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†
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Abstract

We show that a general class of frictional labor market models with a participation margin and

an individual-specific state can only match labor market transition rates within a certain range,

which we characterize analytically. Transition rates in the data are outside the range the model

can match, which explains the failure of previous papers to calibrate to these flows. We also exam-

ine whether extending the model can bring it closer to the data, and find that endogenous search

intensity and state-dependent separation rates do not help, but misclassification, persistently inac-

tive workers, and modifications of the productivity process such as learning on the job can match

the gross flows.
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1 Introduction

The last ten years have seen the emergence of comprehensive models for the labor market, which aim

to explain the individual-level dynamics of both labor supply choices and unemployment, modeling

transitions between employment, unemployment, and non-participation in a frictional labor market.

Recent examples are Garibaldi and Wasmer (2005) and Krusell et al. (2011): the most important addition

to the previous literature is that these papers aim to pin down and explain not only stocks, but also

gross labor market flows. These flows are very important for policy analysis: to the extent that they

are exogenous from the perspective of an individual, such as exogenous separations, they are usually

insurable to a very limited extent (if at all), and when they are the outcome of optimizing behavior, such

as participation decisions, it is important to understand how they would responds to various policy

measures, for example taxation and unemployment insurance.

Both Garibaldi and Wasmer (2005) and Krusell et al. (2011) calibrate to the observed labor market

flows, and are able to explain them with a seemingly small discrepancy between the implications of

the model and the data. This paper demonstrates that this small discrepancy is significant, and it is

not something that can be improved on with a more careful calibration: a general class of simple labor

market models with labor market frictions, and an individual-specific state which drives participation

decisions and evolves stochastically, can only explain labor market transition rates if they are within

a certain range. Examination of the data used by various papers shows that the flows are outside the

range that the model can explain. Consequently, the inability of this model family to match the data

stems not from the lack of enough free variables, but is a feature of both the model and the data: as we

explain below, matching certain flows constrain the ability of the model to match other flows, and in

the data the latter flows are outside the admissible range of the model.

To make things concrete, let E, U, and I denote employment, unemployment, and inactivity (non-

participation),
1

respectively, and λUI, λUE, . . . denote continuous-time transition rates between these

states. The central question of this paper is the following: for a given model and 6-tuple of transition

rates

Λ = (λUI, λIU, λIE, λUE, λEI, λEU),

can we find a parameterization of the model that generates Λ?

The key contribution of this paper is an analytical characterization of this question for various

models, and the introduction of a particular way of calibrating to flows that allows a tractable anal-

ysis of this nonlinear problem. Figure 1 provides a stylized summary of the way we characterize the

calibration of the models we examine. First, we calibrate to the flows between unemployment and

inactivity, λIU and λUI, the total flows out of employment

λE⌊IU⌋ = λEI + λEU,

and the job finding rates λIE and λUE. This way we match five out of the six moments we target. Then

1

In this paper we refer to non-participants as inactives, because we want to avoid confusion with the non-employed in

the notation in Section 2.
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we examine the ratio

α =
λIE

λE⌊IU⌋
(1)

as a function of the free parameters of the model, and see whether the range of α — which is, of course,

a function of the other five moments we have matched — contains its counterpart in the data. If it does,

then we say that a particular set of flows Λ are admissible for a given model.

E

U I

λUI

λIU

λUE λIE

α
1−

α

λE⌊IU⌋

Figure 1: Calibration of labor market transition rates. We calibrate to λIU, λUI, λE⌊IU⌋ = λEI + λEU,

λUE, and λIE (solid lines). Then we characterize the fraction α = λEI/λE⌊IU⌋ (dotted lines).

For some of the models we examine, including the benchmark model of Section 2 which nests

Garibaldi and Wasmer (2005) and closely approximates a special case of Krusell et al. (2011), we find

that when calibrating to the other five moments, there is a lower bound α∗
such that a particular α is

admissible if and only if

α∗ ≤ α ≤ 1,

where we characterize the lower bound α∗
analytically as a function of the five other moments we

calibrate to.

We briefly summarize the benchmark model and explain the intuition behind this result. The bench-

mark model of Section 2 is in continuous time with linear utility, the only state of a worker is individual-

specific, and it determines wages and the flow utility of non-employment (eg the value of leisure, home

production, and unemployment benefits). The difference of the two is the flow surplus, and it plays

a key role in the labor market participation choice. Exogenous events, which can be thought of as

stylized representations of shocks that change either wages or the value of non-employment, change

the individual’s state and thus the flow surplus. Employed workers experience exogenous separations,

but may also separate endogenously after if their state and consequently their flow surplus changes.

Non-employed workers can choose to search actively or passively. Job opportunities arrive exoge-

nously, and are either accepted or rejected by the worker, and active search results in a higher arrival

rate, but entails a flow cost. Consequently, the flow surplus partitions the state space of non-employed

workers into three regions: those with a high surplus for whom it is worthwhile to pay the search cost

in exchange for a higher arrival rate of job offers, so they search actively (H), those who would accept

a job but would not pay the search cost, and they search passively (M), and those whose flow surplus

2



is so low that they would never accept a job (L).

We identify unemployed workers in H with active search, and the other two regions L and M

with non-participation. A key feature of the model is that the five flows we calibrate to constrain

the calibration of the stochastic process for the individual-specific state, which in turn determines the

distribution of employed workers in regions M and H of the parameter space, which we call marginal

and non-marginal workers, respectively. This is important because after an exogenous separation,

non-marginal workers search actively, while marginal workers search passively, and this constrains

the share of λEI and λEU flows in λE⌊IU⌋, thus determining α in (1).

Looking at the data in various papers that calibrate to labor market flows in Section 3, we find that

αdata < α∗,

in other words when calibrating to the other five moments, α in the data is lower than the lower bound

of what the model can be calibrated to and thus the flows are not admissible in the benchmark model.

Mostly, this happens because in the data,

λIU + λE⌊IU⌋ ≪ λUI,

or in other words, having so many inactives relative to the unemployed requires that UI transition rates

are much larger than IU rates. In theory, a large separation rate from E could alleviate this, because,

since λIE < λUE, it would lead to relatively fewer marginal inactives; but of course this is not a feature

of the data. We show that this discrepancy cannot be explained by small sample size, and it holds for

all papers we have examined, which suggests that a crucial ingredient is missing from our models if

we want to calibrate to labor market flows.

Consequently, Section 4 examines various extensions to the benchmark model. First, recognizing

that the simple binary search technology in the benchmark model may be too restrictive, in Section 4.1

we endogenize search effort with a continuous variable, and show that no matter where we draw the

line between inactivity and unemployment, the flows can be mapped to those of the benchmark model,

and this extension does not improve its ability to match the data.

In Section 4.2 we extend the model with state-dependent separation rates: allowing for the possibil-

ity that marginal workers experience higher rates of exogenous separation compared to non-marginal

workers. We think of this extension as reduced form for a model with firm- or match-specific pro-

ductivity, with the idea that marginal matches are more fragile. Since this modification increases λEI

flows, it actually increases α∗
, moving the model further away from the data.

A crucial assumption in the result about the benchmark model is that we impose a stochastic

process for the individual-specific state that is independent of the labor market status, which makes

λIU andλUI rates, which are from the observation of the non-employed, constrain the share of marginal

employed. Breaking the connection between the stochastic processes for the individual-specific state

for the employed and non-employed could in principle alleviate the problem of the benchmark model.

We show that this is indeed the case, first by examining a stylized model with permanently inactive

workers in Section 4.3, then by introducing learning on the job in Section 4.4. Having permanently
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inactive workers who never participate in labor market flows helps because we can assume that the

λIU flows we observe are the weighed average of the same flows for permanently inactive workers

(for whom it is zero) and the rest of the population, for whom they are consequently larger, and larger

λIU flows would lower α∗
. In contrast, learning on the job works by decreasing the share of marginal

employed, since by moving to a state with higher surplus they become non-marginal. We show that

in theory both approaches can drive α∗
to 0, and thus all possible flows Λ become admissible under

either model.

Finally, in Section 4.5 we consider classification error, by allowing for the possibility that inactive or

unemployed workers are misclassified into the other state in surveys, thus generating spurious flows.

We introduce a general theoretical framework for calculations with such processes, which provides

a mapping from observed to underlying flows in a self-consistent way. We find misclassification of

inactives as unemployed increases the lower bound α∗
, but misclassification of unemployed as inactive

decreases α∗
and brings the model closer to the data — in fact, a UI misclassification probability for

each observation around 9% can bring α∗
to αdata.

Our analysis is related to the various approaches in the literature that aim to explain participation

and unemployment. As noted by Krusell et al. (2011), historically, frictionless versions of the standard

growth model were mainly used to explain participation, mapping it to a choice on the labor/leisure

margin: for example Hansen (1985) and Rogerson (1988), while models in the Diamond-Mortensen-

Pissarides model family
2

have been used to explain unemployment with labor market frictions and the

response of unemployment to aggregate fluctuations.
3

However, recognizing that satisfactory models

should account for both unemployment and the participation margin, many papers incorporated the

latter into frictional models of the labor market. Ljungqvist and Sargent (1998), Ljungqvist and Sargent

(2007a), Alvarez and Veracierto (2000), and Veracierto (2008) are models that are similar to the one

discussed in this paper along many dimensions, but they do not attempt to account for labor market

flows across the three states. Coming from the other direction, Merz (1995), Andolfatto (1996), Gomes,

Greenwood, and Rebelo (2001) include labor market frictions in the standard growth model, but do not

distinguish unemployment and inactivity.

