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Zusammenfassung: Der Datensatz von Longley dient als Grundlage fiir die
folgenden Untersuchungen: Erstens, die Bewertung der numerischen Genauigkeit
der in verschiedenen Computerprogrammpaketen zur Verfiigung stehenden OLS-
Prozeduren. Zweitens, die empirische Berechnung der Einzel-Limes-
Konditionalzahl von Farebrother. Und schlieBlich, die Einschédtzung der
numerischen Effekte von wiederholten Matrizeninversionen. Eines der wichtigsten
Resultate dieser Studie ist die im allgemeinen deutliche Verbesserung der
numerischen Genauigkeit der OLS-Ergebnisse, welche sich nach einer
spaltenweisen Mittelwertzentrierung der zugrundeliegenden Datenmatrix ergibt.

Schliisselwdrter: Numerische Genauigkeit, OLS-Prozedur, Longley’s Testproblem,
Konditionalzahl.

Abstract: Longley’s data set is used as a basis for the following projects: Firstly, to
assess the numerical accuracy of the least squares procedures of several computer
software packages. Secondly, to calculate Farebrother’s single limit condition
number empirically. Finally, to assess the numerical effect of repeated matrix
inversions. It mainly appears that mean-centering of the variables can substantially
improve the numerical accuracy and stability of the compated OLS-estimates.

Key words: Numerical accuracy, OLS-procedure, Longley’s test problem, condition
number.
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1. Introduction

Today, almost everyone uses computer software, if an arithmetical problem arises.
But only few people ask themselves how accurate the solutions are, which they get
from their computers.

Most people trust in their electronical machines like in God and forget two
important facts:

- Due to creation by humans each software product can have (and often actually -
does have) more or less severe programming bugs. '

- Due to hardware restrictions each software product can only use limited space
to handle and to store numbers. |

Let’s suppose for a moment, we have a perfect, bug-free program, which stores
both real and integer numbers as strings of 32 bits. So there are 2* distinct strings
of 32 binary digits, which may be used either to represent the integers from. -2 to
2 -1 or to represent real numbers in floating point form, a - 2.

Let’s for example reserve for the mantissa a 24 digits and for the exponent b 8
digits (with 1 digit reserved for the sign in both), then positive real numbers
between 1.5-107® and 1.7+ 10%, and negative real numbers between —1.710* and
-1.5-10® may be represented.

The accuracy is 24 binary digits' or 7.22 decimal digits (2%=10"%). As a rule of
thumb we can say:

- Each byte (8 bits) mantissa length brings 2.41 decimal digits more accuracy.

- One decimal digit more accuracy needs 3.32 bits more mantissa length.

1) 23 bits in the mantissa without the sign-bit, plus 1 digit which results from the fact that each dual number begins with a "1"
- 50 this leading digit can be omitted without any loss of information. See also Farebrother (1988), Pp- 15-16.



We see, even a bug-free program produces incorrect solutions. The crucial
questions are:

- What amount of error must we expect, if we run a specific program?
- What can we do to minimize this incorrectness?

This paper concerns with these questions in context with several programs for
OLS -estimation, which are used at the Institute for Advanced Studies in Vienna.

The following software packages have been examined*
1.) IAS-System (Inter-active Simulation System, Level IAS-3.8.0)
2.) RATS (Regression Analysis of Time Series, Version 3.03)
3.) GAUSS (The GAUSS System, Version 2.0)
4.) 1-2-3 (LOTUS 1-2-3, Version 3.1)
5.) EXCEL (Microsoft Excel, Version 2.1c¢)
6.) ASEASY (AS-EASY-AS, Versions 3.00 and 4.00b)
7.) MathCAD (MathCAD 2.50)

8.) MATRIX OPERATION-facility at the SHARP Pocket Computer PC-1403

2) At the Institute for Advanced Studies the first program package runs both on a UNISYS mainframe computer and on
IBM-PC clones, the program packages 2 to 7 are implemented on IBM-PC clones and the last one (which isn’t really a
program package) is a built-in-facility at a pocket calculator. Each of the IBM-PC clones contains a 80386 processor and a
80387 coprocessor, the operating system in use is MS-DOS, '



In order to test the OLS-estimation accuracy of these software products Longley’s
notorious data set’ has been used, see tables* 1.1 and 1.2.

X1 X2 X3 X4 X5 X6 X7 Y
1 83.0 234289 2356 1590 107608 1947 60323
1 88.5 259426 2325 1456 108632 1948 61122
1 88.2 258054 3682 1616 109773 1949 60171
1 89.5 284599 3351 1650 110929 1950 61187
1 96.2 328975 2099 3099 112075 1951 63221
1 98.1 346999 1932 3594 113270 1952 63639
1 99.0 365385 1870 3547 115094 1953 64989
1 100.0 363112 3578 3350 116219 1954 63761
1 101.2 397469 2904 3048 117388 1955 66019
1 104.6 419180 2822 2857 118734 1956 67857
1 108.4 442769 2936 2798 120445 1957 68169
1 110.8 444546 4681 2637 121950 1958 66513
1 112.6 482704 3813 2552 123366 1959 68655
1 114.2 502601 3931 2514 125368 1960 69564
1 115.7 518173 4806 2572 127852 1961 69331
1 116.9 554894 4007 2827 130081 1962 70551

Table 1.1: Longley’s data set

OLS-coefficients
bl -3482258.63459581833
b2 15.06187227137329497
b3 -0.0358191792925910166
b4 -2.02022980381682509
b5 -1.03322686717359198
b6 =0.0511041056535807145
b7 1829.15146461355185

Table 1.2 Longley’s correct OLS-solution (18 digits accuracy)

3) See Longley (1967). It shoﬁld be pointed out that Longley’s data set is only the most famous of a lot of possible and
meaningful ones, see e. g Wampler (1970).

4) Reprinted from Farebrother (1988), pp. 52-53.



The variables of Longley’s data set are highly correlated, which results in a very ill-
conditioned X-matrix, which in consequence should help us to separate the good,
L. e. the numerically stable programs from the bad ones.

Behind this approach there is the following assumption:

If the data matrix is well-conditioned, then the numerical performance of the
several OLS-programs will be expected to differ only slightly. But if the data
matrix bécomes more and more ill-conditioned, then these differences should
become more and more bigger, since the decline in numerical accuracy of a
stable program should be smaller than the decline of a bad one. Consequently
one can expect that the use of a very ill-conditioned X-matrix is similar to the
use of a very strong magnifier.

