance

Under the null hypothesis of no structural change we consider the same data generating process

as Wagner and Hong (2016, Section 3), i. e. , we consider a quadratic cointegrating polynomial

regression model:

yt = θD0 + θD1t+ θX1,1xt + θX1,2x
2
t + ut, (43)

with the errors ut and ∆xt = vt generated as:

ut = ρ1ut−1 + e1,t + ρ2e2,t, u0 = 0,

vt = e2,t + 0.5e2,t−1,
(44)

where (e1,t, e2,t)
′ ∼ N (0, I2). The parameter ρ1 controls the extent of serial correlation in {ut}t∈Z

and is set to ρ1 = 1 after brT c under the alternative of I(1) errors, whereas ρ2 controls the extent

of regressor endogeneity. The parameter values are θD0 = θD1 = 1, θX1,1 = 5 and θX1,2 = −0.3,

with the values for θX1,1 and θX1,2 inspired by the FM-OLS EKC coefficient estimates for Austria

(see Wagner, 2015).21

We present simulation results for T ∈ {200, 500} and ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.9}. For the moving

window and self-normalized moving window detectors we use window sizes n ∈ {0.1, 0.2, 0.3}. As

indicated in the previous section, long-run covariance estimation is performed with the Bartlett

kernel with bandwidth chosen according to Newey and West (1994). For D-OLS estimation leads

and lags choices are performed using the AIC-type criterion of Choi and Kurozumi (2012). The

number of replications is 10,000 throughout. All monitoring decisions are performed at the nominal

5% significance level.

We start the analysis by considering empirical null rejection probabilities. In doing so, we vary

the calibration fraction over a grid of 81 values in the range m = 0.1, 0.11, . . . , 0.9. Two main

observations that allow to zoom in subsequently mostly on the self-normalized detectors emerge.

Figure 1 clearly shows that with respect to null rejection probabilities, the detectors are separated

in two groups, with the better performance offered by self-normalization. Figure 2 shows that

when using moving window detectors, the choice of the window size has no visible impact on null

21The results are, of course, invariant with respect to the values chosen for the parameters θD0 , θD1 , θX1,1 and
θX1,2 .
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Figure 1: Empirical null rejection probabilities for a grid of values of m, with T = 200 and
ρ1 = ρ2 = 0.3.

rejection probabilities.22

To assess the performance improvement that can be realized by self-normalization in some detail,

Figures 3 and 4 compare Ĥm,0.1
mov and Ĥm,0.1

mov,sn for T = 200 and T = 500, respectively. These two

figures illustrate also other more generally observed patterns: First, using IM-OLS for parameter

estimation leads to the smallest over-rejections under the null hypothesis. Often, and in particular

for small values of m, D-OLS estimation leads to the largest over-rejections. The differences across

estimation methods widen for increasing ρ1, ρ2, with D-OLS most strongly negatively affected. Also,

with the exception of D-OLS, self-normalization attenuates the detrimental impact of increasing

ρ1, ρ2. An increasing sample size, of course, reduces over-rejections by and large.

We turn to size-corrected power.23 For brevity the main text focuses on size-corrected power

against I(1) breaks, i. e. , the situation where {ut}t∈Z changes its behavior from I(0) to I(1) after

brT c. The other two breaks dealt with in Proposition 3, trend and slope breaks, with changes in θD

or θX , respectively, are discussed in Supplementary Appendix C.24 Size-corrected power simulations

22The null rejection probability differences between the standardized and self-normalized detectors increase with
increasing ρ1, ρ2. The null rejection probability results for T = 500 are contained in Figures 8 and 9 in Supplementary
Appendix C. As expected, over-rejections are smaller than for T = 200, especially for small values of m, and also the
differences between the detectors decrease.

23We focus on size-corrected power because of the potential over-rejection problems under the null hypothesis.
This allows us to see power differences across detectors while holding null rejection probabilities constant at 0.05.
Clearly, this is useful for theoretical power comparisons, but it has to be kept in mind that such size-corrections are
not feasible in practice.

24See Figures 10 to 18 in Supplementary Appendix C for size-corrected power results in case of trend and slope
breaks.
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Figure 2: Empirical null rejection probabilities for a grid of values of m, with T = 200 and
ρ1 = ρ2 = 0.3.
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Figure 3: Empirical null rejection probabilities for a grid of values of m and T = 200. The left
panel displays results for Ĥm,0.1

mov . The right panel displays results for Ĥm,0.1
mov,sn.
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Figure 4: Empirical null rejection probabilities for a grid of values of m and T = 500. The left
panel displays results for Ĥm,0.1

mov . The right panel displays results for Ĥm,0.1
mov,sn.
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are performed for m, r ∈ {0.25, 0.5, 0.75}, which includes, therefore, cases where r < m, i. e. ,

where a break occurs in the calibration period. We report results for all nine detectors considered,

for all three estimation methods and ρ1 = ρ2 = 0.3 until brT c in Table 1 for T = 200 and

Table 2 for T = 500.25 The following observations emerge: Grosso modo highest size-corrected

power is achieved by the moving window detector with n = 0.1, either with or without self-

normalization; with as reported above self-normalization leading to smaller over-rejections under

the null hypothesis. The differences in size-corrected power are typically relatively or even very

small. This, in conjunction with the performance improvement of self-normalization under the null

hypothesis, makes the case in favor of self-normalization clear. In line with standard asymptotic

theory concerning estimator efficiency, size-corrected power is typically lower for IM-OLS than

for FM-/D-OLS, with the difference between the latter two often rather small, also in line with

asymptotic theory.26 These results, of course, have to be seen in conjunction with the smaller

over-rejections of IM-OLS under the null hypothesis.

Next, consider the impact of m and r on size-corrected power. In case r < m, i. e. , when a break

occurs in the calibration period, size-corrected power is often low, which is related to inconsistency

of parameter estimation due to the structural break in the calibration period. It turns out that

in this case the self-normalized detectors lead to lower size-corrected power than the standardized

detectors, see Tables 1 (T = 200) and 2 (T = 500). For m ≤ r size-corrected power behavior

is as expected, i. e. , for fixed m size-corrected power decreases with increasing r and for fixed r

size-corrected power increases with increasing calibration period m. The case m = r leads to the

highest size-corrected power. Also, as expected increasing T leads to higher size-corrected power,

whereas increasing ρ1, ρ2 leads to lower size-corrected power. For trend breaks – investigated in

some more detail in Supplementary Appendix C – many observations are qualitatively similar. One

difference is that in case of trend breaks the detectors Ĥm or Ĥm
d lead to highest size-corrected

power in some configurations. This finding, however, has to be considered in light of the larger

over-rejections exhibited by these two detectors under the null. Slope breaks lead to very similar

results as I(1) breaks.