The two papers most closely related to this one are Garibaldi and Wasmer (2005) and Krusell et al.

(2011). In particular, our model nests the structure of Garibaldi and Wasmer (2005), formalizing the

reason for the discrepancy between observed and generated flows in their paper in a more general

setting. What we call marginal workers they term “employment hoarding”, since it results from the

irreversibility of separations. Krusell et al. (2011) also focus on the flows, in a model that is essentially

similar to ours except for the fact that they also allow risk aversion and saving. However, as noted

in their paper, this does not have a significant effect on the flows, and thus would only complicate

our analysis. Krusell et al. (2011) also argue that marginally inactive in the data should be counted as

unemployed when accounting for the flows. However, this turns out to increase UI transition rates,

increasing the distance between the model and the data even further. Both papers note the discrepancy

between calibrated transition rates and the data, but focus on its consequences on the UI and IU flows.

In contrast to most of the literature, the models in this paper are very stylized, and we focus on

2

See Pissarides (2000) for an introductory overview.

3

See, for example, Haan, Ramey, and Watson (2000), Costain and Reiter (2008), Shimer (2005).
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discussing the theoretical properties of models, with respect to their ability to match labor market

flows. This is necessary because in order to say that a particular set of flows Λ is not admissible for

a certain model, we need to be able to characterize the whole range of flows that are possible, which

necessitates a stylized structure. The stylized models in this paper may not be directly applicable for

policy questions, but are intended to serve as a useful guide on what to incorporate into models which

are calibrated to labor market flows. This approach of characterizing the distance between data and

models with a single scalar, and focusing on simple models to explore extensions that alleviate a puzzle

was inspired by Hornstein, Krusell, and Violante (2011).

Also, this paper does not discuss the implications of the models for wages: the models are used

to put structure on the observed transition rates between employment, unemployment and inactivity.

This is not because we think that wages are not important, but because explaining flows themselves

appears to be difficult enough — also, since only the difference of wages and non-employment utility

matters for the labor market flows in the models we discuss, strong assumptions on wage processes

would be needed to connect wages and labor market flows. We leave incorporating wages for future

research.

Most of the results in the paper are analytical, but illustrated with calculations using empirical data.

However, in order to avoid making the paper unreadable, we relegated most steps in the analytical

proofs to the appendix, and only included important equations and simplified derivations in the main

text. All analytical proofs and calculations have been checked using the symbolic algebra software

Maxima (2014) and are available in the online Appendix A.

2 The benchmark model

In this section we introduce a model that serves as a starting point for the discussion of gross labor

market transition rates. This model makes a compromise between tractability and generality: it is sim-

ple enough to allow an analytical characterization of the results, yet at the same time general enough

to nest or approximate partial equilibrium features of models in the literature; in particular, the model

nests the partial equilibrium features of Garibaldi and Wasmer (2005). The model could be embedded

in a general equilibrium framework, for example similarly to Hornstein, Krusell, and Violante (2011,

Section 1.B), but this would not add to the key results of the paper.
4

2.1 Preferences and technology

Time is continuous, workers are risk-neutral, ex-ante homogeneous and discount at rate r.
5

We char-

acterize the steady state equilibrium in which job offer rates are exogenous, conditional on search

intensity. Workers are either employed or non-employed, and workers in the latter are categorized as

either unemployed or inactive based on search activity. Since the model needs to be able to generate

4

A general equilibrium formulation with job (vacancy) creation would just provide additional restrictions on the gross

flows that the model can generate, and thus the range of labor market flows generated by a partial equilibrium model is

necessarily larger than it would be for general equilibrium one. Using the latter would just complicate the formulation and

distract from Lemma 1. A partial equilibrium formulation also precludes discussion of aggregate fluctuations and policy

experiments, but both of those directions are outside the scope of this paper.

5

We refer to all agents as workers, regardless of their current employment status.
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apparent flows from seemingly inactive workers (ie those workers who are neither employed nor un-

employed, in the sense that they do not search actively) into employment, we assume that workers

who choose not to search actively also receive job offers, albeit at a lower rate.
6

Specifically, there are

two search technologies available to all non-employed workers: active search, which entails a flow cost

c with job offers arriving at rate φh, and passive search which requires no search effort (ie a cost of 0),

and makes job offers arrive at rate φm. Naturally, φm < φh. This is a very stylized specification as it

only allows a binary choice for search effort, we generalize this in Section 4.1.

Workers have an individual-specific state x that we think of as a proxy for market opportunities,

family, health, and preference shocks. Krusell et al. (2008) show that it is difficult to generate gross

labor market flows between inactivity and unemployment without these shocks even in a very rich

model with precautionary savings, in the absence of the latter this process will be the only source of

flows between unemployment and inactivity, and also, to a certain extent, from employment to non-

employment. We think of changes in x as major life events that affect the difference between labor

market productivity and the the opportunity cost of working, such as changes in personal relation-

ships or family status, a major illness, and education opportunities and attainments. The individual’s

state x determines wages w(x) and the utility flow for the nonemployed, u(x), where the latter in-

cludes unemployment benefits, home production, and the value of leisure. This implies that all worker

heterogeneity in the benchmark model is individual-specific, and there are no match- or firm-specific

sources of wage dispersion.
7

The state x is constant until a change event arrives, in which case it is redrawn from an IID distri-

bution x ∼ F . Change events arrive at rate γ, independently of other events and states, particularly

labor market status. We think of γ as being a relatively low number, because major changes in work-

ers’ market productivity or outside options are expected to be rare. Hornstein, Krusell, and Violante

(2011) refer to this kind of process as a persistent process, and it is commonly used to specify stochastic

processes which exhibit some degree of persistence (and thus autocorrelation), yet at the same time

allowing a simple characterization of steady state distributions and transition rates.

This specification is restrictive in two ways: it only allows IID distributions for x conditional on a

change event, and it imposes the same process for both the employed and non-employed. It turns out

that the latter has important implications for matching labor market flows, and we consider various

generalizations in Sections 4.3 and 4.4.
8

At the same time, the benchmark model allows an arbitrary

space for the values of x: discrete distributions, subsets of Rn
, or even combinations of the two, as long

as they capture all payoff-relevant information and new values are IID conditional on a change event.

Employed workers may separate endogenously whenever they prefer non-employment to employ-

ment — this happens if they experience a change event that results in a draw of x where the difference

between w(x) and b(x) is low. In addition, employed workers are also subject to exogenous separa-

6

As we discuss in Section 3, even though a fraction of these transition can be explained by time aggregation (inactive

workers becoming unemployed and then employed between two observations), this flow is too large in the data to be assumed

away.

7

The model in Section 4.2 can be considered a reduced-form version of extending the benchmark model with match- or

firm-specific heterogeneity in a way that marginal matches would be less robust to shocks, resulting in higher exogenous

separations.

8

A previous version of this paper also had a generalization to non-IID distributions for F , which is omitted because it

does not add significantly to the results but greatly complicates derivations.
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tion shocks at rate σ. We assume that the separation rate is uniform and thus independent of worker

surplus and history, we generalize this in Section 4.2. Table 1 summarizes the notation for parameters

and endogenous objects of the benchmark model.

parameters

x ∈ X individual-specific state and set of possible states

γ arrival rate of change events for x
F distribution of new x, conditional on a change event

w(x) wage when employed

b(x) flow value of non-employment (unemployment benefit, leisure, and home production)

φm, φh arrival of job offers for passive and active search

c flow cost of active search

σ rate of exogenous separation

equilibrium objects

W (x), N(x) present discounted value of employment, non-employment

S(x) present discounted value of the worker’s surplus

L ⊂ X low surplus: no active search, non-employment preferred

M ⊂ X marginal surplus: passive search, employment preferred

H ⊂ X high surplus: active search

qℓ, qm, qh continuous-time rate of transition to regions L, M, H, respectively

λIU, λIE, . . . observed transition rates between Inactivity, Unemployment, and Employment

λE⌊IU⌋ transition rate out of employment, λEI + λEU

ν share of marginal workers among the inactive

µ share of marginal workers among the employed

α share of λEI in λE⌊IU⌋

Table 1: Notation for the benchmark model of Section 2. Notation recycled for extensions.