There is some evidence, that this assumption is a realistic one.



2. A Brief Description of the Examined
Software Packages in Regard of
Their Least Squares Facilities

2.1. IAS-System

In the IAS-System the *OLS-command performs OLS-estimation. We use the IAS-
System in two different adaptations (to an UNISYS mainframe computer and to a
PC).

With special commands up to 20 (mainframe) or 7 (PC) decimal digits of the
results can be displayed. ‘

2.2. RATS

In RATS there are two possibilities to perform OLS-estimation, the LINREG-
command and the MATRIX-command, MATRIX b =INV(TR(X)*X) *TR(X)*%.

With special commands up to 16 decimal digits of the results can be displayed.
RATS stores all data as double precision numbers (8 bytes per item).

2.3. GAUSS

In GAUSS there are at least seven more or less different possibilities to perform
OLS-estimation.



1.) OLS-command, OLS uses the Cholesky decomposition
2.) OLSQR-command, QR stands for QR decompositiori
3.) /-operator, varial}rt/ L, b=X%/XX, this variant is based on LU decomposition

4.) /-operator, variant II, b=y /X, this variant is "b'as_ed on forming the normal
equations and using the Cholesky decomposition to get the solution

5.) INV-command®, b =INV(X’*X ) *X’%, INV inverts invertible matrices, it uses the
Crout decomposition

6.) INVPD-commandf, b =fNVPD(X "*X)*X’*, INVPD inverts only symmetric,
positive definite matrices, it uses the Cholesky decomposition

7.) SOLPD-command, b =SOLPD(X ’y,X ’X), SOLPD uses the Cholesky
decomposition

With special commands up to 16 decimal digits of the results can be displayed. All
numbers in GAUSS are stored in double precision floating point format, and each
takes up 8 bytes (=64 bits) of memory.

The PRCSN-command, PRCSN n, allows the computational precision of some of
the GAUSS matrix operators (e. g. SOLPD, INVPD, /-operator) to be changed.
The scalar n containing either 64 or 80 (= default).

5) Some people prefer writing b=INV(X'X)*XYy instead of b=INV(X*X)*X*%, which is algebraically the same - but not
numerically! These differences arise from a sophisticated programming bug in GAUSS.

If the matrix transpose operator * is immediately followed by an operand, then it will be interpreted as ™ - see GAUSS-
Manual (1988), page 58. Neverthcless A *B"*C isn’t the same as A*B’C. In the former case the default left to right evaluation
of equal precedence operators will take place, in the second case B’C will be caiculated first. The reason is that the GAUSS-
programmers simply forget to split up when necessary the (high) precedence of the *-operator in a (further high) matrix
transpose precedence and a (lower) matrix multiply precedence.

But don’t worry! The resulting numerical differences are very small and therefore they can be neglected. )

6) See the preceding footnote.
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"

When PRCSN 80 is in effect, all temporary storage and all computations for some
matrix operators are done in 80 bits. When the operator is finished, the final result
is rounded to 64 bit double precision. The only exception is when intermediate
results cannot be stored in 80 bits in a 64K segment. This applies to matrices larger
than 80x80. In that case temporary storage is done in 64 bits instead.

24. 1-2-3

In 1-2-3 there are at least three ways to compute the OLS-estimator. Firstly, the
REGRESSION-facility with an automatically added constant term; secondly, the
REGRESSION-facility in homogeneous regression mode (the user can add a
constant term to the X-matrix); and thirdly, a combination of the MATRIX-
manipulation-facilities.

With Special commands up to 18 decimal digits of the results can be displayed.
Lotus 1-2-3 uses at least 4 up to 16 bytes of the memory to represent a number.

2.5. EXCEL

In EXCEL it is possible to compute the OLS-estimator with a combination of
matrix functions (including a matrix inverse function) or with the RGP-function’.

With special commands up to 15 decimal digits of the results can be displayed.
Microsoft Excel stores numbers to 15 decimal digits of accuracy (the so-called full
precision).

7) In the English versions of EXCEL this function is called LINEST. RGP is the name used in the German versions.
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2.6. ASEASY

Two versions of ASEASY* (3.00 and 4.00b) have been available to the author. In
both there are two possibilities to perform OLS-estimation, the E - Solve-facility
(for solving the normal equatioris) and the matrix invegse function, both in
combination with other matrix functions.

With special commands up to 11 decimal digits of the results can be displayed.
2.7. MathCAD

In MathCAD OLS-estimation can be performed eitheér using a combination of
matrix functions or using the MINERR-function for solving the equations Xb =y by
least squares in exceptional cases.

With special commands up to 16 decimal digits of the results can be displayed.

2.8. SHARP Pocket Computer PC-1403

‘The MATRIX OPERATION-facility at the SHARP Pocket Computer PC-1403
contains some basic matrix functions (e. g. invert, transpose, multiply), which can
be used to calculate the OLS-estimates. The matrix invert function is based on a
simple elimination procedure.

* At the Sharp Pocket Computer PC-1403 up to 10 decimal digits of the results will
be displayed, approximately 12 decimalA digits will be processed internally.

Within the MATRIX OPERATION-facility 8 bytes are used to store a number
(=matrix element). '

8) It should be pointed out that ASEASY is common shareware.
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3. Using Longley’s Data Set to Assess
the OLS-Accuracy of the Programs
under Consideration

3.1. Permutating the Order of the X-Variables

Now Longley’s data set (see table 1.1) and the OLS-routines described in chapter 2,
will be used to compute OLS-estimates. —

There is some reason to believe that from a numerical point of view a regression of
Y onto e. g. X1, X2 isn’t the same as a regression of Y onto X2, X1. In this context
the position of the constant term in the X-matrix is considered to be crucial. If the
constant term takes the first/last place in the X-matrix, then the numerically most
stable/worst results will be expected normally.

Taking this fact into account most of the OLS-routines had to run four times, each
time the order of the X-variables had been permutated.

Variable ordering variants:
a.) X1 X2 X3 X4 X5 X6 X7
b.) X2 X3 X4 X5 X6 X7 X1
c) X1 X7 X2 X3 X4 X5 X6
d) X2 X3 X4 X5 X6 X1 X7

For the findings of these experiments see table 3.1.