It remains to investigate the detection times and delays. We consider again the case of I(1) breaks

25Tables 1 to 6 in Supplementary Appendix C display corresponding size-corrected power results for ρ1 = ρ2 ∈
{0, 0.6, 0.9}.

26The main motivation for developing IM-OLS in Vogelsang and Wagner (2014a) was to develop an estimator that
allows to perform fixed-b inference, which is an alternative asymptotic theory that captures the impact of kernel and
bandwidth choices. These aspects are not covered by standard asymptotic theory.
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ρ1 = ρ2 = 0.3 m = 0.25 m = 0.5 m = 0.75

r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

FM 0.19 0.07 0.05 0.32 0.64 0.14 0.34 0.46 0.80

Ĥm D 0.13 0.06 0.05 0.30 0.59 0.11 0.34 0.46 0.76
IM 0.09 0.06 0.05 0.26 0.47 0.07 0.32 0.41 0.66

FM 0.19 0.07 0.05 0.32 0.64 0.14 0.33 0.45 0.79

Ĥm
d D 0.13 0.06 0.05 0.30 0.59 0.11 0.33 0.45 0.76

IM 0.09 0.06 0.05 0.26 0.47 0.07 0.32 0.41 0.66

FM 0.20 0.07 0.05 0.17 0.61 0.14 0.16 0.26 0.77

Ĥm
sn D 0.14 0.06 0.05 0.20 0.56 0.11 0.19 0.30 0.73

IM 0.11 0.05 0.05 0.19 0.49 0.08 0.21 0.31 0.66

FM 0.18 0.07 0.05 0.32 0.66 0.17 0.34 0.46 0.80

Ĥm,0.1
mov D 0.12 0.06 0.05 0.29 0.61 0.13 0.34 0.46 0.77

IM 0.09 0.05 0.05 0.25 0.48 0.09 0.31 0.40 0.67

FM 0.18 0.07 0.05 0.32 0.65 0.15 0.34 0.46 0.80

Ĥm,0.2
mov D 0.13 0.06 0.05 0.30 0.60 0.12 0.34 0.46 0.76

IM 0.09 0.06 0.05 0.26 0.48 0.08 0.32 0.41 0.66

FM 0.18 0.07 0.05 0.32 0.64 0.14 0.34 0.46 0.80

Ĥm,0.3
mov D 0.13 0.06 0.05 0.30 0.59 0.11 0.34 0.46 0.76

IM 0.09 0.06 0.05 0.26 0.47 0.08 0.32 0.41 0.66

FM 0.20 0.07 0.05 0.17 0.63 0.18 0.16 0.26 0.77

Ĥm,0.1
mov,sn D 0.14 0.06 0.05 0.20 0.58 0.13 0.20 0.30 0.74

IM 0.10 0.05 0.05 0.18 0.49 0.10 0.20 0.30 0.66

FM 0.20 0.07 0.05 0.17 0.62 0.15 0.16 0.26 0.77

Ĥm,0.2
mov,sn D 0.14 0.06 0.05 0.20 0.57 0.11 0.19 0.30 0.73

IM 0.10 0.05 0.05 0.19 0.49 0.09 0.21 0.31 0.66

FM 0.20 0.07 0.05 0.17 0.62 0.14 0.16 0.26 0.77

Ĥm,0.3
mov,sn D 0.14 0.06 0.05 0.20 0.56 0.11 0.19 0.30 0.73

IM 0.10 0.05 0.05 0.19 0.49 0.08 0.21 0.31 0.66

Table 1: Size-corrected power against I(1) breaks for T = 200 and ρ1 = ρ2 = 0.3.
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ρ1 = ρ2 = 0.3 m = 0.25 m = 0.5 m = 0.75

r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

FM 0.67 0.24 0.06 0.44 0.93 0.46 0.45 0.57 0.97

Ĥm D 0.62 0.21 0.06 0.42 0.92 0.42 0.46 0.58 0.96
IM 0.42 0.11 0.05 0.34 0.82 0.25 0.43 0.52 0.91

FM 0.67 0.24 0.06 0.44 0.93 0.46 0.45 0.58 0.97

Ĥm
d D 0.62 0.21 0.06 0.42 0.92 0.42 0.45 0.57 0.96

IM 0.42 0.11 0.05 0.34 0.82 0.25 0.43 0.52 0.91

FM 0.65 0.25 0.06 0.21 0.91 0.44 0.18 0.30 0.96

Ĥm
sn D 0.59 0.20 0.06 0.21 0.89 0.40 0.20 0.32 0.95

IM 0.43 0.12 0.05 0.23 0.83 0.28 0.24 0.36 0.91

FM 0.70 0.25 0.06 0.44 0.94 0.53 0.45 0.57 0.97

Ĥm,0.1
mov D 0.66 0.22 0.06 0.42 0.93 0.49 0.47 0.58 0.96

IM 0.43 0.11 0.05 0.33 0.84 0.31 0.43 0.52 0.91

FM 0.68 0.25 0.06 0.44 0.93 0.48 0.45 0.57 0.97

Ĥm,0.2
mov D 0.64 0.22 0.06 0.42 0.92 0.44 0.46 0.58 0.96

IM 0.42 0.11 0.05 0.34 0.83 0.27 0.43 0.52 0.91

FM 0.67 0.25 0.06 0.44 0.93 0.47 0.45 0.57 0.97

Ĥm,0.3
mov D 0.63 0.22 0.06 0.42 0.92 0.42 0.46 0.58 0.96

IM 0.42 0.11 0.05 0.34 0.82 0.26 0.43 0.52 0.91

FM 0.68 0.26 0.06 0.21 0.93 0.51 0.18 0.30 0.96

Ĥm,0.1
mov,sn D 0.63 0.21 0.06 0.21 0.91 0.47 0.20 0.32 0.95

IM 0.45 0.12 0.05 0.22 0.85 0.34 0.24 0.36 0.91

FM 0.66 0.26 0.06 0.21 0.92 0.47 0.18 0.30 0.96

Ĥm,0.2
mov,sn D 0.60 0.20 0.06 0.21 0.90 0.42 0.20 0.32 0.95

IM 0.44 0.12 0.05 0.23 0.83 0.30 0.24 0.36 0.91

FM 0.65 0.26 0.06 0.21 0.91 0.45 0.18 0.30 0.96

Ĥm,0.3
mov,sn D 0.60 0.20 0.06 0.21 0.89 0.40 0.20 0.32 0.95

IM 0.43 0.12 0.05 0.23 0.83 0.28 0.24 0.36 0.91

Table 2: Size-corrected power against I(1) breaks for T = 500 and ρ1 = ρ2 = 0.3.
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in the main text; for T = 200 and T = 500 for ρ1 = ρ2 = 0.3 in Figure 5. With respect to m and r we

only display results for m = 0.5 and r = 0.5; additional configurations leading to qualitatively very

similar results are displayed in Figures 19 – 24 in Supplementary Appendix C. The figures display

the results in the form of box-whiskers plots – for completeness – for all nine considered detectors.