2.2 Value and policy functions

LetN(x) andW (x) denote the current present value of being non-employed or employed, respectively,

with individual-specific state x. The continuous time Hamilton-Jacobi-Bellman equations are

rN(x) = b(x) + max
{
φmmax

{
W (x)−N(x), 0

}  
passive search

,−c+ φh

(
W (x)−N(x)

)  
active search

}
(2)

+ γEx′
[
N(x′)−N(x)

]  
state change

rW (x) = w(x) + σ
(
N(x)−W (x)

)  
exogenous separation

+ γEx′

[
max

{
W (x′), N(x′)

}
−W (x)

]
  

state change, maybe endogenous separation

(3)

Equation (2) states that a nonemployed worker receives benefits (which are function of x), and can

choose between passive and active search. For the former, offers are only accepted when working

is preferable to non-employment, for the latter, the formulation above anticipates that when agents
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choose to search actively, they accept the job they find. The exogenous state change always leaves

a nonemployed worker nonemployed, and thus it generates flows between inactivity and unemploy-

ment.

For an employed worker, (3) shows that the flow payoff is the wage, and the two possible transitions

are exogenous separations and state changes. Exogenous separation always moves the worker into

non-employment, while changes of the individual state can result in endogenous separation if the

worker ends up in a state where w(x) is low compared to b(x).

It can be shown that the system (2) and (3) has a unique solution using a standard contraction

argument, consequently the model parameters determine the policy function for the binary search

intensity. However, as usual in this model family, it is more convenient to analyze the model in terms

of the worker’s surplus

S(x) = W (x)−N(x)

Rewrite (2) and (3) in terms of the surplus as

rN(x) = b(x) + max(φmS(x)
+, φhS(x)− c) + γ

(
Ex′

[
N(x′)

]
−N(x)

)
(4)

rW (x) = w(x)− σS(x) + γ
(
Ex′

[
S(x′)+

]
+ γEx′

[
N(x′)

]
−W (x)

)
(5)

where S(x)+ = max
(
0, S(x)

)
.

Introduce the flow surplus s(x) = w(x)− b(x), then combine (4) and (5) into

(r + σ)S(x) = s(x)−max(φmS(x)
+, φhS(x)− c)  

opportunity cost of not searching

+ γ
(
Ex′

[
S(x′)+

]
− S(x)

)
  

change event

(6)

Equation (6) characterizes the worker’s surplus in terms of the model parameters. The effective dis-

count rate on the left hand side is the subjective discount rate r and the exogenous separation rate σ,

as exogenous separations terminate the match. On the right hand side, s(x) = w(x) − b(x) is the

flow payment for a surplus: this demonstrates that only the difference of market productivity and the

opportunity cost of working (such as the value of leisure, home production, or unemployment benefits)

matters for the determination of the surplus and consequently the search policy; in this model, wages

and flows are orthogonal features of the data, and information about one does not help in identifying

the other without additional restrictions on processes. The second term on the right hand side is the

opportunity cost of not searching, either actively or passively. The last term is for the changes in sur-

plus: since the worker will terminate the match whenever S(x′) < 0, the surplus cannot be below 0

for a new draw x′.

When S(x) < 0, the worker would not accept a job anyway, and thus defaults to passive search.

Otherwise, the worker compares the search cost c to the gain from a higher job finding rate (φh −
φm)S(x), and chooses active or passive search accordingly. Consequently, comparing c/(φh − φm)

to S(x) partitions X into three regions which characterize the policy function and are crucial for the

8



determination of flows:

L =
{
s : S(x) < 0

}
M =

{
s : 0 ≤ S(x) < c/(φh − φm)

}
H =

{
s : c/(φh − φm) ≤ S(x)

}
We choose these regions for mapping worker search behavior to the data. In region L ⊂ X (low

surplus), nonemployed workers do not search actively, and if they encounter a job, they choose to

remain nonemployed because their surplus from the job would not be positive, while in region M ⊂ X
(middle or marginal surplus), nonemployed workers still do not search actively because their surplus

does not justify the cost, but would accept a job if they were offered one. We assume that survey data

would record these workers as inactive, or out of the labor force. We call non-employed in region M

marginal inactives.

In the region H ⊂ X (high surplus), nonemployed workers search actively, and thus from now on

we assume that they are recorded in survey data as unemployed. We use ℓ, m, and h as subscripts for

notation below, always referring to the respective region.

Even though only nonemployed workers have a nontrivial choice in this model, when we account

for the distributions it is important to also distinguish employed workers based on the partition above.

Naturally, there are no employed workers in L, since employed workers ending up in this region after

a change event always quit their job, separating endogenously. In contrast, employed workers ending

up in region M after a change event do not quit, but they would not search actively if they experienced

exogenous separation. For this reason, we call them marginal employed.

2.3 Latent and observed flows

Let E, U, and I denote employment, unemployment, and inactivity (non-participation) in survey data.
9

The state of a worker is (x, {employment, non-employment}), which is mapped to E, U, and I as dis-

cussed above. Let λUI, λUE, . . . denote continuous-time transition rates from U to I, U to E, etc. We

now map model parameters to observed flows.

Since only unemployed find jobs at rate φh, it is straightforward that

λUE = φh (7)

All inactive workers transition into region H at the same rate

λIU = γ

∫
x′∈H

dF (x′) ≡ qh (8)

where we have defined qh as the product of the arrival rate of the change event, multiplied by the

probability that x′ ∈ H, since draws with x′ ∈ L⊎M would not result in an observable transition from

9

Several papers use N for non-participation, in this paper we use I to avoid confusion with non-employment.
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Figure 2: Latent and observed flows. Dotted arrows correspond changes in x. When these happen

between L and M for nonemployed workers (both of which are counted as inactive) or M and H for

employed workers, they are not observed as transitions in a dataset with three states, otherwise they

show up as UI, IU, or EI transitions. Dashed arrows are exogenous separations (EI or EU, depending on

whether x is in M or H), while solid arrows correspond to job finding (IE or UE), similarly depending

on x.
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I to U. Similarly, defining

qℓ ≡ γ

∫
x′∈L

dF (x′) and qm ≡ γ

∫
x′∈M

dF (x′) (9)

allows us to write

λUI = qℓ + qm. (10)

For the other three transitions — λIE, λEU, λEI — we have to keep track of the distribution of

workers, but only with respect to the partition X = L ⊎ M ⊎ H. This is because conditional on a

change event, shocks to x are IID, and thus once we know that the worker is in a particular region of

the state space, we know which observed transition to map to between E, U, and I. Overall, there are

six possible combinations of (L,M,H) and employment status, but only five of them have any mass

in the steady state since there are no employed workers in L.

For analytical convenience, we characterize this distribution with the total of non-employed and

employed workers in each region mℓ,mm,mh, and the mass of employed workers em, eh, where the

subscript refers to the region. Then the mass of marginal inactives is mm − em, and the mass if unem-

ployed is mh − eh.

The steady state flow balance equations for the first three are

mℓ · (qm + qh) = (mm +mh) · qℓ (11)

mm · (qℓ + qh) = (mℓ +mh) · qm (12)

mh · (qℓ + qm) = (mℓ +mm) · qh (13)

mℓ +mm +mh = 1 (14)

In each equation, the left hand side shows the outflows, while the right hand side shows the inflows.

For example, in (11), workers transition from L to M and H with rates qm and qh, respectively, while

workers flow into L from both of the latter regions at rate qℓ. Because of symmetry, it is easy to see

that the solution to the system (11)–(14) is

mℓ =
qℓ

qℓ + qm + qh
mm =

qm
qℓ + qm + qh

mh =
qh

qℓ + qm + qh

For em and eh, the steady state flow balance equations are

em · (qℓ + qh + σ) = eh · qm + (mm − em) · φm (15)

eh · (qℓ + qm + σ) = em · qh + (mh − eh) · φh (16)

In (15), the left hand side shows the outflow of workers from marginal employment because of exoge-

nous separation (σ), endogenous separation (qℓ), and transition into H (qh). On the right hand side, we

see the inflows from non-marginal employment due to change events (qm), and job finding by marginal

inactives (φm). Mutatis mutandis, (16) is interpreted similarly.
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Let’s define the fraction of marginal inactives as

ν =
marginal inactives

all inactives

=
mm − em

mℓ +mm − em
(17)

Since only marginal inactives find jobs, this allows us to write the job finding rate of all inactives as

λIE = νφm (18)

Similarly, we define the fraction of marginal employed as

µ =
marginal employed

all employed

=
em

em + eh
(19)

Now we consider separations from employment, into unemployment and inactivity. When employed

workers experience exogenous separations, they transition into inactivity or unemployment, depend-

ing on whether they are marginal. So the observed transition rate from employment to unemployment

is

λEU =
marginal employed · 0 + non-marginal employed · σ

all employed

=
eh

em + eh
· σ = (1− µ)σ (20)

In addition to exogenous separations, all employed workers transition to inactivity when they get a

change event with x′ ∈ L. Similarly to the argument in (20), the observed gross transition rate from E

to I is

λEI = µσ + qℓ (21)

2.4 Admissible gross flows

We implement the approach outlined in Section 1, by matching the transition rates λUI, λIU, λIE, λUE,

and the total separation rate λE⌊IU⌋. The model has six parameters: qℓ, qm, qh, σ, φm, φh, all of which

have to be nonnegative, and furthermoreφm < φh has to hold. This means that matching five moments

leaves us one free parameter, and it turns out to be most convenient to choose qℓ.