13-



Variable ordering variants
auto. a b - C d

IAS-System mainf., *OLS b 6- 8 4- 6 5- 9 3- 6
- IAS-System PC, *OLS b 5= 7 2- 5 5- 6 | 2-5
RATS, LINREG —_— 8-10 8-10 8-10 8-10
RATS, MATRIX _ 8~11 8-10 | 7-10 8~10
GAUSS, OLS a 8-11 | — | s-11 | ——
GAUSS, OLSQR _— ;1-13 11-13 11-13 11-13
GAUSS, "/" (variant I) —_— 8-10 8-10 8-10 8<10
‘GAUSS, "/" (variant II) — 10-12 | 10-11 | 11-14 | 11-13
GAUSS, INV R - 8=11 7-10 7-11 5-10
GAUSS, INVPD —_— 8-11 | 8-11 8-10 8-10
GAUSS, SOLPD _ _— 8-11 . 8-11 8-11 8-11
1-2-3, inhom.REGRESSION a 9-11. —_— —_— | ——
- 1=-2-3, homog.REGRESSION _— 9-11 10~-12 9-11 10-12
1-2-3, MATRIX —_— 9-11 10-12 9-11 10-12
EXCEL, matrix functions  — 6- 8

EXCEL, RGP o a(?) 7- 9

ASEASY 3.00, E-Solve — {1- 3

ASEASY 3.00, inv. func. S 1- 3

ASEASY 4.00b, E-Solve —— 2- 4

ASEASY 4.00b, inv.func. _— 2- 4

MathCAD, matrix func. -_— 6-10

MathCAD, MINERR _ 2- 5

SHARP, MATRIX OPERATION e 1- 4

Table 3.1: Numerical accuracy of several OLS-programs when using Longley’s data set with
different variable orders. For further explanations see the following text.

-14-



In table 3.1 much information can be found concerning the numerical accuracy of
the OLS-routines under consideration.

The first column titled with "auto." tells us, how the particular program places
the constant term automatically. We notice, only a few routines do this at all. In
this context "a" or "b" means that the constant term will be placed automatically
like in variable ordering variant a or b, i. e. in the first or last column of the X-
matrix, respectively. The question mark in the EXCEL, RGP-row stands for the

curious fact that the RGP-function displays its results in reversed a-order.

The columns titled with "a", "b", "c" and "d" contain the range of the numerical
accuracy of the particular OLS-facility according to the specific variable ordering
variant. The numerical accuracy is measured as the number of identical decimal
leading digits by comparing an OLS-routine-result with Longley’s correct solution
(see table 1.2).

For instance let the correct result be 730.192. If we compute 730.167, then we will
~ have 4 digits accuracy. If we compute 73,019.2 or 0.073543, we will count 0 digits
accuracy in both cases, because there are no identical leading digits®.

Unfortunately, this numerical accuracy measuring method is only of an
approximative nature.

For illustration let’s use an extreme example. If we compare 738.735 and 729.944
with the correct 730.192, we will count 2 and 1 digits respectively.

Now we define a more precise method for numerical accuracy measurement.

9) To make it clear: When we compare 73,019.2 and 0.073543 with 730.192, we actually compare 73,019.2 with 00,730.192 and
000.073543 with 730.192 respectively.

-15-



Definition'; Given two real numbers s, ¢s and an integer b, where b is
the decimal exponent" of cs in scientific notation T HAHHEL##,

Then s is said to be numerical accurate to j° decimal digits in regard of cs,
whgefeby J°is the biggest integer"; in the expression |s—cs|<5-107*,

_For 738.735 and 729.944 an exact numerical accuracy of 1 and 3 digits is calculated
- respectively®, |

It’'s easy to see that the exact procedure is much more complicated than the
approximative one, so we decide to use in this paper the approximative one hoping
thereby for an error compensational effect in the long run,

At this time it should be clear what e. g."7-10"in column c, row RATS , MATRIX
in table 3.1 means: The MATRIX-command in RATS calculates the seven OLS-
coefficients of Longley’s c-ordered data set with an (approximative) numerical
accuracy of at least 7 and at most 10 decimal digits respectively.

In table 3.2 the effect of the GAUSS-option PRCSN 64 can be studied. The
variables are in a-order, the entry 'n. a." means, that the particular GAUSS-
command is not affected by this option. (As a matter of fact the PRCSN-option
only affects GAUSS-commands, which are based on the Cholesky decomposition.)

10) This definition has a sometimes quite desirable characteristic: It allows negative numerical accuracy.
11) If cs =0, then =0 too.

12) In the special case |s-cs | =0 the value of j° should be set to the approximate number of decimal digits with which the
program computes.

13) It should be pointed out, that there are even more precise accuracy-measuring-methods available. For instance
Wampler (1970) has used such a still more advanced method, which results in 1.93 and 3.47 digits accuracy respectively, when
applied to our small example.
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GAUSS, OLS 8-11
GAUSS, OLSQR n. a.
GAUSSs, "/" (variant I) n. a.
GAUSS, "/" (variant II) 8-11
GAUSS, INV n. a.
GAUSS, INVPD 8-10
GAUSS, SOLPD 8-11

Table 3.2: GAUSS-option PRCSN 64, the variables are in a-order.

What conclusions can be drawn from tables 3.1 and 3.2?

- The hypothesis of numerically bad results when placing the constant
term in the last column of the X-matrix has been only confirmed in two
cases (IAS, GAUSS-INV); on the other hand 1-2-3 contradicts this
theory severely.

We think a possible explanation for this fact could be the following: The
constant-last-column-hypothesis seems to be only true, if the given OLS-
routine uses a matrix inversion algorithm for general invertible matrices
(e. g the Gauss method or the Gauss-Jordan method or Crout’s
decomposition).

- There is some evidence that the programmers of the GAUSS-OLS-
procedure have had knowledge of the possibly fatal effect of a
disadvantageously placed constant term, although their fear seems to be
unfounded in the light of the above considerations, because GAUSS-
OLS is based on the Cholesky decomposition.

In case of inhomogeneous regression GAUSS-OLS always puts the
constant term in the first column of the X-matrix. If the user defines a
constant (which need not be equal to one) and puts it somewhere in the

-17-



X-matrix, GAUSS-OLS throws away its own constant-term and puts the
user-defined one at the first place of the X-matrix.