The numbers below the detector label indicates the corresponding null rejection probabilities, i. e. ,

size-corrected power, given in Tables 1 and 2. Thus, the different box-whiskers plots are based on

different numbers of replications because of different numbers of rejections across different detectors,

sample sizes and ρ values.

One relatively clear observation that emerges from the figures, both in the main text and in

Supplementary Appendix C, is that the choice of the estimation method does not exhibit major

impacts on detection times and delays. Given the standard asymptotic properties of the estimators,

as expected IM-OLS leads to slightly larger delays than FM-OLS and D-OLS in many cases. The

moving window detectors lead to the shortest delays, both standardized and self-normalized, with

the best performance achieved with n = 0.1. One interesting observation is that for the delay,

the choice of the window size does matter and in fact exerts bigger influence on the results than

the choice of standardizing or self-normalizing. Furthermore, an increasing sample size leads to a

– ceteris paribus – more concentrated distribution of the estimated detection times (based on a

larger number of observations), but does not throughout lead to smaller average delays.

The results of the finite sample simulations can essentially be summarized as follows: First, self-

normalization leads to smaller over-rejections, without having any systematic or sizeable negative

impact on size-corrected power (for m ≤ r); and without larger delays when compared to stan-

dardization. Second, when considering only moving window detectors – either self-normalized or

standardized – choosing n = 0.1 leads almost throughout to highest size-corrected power without

detrimental effects on null rejection probabilities; with some exceptions in case of trend breaks

where n = 0.3 leads to marginally better size-corrected power performance. The window size does

have some impact on the delays. With respect to estimator choice the usual trade-off between

IM-OLS on the one hand and FM-/D-OLS on the other occurs, with D-OLS outperformed by

FM-OLS in terms of larger over-rejections by D-OLS under the null hypothesis. Self-normalization

in conjunction with IM-OLS is particularly beneficial for small samples, as in this case no long-run

covariance estimates are required. The poor performance of FM-OLS compared to IM-OLS for

small samples can be traced back to long-run covariance estimation required for FM-OLS param-

eter estimation, even when using self-normalized detectors. For larger sample sizes, with better
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Figure 5: Detection times against I(1) breaks for m = 0.5, r = 0.5 and ρ1 = ρ2 = 0.3.
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properties of long-run covariance estimation the asymptotic efficiency advantage of FM-OLS over

IM-OLS becomes visible, in particular with respect to higher size-corrected power.

Second, with respect to the window size, n = 0.1 leads to the highest size-corrected power

against I(1) and slope breaks, and for some combinations of m and r also against trend breaks. At

the same time, choosing n = 0.1 has no negative effect with respect to over-rejections and leads

in addition to the shortest delays. Therefore we recommend to use the self-normalized moving

window detector with n = 0.1, i. e. , Ĥm,0.1
mov,sn. The choice of the estimator is dictated by the trade-

off between null rejection probabilities on target and high size-corrected power. IM-OLS leads to

lower over-rejections at the cost of lower size-corrected power and slightly larger delays than FM-

OLS. Furthermore, FM-OLS outperforms D-OLS, since size-corrected power and detection times

based on D-OLS are by and large very similar compared to those based on FM-OLS, but the null

rejection probabilities are worse.

4 The Environmental Kuznets Curves for Carbon and Sulfur Diox-
ide Emissions

We now apply the developed monitoring procedures to EKCs for carbon and sulfur dioxide (CO2

and SO2) emissions. We commence from a sample of 18 industrialized countries, listed in Table 3,

over the period 1946–2016.27 The highest polynomial degree we consider is the cubic cointegrating

polynomial relationship, i. e. :

yt = θD0 + θD1t+ θX1,1xt + θX1,2x
2
t + θX1,3x

3
t + ut, (45)

with xt the logarithm of real per capita GDP and yt the logarithm of per capita CO2 or SO2

emissions. As will be seen below, over the calibration period 1946–1973 for many countries in fact

a cointegrating quadratic or even cointegrating linear relationship prevails, i. e. , is not rejected.

The GDP and CO2 emissions data are similar to those used in Wagner et al. (2020). The main

difference is the extension of the sample period from 2013 to 2016, additionally there are some

marginal changes in the GDP data in the newer vintage. More precisely, the GDP (in 2011 prices)

and population data stem from the Maddison project database (in the 2018 version of Bolt et

al., 2018). The CO2 emissions data – which cover CO2 emissions from fossil fuel usage – are taken

27Only for twelve of these 18 countries, as discussed below, is the unit root null hypothesis not rejected for the
logarithm of real per capita GDP. This, of course, reduces the number of countries for which monitoring is performed
in this section to twelve countries.
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Australia Austria Belgium Canada Denmark Finland

France Germany Italy Japan New Zealand Norway

Portugal Spain Sweden Switzerland United Kingdom United States

Table 3: List of countries included in the empirical analysis. The sample range is 1946–2016. Italic
country names indicate that the augmented Dickey-Fuller test rejects the unit root null hypothesis
for log GDP per capita on the calibration period (1946–1973) at the 10% level and bold country
names indicate rejections at the 5% level. Intercept and linear trend are included.

from the Carbon Dioxide Information and Analysis Center (CDIAC) of the US Department of

Energy, see Boden et al. (2018). The SO2 emissions have been combined from two sources. The

data for 1946–2005 are from the NASA Socioeconomic Data and Applications Center (SEDAC),

see Smith et al. (2011). The data for the period 2006–2016 are from the OECD (2020).28

With the developed methods resting upon a calibration period, a corresponding choice has to be

made. We choose the calibration period 1946–1973, reflecting that the first oil price shock of 1974

is considered a major event for changes in energy consumption patterns.29 In our notation this

amounts to m = 28/71 ≈ 0.4. Given this choice, the first step is to perform the CPR modelling

cycle for the calibration period.