First, note that by adding (20) and (21),

λE⌊IU⌋ = σ + qℓ

Intuitively, all separations happen either because of an exogenous shock (rate σ), or a change in the

individual-specific state x which puts the worker in the L region, which happens at rate qℓ (cf (9)). This

gives us

σ = λE⌊IU⌋ − qℓ (22)
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and the restriction qℓ ≤ λE⌊IU⌋ because σ has to be nonnegative. Also, notice that from (7), (8), and (10),

φh = λUE (23)

qm = λUI − qℓ (24)

qh = λIU (25)

From now on, we assume that

qℓ ≤ min(λUI, λE⌊IU⌋)

This leaves φm, which we can calibrate using (18). However, since the share of marginal inactives ν is

an endogenous quantity which depends on model parameters in a nonlinear way, this turns out involve

quite a bit of algebra, with little additional intuition, so we relegate this to the appendix and present a

simplified derivation for looser bounds on α, which are quantitatively similar to the exact bound.

First, note that from (1), (21), and (22),

α(qℓ) =
λEI

λE⌊IU⌋
=

µ(qℓ)σ(qℓ) + qℓ
λE⌊IU⌋

= µ(qℓ) +
(
1− µ(qℓ)

) qℓ
λE⌊IU⌋

(26)

where both α and µ are functions of the free parameter qℓ when matching the other five moments.

Since λE⌊IU⌋ is matched to the data, (26) shows that qℓ changes α via two channels: directly and via µ.

The direct effect makes α increasing in qℓ, since 0 ≤ µ ≤ 1. The intuition behind this is simple: as the

change to individual-specific state to x′ ∈ L occurs with higher probability, EI flows become larger,

since workers in L are inactive.

As we show below in Lemma 1, µ is decreasing in qℓ, but the direct effect always dominates, and

thus α(qℓ) is increasing, but first, we derive a simplified result that is easier to understand.

From (15),

em · (qℓ + qh + σ) ≥ eh · qm (27)

since (mm − em)φm ≥ 0. Using the definition of µ (19), and the calibrating equations (22), (24) and

(25), this implies that

µ ≥ qm
qℓ + qm + qh + σ

=
λUI − qℓ

λUI + λIU + λE⌊IU⌋ − qℓ
≡ µ(qℓ)

where we have defined a lower bound µ(qℓ) on µ(qℓ). Similarly, since α is increasing in µ, we can

define a lower bound

α(qℓ) = µ(qℓ) +
(
1− µ(qℓ)

) qℓ
λE⌊IU⌋

such that α(qℓ) ≥ α(qℓ).

Now using simple algebra, it is easy to show that

α′(qℓ) =
(λIU + λE⌊IU⌋)(λUI + λIU)

λE⌊IU⌋(λE⌊IU⌋ + λIU + λUI − qℓ)2
> 0
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And thus, since α(qℓ) ≥ α(qℓ) ≥ α(0) = µ(0),

α(qℓ) ≥
λUI

λUI + λIU + λE⌊IU⌋
(28)

Having obtained a lower bound on α, it is important to mention that we can trivially drive α up to 1,

and thus make all separations go to inactivity. This can be done by making qℓ = λE⌊IU⌋, from (26) this

implies α = 1. Thus α can always be made arbitrarily large within the [0, 1] interval, and there is no

need to discuss upper bounds in this paper.

The lemma below shows that if we don’t rely on loose bounds like (27), but also calibrate φm using

(18), we can obtain exact bounds.

Lemma 1 (Bounds for α(qℓ) in the benchmark model). When the benchmark model is calibrated to λIU,

λUI, λIE, λUE, and λE⌊IU⌋,

1. α(qℓ) is strictly increasing in qℓ,

2. and has the lower bound

α∗ = α(0) =
λUI

λUI + λIU + λE⌊IU⌋(1−∆)
(29)

where

∆ =
λIE(λE⌊IU⌋ + λIU + λUE) + λIEλUI

λIE(λE⌊IU⌋ + λUE + λUI) + λIUλUE
where 0 < ∆ < 1 since λIE < λUE.

Proof. The proof is in the online Appendix A, here we just provide a sketch. Substitute (17) into (18),

and use this to eliminate the last term of (15). Solve the resulting equation and (16) for em and eh, then

use (19). Substitute in (22), (23), (24), (25), then use (26). The first result obtains from differentiation,

the second from setting qℓ = 0.

2.5 Discussion

We illustrate the implications of Lemma 1 with labor market transition values from Garibaldi and

Wasmer (2005). We choose CPS tabulations (ages 25–54) from this paper for two reasons: first, as we

will see in Section 3, their data is the closest to the model among those which we consider; second, our

benchmark model nests the partial equilibrium features of the model in Garibaldi and Wasmer (2005).

The monthly transition rates are

λEU = 0.0083, λEI = 0.0101 ⇒ λE⌊IU⌋ = 0.0184

and

λUE = 0.2561, λUI = 0.1328, λIU = 0.0461, λIE = 0.0338

14



Consequently, the loose bound of (28) is

α(0) =
λUI

λUI + λIU + λE⌊IU⌋
=

0.1328

0.1328 + 0.0461 + 0.0184
≈ 0.67

Notice that

0.1328 = λUI ≫ λIU + λE⌊IU⌋ = 0.0645

where we have highlighted the value of λUI to emphasize that it is much larger than the other flows.

In the data,

αdata =
λEI

λE⌊IU⌋
=

0.0101

0.0184
≈ 0.55

so clearly

αdata < α(0)

and thus even the loose bounds we have derived without matching λIE and λUE are violated — conse-

quently, these features of the model are not driving the results. Calculating

∆ = 0.60 ⇒ α∗ = 0.713

using (29) in Lemma 1, we can refine the bound even further. This shows that even though λIE and

λUE are not driving the result, the move α further away from the model significantly.

3 Related data and literature

Since the late 1990s there has been a growing number of papers which used frictional labor market

models with a participation margin to answer policy questions, or explain cross-country or secular

developments in participation and unemployment rates. In this section we review a subset of this

literature with two goals in mind: first, we check if the discrepancy between the data and the model

that is discussed in Section 2.4 holds in the dataset(s) used by the paper, second, to discuss to what

extent the benchmark model captures the structure of other models used in the literature, and whether

this explains why other papers have found it difficult to match labor market flows. This review is by no

means exhaustive, and we also discuss some papers that have no model, only tabulations of data. We

convert monthly transition rates to continuous-time flows using the method of Shimer (2012), which

also adjusts for time aggregation,
10

then calculate α∗
and αdata, and the discrepancy

∆α = αdata − α∗

10

Let P denote the monthly labor market transition probabilities. We find

Q =

⎛⎝−(λEI + λEU) λEU λEI

λUE −(λUE + λUI) λUI

λIE λIU −(λIE + λIU)

⎞⎠ that satisfies exp(Q) = P

using the matrix logarithm (Higham 2008).
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between the two values — when this is positive, the flows are outside the range of the benchmark

model. Note since α ∈ [0, 1], ∆α is a unitless quantity that is easy to interpret. Table 2 summarizes

the results, which we discuss in detail below.

λEU λEI λUE λUI λIU λIE αdata α∗ ∆α

Andolfatto, Gomme, and Storer (1998) .016 .016 .310 .155 .026 .022 .49 .83 .34
Fallick and Fleischman (2004) .018 .026 .404 .330 .045 .035 .59 .88 .29
Garibaldi and Wasmer (2005) 15–64 yrs .010 .016 .259 .166 .035 .044 .61 .80 .19
Garibaldi and Wasmer (2005) 25–54 yrs .008 .010 .256 .133 .046 .034 .55 .71 .16
Pries and Rogerson (2009) .011 .015 .234 .144 .038 .043 .58 .76 .19
Krusell et al. (2011) unadjusted .018 .024 .385 .318 .041 .038 .57 .87 .30
Krusell et al. (2011) broad unemployment .029 .016 .343 .336 .029 .064 .36 .80 .43

Table 2: Summary of various calibrations. Observed transition rates are monthly, corrected for time

aggregation when necessary, displayed with 3 significant digits (calculations of course use the un-

rounded values). The last three columns contain the corresponding αdata, α∗
, and ∆α displayed with

2 significant digits. 0s before the decimal dot are omitted in order to obtain a compact table. Note that

∆α > 0 for all papers indicating that the benchmark model cannot fit the data.

Andolfatto, Gomme, and Storer (1998) were among the first to emphasize the importance of the

participation margin for modeling labor markets. Similarly to this paper they use a frictional labor

market model that allows job offers for inactive workers with a probability that is lower compared

to unemployed workers who search actively. They use (w, v) ∈ X = R2
+ as a state for the workers

where potential w is the wage and v is the potential value of home production. This formulation has

the consequence that the unemployed in their model are those who have a have drawn a low wage

and home production because if either one is larger than the other the worker will search actively or

remain inactive. Also in their model the rate at which changes arrive to w is endogenous, because

search will increase the probability of new offers and unemployment benefits are history-dependent.

Despite these differences their model is very similar to our benchmark model, so it is not surprising

that they cannot match labor market flows: the ∆α calculated for their data is 0.34. They argue that the

model has difficulties matching flows into and out of the labor force, but we have seen in Section 2 that

this is not necessarily the case in this model family; however this view has influenced the subsequent

literature.