In case of homogeneous regression the situation is quite similar.
GAUSS-OLS always detects a user-defined constant term anywhere in
the X-matrix and puts it at the first place. _ ,
Because of this reason the variants "b" and "a" couldn’t be computed with
GAUSS-OLS.

- There is a strong evidence that the *OLS-command of the IAS-System
has been programmed badly. Either a matrix-inversion-algorithm of
~ inferior quality has been used or slight programming bugs like
unnecessary rounding of provisional results have been occured or most
likely a combination of these and other failures are in action®. Otherwise
a program, which runs on a mainframe computer or on a PC respectively,
must not compute so unsatisfyingly. ’
Sarcastically speaking the PC-adaptation of the IAS-System is more
honest than the mainframe-adaptation, because the former can only
display up to 7 decimal digits of its results ...

- The numerical performance of RATS, GAUSS, EXCEL and MathCAD
seems to be ordinary PC-software standard.

- The big positive surprise is 1-2-3! It performs quite well numerically,
although OLS-estimation certainly is not its intended main purpose.

It should be noted that the results of each of the three OLS-computing-
variants of 1-2-3 are absolutely equivalent up to the last displayed digit
after the comma. So in this paper any further 1-2-3 calculations will be
done with the more effortless REGRESSION. -facility only.

- The old golden rule of thumb has been confirmed again through
ASEASY: Beware of shareware!! Strictly speaking it’s incredible: A

14) The fact of the automatically wrong placed constant term is rather a consequence of a failure (inferior matrix-inversion-
algorithm) than a failure in itself. Basing the *OLS-command on e. & Cholesky or QR decomposition should climinate this
unfortunate effect, provided that our foregoing speculation about the constant-last-column-hypothesis is correct.

-18-



program for a 386-PC has the same numerical accuracy as a pocket
calculator with 6K memory.

- We have been quite surprised that the PRCSN-option only slightlyj
affects the GAUSS-results. It seems that the differences due to less
precision are in most cases only one hundredth or one thousandth of the
differences due to the matrix-inversion-method (Cholesky
decomposition).

To summarize: In order to compute numerically accurate OLS-estimates the
GAUSS-procedures OLSQR and "/* (var. II) can be recommended When using
"/" (var. II) be sure that PRCSN 80 is in action.

Also the OLS-results of the LOTUS spread-sheet 1-2-3 seem to be o. k. from a
numerical point of view.

15) One curious fact should be reported: The */"-operator (var. IT) and the SOLPD-command perform quite different, when
PRCSN 80 is in action. But with PRCSN 64 both routines compute the same resuits up to 16 digits displayable.

-19.-



3.2. Transforming the Variables

In the next experiments Longley’s variables X2, ... X7, Y will be
transformed linearly. |

Variable transforming variants®:
e.) the variable minus its first observation
f.) the variable minus its midrange ,
g.) the variable minus its mean, inhomogeneous regression
h.) the variable minus its mean, homogeneous regression

All these linear transformations affect only the value of the intercept. The true,
i. e. untransformed intercept b1 can be calculated with the following formula;

bl = blt + cy - ¢2+b2 - ... - ¢7-b7 3.1)

blt ... the intercept” of the OLS-regression with transformed variables
CY .... thevalue which is subtracted from v
€2 .... the value which is subtracted from X2

c7 .... the value which is subtracted from X7

Consequently  the OLS-data  matrix X1yl has the form
[X1, x2-c2 *ligr «oe, X7=C7 ‘1,6 |Y-cy- 116] in variants "e", "£" and "g",
and it has the form [X2-c2-1,¢, ..., X7-c7.1,,|Y-cy- 1,¢] in variant "h",
116=(1' . o @ , 1) ' .

For the findings of these latest experiments see table 3.3.

16) Let’s motivate these transformations with an example. The variable X7 ranges from 1947 to 1962, but nothing will be °
changed substantially, if it ranges by way of example from 47 to 62 or from 0 to 15. We recognize, the original X7 contains a
lot of garbage, which subsequently lead to unnecessary big OLS-provisional results, which probably can’t be stored with full
accuracy because of limited space. We see, such transformations help to eliminate avoidable failures.

17) b1t cquals zero at variant "h”. At variant "g" it should equal zero too, but in computed reality it is only a number near
to zero.

-20-



Variable transforming variants
e £ g h
IAS-System 6~ 8 6- 8 6- 8 6- 8
mainframe, *OLS 7 7 7 ( 6) 7
IAS~-System 5= 7 5- 7 5= 7 5- 7
PC, *OLS 6 6 6 ( 5) 6
RATS | 11-14 11-14 12-15 12-15
LINREG 13 13 13 (14) 13
RATS 11-13 12-14 12-14 12-14
MATRIX 12 13 14 (13) | 14
GAUSS : 11-13 12-15 12-15 12-15
OLS 13 13 13 (14) 13
GAUSS 13-15 12-15 13-15 13-16
OLSQR 15 14 15 (14) 15
GAUSS 12-13 12-14 12-14 12-14
n/w (variant I) 13 13 14 (14) 14
GAUSS 14-16 14-16 14-16 14-16
w/" (variant II) 16 15 15 (14) 15
GAUSS 11-14 12-13 13-14 13-14
INV 13 12 13 (14) | 13
GAUSS 11-14 12-14 12-15 12-15
INVPD 13 13 13 (14) 13
GAUSS 12-14 12-14 12-15 - 12-15
SOLPD 14 14 14 (14) | 14
1-2-3 14-16 14-16 14-17 14-17
REGRESSION 15 16 16 (17) 16

Table 3.3: Numerical accuracy of several OLS-programs when using
different linear transformations of Longley’s data set. For further
explanations see the following text. '
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In table 3.3 a lot of information can be found about the (approximative) numerical
accuracy of diverse OLS-routines when applied to transformed versions of
Longley’s data set.

Each cell of the table contains either two or three entries. Let’s explain their
meaning through an example: -

In this example the OLS-coefficients b2 ... b7 have a numerical accuracy
of 1 - 2 decimal digits. The OLS-coefficient b (see formula 3.1) has a numerical
accuracy of 3 decimal digits. The figure 4 (which is putted in parentheses) makes
only sense at variant "g". It means, that the OLS-coefficient b1t (which has a true
value of zero at variant "g") contains 4 leading zeros, hence the number looks like
0.000xxx. '

What conclusions can be drawn from table 3.3?