The augmented Dickey and Fuller (1981) test results for the calibration period for the null

hypothesis of a unit root in log real per capita GDP against the alternative of trend stationarity

with a linear trend are contained in the country list Table 3.30 These results lead to the following

twelve countries being included in the subsequent analysis (based on a 5% significance level):

Australia, Belgium, Canada, Denmark, Finland, Italy, Japan, Portugal, Spain, Sweden, the United

28Note that the combination of these two data sources using growth rates rests upon the assumption that the
share of SO2 in SOx is constant at about 98% also over the period 2006 onwards, as the OECD data comprise all
SOx emissions and not only SO2 emissions.

29In addition and preceding the oil price shock, many countries have put more stringent environmental legislation
in place in the late 1960s or early 1970s, e. g. , the United States introduced Clean Air Acts in 1963 and 1970, Canada
introduced a similarly named law 1971 and Sweden introduced its Environmental Protection Act in 1969.

30The detailed unit root test results using both the augmented Dickey-Fuller and the Phillips and Perron (1988)
tests are contained in Supplementary Appendix D in Table 7 for the calibration period and in Table 8 for the full
sample period. With the exception of Germany and the augmented Dickey-Fuller test and Austria, Germany and New
Zealand and the Phillips-Perron test, the unit root null hypothesis is not rejected over the full sample period. Thus,
for the full sample period the evidence for I(1) behavior of log real per capita GDP is, as expected, much stronger.
We could, in principle, also consider a larger set of countries in the subsequent analysis, based on the probably more
precise unit root test results obtained from a longer period.
Zooming in a bit more by using a modified Phillips-Perron test of Perron and Vogelsang (1993) leads, e. g. , for
Austria to a non-rejection of the unit root null hypothesis when allowing for breaks in the intercept and trend slopes.
Investigating such issues further, i. e. , allowing for breaks in the regressors is despite its importance beyond the scope
of the present paper.
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Polynomial degree

Country CO2 SO2

Australia 1 1
Belgium 1 1
Canada 1 1
Denmark 1 2
Finland 2 2
Italy 1 1
Japan 1 2
Portugal 1 1
Spain 1 1
Sweden 1 2
United Kingdom 1 1
United States 2 3

Table 4: Minimal polynomial degrees for cointegrating EKCs over the calibration period 1946–1973.

Kingdom (UK) and the United States (US).

The next step is to test for the prevalence of a CPR relationship over the monitoring period –

for both CO2 and SO2 emissions for the countries with I(1) log real per capita GDP. Given that

the polynomial degree is ex ante unclear, we perform a testing sequence with polynomial degrees

ranging from three (the cubic specification) to one (linear cointegration).31 The deterministic

specification consists of intercept and linear trend throughout. The lowest degree polynomial for

which a CPR relationship is not rejected is considered as starting point for monitoring in the

following subsections, see Table 4.

The most striking feature of Table 4 is that in most countries – for CO2 even more than for SO2 –

a cointegrating linear relationship appears to be present over the period 1946–1973. This seems to

be at odds at first sight with the EKC hypothesis of an inverted U-shaped relationship. However,

these results reflect the fact that until the early 1970s per capita GDP and per capita emissions

developed very similarly on a “log-linear extension path”, see the scatter plots in Figures 25 and 26

in Supplementary Appendix D. Only starting in the mid 1970s the oil price shock as well as

environmental legislation – in particular with respect to SO2 and “acid rain” – lead to a decoupling

31For linear cointegration we consider also the Johansen (1995) test in addition to the Shin (1994) test. For the
higher order polynomial degrees we use the extension discussed in Wagner and Hong (2016) or Wagner (2020). The
detailed test results are available in Tables 9 and 10 in Supplementary Appendix D.
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Ĥm,0.1
mov,sn

Country p FM-OLS IM-OLS

Australia 1 1993 2001
Belgium 1 1988 1992
Canada 1 ∞ ∞
Denmark 1 1991 2011
Finland 2 1989 1990
Italy 1 1981 1982
Japan 1 1982 1980
Portugal 1 1998 ∞
Spain 1 ∞ ∞
Sweden 1 1982 1983
United Kingdom 1 1984 1987
United States 2 1988 1992

Table 5: Detection times when monitoring CO2 emissions using the detector Ĥm,0.1
mov,sn and both,

FM-OLS and IM-OLS. The column p indicates the polynomial degree, the calibration period is
1946–1973, the monitoring period is 1974–2016. The nominal significance level is 5%.

of the two quantities, to a certain extent, in many countries.32

Given these preliminary results we turn in the following two subsections to monitoring, using the

moving window detector Ĥm,0.1
mov,sn with window size n = 0.1, i. e. , seven years.33

4.1 Results for Carbon Dioxide Emissions

The detection times for the twelve considered countries using, with the exceptions of Finland and the

United States where the quadratic specification is estimated, the linear specification are displayed

in Table 5.

With the exception of Canada and Spain for all countries the linear relationship found over the

calibration period appears to break down. Furthermore, Portugal is a “mixed” case, with unsur-

prisingly similar behavior to Spain in many ways, as discussed below. In line with the simulation

32It is probably a philosophical question whether we observe in these cases a “straight-looking” line segment of an
actually inverted U-type relationship or “really” a linear relationship. From an econometric perspective the evidence
is in favor of a linear relationship in a number of countries and it thus is an interesting question to detect and date
structural breaks based on monitoring a cointegrating linear relationship. We could alternatively also monitor for
these countries, e. g. , over-specified cubic relationships, where we would be also bound to find structural change for
those countries where the data after the calibration period are changing from a linear towards an inverted U-shaped
CPR relationship with a polynomial degree larger than one.