The paper of Fallick and Fleischman (2004) contains no model, but they provide a detailed and

methodologically thorough descriptive summary of gross labor market flows using CPS data between

1994:1–2003:12. We find that the discrepancy between α∗
and αdata is ∆α = 0.29.

Garibaldi and Wasmer (2005) present a model that is very close to the one in this paper — in fact the

worker side of their baseline model is nested by our benchmark model in this paper, but their model

is general equilibrium one, and is thus closed by modeling job creation. They use CPS data between

1995:10–2001:12 and calculate transition rates using the Abowd and Zellner (1985) correction. They

argue that EI and IE flows are the result of time aggregation and misclassification, but allow for a

positive job finding rate for the inactive (“jobs bump in to people”) similarly to our model in their

extended model. For their dataset, ∆α is 0.16 (ages 25–54) and 0.19 (ages 16-64) for their dataset,
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which is the lowest among the papers we examine, and the results in Section 2 explain why they

cannot calibrate to all six flows. Also, they target the share of marginally attached workers, which

makes it even more difficult to calibrate to the data: in the benchmark model, this corresponds to ν,

and as we lower qℓ to 0 to make α small, ν necessarily approaches 1, while in the data this is around

2% of the total population. Consequently, the flows from unemployment to inactivity they obtain from

the model fall short of the data by an order of magnitude.

Pries and Rogerson (2009) use model similar to our benchmark model to motivate an explanation

for cross-country differences in participation patterns. The most important difference between their

model and the one in this paper is that theirs has a job-specific state and thus it can potentially provide

richer flow patterns: we examine this possibility with a reduced form model in Section 4.2. Our model

nests all other components of theirs as both feature linear utility and binary search decisions, and their

only individual-specific state is a scalar that represents the cost associated with labor force participation

and can take two values in their parameterization, and thus X = {xb, xg}. They use March CPS data

between 1990–2000, restricting ages between 16–64 years which yields ∆α = 0.19. Consequently their

model cannot match labor market flows, but following Andolfatto, Gomme, and Storer (1998) they also

emphasize the model’s inability to explain the magnitude of IU and UI flows.

Krusell et al. (2011) construct a three-state model with asset accumulation and nonlinear utility ar-

guing that linear utility imposes implicit assumptions on income and substitution effects, which would

prevent the discussion of the role of savings. In their model workers have a scalar productivity state

st which evolves stochastically following an AR(1) process which is later extended with temporary

shocks. Saving and consumption decisions also play a role in labor market transitions, but these dif-

ferences turn out to have limited importance in practice—Section 6 of their paper discusses a setup

with complete markets which is effectively similar to linear utility. The most important difference is

that they allow only a single search intensity, arguing based on time-use surveys that search costs are

small. In order to account for IE transitions they adjust transition rates by extending the notion of

unemployment to include marginally attached workers. Calculation of ∆α for both the unadjusted

CPS data (αdata = 0.30) and the flows with the extended unemployment state (αdata = 0.49) suggest

that this data adjustment makes it even more difficult to bring the model close to the data, which is

apparent in their Table 6 which shows that the model cannot match αdata by a large margin. The most

important reason for this is that λUI is relatively high to λIU, especially after adjusting the data.

In summary even though the papers discussed above use various modeling approaches and datasets

(though mostly variants of the CPS), they cannot match labor market transition rates in the data. While

formally the benchmark model presented in Section 2 only nests special parameterizations of some

of these models, the corresponding αdatas combined with Lemma 1 suggests an explanation for this

discrepancy. Following Andolfatto, Gomme, and Storer (1998), many of these papers talk about the

difficulty of matching IU and UI flows, which is another way to interpret the results of Lemma 1:

lowering λUI and increasing λIU flows would decrease the lower bound α∗
.

Finally, since both the observed EI and EU transition rates are relatively small, it is reasonable to

assess whether the mismatch between the benchmark model and the data could be a result of small

sample sizes. In order to check this, we estimate transition rates using a Bayesian model, and draw
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posterior samples for both α∗
and αdata. Since α∗ − αdata is the smallest for the flows in Garibaldi and

Wasmer (2005) for ages 25-54, we use this dataset for the exercise.

Using a standard non-informative Dirichlet prior (Gelman et al. 2014, p 69), the sufficient statistics

of the sample are the transition rates one obtains as point estimates from a simple tabulation and the

sample size, which is inversely related to the precision of the posterior results. For illustration, we use

a sample size of N = 10000, which is orders of magnitudes smaller than spanned by a decade of CPS

data, which was used to obtain the tabulation.
11

We draw 104 points from the posterior, which allows

us to summarize posterior probabilities with a very good precision.

The result is shown in Figure 3: for all 104 posterior draws,

α∗(benchmark model) > αdata

which means that the result is extremely unlikely to be an artifact of the sample size.
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Figure 3: Posterior αdata vs the lower bound α∗
of the benchmark model, with hypothetical sample size

N = 10000, 105 posterior draws. The 45° line is dashed.

4 Extensions

Considering that α∗ > αdata for all the datasets reviewed in Section 3, we conclude that not only does

the benchmark model discussed in Section 2 have a limited range of labor market flows it can generate,

but the data appears to lie outside this range and thus the problem is empirically relevant.

In this section we discuss various extensions and check if they alleviate this problem. First, in

Section 4.1 we introduce a continuous search effort margin, while in Section 4.2 we explore how state-

dependent separation rates affect labor market flows and whether this alleviates the problem—as we

11

This increases posterior uncertainty relative to the data: we do this to demonstrate that the results would be robust in

an even smaller sample.
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shall see, neither of these lower α∗
. In Sections 4.3 and 4.4, we relax the assumption of having the same

process for the individual-specific state x for all workers: since this plays a key role in the derivation

of Lemma 1, it is not surprising that both extensions can make α∗ < αdata. We aim for global analytical

results in all of these discussions.

Finally, in Section 4.5 we consider the problem of measurement error in the form of survey mis-

classification: first, we provide a general theoretical characterization, then specifically examine the

possibility of misclassification between inactivity and unemployment. We find that this is also helpful

in matching the model to the data.

4.1 Continuous search effort

The binary search technology in the benchmark model is tractable, but very stylized. Time use studies

such as Krueger and Mueller (2012) and Aguiar, Hurst, and Karabarbounis (2013) show that time de-

voted to searching for a job displays significant variation across countries, gender, and age, and thus it

can be argued that a model with continuous search effort would be more realistic. This section extends

the benchmark model with a search effort margin, and shows that when it comes to observed flows,

the extended model can be mapped to the benchmark model and thus has the same constraints when

it comes to matching observed transition rates between E, U, and I.
12

The only change we make to the benchmark model is allowing the non-employed worker to choose

the rate φ at which offers arrive continuously, by paying a search cost c(φ). As is standard, we assume

that c is continuous, nonnegative, strictly increasing, and convex.
13

The HJB equations are

rN(x) = b(x) + max
φ≥0

get offers at rate φ, pay search cost c(φ)  {
φ
(
W (x)−N(x)

)+ − c(φ)
}
+γ

state change  (
Ex′

[
N(x′)

]
−N(x)

)
(30)

rW (x) = w(x) + σ(N(x)−W (x))  
exogenous separation

+ γ(Ex′ [N(x′) ∨W (x′)]−W (x))  
state change, possibly endogenous separation

(31)

As before, let S(x) = W (x) − N(x) and s(x) = w(x) − b(x) denote the surplus value and the flow

surplus. Then we can rewrite (30) and (31) as

(r + σ)S(x) = s(x)−max
φ≥0

{
φS(x)+ − c(φ)

}
+ γ

(
Ex′

[
S(x′)+

]
− S(x)

)
The second term on the right hand side is the opportunity cost of not searching, and the third term is

the change of value from drawing a new x′. Introduce

φ̂(x) = argmax
φ≥0

φS(x)+ − c(φ)

to denote the optimal search effort. From the assumptions on c, we know that φ̂(x) = 0 when S(x) ≤
0, and φ̂ is increasing in x. Assume that above some search effort φ > 0, non-employed workers are

12

I thank Fabien Postel-Vinay for suggesting this extension.

13

See, for example, Christensen et al. (2005).
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classified as unemployed, whereas for φ̂(x) < φ workers are classified as inactive. Let

L = {x : S(x) < 0}

M = {x : 0 ≤ S(x), φ̂(x) < φ}

H = {x : φ ≤ φ̂(x)}

Then define the observed job finding rates for workers in M and H as

φm ≡
∫
x∈M

φ̂(x)dF (x) (32)

φh ≡
∫
x∈H

φ̂(x)dF (x) (33)

Since all other parts of the benchmark model are unchanged, it is easy to see that with (32) and (33),

observationally this model can be mapped to the benchmark model. Consequently, all the conclusion

about the benchmark model apply, in particular, the lower bound α∗
is the same as in the benchmark

model, and thus this extension does not resolve the discrepancy between the model and the data.