- Rather simple transformations can substantially improve the numerical
accuracy of an OLS-routine.

- It seems, that mean-centering of the variables is s]ightly better than the
variants "e" and "£". It is not really obvious, whether "g" or "h" should be
prefered. No doubt, "h" leads to a smaller matrix to invert, but on the
other side the constant term in "g" appears to bring in some (more or less
necessary) flexibility.

- Again, 1-2-3 is the big positive surprise.

- The numerical performance of the IAS-System still remains inferior. A
closer look shows that in both adaptations (mainframe computer and
PC) the outcomes of variants "a" and "g" are exactly the same with the

exception of the coefficient bit, which doesn’t appear in "a" of course.
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Obviously mean-centering of the variables is usual within the *OLS-
command of the IAS-System.

But this new finding makes our assessment of the numerical performance
of the *OLS-command from bad to worse, because the entries in the
IAS-System-rows of table 3.1 are no longer relevant. The differences in
numerical accuracy of the IAS-System to RATS, GAUSS and 1-2-3 must
now be learned from table 3.3, strictly speaking from the columns "g" and
"h" of this table. Because only at these two variants the automatic mean-
centering of the *OLS-command can be considered to have a negligible
numerical effect. |

Let’s summarize: After throwing away the numerical garbage of the variables the
numerical performance of RATS, GAUSS and 1-2-3 becomes quite acceptable.

On the other hand the IAS-System should be used cautiously.



4, Condition Numbers

" 4.1. Motivation

In the standard linear model
y=X8+e¢ E(e) =0 E(ee') = 021 7 4.1)

where y, X, 8 and € are nxl, nxp, pX1 and nx1 matrices respectively, the least
squares estimator of 3 is given by :

b= X' X)Xy ~ (4.2)

If small changes are made to the values taken by the dependent variable
y—y + Ay, then the least squares estimator will also be subject to small changes
b-b + Ab, where

Ab = X' X)X (Ay). | 43)

The proportionate effect of these changes may be measured by the general
formula®

lasl 7 6]
layl 7 Iyl

where the choice of convenient norms is at the disposal of the investigator. In
particular if the L,-norm is adopted in all four cases, then this expression becomes

(4.4)

[(A.bl)z + .. + (A bp)z]‘/2 / [bIZ + ...+ bpz]x/z
[(Ay)* + o + (Ay)T2 [ [ + e + y2]

4.5)

18) However, it should be noted that the practitioner is not restricted to formula (4.4), although formula (4.4) does give the
clasticity of b, with respect to y, when n=1 and p=1,
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If expression (4.5) is maximized over Ay (for given y), then Farebrother’s single
limit condition number® (Farebrother’s SLCN) will be obtained.

If expression (4.5) is maximized over b and Ay, when y=X3 (and not just over Ay
for given y), then it will give rise to the double limit condition number (DLCN), also
called the traditional condition number®.

When using e. g. Longley’s data set for statistical data analysis we prefer to adopt a
condition number which better reflects the situation with which we are concerned.
Now the value of Ay is completely unknown, but the value of y is known, at least
approximately, and we therefore prefer to adopt Farebrother’s SLCN, which treats
the value of y as if it were known exactly, rather than the double limit condition
number. In particular, we note that the observed value of y does not feature in the
calculations for the double limit condition number.

4.2. Farebrother’s Empirical Single Limit Condition
Number and Derived Summary Statistics

In order to find the theoretical values of Farebrother’s SLCN and the DLCN for a
given data set, some results of the theory of eigenvalues had to be applied.

The corresponding empirical condition numbers do not make use of eigenvalues as
the necessary maximizations are performed empirically* rather than formally.
Thus Farebrother’s empirical SLCN is the largest value of expression (4.5) that the
user is able to find for a range of values of by.

19) See Farcbrother (1988), p. 168.
20) Sec Farebrother (1988), p. 169.

21) These empirical condition numbers will tend to be smaller than the corresponding theoretical condition numbers as the
latter attain the formal maximums. However, they also ignore the impact of the hardware/software-combination on the
calculations, so it is possible for empirical condition numbers to be larger than the corresponding theoretical condition
numbers.



The following four experiments (which are based on Longley’s data set) are
distinct from the ideas of influential data analysis, which is concerned with the
effect of one or more very large disturbances, whereas we are concerned with the
effect of a large number of very small disturbances. Our experiments can of course
be generalized to small variations in the full [Xy] data matrix, but there is, at
present, no generally accepted measure for the effects of such changes.

In the following all the least squares computations are done with the GAUSS-
procedure OLSQR. At the beginning of each experiment the seed for the GAUSS-
random-number-generator has been given the value 79319,

- Experiment In: The variables in the X-matrix have been "a"ordered (see
chapter 3.1.), and the Y-variable has been disturbed with a vector of N(0,0.5)
distributed random numbers. The disturbance of Y has been repeated 10,000
times, and each time expression (4.5) has been calculated. In table 4.1 a summary
statistic of this computations can be found.

Mean Std.Dev. Variance Minimum Maximum #0bs.

44.3711 32.1343 1032.6142 0.0066 194.2920 10000

Table 4.1: A summary statistic of experiment 1n

Experiment 1u: The only difference to experiment 1n is the usage of U(-0.5,0.5)
uniformly distributed random numbers instead of N(0,0.5) distributed ones. See
table 4.2 for the findings. ' "

Mean Std.Dev. Variance Minimum Maximum #0bs.

45.0943 32.0507 1027.2461 0.0271 170.7619 10000

fl- able 4.2: A summary statistic of experiment 1u
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By comparing the experiments 1n and 1u we find 194.3 as Farebrother’s empirical
SLCN for Longley’s data set. This is quite a satisfying result, because Farebrother’s
theoretical SLCN for this particular problem is 219.4, which can be empirically
obtained too, when using the vector?