33The full sets of results including detection times for all detectors and estimators are available in Supplementary
Appendix D, in Table 14 for CO2 emissions and in Table 15 for SO2 emissions. Given the performance advantages of
FM-OLS over D-OLS we exclude the D-OLS results from the discussion in the main text and discuss only FM-OLS
and IM-OLS results here.
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Figure 6: Monitoring results for CO2 emissions of Finland using Ĥm,0.1
mov,sn with both, FM-OLS and

IM-OLS, in the quadratic specification. The lower panel shows the detectors, the critical values
and the detection times for FM-OLS on the left hand side and for IM-OLS on the right hand side.

results, the detection times are – with the exception of Japan – earlier with FM-OLS than with

IM-OLS, with the differences often just a few years. Mostly, breaks are dated in the 1980s or

early 1990s, with a few exceptions: Australia (IM-OLS: 2001), Denmark (IM-OLS: 2011), Portugal

(FM-OLS: 1998; IM-OLS: no break, which is the only difference in finding a break point or not

between the two methods). This can be interpreted, admittedly unsurprisingly, as strong evidence

against a continued log-linear co-movement, i. e. , aligned expansion, of log per capita GDP and

CO2 emissions from the – given the delays seen in the simulation section at latest – early 1990s

onwards. Or, the other way round, these findings are indicative of curvature picking up in CO2

EKC-type relationships in the 1980s in most of the considered countries, with the exception of

Canada, potentially Portugal and Spain, discussed further below.34

34Considering a quadratic specification over the full sample period, see Table 16 in Supplementary Appendix D
for details, confirms this. For all countries except Canada, Portugal and Spain, the coefficients to log per capita GDP
squared are (significantly) negative, whereas they show a positive sign for these three countries. The coefficient is,
however, only significantly positive for Portugal, underlining the “borderline case” behavior of Portugal.
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Figure 7: FM-OLS estimation results for a cointegrating quadratic relationship between log per
capita GDP and log per capita CO2 emissions for Finland. The figure shows pairs of observations
of log per capita GDP and log per capita CO2 emissions, for 1946–1973 (blue circles), 1974–1988
(turquoise squares) and 1989–2016 (yellow diamonds). The lines display fitted values over time
obtained using different samples for parameter estimation: the dashed red line 1946–1973, the
dotted black line 1946–1988 and the dash-dotted blue 1946–2016.

As an illustration, Figure 6 displays the mechanics of the monitoring procedure for Finland.35

The upper graph displays the FM- and IM-OLS residuals over both the calibration and the mon-

itoring period. By definition, since an intercept is included, the residuals have zero mean over

the calibration period, and then turn systematically (more and more) negative thereafter on the

monitoring period. This, by definition, means that the estimated – in case of Finland quadratic

– relationship systematically over-predicts actual log per capita CO2 emissions, i. e. , the slope of

an actual relationship between output and emissions is estimated as too high, see also Figure 7.

The statistical monitoring procedures need to collect enough signals until a break is detected, in

this example this takes until 1989 for FM-OLS and until 1990 for IM-OLS, which is clearly too

late. Nevertheless, it may be interesting to note that Finland was severely adversely affected by the

collapse of the Soviet Union in the early 1990s, which in fact for Finland led to a deeper recession

than the Great Depression in the 1930s.

Figure 7 shows the fitted values obtained when estimating the quadratic EKC with FM-OLS

over the calibration sample, the sample ending prior to the detected break-point 1988 and when

35Figures 30 to 40 in Supplementary Appendix D display monitoring results for CO2 emissions for the other eleven
countries in exactly the same format as Figure 6 for Finland.
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1946–1973 1946–2016

θD1 θX1,1 θD1 θX1,1

Canada

FM-OLS -0.056 2.841 -0.027 1.661
IM-OLS -0.059 2.990 -0.028 1.714

Portugal

FM-OLS 0.000 1.003 -0.008 1.341
IM-OLS 0.008 0.869 0.001 1.156

Spain

FM-OLS -0.023 1.519 -0.033 1.818
IM-OLS -0.039 1.789 -0.036 1.911

Table 6: FM-OLS and IM-OLS estimation results for a cointegrating linear relationship between log
per capita GDP and log per capita CO2 emissions for Canada, Portugal and Spain for the calibration
period 1946–1973 (left panel) and the full sample period 1946–2016 (right panel). Italic entries
indicate significance of coefficients at the 10% level and bold entries significance of coefficients at
the 5% level.

estimation takes place over the full sample.36 The dashed red line shows that in fact more or less

immediately after the oil price shock the relationship between GDP and CO2 emissions appears

to have changed, with the detector taking about 15 years to collect enough signals to declare the

null hypothesis rejected at the 5% significance level.37 Parameter estimation until 1988 “catches

the turn” of the mid 1970s and leads to good fit. However, using the full sample for parameter

estimation of the quadratic EKC leads to the best fit, in particular for the period after 1989. This

leads some support for the interpretation that maybe the relationship is after all quadratic and

one needs to have a sample that is (i) larger and (ii) covers the inverted U behavior to be able to

estimate the relationship with sufficient precision, compare Footnote 32.38

To complete the analysis for CO2 emissions we now turn to the countries for which no structural

change is indicated by the monitoring procedure, Canada, the mixed case Portugal and Spain.

Table 6 displays the estimated coefficients for these three countries when the cointegrating (linear)

relationships between log per capita GDP and log per capita CO2 emissions are estimated over the

calibration sample and over the whole sample period.

36See Figure 27 in Supplementary Appendix D for analogous – and very similar – IM-OLS results.
37Clearly, this is a long delay – in particular when looking at Figure 7, but it has to be taken into account that

the estimation sample comprises only 28 observations, which is an rather small sample for cointegration analysis.
38This appears to be the case indeed. The coefficients to squared log per capita GDP are very small but positive

and borderline significant when estimated over the calibration sample and are significantly negative when estimated
over the full sample.
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The results reported in Table 6 are a bit mixed and no uniform pattern across all three countries

emerges, with some of the smoke clearing when considering Figure 8 below. For Canada, the slope

coefficient corresponding to log per capita GDP becomes much smaller when estimated over the

full sample, but also the trend coefficient becomes less negative. For Portugal the trend coefficient

is not significant in both periods, but turns from non-negative point estimates in the calibration

period to smaller, and for FM-OLS negative, values in the full period. The slope coefficient,

however, is bigger, when estimated over the full sample. For Spain, the trend coefficient does

become more negative and significant when estimated over the full sample period and the slope

coefficient becomes bigger. Thus, qualitatively the results are similar for the two countries on the

Iberian peninsula, which not only share many economic similarities but also political similarities,

with the end of the Franco and Salazar regimes in these countries in the mid 1970s.

Probably more informative, Figure 8 displays similar results for these three countries as displayed

for Finland in Figure 7.39 The message is clear, in particular in comparison with Figure 7. In case

no structural break is detected, estimation over the larger sample does lead – unsurprisingly – to

better fit, but the differences in fit are, compared to the differences observed in Figure 7, minor.

From a standard inverted U quadratic EKC perspective the excellent fit obtained for these three

countries with the linear specification is to a certain extent surprising – and, which might be bad

news, of course there is no turning point.