4.2 State-dependent separation rates

In this section, we relax the assumption that exogenous separation rates are the same for all employed

workers. We can rationalize this as a reduced-form version of a model in which some jobs are less

stable than others: it would not be unreasonable to assume that jobs in which the workers’s surplus is

lower are less able to withstand certain kinds of exogenous shocks.
14

For analytical simplicity we only distinguish separation rates for marginal and non-marginal work-

ers: non-marginal workers separate at rate σ, while marginal workers separate at a higher rate σ+ δσ ,

where δσ ≥ 0. Everything else is the same as in the benchmark model: in particular, the only observed

flow that is different compared to the benchmark model is

λEI = µ(σ + δσ) + qℓ (34)

Consequently,

λE⌊IU⌋ = σ + µδσ + qℓ (35)

The flow balance equations (11)–(14) are unchanged, but for em and eh we have

em · (qℓ + qh + δσ + σ) = eh · qm + (mm − em) · φm

eh · (qm + qℓ + σ) = em · qh + (mh − eh) · φh

Similarly to Section 2, we first derive simpler bounds for α: leaving in qℓ and δσ as free parameters and

14

I thank Christian Haefke for suggesting this extension.
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using (7), (8), (10), and (35) we find that there is a lower bound on µ ≤ µ(qℓ, δσ), defined implicitly by

µ =
qm

qm + qℓ + qh + δσ + σ
=

λUI − qℓ
λUI + λIU + λE⌊IU⌋ + (1− µ)δσ − qℓ

(36)

and from (34),

α =
(1− µ)µδσ + µλE⌊IU⌋ + (1− µ)qℓ

λE⌊IU⌋
(37)

However, we can’t just plug (36) into (37), since the former has µ on the right hand side. Solving for µ

explicitly is cumbersome, since (36) is quadratic in µ. However, there is a simple transformation that

helps: define

zσ = µ · (1− µ) · δσ

and then transform (36) and (37) into

µ(qℓ, zσ) =
zσ − λUI + qℓ

qℓ − λUI − λIU − λE⌊IU⌋

α ≥ α(qℓ, zσ) =
µλE⌊IU⌋ + (1− µ)qℓ + zσ

λE⌊IU⌋

When δσ = 0, then zσ = 0, and zσ is weakly increasing in δ. Combining the two equations above,

α ≥ α(qℓ, zσ) =
zσ(λUI + λIU) + λE⌊IU⌋λUI + λIUqℓ
λE⌊IU⌋(λUI + λIU + λE⌊IU⌋ − qL)

(38)

Note that the right hand side of (38) is increasing in z, and thus it is lowest when z = 0, which happens

when δσ = 0.
15

Also, when zσ = 0 and qℓ = 0, (38) is equivalent to (28), the simple bound for the

benchmark model. The lemma below shows this result for the exact bound.

Lemma 2 (Bounds for α(qℓ, δσ) in the state dependent separation rate model). When the state depen-

dent separation rate model is calibrated to λIU, λUI, λIE, λUE, and λE⌊IU⌋, with qℓ ≥ 0 and δσ ≥ 0 as free

parameters,

1. α(qℓ, δσ) is strictly increasing in qℓ and δσ ,

2. and has the same lower bound as in the benchmark model, characterized by Lemma 1.

Proof. The proof is in the online Appendix A, and combines the logic of the proof of Lemma 1 with the

transformation zσ = µ(1− µ)δσ .

The intuition for why α is increasing in δσ is the same as for qℓ: increasing δσ increases the share of

EI flows for a given µ (direct effect) because marginal employed workers separate into inactivity, but δσ

itself decreases µ since fewer workers remain in this state. Overall, the direct effect also dominates.
16

We conclude that with this extension we do not improve the ability of the benchmark model to match

the data.

15

Except for the special cases µ = 0 or µ = 1, but this does not change the conclusion.

16

Interestingly, z is always increasing in δσ , and α and µ are both increasing in δσ , so with this transformation we don’t

even need to prove that the direct effect is stronger.
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4.3 Permanently inactive population

A crucial assumption that underlies the benchmark model is that the process for the individual-specific

state x is independent of employment status, specifically that

1. the arrival rate γ of change events is the same for employed and non-employed workers,

2. conditional on a change event, employed and non-employed workers draw their next state x′

from the same IID distribution F .

In this section we relax this assumption for inactive workers, while in Section 4.4 we introduce dif-

ferent distributions for the employed and non-employed. The IU transition rate is λIU ≈ 0.05, which

means that on average, an inactive worker would join the labor force within 1.5–2 years. However, it

is reasonable to assume that for some workers, withdrawal from the labor force is a temporary phe-

nomenon that lasts for a short duration, while some other workers, entry into the labor force would

be unlikely or impossible, for example because of a permanent disability.

We model this in a very stylized manner by assuming that a fraction ζ of the inactive population

is permanently inactive: these workers remain in the region L, never experiencing any transitions to

x (ie for them, γ = 0), and consequently would never accept a job and don’t contribute to any of the

observed gross flows. In contrast, the rest of the workers experience shocks to their state x according

to the benchmark model of Section 2, and would never become permanently inactive — in other words,

there is no mixing between the two groups. While assuming that workers could enter and leave the

state of being permanently inactive, perhaps with a low transition rate, might be more realistic, this

assumption simplifies the exposition considerably: we can simply write observed flows as a mixture

of the flows for the benchmark model and 0, weighted by the relevant share of permanently inactive

workers.

Specifically, let λ′
IU, λ

′
IE, . . . denote the transition rates of the benchmark model, and λIU, λIE, . . .

the observed transition rates as before. Since the share of permanently inactive workers among I is ζ ,

we have

λIU = ζ · 0 + (1− ζ) · λ′
IU = (1− ζ)λ′

IU (39)

and

λIE = ζ · 0 + (1− ζ) · λ′
IE = (1− ζ)λ′

IE

Moreover, since the share of permanently inactive workers among the unemployed and employed is

zero, the other transition rates are unaffected:

λUI = λ′
UI, λUE = λ′

UE, λEI = λ′
EI, λEU = λ′

EU.

Effectively, this extension of the model can be seen as nothing more than a transformation of the data,

which imposes

λ′
IE =

λIE

1− ζ
λ′
IU =

λIU

1− ζ

Using Lemma 1, it is easy to show the following result.
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Lemma 3 (Permanently inactive population.). Let α∗(ζ) denote the lowest α that the model can gen-

erate while matching the flows λIE, λIU, λUI, λUE, and λE⌊IU⌋, extending the benchmark model with ζ

permanently inactive workers a share of all inactive workers, with qℓ = 0. Then

∂

∂ζ
α∗(ζ) < 0 and lim

ζ→1
α∗(ζ) = 0

Proof. Substituting (29) and (39) into (29) mutatis mutandis, then the results follow by differentiation

and taking the limit.

The intuition is the following: in Section 2.4 we have seen that one of the things that keep α high

in the model is thatλIU is small relative to λUI. A higher ζ concentrates the same number of observed

transitions among fewer workers, effectively increasing λIU, and thus lowering α∗
because fewer of

the employed workers will be marginal, since most of them come from unemployment.

In the limiting case where ζ approaches 1, α can be driven arbitrarily low, so in a purely mechanical

sense this solves the problem faced by the benchmark model. However, for practical purposes it is

interesting to see what ζ is required to align the data with the model, ie

ζ∗ ≡ min{ζ : α(ζ) = αdata}.

Table 3 shows ζ∗ for various datasets. Clearly, a large fraction of the inactive workers need to be outside

the labor market for this extension of the model to match the data: the lowest value of ζ∗ is 55%, but

values between 80%–90% are more common. Deciding whether this fraction is plausible requires more

ζ∗

Andolfatto, Gomme, and Storer (1998) 0.86
Fallick and Fleischman (2004) 0.84
Garibaldi and Wasmer (2005) 15–64 yrs 0.66
Garibaldi and Wasmer (2005) 25–54 yrs 0.55
Pries and Rogerson (2009) 0.63
Krusell et al. (2011) unadjusted 0.84
Krusell et al. (2011) broad unemployment 0.89

Table 3: Minimum share of permanently inactive workers that matches the data to the model.

careful analysis, in particular of long-term transitions of initially inactive workers. However, while the

very stylized model presented in this section demonstrates a theoretical point very simply, it may be

difficult to map to the data, as the distinction between workers with various levels of attachment to the

labor force may not be so stark as implied by this model, and the data may require a richer structure

and occasional transitions between long-term inactive workers and the rest of the population. We

leave this for future research.
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4.4 Learning on the job

Intuitively, the ratio α is constrained in the benchmark model of Section 2 because we impose the same

process for the individual-specific state x regardless of employment status. Once we lift this restriction,

there are many ways to generalize the model, depending on what kind of difference we would like to

emphasize between employment and non-employment.

In general, these generalizations can break the connection between the flows of the employed and

the non-employed that we used to derive Lemma 1. We illustrate this with an example where the

benchmark model is extended with learning on the job: at rate δh, employed workers experience an

exogenous shock which puts their state x in the region H where they have a high surplus. Intuitively,

we think of this as a very stylized model of skill gain for the employed, but note that since δh simply

drives a wedge between transition probabilities for the employed and the non-employed, we can also

think of this as a stylized model of skill loss for the non-employed, similarly to Ljungqvist and Sargent

(1998), Ljungqvist and Sargent (2004), Haan, Haefke, and Ramey (2005), Ljungqvist and Sargent (2007b),

and Ljungqvist and Sargent (2008).