-1.0537211494320050E-02
3.0456278979339730E-02
~-3.7279161517160800E-02
~7.3829249807598990E-03
6.2922919813453610E-01
2.4679411247153260E-01
-3.0646087415779010E-01
-1.9215282624859270E-01
-4.9310282956503650E~-02
-3.8400734682145700E-01
-3.7081429524225880E~-01
-2.5574286825047540E-02
1.7260157104549300E-01
-9.4795017108799950E-02
1.5990445073726200E~01
2.3967098684884080E-01

to disturb the Y-variable. We see, this specific vector only consists of small

numbers - our chosen strategy (only to use small variations when calculating
Farebrother’s empirical SLCN) seems to be reasonable in Longley’s case.

It should be noted that the order of the components of this particular vector is
crucial, because if this order is severely disarranged through permutation, then
quite normal outcomes can be expected. E. g. putting away the first component
from it’s place and appending it at the end results in a value of 68.67 for expression
(4.5), or reversing the whole vector results in a value of 10.60, and so forth.

22) This is the cigenvector corresponding to the largest eigenvalue of the matrix X(X'X) X', Al calculations of cigenvalues
and -vectors are done with the GAUSS-procedure EIGRS2.
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Experiment 2n: The variables in the X-matrix have been in "h"-order (see
chapter 3.2.), and the Y-variable has been disturbed with a vector of N(0,0.5)
distributed random numbers. The disturbance of Y has been repeated 10,000
times, and each time expression (4.5) has been calculated®, In table 4.3 a summary
statistic of this computations can be found.

Mean Std.Dev. Variance Minimum Maximum #0bs.

2.4272 1.6158 2.6108 0.0128 9.9711 10000

Table 4.3: A summary statistic of experiment 2n

Experiment 2u: The only difference to experiment 2n is the usage of U(-0.5,0.5)
distributed random numbers instead of N (0,0.5) distributed ones. See table 4.4 for
the findings. o

Mean Std.Dev. Variance Minimum Maximum #0Obs.

2.4581 1.6137 2.6039 0.0127 8.7577 10000

Table 4.4: A summary statistic of experiment 2u

Again, the empirical single limit condition number 9.97 is quite near to the
theoretical value of 11.1, which can empirically be obtained through the usage of
the vector®

-7.5802380136535300E-03
3.5456340462030870E-02
-3.6203535439509810E~02
-1.3845231308676900E-02
6.2654903623474530E-01

23) It should be pointed out that p =6 now.
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2.4754413562061830E-01
~2.9947824555949090E~-01
-1.8930513195025260E-01
-5.8931780443459480E-02
~3.8939282766476990E-01
=3.7063514272743530E-01
-2.4987069218821820E-02
1.6458798970895870E-01
-9.6235691232370180E~02
1.6553472263994440E-01
2.4692266889214630E-01
to disturb the Y-variable. Once again we see, how adequate our chosen many-
small-disturbances-strategy for Longley’s data set has been, this vector only
consists of small values too. It would be interesting to know, how our strategy

- works in the general case.

Let’s summarize: In principle the outcomes of these experiments confirm those of
the third chapter. Throwing away the numerical garbage through a method, which
only affects the mostly meaningless value of the intercept, causes more stable
results - just indicated through smaller values of Farebrother’s (theoretical and
empirical) SLCN. |

Remark: The traditional condition number (DLCN) for a range of data matrices
has been tabulated by Spith (1987), p. 44. For Longley’s data set the values
4859-10° and S5.769-10° have been specified for the variable
ordering/transforming variants "a" and "h", respectively.
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5. Using Longley’s X-Variables to
Assess the Effect of Repeated
Matrix Inversions |

5.1. The X-Variables Are Untransformed

Only a few statistical problems have an one-step-solution like the OLS-regression-
problem. For many questions numerical interpolation is necessary to get a

solution.

Having this in mind we look at the preceding results and worry about the
numerical accuracy of any interpolation result. Since, if an interpolation algorithm
stops, does it really stop, because it has approximately reached the desired
minimum/maximum/..., or because it has walked into a numerical trap?

In the light of these considerations we have planned the following experiment:
i) A=XX
ii) B=(A™)"1 A=B
iii) Repeatstep ii) many times and see what happens*,

See tables 5.1 and 5.2 for the first results when using GAUSS, INVPD and
GAUSS, INV for matrix inversion and Longley’s data set to form the X-matrix,
X=[x1, ..., x7].

24) This experiment isn't really a direct answer to the above-mentioned considerations about the numerical accuracy of
interpolation resuits.

Because no serious algorithm inverts the same matrix twice, but very often the following is done: An inverted matrix is used
to form a new matrix, which after its inversion is used to form a new matrix, which after its inversion is used to form another
new matrix, and so on.

So we think, it would be interesting to see, if there are systematic distortions or drifts caused through the inversion-
procedure in use. In case such distortions can be detected in our artificial case, then this problem could be of some
significance for the more general cases, too.
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Difference Difference

between between
sum of abs. sum of abs.
deviations deviations
Sum of & abs. sum Sum of & abs. sum
deviat. of deviat. deviat. of deviat.

Iter- from the from the from the from the

ation previous previous origin origin
1 -23863.8 0.000e+00 -23863.8 0.000e+00
2 108575.1 0.000e+00 84711.3 0.000e+00
3 -35562.9 0.000e+00 49148.3 0.000e+00
4 ~54599.8 0.000e+00 -5451.5 0.000e+00
5 -47432.1 0.000e+00 -52883.5 0.000e+00
6 -71387.0 0.000e+00 | =-124270.5 -0.000e+00
7 -101539.8 0.000e+00 ~-225810.2 0.000e+00
8 10317.0 0.000e+00 -215493.2 0.000e+00
9 10976.8 0.000e+00 ~-204516.4 0.000e+00
10 12841.3 0.000e+00 -191675.1 0.000e+00
11 79158.7 0.000e+00 -112516.5 0.000e+00
12 161852.5 0.000e+00 49336.1 0.000e+00
13 67440.6 0.000e+00 116776.7 0.000e+00
14 63942.3 0.000e+00 180719.0 0.000e+00
15 80641.4 0.000e+00 261360.4 0.000e+00
le6 -11596.7 0.000e+00 249763.7 0.000e+00
17 24062.0 0.000e+00 273825.7 0.000e+00
18 -20328.3 0.000e+00 253497.4 0.000e+00
19 39983.9 0.000e+00 293481.3 0.000e+00
20 47168.6 0.000e+00 340649.9 0.000e+00