Note that when considering the full sample period 1946–2016 we find a cointegrating EKC re-

lationship for all nine countries for which monitoring detects a structural break.40 For about a

third of the countries the polynomial degree of the EKC appears to be larger for the full sample

than for the calibration period, supporting the notion of more curvature. For most countries the

evidence, with an unchanged minimal polynomial degree, points, however, more towards structural

change of the parameters for a given form of the relationship. For Finland and the US it appears

that the polynomial degree is lower over the full sample than for the calibration period, albeit the

coefficients to squared log per capita GDP are significant when estimated over the full sample,

which leads to an unclear picture. Altogether, the results in this CO2 subsection indicate that the

procedures work even on such small samples, albeit of course for many applications the sizeable

delay is most certainly problematic.

39Figure 28 in Supplementary Appendix D shows the corresponding results obtained with IM-OLS.
40Table 11 in Supplementary Appendix D contains similar results concerning the minimal polynomial degrees of

a CPR relationship for the full sample period as Table 4 for the calibration period.
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Figure 8: FM-OLS estimation results for a cointegrating linear relationship between log per capita
GDP and log per capita CO2 emissions for Canada, Portugal and Spain. The figure shows pairs of
observations of log per capita GDP and log per capita CO2 emissions, for 1946–1973 (blue circles)
and 1974–2016 (yellow diamonds). The lines display fitted values over time obtained using different
samples for parameter estimation: the dashed red line 1946–1973 and the dash-dotted blue 1946–
2016.
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Ĥm,0.1
mov,sn

Country p FM-OLS IM-OLS

Australia 1 ∞ ∞
Belgium 1 1985 1985
Canada 1 1980 1981
Denmark 2 1997 2006
Finland 2 1988 1991
Italy 1 1982 1982
Japan 2 1991 2004
Portugal 1 2015 ∞
Spain 1 2005 2012
Sweden 2 1985 1988
United Kingdom 1 1983 1983
United States 3 ∞ ∞

Table 7: Detection times when monitoring SO2 emissions using the detector Ĥm,0.1
mov,sn and both,

FM-OLS and IM-OLS. The column p indicates the polynomial degree, the calibration period is
1946–1973, the monitoring period is 1974–2016. The nominal significance level is 5%.

4.2 Results for Sulfur Dioxide Emissions

We now turn to monitoring the EKC for SO2 emissions, with the results displayed in Table 7 for

the detector Ĥm,0.1
mov,sn for both FM-OLS and IM-OLS.41

Qualitatively, the results for SO2 are similar to the results for CO2 discussed in the previous

subsection. With the exception of Australia, the United States and the mixed case (as for CO2

emissions) Portugal monitoring indicates structural breaks. Again, in line with the simulation

findings, the FM-OLS break points are in no case later than the IM-OLS break points, with equal

break dates from both estimators for three countries. This similarity of detected break points can

be tentatively interpreted as evidence for underlying structural changes in the relation between

economic activity and emissions in - or due to the delays – prior to the 1980s, potentially as a

consequence of tighter environmental legislation.42

Table 8 displays the estimation results for Australia, Portugal and the US, i. e. , the three countries

where no structural break was detected, or – to be precise – where for Portugal only FM-OLS

41Figures 41 to 52 in Supplementary Appendix D display monitoring results for SO2 emissions, with residuals and
monitoring statistics analogous to Figure 6 for CO2 emissions for Finland, for all twelve countries.

42This finding again indicates the potential gains to be reaped by considering pooling, across countries, or pollutants
or both. Compare Wagner et al. (2020) for a discussion of pooling issues and options in the context of EKC analysis.
This suggests that a worthwhile extension to be considered could be combining Wagner et al. (2020) with the
monitoring ideas pursued in this paper. Such an extension, beyond the scope of this paper, could potentially lead to
smaller delays.
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1946–1973 1946–2016

θD1 θX1,1 θX1,2 θX1,3 θD1 θX1,1 θX1,2 θX1,3

Australia

FM-OLS 0.043 -0.819 -0.042 2.541
IM-OLS 0.042 -0.770 -0.043 2.550

Portugal

FM-OLS -0.005 1.047 -0.104 3.491
IM-OLS 0.002 0.873 -0.092 3.215

United States

FM-OLS -0.013 -1831.120 183.982 -6.158 -0.133 -305.981 31.361 -1.052
IM-OLS -0.005 -2190.198 220.246 -7.380 -0.133 -61.963 7.512 -0.275

Table 8: FM-OLS and IM-OLS estimation results for a cointegrating linear relationship between log
per capita GDP and log per capita SO2 emissions for Australia and Portugal, and a cointegrating
cubic relationship for the United States, for the calibration period 1946–1973 (left panel) and the
full sample period 1946–2016 (right panel). Italic entries indicate significance of coefficients at the
10% level and bold entries significance of coefficients at the 5% level.

estimation leads to a break being detected. The results lead to some interesting observations.

For Australia, estimation on the calibration period leads to (with all coefficients not significantly

different from zero) positive trend coefficient and negative slope coefficient in a cointegrating linear

relationship.43 This is surprising to a certain extent, as a negative trend slope is typically considered

to capture autonomous energy efficiency increases, admittedly more important for CO2 emissions

rather than SO2 emissions. The expected signs, with the trend coefficient negative and the slope

coefficient positive (and significant), emerge only over the full sample. For Portugal, the coefficient

signs are as expected, with the trend coefficient only significant for the full sample. The slope

coefficient to log per capita GDP becomes much larger when estimated over the full sample. The

results for the cubic specification estimated for the US are hard to interpret with the enormous

fluctuations in the coefficient values. However, the implied turning points do change in expected

ways, meaning that the first one becomes smaller and the second one larger, e. g. , for FM-OLS and

estimation over the short sample the two turning points are at about 16,000 and 27,000 US dollars,

whereas full sample estimation leads to turning points at about 5,400 and 79,000 US dollars.