In contrast to the benchmark model, because the process for x is not independent of the employ-

ment status, we cannot write the flow balance equations for the totals M and H independently of em

and eh. Only (11) is unchanged, and for employment em and eh and non-employment mm − em and

mh − eh we have the flow balance equations

(mm − em) · (φm + qℓ + qh) = (mℓ +mh − eh) · qm + em · σ

(mh − eh) · (φh + qℓ + qm) = (mℓ +mm − em) · qh + eh · σ

em · (qℓ + qh + δh + σ) = eh · qm + (mm − em) · φm

eh · (qℓ + qm + σ) = em · (qh + δh ) + (mH − eH) · φh

The interpretation of the above equations is similar to Section 2.3, and the only difference is the high-

lighted term δh: this causes an outflow emδh from the marginal employed, which appears as an inflow

to the non-marginal employed. The characterization of µ, ν and α can be done in a manner similar to

the benchmark model, which leads to the following lemma.

Lemma 4 (Bounds for α(qℓ, δh) in the model with learning on the job). When the model with learning

on the job is calibrated to λIU, λUI, λIE, λUE, and λE⌊IU⌋, with qℓ ≥ 0 and δh ≥ 0 as free parameters

1. α(qℓ, δh) is strictly increasing in qℓ,

2. for a given δh, α(qℓ, δh) has the lower bound

α∗ = α(0, δh) =
λUI

λUI + λIU + λE⌊IU⌋(1−∆) + δh
(40)

where

∆ =
λIE(λE⌊IU⌋ + λIU + λUE + δh) + λIEλUI

λIE(λE⌊IU⌋ + λUE + λUI) + λIUλUE

Proof. The proof is in the online Appendix A.
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This implies that by increasing δh, we can drive α arbitrarily low.

Corollary 1. For this model, α(0, δh) is decreasing in δh, and in particular

lim
δh→inf

α(0, δh) = 0

Proof. Follows from differentiating (40) and taking limits. See Appendix A.

The intuition behind these results is simple: shocks that result in “learning on the job” draw em-

ployed workers away from em, into eh, and thus decrease µ. There is no direct effect on α, as δh works

via the composition effect through µ only.

calibration (qℓ = 0) δ∗h

Andolfatto, Gomme, and Storer (1998) 0.134
Fallick and Fleischman (2004) 0.189
Garibaldi and Wasmer (2005) 0.065
Garibaldi and Wasmer (2005) 25–54 yrs 0.057
Pries and Rogerson (2009) 0.064
Krusell et al. (2011) unadjusted 0.194
Krusell et al. (2011) broad unemployment 0.528

Table 4: Lowest rates for learning on the job (δh) that match the observed flows at qℓ = 0, for various

calibrations.

Similarly to Section 4.3, we calculate the lowest δh that would make αdata = α(0, δh), and thus

have the model match the observed flows at qℓ = 0. The results are shown in Table 4. A more intuitive

way of interpreting them is 1/δh, which is the expected time until a marginal employed worker gains

the skills x ∈ H — this is between 5 and 15 months for most datasets, with the exception of the broad

unemployment measure of Krusell et al. (2011). This may be because the discrepancy α∗ − αdata is

largest for this dataset for the benchmark model for reasons we discussed in Section 3, and a large δh

is needed to make up for the difference.

4.5 Misclassification

In this section we explore the implications of misclassification for labor market data. The seminal

article of Flinn and Heckman (1983) shows that inactivity and unemployment a distinct states, but

recent literature has shown that the line between the two is not very well defined. Sorrentino (1995)

demonstrates that unemployment is very sensitive to different definitions, while Jones and Riddell

(1999) argue that marginal inactives are closer in behavior to the unemployed than the rest of the

inactives. Elsby, Hobijn, and Şahin (2015) suggest removing spurious flows using a simple algorithm

that removes single-period outliers.

Potential misclassification between unemployment and inactivity is mostly relevant to the results

in this paper because occasional misclassification of workers may result in spurious flows. Since all

flows are related, we cannot just adjust them in an ad hoc manner, and in order to examine this issue

consistently, we need to specify a data generating process that relates underlying, unobserved flows to
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observed flows via a misclassification error. In Section 4.5.1, we develop a framework for a very simple

type of misclassification, in which misclassification errors are independent and identically distributed

across periods, and show how to infer the underlying transition probabilities from observed ones.

This formulation is general. We then apply it to a simple misclassification specification, in which

unemployed workers are recorded as inactive, and vice versa, with given probabilities. Parameterizing

the problem with these probabilities, we examine their effect on α∗
and αdata.

4.5.1 Theoretical framework

Fix time period t, and let pij denote the probability of transitioning to j at t + 1, conditional on the

state being i at t. We assume that the states i, j ∈ I are not directly observed, but classified according

to an IID multinomial distribution: at t and t+1, state i is observed as k ∈ K with probability mik, and

we observe transition probabilities hij . We emphasize that I and K need not coincide in the derivation

below, which is more general, even though for the specific problem we don’t make use of this.

Let πi denote distribution of states at t, and π the corresponding vector. LetP , M , andH denote the

respective stochastic transition matrices, we call M the misclassification matrix. We now characterize

H as a function of P and M . We emphasize that the space of hidden states (eg i, j) and the space of

observed states (k) need not coincide or even have the same cardinality, so M may not be square. In

the equation below, we always assume that i and j are summed over hidden states, while k and l are

summed over observed states, without making this notation explicit.

A special case is no observational error: when M = I (no classification errors), H = P . For the

general case, introduce the conditional probability that having observed k, the underlying state is i, as

ski(M,π) = Pr(state at t = i | observing k at t) =
mikπi∑
imikπi

(41)

which follows from Bayes’ rule. Then we can write the observed transition probabilities as

hkl(P,M, π) =
∑
i,j

ski(M,π)pijmjl

which can be written in a more compact form as

H(P,M, π) = S(M,π)PM (42)

Now we solve the inverse problem: given observed transition probabilities H and assuming a

misclassification matrix M , we would like to infer P . Since S is a function of π and M , we also need

to make some assumptions about π. For this exercise, we impose that π is the steady state distribution

under P , ie

π = πP (43)

This assumption is innocuous, since under reasonable conditions distributions converge to the steady
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state relatively quickly.
17

Formally, given H and M , we are looking for a solution for P , π and S such that (41), (42) and (43)

hold, and of course all probabilities are proper,

∑
i πi = 1,

∑
j pij = 1 ∀j, πi ≥ 0, pij ≥ 0 ∀i, j. Notice

that if we knew π, then we could calculate S, and solve for P in (42). The following lemma shows that

it is easy to find π: intuitively, if η is a steady state distribution under the transition matrix H , then

πM = η.

Lemma 5 (Steady state distribution π from M and H .). Fix H and M . When π is a steady state

distribution such that (43) holds, and for the resulting S (41) the equation (42) holds, then

πMH = πM (44)

or in other words, for

η = πM (45)

we have ηH = η.

Proof. For any element of H ,

hkl =
∑
j

(SP )kjmjl =
∑
i,j

skipijmjl =
∑
i,j

mikπi∑
ı̂mı̂kπı̂

pijmjl

where the first equality follows the definition of matrix multiplication, the second from (42), the third

from (41). Multiply both sides by the sum in the denominator and sum by k to obtain∑
ı̂,k

πı̂mı̂khkl =
∑
i,j,k

mikπipijmjl =
∑
i,j

πipijmjl =
∑
j

πjmjl (46)

where the second equality follows from

∑
k mik = 1 and the third from (43). Equation (44) is equivalent

to (46) in matrix notation.

Then P is calculated as follows: we find the steady state distribution η of H , solve for π from (45)

given M , then calculate S and solve (42) for P . It it important to note that the these calculations do

not ensure that P is a proper stochastic transition matrix for arbitrary misclassification matrices M :

in particular, large off-diagonal values for M may make elements in P negative. We discuss this below

for the concrete application.

4.5.2 Misclassification between unemployment and inactivity

Now we apply the results of Section 4.5.1 to labor market flows. For the sake of simplicity, we assume

that employment can be observed without any ambiguity, while the boundary between unemployment

17

Following Shorrocks (1978, Section 3), we can calculate the half-life of the Markov process described by a matrix P as

h = − log 2

log |λ2|

where 1 = λ1 ≥ |λ2| ≥ |λ3| ≥ . . . are the eigenvalues of P . For labor market flows, the half life is typically between 6–8

months, which means that (43) is a reasonable assumption.
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and inactivity is less well-defined and thus workers in either category may end up misclassified into

the other. Specifically, with an ordering of states as E, U , and I , we use a misclassification matrix

M =

⎛⎜⎝1 0 0

0 1− rUI rUI

0 rIU 1− rIU

⎞⎟⎠
Then the conditional probability matrix for observations is

S =

⎛⎜⎝1 0 0

0 1− sUI sUI

0 sIU 1− sIU

⎞⎟⎠ with sUI =
rUIπU

(1− rIU)πI + rUIπU
, sIU =

rIUπI
rIUπI + (1− rUI)πU

Taking observed transition H as given and (rIU, rUI) as parameters, we solve (45) for π, then obtain

the underlying transition matrix P .
18

Given P , we find the continuous-time transition rates Λ,
19

then

using Λ, we can analyze the discrepancy between the model and the data, in particular calculate αdata

and the lower bound α∗
for the benchmark model. The latter step is performed numerically, for but

the analytical results below we explain the intuition for the effect of misclassification on the elements

of P , as there is a monotone connection between off-diagonal elements of P and the corresponding

continuous-time transition rates.