Table 5.1; Inversion and Reinversion of X’X with GAUSS, INV

Difference

Difference
between between
sum of abs. sum of abs.
deviations deviations

Sum of & abs. sum Sum of & abs. sum
deviat. of deviat. deviat. of deviat.
Iter- from the from the from the from the
ation | previous previous origin origin
1 -65133.2 0.000e+00 -65133.2 0.000e+00
2 =-90455.2 0.000e+00 -155588.3 0.000e+00
3 -42104.2 0.000e+00 =197692.6 0.000e+00
4 11281.8 0.000e+00 ~186410.8 0.000e+00
S5 -~11555.0 0.000e+00 =197965.8 0.000e+00
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102715.3
-27779.0
-30207.6
43535.6
99380.9
63195.7
-40860.8
55608.9
39417.7
-63416.0
104915.1
=21727.4
60607.3
105334.6
-76800.9

0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

.0.000e+00

0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

~95250.4
~123029.4
-153237.1
-109701.5
-10320.6
52875.1
12014.4
67623.3
107041.0
43624.9
148540.0
126812.6
187419.9
292754.5
215953.6

0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

Table 5.2: Inversion and Reinversion of X’X with GAUSS, INVPD

The sum of deviations of a matrix M1 from a matrix MO is defined as

Tz (M1, —MO) The sum of absolute deviations is zlel -Mo, | If the
d1fference between the sum of absolute deviations and the absolute sum of

deviations is equal to zero, it follows that either MliszOi. or Mli.sMOi., for all i, .

Next, we have enlarged this experiments (100 000 iterations), see tables 5.3, 5.4

and 5.5 for the findings.
GAUSS, INV GAUSS, INVPD

Sum of Sum of Sum of “Sum of

deviat. deviat. deviat. deviat.
Iter- from the from the from the from the

ation previous origin previous origin
5000 100708.4 2110803.2 -76521.7 -7725027.2
10000 | -71628.4 3599665.8 53987.4 =-9573010.8
15000 -21985.7 =-3674926.3 101175.2 -8256405.9
20000 62399.2 1936206.7 -13105.5 -8784136.3
25000 82937.3 10425216.6 55158.6 -8534777.4
30000 -13689.8 12093280.2 -36881.6 3253689.7
35000 |-138136.0 9686586.6 -32750.4 -312355.1
40000 61272.4 4727668.7 56374.2 6913165.5
45000 ~-61111.3 5381395.8 36637.1 6892289.6
50000 12099.7 5673383.3 86231.6 ~-8111959.9
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55000 -14291.0 6106171.8 -63863.9 ~1051851.3
60000 51356.2 2557772.1 -85446.1 -6588042.7
65000 41314.4 -2183181.3 ~78978.3 -2771173.7
70000 ~-50226.4 743829.6 -21166.0 -2456247.9
75000 -48185.6 -740084.8 33137.2 ~-8562268.1
80000 -30936.8 1774699.6 74099.1 2464447.2
85000 -34857.9 2797461.6 |-201023.0 236917.8
90000 38479.0 141801.2 146955.0 -307384.0
95000 -48566.0 1149481.4 |-158613.2 4538168.4
100000 6848.0 5446346.4 |-127423.4 1094966.1
Table 5.3
GAUSS- Attained
proc. at iter. Value
Largest sum of INV 71514 178269.45
absolute deviations ’
from the previous INVPD 90444 234457.40
Smallest sum of INV 51010 2.24
absolute deviations -
from the previous INVPD 86123 1.23
Largest Difference
between sum of INV 23782 21.08
abs. deviations and
abs. sum of deviat.
from the previous INVPD 77642 13.93
Largest sum of INV 31015 14401074.51
absolute deviations
from the origin INVPD 18189 13758062.45
Smallest sum of INV 2638 209.71
absolute deviations —
from the origin INVPD 57192 1456.84
Largest Difference
between sum of INV 90014 2425.46
abs. deviations and
abs. sum of deviat.
from the origin INVPD 67454 4512.23

Table 5.4
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GAUSS- Num-
procedure ber

Number of Differences not equal to INV 27
Zero between sum of abs. deviat. &

abs. sum of deviat. from the prev. INVPD 49
Number of Differences not equal to INV 34
zero between sum of abs. deviat. & -

abs. sum of deviat. from the orig. INVPD 85

Table 5.5

The interpretations of the results of tables 5.1 to 5.5 will be made in chapter 5.2..

5.2. The X-Variables Are Mean-Centered

Now we have formed the X-matrix from Longley’s mean-centered variables
X2 ... X7. Let’s look at the findings. '
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t Difference Difference

e between between

r sum of abs. sum of abs.

- a deviations : deviations

t Sum of & abs. sum Sum of & abs. sum
i deviat. of deviat. deviat. of deviat.