The results in Figure 9, however, indicate that indeed the relationship specified over the calibra-

tion period, when estimated over the full sample, leads to very good fit, either with a cointegrating

43It is in all likelihood mere coincidence that the trend coefficients are of more or less same magnitude over both
sample periods with, effectively, only the sign changing.
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Figure 9: FM-OLS estimation results for a cointegrating linear relationship between log per capita
GDP and log per capita CO2 emissions for Australia and Portugal, and a cointegrating cubic
relationship for the United States. The figure shows pairs of observations of log per capita GDP
and log per capita SO2 emissions, for 1946–1973 (blue circles) and 1974–2016 (yellow diamonds).
The lines display fitted values over time obtained using different samples for parameter estimation:
the dashed red line 1946–1973 and the dash-dotted blue 1946–2016.
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linear relationship for Australia and Portugal or with a cubic relationship for the US.44

Considering the full sample period leads – similar to CO2 emissions – to a CPR relationship for

all nine countries where a structural has been detected. Also similar to CO2 the evidence is mixed

with respect to either change in the parameters or a change in the minimal polynomial degree of a

cointegrating EKC for SO2 emissions.45

5 Summary and Conclusions

The paper extends the residual-based monitoring procedure for cointegrating relationship developed

in Wagner and Wied (2017) in two dimensions. First, in addition to the detector studied in that

paper, we consider a number of detectors that consider two aspects not considered in detail in the

earlier paper: self-normalization and moving window detectors. Second, the approach is extended

from cointegrating linear to cointegrating polynomial regressions (CPRs).

The starting point of the considerations is the – corresponding extension to the CPR case (see,

e. g. Wagner, 2020) of the – Shin (1994) test statistic for the null hypothesis of cointegration. The

full sample test statistic is then used as the basis for developing monitoring procedures, similar

to Wagner and Wied (2017) for the case of cointegrating linear regressions. As also usual in the

cointegrating regression literature, the regressors are allowed to be endogenous and the stationary

errors are allowed to be serially correlated. Consequently, parameter estimation is based on modified

OLS estimators, to be precise, FM-OLS, D-OLS and IM-OLS, in their versions adapted to the CPR

setting to allow for the construction of nuisance parameter free monitoring statistics by scaling out

a scalar long-run variance. However, even the usage of suitably modified least squares regressors

is not, in the general case, sufficient to arrive at nuisance parameter free monitoring statistics. In

the CPR case, as mentioned in Remark 1, additionally full design is required to arrive at nuisance

parameter free test statistics; either by standardization or by self-normalization. By construction,

and as in the cointegrating linear case, the limiting distributions of the monitoring statistics coincide

for FM-OLS and D-OLS, whilst IM-OLS leads to different limiting distributions for the monitoring

statistics.

Both, self-normalization as well as the consideration of moving window detectors turns out to be

beneficial. The combination of these two new elements leads to the grosso modo best performance.

44Figure 29 in Supplementary Appendix D shows similar results when using IM-OLS for parameter estimation.
45See Table 11 in Supplementary Appendix D for the minimal polynomial degrees on the full sample.

42



More precisely, this means that self-normalization leads to smaller over-rejections under the null,

without leading to strong disadvantages in terms of either size-corrected power or detection delays.

The performance differences between a standardized and a self-normalized detector reflect the (well-

known small-sample) problems associated with long-run covariance estimation. Using a moving

window rather than an expanding window also contributes positively to performance. The idea

behind moving window detectors is to reduce the impact of pre-break observations on the monitoring

statistics in the post-break period and the simulation evidence indicates that this is indeed what

happens. The finite sample performance differs to a certain extent across the three estimators.

IM-OLS leads to, with the differences more pronounced for small samples, smaller over-rejections

under the null hypothesis than FM-OLS, which in turn leads to lower over-rejections than D-OLS.

This, however, comes in conjunction with slightly smaller size-corrected power and slightly bigger

delays of IM-OLS compared to FM-OLS. The evidence is a bit mixed and the differences are often

a bit too small to give an unequivocal recommendation concerning the usage of either FM-OLS or

IM-OLS.

The monitoring statistics, to be precise (in the main text only) the best performing variant using

self-normalization in conjunction with a short moving window, are then used to investigate the

stability of cointegrating (polynomial) environmental Kuznets curves for both carbon and sulfur

dioxide emissions for a sample of twelve countries over the period 1946–2016, with a calibration

period ranging from 1946–1973, i. e. , until prior to the first oil price shock. One interesting obser-

vation is that over the calibration period especially for CO2 for the majority of countries in fact a

cointegrating linear relationship is present, in line with effectively “balanced” growth of economic

activity and emissions (from burning fossil fuel) until the mid 1970s. The monitoring procedures

indicate, for both CO2 and SO2, structural changes in nine out of twelve countries. Of course,

especially for the cases where a linear cointegrating relationship prevails over the calibration period

this may not be too big a surprise. No structural break is detected for Canada, Portugal and Spain

for CO2 emissions and Australia, Portugal and the US for SO2 emissions. For the country-pollutant

combinations where no structural break is detected, the type of cointegrating relationship specified

over the calibration period leads to very good fit also over the full sample period, and of course

even better fit when the parameters are estimated over the full sample. This is not the case for

countries where breaks are detected, indicating that structural breaks are indeed detected when

present. Altogether, with the caveat of in some cases late detection times, remember the delays

illustrated in the simulation study, the monitoring procedures lead to “plausible” findings in our

43



application.

Future work needs to address inter alia the following issues left open in this paper: First, of

course, large delays are problematic, even in an ex-post exercise one would want to date the breaks

as precisely as possible, e. g. , to gauge the time it takes until behavioral or legislative changes

translate into changes in the economic activity-emissions nexus. For certain applications (when,

e. g. , legislation comes into place in a group of countries at the same time) it may be possible

to rely also upon the cross-sectional dimension to date break points. The seemingly unrelated

cointegrating polynomial regression analysis put forward in Wagner et al. (2020) or the classical

panel EKC analysis of de Jong and Wagner (2018) might serve as starting points for developing

monitoring statistics for small and large cross-sectional dimension, respectively. Second, if one

wants to use the monitoring procedures in a real time manner – rather than for a historical analysis

as in this paper – it may be important to consider extending end-of-sample cointegrating break

point tests to the setting considered here (one such test for the cointegrating linear case is discussed

in Andrews and Kim, 2006). Extensions to more general settings are, however, not obvious. Third,

it may be interesting to monitor and detect structural breaks in the other direction, i. e. , from

a spurious regression to a cointegrating polynomial regression. This could be achieved, e. g. , by

suitably extending the results of Sakarya et al. (2015) from cointegrating linear to cointegrating

polynomial regressions.
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A Appendix A: Proofs

Proof of Lemma 1:

The lemma follows with straightforward changes essentially from available full sample results:

For FM-OLS see Wagner and Hong (2016, Proof of Proposition 5) and for D-OLS see Choi and

Saikkonen (2010, Lemma A.2). For IM-OLS the result follows with two changes from the results

in Vogelsang and Wagner (2014b). First, again a change from a full sample result to a calibration