Since M and S are invertible, we can obtain closed-form solutions. First, we find that

pEI =
hEI − rUI (hEU + hEI)

1− (rIU + rUI)
pEU =

hEU − rIU (hEU + hEI)

1− (rIU + rUI)

These equations are very intuitive. If there is no misclassification (rIU = 0, rUI = 0), hEI = pEI and

hEU = pEU. Also, pEI + pEU = hEI + hEU regardless of rIU and rUI, because the misclassification we

consider moves individuals between the I and U states, and the total outflow from E is unaffected.

For the other four parameters, the closed form solution is complicated without a significant gain

in insight, so we use perturbation methods for illustration.
20

We obtain the following linear approxi-

mation by implicit differentiation around rIU = 0, rUI = 0:⎛⎜⎜⎜⎜⎝
pIU

pIE

pUI

pUE

⎞⎟⎟⎟⎟⎠ ≈

⎛⎜⎜⎜⎜⎝
hIU

hIE

hUI

hUE

⎞⎟⎟⎟⎟⎠+ rIU

⎛⎜⎜⎜⎜⎝
− 1

C (hUU − hIU)− hII

− 1
C (hUE − hIE)

hUI

0

⎞⎟⎟⎟⎟⎠+ rUI

⎛⎜⎜⎜⎜⎝
hIU

0

−C(hII − hUI)− hUU

C(hUE − hIE)

⎞⎟⎟⎟⎟⎠ (47)

with the constants

C =
hEUhIE + hEIhIU + hEUhIU
hEUhUI + hEIhUI + hEIhUE

(48)

In the data, the job finding probability of unemployed is larger than the job finding probability of the

18

As usual, algebraic details are relegated to Appendix A.

19

See footnote 10.

20

The numerical calculations for Figure 4 are exact.
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inactive, hence

hUE > hIE (49)

For monthly and quarterly frequencies, the probabilities of staying unemployed or inactive are large,

so we can assume

hIU < hUU and hUI < hII (50)

The table below summarizes the signs of the coefficients of rIU and rUI in (47), given (49) and (50).

vs. rIU rUI

pIU − +

pIE − 0

pUI + −
pUE 0 +

Similar to Section 2, we use monthly data from Garibaldi and Wasmer (2005).
21

First, note that

because

hUI ≫ hIU and hEIhUE ≫ hEUhIE,

the numerator in (48) is much smaller than the denominator, which makes

C ≈ 0.22

Consequently, ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pIU

pIE

pUI

pUE

pEI

pEU

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.036

0.037

0.106

0.212

0.010

0.007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ rIU ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3.796

−0.780

0.106

0.000

0.010

−0.010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ rUI ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.036

0.000

−0.864

0.039

−0.007

0.007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The larger rIU is, the more inactive workers are misclassified as unemployed. The primary effect of this

is decreasing IU transition probabilities pIU, since πI ≫ πU , but it also decreases pIE and has a small

increasing effect on pUI. Since UI flows are actually increased relative to IU, it is easy to see from (29)

that increasing rIU will increase α∗
. In a certain sense, rUI has the opposite effect as rIU: introducing

misclassification from U to I increases pIU and decreases pUI, which is just what we need to decrease

α∗
.

It is important to note that not all rUI, rIU ∈ [0, 1] values are admissible for a given problem, since

values that are too large lead to negative steady state and transition probabilities. For example, consider

the mapping

π = M−1η ⇒ πE = ηE, πU =
ηU − (ηU + ηI)rIU
1− (rUI + rIU)

, πI =
ηI − (ηU + ηI)rUI

1− (rUI + rIU)

21

CPS, ages 25–54.
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which would require that

rIU ≤ ηU
ηU + ηI

, rUI ≤
ηI

ηU + ηI
,

Intuitively, when, for example, rIU is higher than this, the implied mass of observed unemployed would

exceed the actual steady state value. This is especially constraining for rIU, since ηU ≪ ηI. Because

solving (42) for P also requires inverting S−1
, we have even more constraints of the same kind, how-

ever they are not shown explicitly here because they are not very intuitive — we simply check that

P ≥ 0 and π ≥ 0 in the numerical calculations below, and only show the admissible range on the

graphs.

Motivated by this, we explore the effect of rUI on the lower bound α∗
of (29) using exact calcula-

tions instead of linear approximations: setting rIU = 0, for a given rUI we calculate P from H , then

transform to Λ, and use (1) and (29). Figure 4 shows αdata = λEI/λE⌊IU⌋ and the lower bound α∗
as

a function of rUI. Notice that a misclassification probability of around 9% can align the model with

the data. Also note, however, that the numbers allow a maximum rate of 14% for the misclassifica-

tion probability rUI, as higher values than that this would imply a negative unemployment stock. We

conclude that misclassification is a promising solution for solving the puzzle posed by Section 2, but

further work is needed to investigate its plausibility.
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Figure 4: α as a function of the UI misclassification probability rUI and its lower bound in the bench-

mark model.

5 Conclusion

We have provided a tractable analytical characterization of the range of labor market transition rates

that can be generated by a benchmark model that nests or is similar to commonly used models in the

literature. This model cannot match labor market transition rates observed in the data, and the main

reason for this discrepancy is that UI transition rates are large relative to IU, EI and EU transition rates
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while at the same time EI flows are a relatively small share of all flows out of employment. We would

like to emphasize that even though relative magnitudes of some flows help us think about this problem

intuitively, the failure of the model to match the data is not attributable to the magnitude of a single

flow.

Models with a similar logic as in Section 2 are commonly used in the literature, and thus it is

important to be aware of the fact that when it comes to replicating gross labor market flows, there is

a missing ingredient. Having considered various extensions, the following modifications to the model

could help to bring it closer to the data:

1. Inactive workers who rarely experience labor market transitions: in the stylized model we dis-

cussed in Section 4.3, they form a completely separate group from the rest of the population, but

in a more realistic model it would be reasonable to assume some mixing.

2. Different productivity processes for the employed and the nonemployed. Even though the model

of Section 4.4 motivated the process as learning on the job, all we need is a wedge between

productivity processes for the employed and the non-employed.

3. Misclassification of labor market states, particularly occasionally observing the unemployed as

inactive. We have only scratched the surface with the particular specification in Section 4.5, and

much richer models are conceivable, including non-IID misclassification where the probability

of being observed as unemployed would be increasing in the surplus, or misclassification for

only the marginal inactives.

Since these extensions to the benchmark model are all capable of matching monthly gross flows be-

tween employment, unemployment and inactivity, it is clear that they cannot be used to identify which

model is more relevant empirically. The next logical step would be checking the fit of the model to la-

bor market flow patterns across multiple periods, which are possible to obtain from both the CPS and

the LFS. Also, both Garibaldi and Wasmer (2005) and Krusell et al. (2011) show that it is important to

account for marginally attached workers, so they should perhaps be considered a different state than

inactivity. Also, the misclassification process could be made richer this way: for example, it is plausible

to argue that while unemployment and non-marginal inactivity are relatively well-defined, marginally

attached workers are more likely to be randomly identified as one or the other, with possibly non-IID

misclassification error. We leave this for future work.

Another interesting avenue for future research would be exploring the implications of this model

family for both labor market flows and the wages, for example, obtaining the wage data in a similar

manner as Haefke, Sonntag, and Van Rens (2013). This would require restrictions on the stochastic

process x and the wage function w(x) and the value of unemployment b(x).
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A Guide to the online appendix

The online appendix, available at

http://ihs.ac.at/∼tpapp/structure-of-labor-market-flows-appendix.zip

contains all the proofs for the paper, including those which are omitted from the main text but also

those which are presented with skipping trivial steps, coded in the symbolic algebra language Maxima

(2014), which is available for free under the GNU General Public License (GPL). Use either the standard

interface or a GUI like wxMaxima22
to step through the proofs. The files are organized as follows:

file content

common.mac common setup for all derivations

benchmark_model.mac derivations in Section 2, also loaded for comparison

for other models

data.mac data from various paper (cf Section 3)

state_dependent_separations_model.mac derivations for Section 4.2

permanently_inactive.mac derivations for Section 4.3

learning_on_the_job.mac derivations for Section 4.4

misclassification.mac derivations for Section 4.5

calculations.r (in R) calculations for the literature summary graph and

measurement error (Section 3), and for misclassifi-

cation (Section 4.5)

All of these files load other files when necessary, and thus may be examined individually.

22

http://andrejv.github.io/wxmaxima/
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