o from the from the from the from the

n previous previous '~ origin origin
1 1.704e-02 0.000e+00 1.704e-02 0.000e+00
2 1.199e-02 0.000e+00 2.903e-02 0.000e+00
3 -1.236e-02 0.000e+00 1.667e-02 0.000e+00
4 -2.004e-04 -8.389e-06 1.647e-02 0.000e+00
5 -7.087e~-04 -2.660e-06 1.576e-02 ~-2.581e-05
6 -8.940e-03 0.000e+00 | 6.823e-03 =-3.252e-05
7 -6.950e~03 0.000e+00 -1.276e-04 -3.330e~-06
8 -~1.828e-02 0.000e+00 =-1.841e-02 0.000e+00
9 -8.597e-04 -3.386e-05 -1.927e-02 0.000e+00
10 -1.371e-02 0.000e+00 -3.298e-02 0.000e+00
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11 2.235e-03 0.000e+00 -3.075e~02 0.000e+00
12 =1.457e-02 0.000e+00 -4.532e-02 0.000e+00
13 1.795e-02 0.000e+00 =2.737e=02 0.000e+00
14 -1.373e-02 0.000e+00 -4,.110e-02 0.000e+00
15 4.100e=03 -8.508e-05 -3.700e-02 0.000e+00
16 9.390e-03 0.000e+00 -2.761le-02 0.000e+00
17 1.164e-02 0.000e+00 -1.597e=02 0.000e+00
18 5.664e-03 0.000e+00 -1.031e-02 0.000e+00
19 -4.,221e-03 -2.998e~-06 -1.453e-02 0.000e+00
20 6.781e-03 0.000e+00 -7.746e-03 0.000e+00
Table 5.6
I
t Difference Difference
e between between
r sum of abs. sum of abs.
a : deviations deviations
t Sum of & abs. sum Sum of & abs. sum
i deviat. of deviat. deviat. of deviat.
o) from the from the from the from the
n previous previous origin origin
1 4.332e-02 0.000e+00 4.332e-02 0.000e+00
2 1.399e-02 0.000e+00 5.731e-02 0.000e+00
3 -2.904e-02 0.000e+00 2.827e-02 0.000e+00
4 8.112e-03 0.000e+00 3.638e~02 0.000e+00
5 -4.722e-02 0.000e+00 ~1.084e-02 0.000e+00
6 -1.973e-02 0.000e+00 -3.057e-02 0.000e+00
7 2.410e~-02 0.000e+00 -6.470e-03 0.000e+00
8 5.559e-02 0.000e+00 4.912e-02 0.000e+00
9 2.601e-02 0.000e+00 7.513e-02 0.000e+00
10 -3.577e-02 0.000e+00 3.936e-02 0.000e+00
11 -5.073e-02 0.000e+00 -1.137ef02 0.000e+00
12 -2.044e~-02 0.000e+00 ~-3.181e-02 0.000e+00
13 7.145e-02 0.000e+00 3.964e-02 0.000e+00
14 1.66%9e-02 0.000e+00 5.633e-02 0.000e+00
15 -2.810e-02 0.000e+00 2.822e-02 0.000e+00
16 5.987e-02 0.000e+00 8.810e-02 0.000e+00
17 1.402e-02 0.000e+00 1.021e-01 0.000e+00
18 4.198e-02 0.000e+00 . 1l.441e~-01 0.000e+00
19 3.918e-03 -2.086e-07 1.480e-01 0.000e+00
20 1.873e-02 0.000e+00 1.668e~01 0.000e+00
Table 5.7




GAUSS, INV GAUSS, INVPD
Sum of Sum of Sum of Sum of
deviat. deviat. deviat, deviat.
Iter- from the from the from the from the
ation previous origin previous origin
5000 0.010 1.288 -0.001 -2.784
10000 0.009 0.738 0.040 -2.652
15000 0.010 -0.652 0.031 -3.952
20000 0.015 0.303 0.066 -2.467
25000 0.003 0.984 0.028 -1.271
30000 -0.003 2.360 0.014 -2.736
35000 0.003 2.745 0.026 -2.562
40000 -0.009 2.599 0.025 -1.286
45000 0.003 3.384 0.024 -3.952
50000 -0.015 3.939 0.001 -3.438
55000 0.005 3.530 0.021 0.522
60000 0.007 4,426 -0.003 -0.757
65000 0.003 4.021 0.015 -2.162
70000 -0.015 4.689 0.005 1.803
75000 -0.008 4.007 0.048 -2.337
80000 0.007 2.086 0.017 0.173
85000 0.021 2.636 -0.011 0.847
90000 0.004 2.796 0.036 0.665
95000 -0.014 1.194 -0.008 -0.589
100000 -0.012 -0.518 -0.036 -0.057
Table 5.8
GAUSS- Attained
proc. at iter. Value
Largest sum of INV 22610 0.04416234
‘absolute deviations -
from the previous INVPD 92513 0.09905036
Smallest sum of INV 83098 0.00000580
absolute deviations
from the previous INVPD 96847 0.00000359
Largest Difference
between sum of INV 95745 0.00015501
abs. deviations and
abs. sum of deviat.
from the previous INVPD 324 0.00025769
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Largest sum of INV 69141 5.37212123
absolute deviations
from the origin INVPD 15776 5.19677293
Smallest sum of INV 7 0.00013089
absolute deviations
from the origin INVPD 75 0.00079712
Largest Difference
between sum of INV 98337 0.02987833
abs. deviations and
abs. sum of deviat.
from the origin INVPD 97135 0.02599336
Table 5.9

GAUSS- Num-

procedure ber
Number of Differences not equal to INV 19195
zero between sum of abs. deviat. &
abs. sum of deviat. from the prev. INVPD 11456
Number of Differences not equal to INV 26802
zero between sum of abs. deviat. &
abs. sum of deviat. from the orig. INVPD 30206

Table 5.10

One main message of the experiments of chapter 5.1. and 5.2. is evident. Once
again, either we throw away numerical garbage or the squaring of the variables
(when forming X’X) will Seriously undermine the stability of the outcomes: From
chapter 5.1. to 5.2. the change in the orders of magnitude of the variables amounts
to 10* or 10°, while the corresponding change in the orders of magnitude of the

- results is considerably higher.
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But it’s interesting to see, that the results of chapter 5.1. also show some kind of
stability. E. g. it seems, that the sum of deviations from the origin always remains
inside a specific range?, i. e. there is no real ‘evidence of a suspected systematic
driftin a speaflc direction.

It’s also worth to note, that almost all of the deviations from the previous have the
same sign at chapter 5.1., while the corresponding results of chapter 5.2. are not so
one-sided. We think, this last-mentioned fact is worth to attain some further
investigation.

25) Should this fact be interpreted as an indication of chaos?
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6. Concluding Remarks

Our main results are the following:

- There are quite large differences in the numerical accuracy of various
OLS computer programs?.

- Throwing away numerical garbage can improve the numerical accuracy
of the OLS-computations.

These statements aren’t new, but people often forget it. They worry only about
how fast their programs calculate, but they don’t worry about how accurate these
calculations are.

All the calculations, which have been done here, are based on a single data set.
This is only a reasonable approach, if the magnifier-assumption (see the ending of
chapter 1.) holds.

Therefore it will be of great interest to repeat the computations - especially those
of chapter .- with other X-matrices. The author will be glad to be informed about
the findings of such or similar experiments.

It will also be of great interest to examine the numerical accuracy of other
procedures of several computer software Packages - in particular such procedures,
which use iteration-based algorithms to get their solutions.

Finally, we think that studies like this one can give support to the ordinary software
user, which software package should be able to meet his conceptions of
numerically accurate outcomes.

26) It is worth to note that each of the OLS-routines under our consideration has a numerical accuracy of at least one
decimal digit when using Longley’s data set. Longley (1967) has reported on routines, which perform much poorer
numerically.
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