(sub-)sample result and second, the results in that paper are all formulated only under the null

hypothesis of a true linear relationship nested in a CPR-type relationship; a few results have to be

correspondingly – and straightforwardly – modified. �

Proof of Proposition 1:

Using the results from Lemma 1, the continuous mapping theorem (see, e. g. , Hall and Heyde,

1980, Theorem A.3.) and the assumption of consistent long-run covariance estimation leads to the

stated asymptotic distributions under the null hypothesis. �

Proof of Proposition 2:

The result follows from Proposition 1 in conjunction with the continuous mapping theorem, since

the limit H(s) of Ĥ(s), using short-hand notation also for the limit quantities, is well defined for

all considered monitoring statistics. The same holds true for | Ĥ(s)
g(s) |, since 0 < g(s) <∞ is assumed

to be continuous. �

Proof of Proposition 3:

The proof of the proposition is similar in spirit and follows from similar arguments as the proof

of Proposition 2 of Wagner and Wied (2017, Supplementary Appendix A) for monitoring in the

linear cointegration case.

To show consistency against fixed alternatives for part (a) of the proposition, the limiting behavior

of the residual partial sum processes is key. Consider here the FM-OLS residual partial sum process,
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with the results being similar for both D-OLS and IM-OLS (without partial summing due to the

partial summed regression). For 0 < m ≤ r < s ≤ 1 it holds that:

1√
T

bsT c∑
t=2

ûF
t,m =

1√
T

brT c∑
t=2

ûF
t,m +

1√
T

bsT c∑
t=brT c+1

ut −
1√
T

bsT c∑
t=brT c+1

v′tΩ̂
−1
vv,mΩ̂vu,m

− 1√
T

bsT c∑
t=brT c+1

D′t(θ̂
F
D,m − θD)− 1√

T

bsT c∑
t=brT c+1

X ′t(θ̂
F
X,m − θX)

− 1√
T

bsT c∑
t=brT c+1

D′t(θD − θD,1)−
1√
T

bsT c∑
t=brT c+1

X ′t(θX − θX,1).

(46)

The first term converges to ωu·vW̃u·v,m(r) according to Lemma 1. Depending upon which case

considered, at least one of the other terms diverges in case of a fixed alternative. In case (i) the

second term diverges at rate T , since in this case {ut} is an I(1) process for t ≥ brT c+ 1. Similarly,

in cases (ii) or (iii) either the next to last or last term diverges – or both in case breaks occur in

both θD and θX .

Therefore, for any of the considered fixed alternatives the partial summed residual process or –

in case of IM-OLS – the residual process diverges. The result stated in (a) follows immediately

from the definitions of the considered monitoring statistics.

We now turn to part (b) of Proposition 3 and consider local asymptotic power. For item (i) it

follows for the residual partial sum processes of FM-OLS, D-OLS and IM-OLS residuals that:

1√
T
ŜubsT c,m ⇒ ωu·vQ̃u·v,m(s) + δωγ

∫ s

r
(Wγ(z)−Wγ(r)) dz (47)

with Q̃u·v,m(s) denoting the corresponding limiting process as in Proposition 1. For item (ii) it

follows that:

1√
T
ŜubsT c,m ⇒ ωu·vQ̃u·v,m(s) +

∫ s

r
D(z)′dz∆θD . (48)

It remains to consider the asymptotic behavior of the residual partial sum process appearing in the

third item of part (b) of the proposition. The partial sum process of the residuals converges to the

following limiting process:

1√
T
ŜubsT c,m ⇒ ωu·vQ̃u·v,m(s) +

∫ s

r
Bv(s)

′dz∆θX

= ωu·vQ̃u·v,m(s) +

∫ s

r
Wv(s)

′dzΩ1/2′
vv ∆θX ,

(49)
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with Ω
1/2
vv := diag(Ω

1/2
vv , ω2

k, . . . , ω
pk
k ) and ωk the lower right hand corner element of Ω

1/2
vv corre-

sponding to the k-the element of vt. Equations (47) to (49) show that in case of local alternatives

the limiting processes differ from the limiting processes derived under the null hypothesis by an

extra term, depending upon case considered equal to δωγ
∫ s
r (Wγ(z)−Wγ(r)) dz,

∫ s
r D(z)′dz∆θD

and
∫ s
r Wv(s)

′dzΩ
1/2′
vv ∆θX . These terms can be made arbitrarily big (in mean square sense) by

choosing δ, ∆θD or ∆θX which translates in the detectors also becoming arbitrarily large. To illus-

trate the mechanics consider Ĥm,n
mov,sn and the case of a local I(1) break, in which case one obtains

for 0 < m ≤ r < s ≤ 1:

Ĥm,n
mov,sn(s)⇒

∫ s
max{0,s−n}

(
ωu·vQ̃u·v,m(z) + δωγ

∫ z
r Wγ(ζ)−Wγ(r)dζ

)2
dz

ω2
u·v
∫m
0 Q̃2

u·v,m(z)dz

=

∫ s
max{0,s−n} Q̃

2
u·v,m(z)dz∫m

0 Q̃2
u·v,m(z)dz

+
2δωγ

∫ s
max{0,s−n} Q̃u·v,m(z)

∫ z
r Wγ(ζ)−Wγ(r)dζdz

ωu·v
∫m
0 Q̃2

u·v,m(z)dz

+
(δωγ)2

∫ s
max{0,s−n}

(∫ z
r Wγ(ζ)−Wγ(r)dζ

)2
dz

ω2
u·v
∫m
0 Q̃2

u·v,m(z)dz

= Hm,nmov,sn(Q̃u·v,m, s) +
2δωγ

∫ s
max{0,s−n} Q̃u·v,m(z)

∫ z
r Wγ(ζ)−Wγ(r)dζdz

ωu·v
∫m
0 Q̃2

u·v,m(z)dz

+
(δωγ)2

∫ s
max{0,s−n}

(∫ z
r Wγ(ζ)−Wγ(r)dζ

)2
dz

ω2
u·v
∫m
0 Q̃2

u·v,m(z)dz
,

(50)

with
∫ z
r Wγ(ζ)−Wγ(r)dζ = 0 for r > z. Equation (50) shows that, as expected, the extra term in

the residual process translates (upon squaring) into two additional terms in the limiting process in

comparison to the behavior under the null hypothesis. The third term, being a squared expression,

can be made arbitrarily large and positive by choosing δ large enough and is of larger order than the

second (non-squared) term. The result follows analogously for all detectors and all three considered

local alternatives. �
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