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Abstract. The present paper models the process of issuing new equity
as a three-stage game. First the issuing firm is allowed to negotiate
with several investment-bankers on an underwriting contract. Then the
shares are issued at a primary market to the public and, finally, investors
can trade shares at a secondary market. Under symmetric information
the costs of issuing shares in equilibrium consist of two parts: Under-
pricing at the primary market and the cost of an underwriting contract,
where the incentive to conclude the latter stems from the danger of even
more severe underpricing in a non-underwritten issue.

1. INTRODUCTION

A phenomenon which has attracted considerable attention in the lit-
erature on financial markets is the fact that new issues of shares are fre-
quently underpriced, when measured against the price at the secondary
market [Asquith and Mullins, 1986; Kalay and Shimrat, 1986;
Masulis and Korwar, 1986; Mikkelson and Partch, 1986; Ritter,
1987; Smith, 1986; concerning initial public offerings see: Ibbotson,
Sindelair and Ritter, 1988; Tinig, 1988]. Recent explanations of
this phenomenon draw on the literature on signalling games and present
models, where asymmetric information is responsible for underpricing
[Rock, 1986; Beatty and Ritter, 1986; Gale and Stiglitz, 1989;
Grinblatt and Hwang, 1989; Welch, 1989], or where reputational
effects are present [Tinig¢ , 1988]. A more fundamental reason for the
phenomenon can be found in the fact that underpricing has to generate
an incentive for investors to actually buy at the primary market, rather
than wait for cheaper opportunities at the secondary market [Parsons
and Raviv, 1985).

The model to be presented rules out any asymmetric information, but
still generates the underpricing phenomenon, demonstrating it to be a
much deeper rooted effect. Moreover, no assumption on price-parametric
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behavior on the part of investors will be used. Rather a full game with
rational players is specified which encompasses all of the stages of an
equity issue. This full specification allows an identification of all costs
of issuing shares, except out-of-the-pocket expenses (transactions costs)
which would present frictions and are, therefore, ruled out.

Very informally the costs of issuing shares can be described as follows:
Even if the issue is guaranteed to succeed ("underwritten”), multiplicity
of equilibria at the secondary market may make it optimal for the issuer
to underprice the issue at the primary market. The reason for this is that
underpricing may be the only device to induce investors to order shares
at the primary market, rather than wait for a (possibly) lower price at
the secondary market. That it may indeed be preferable for the issuer to
activate the primary market, even if strong underpricing is required to
do so, can be due to discontinuities of the mapping associating outcomes
of the primary market with an equilibrium at the secondary market: An
inactive primary market may lead to a sharp drop of the price at the
secondary market. If the issue is not underwritten, an extra source of
underpricing emerges: Self-fulfilling expectations on the failure of the
issue may only be avoidable by underpricing the issue at the primary
market even more severely. The latter constitutes an incentive for the
issuing firm to contract an underwriter and identifies the second major
source of costs. Since underwriting-contracts are not traded at cen-
tralized markets, but are negotiated between the firm and investment-
bankers, the latter can extract a reward for their service of guarantee-
ing the issue. This reward or rent may be non-vanishing, as long as
there are only finitely many investment-bankers, despite the fact that
potential underwriters engage in a kind of Bertrand-competition while
bargaining with the issuing firm on the conditions of a contract. Thus
the costs of issuing shares are due to the interdependence of three differ-
ent types of markets: A bargaining market for underwriting-contracts, a
primary market with a price-setting monopolistic supplier of new shares,
and a secondary market which operates like stock-exchanges organized
as so-called ”specialist-markets”.

This paper has no intention to reject explanations of underpricing
based on asymmetric information. Quite on the contrary, these are
valuable models of other sources of underpricing. The point here rather
is that those costs of issuing shares identified in the sequel may emerge
even under symmetric information (in fact even under complete infor-
mation).

The plan of the paper is as follows: Section 2 introduces informally
the three-stage game and Section 3 gives some heuristics on the results.
Sections 4, 5, and 6 contain the rigorous definitions and the analysis
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of the subgames at the secondary market, the primary market, and the
market for underwriting-contracts, respectively. Section 7 draws some
conclusions and summarizes.

2. DESCRIPTION OF THE GAME

The game to be studied in the sequel is a three-stage game between
n + m + 1 players, n > m > 2. The players are:

(i) A single firm, who wishes to finance an investment project by
a new issue of seasoned shares (equity). The firm is risk neutral, not
allowed to hold its own stock, and a profit maximizer, where profit is the
profit from the operation of the business (held constant throughout) plus
the revenue from the share-issue minus its cost. In order to successfully
finance its project, the firm has to raise a given amount of money via the
issue and, if it fails to do so, the project has to be cancelled (cancellation
is costless).

(ii) There are m > 2 investment bankers, indexed for most of the
time by j € M = {1,...,m}, whose business is to potentially function as
underwriters of the issue of new shares. They are also profit maximizers,
but they have no interest in long-term holdings of stock. That is to say
that investment bankers (frequently referred to as "underwriters”) are
true financial intermediaries, who command a very large budget (in any
case larger than the cost of the firm’s project), but who are not long-
term shareholders. Formally the latter will be reflected by the fact that
holdings of shares by investment bankers at terminal nodes of the game
dd’?not yield them any payoff.

(iii) Finally there are n, n > m, private investors, who will be the
ultimate holders of shares. Investors are indexed by i € N = {1,...,n}.
Their preferences will be described below.

The economic environment is one with only two commodities, a con-
sumption good and shares. The consumption good (which serves as
the numeraire) can also be thought of as "money”, when shares are
thought of as "risky assets”, or as "present consumption”, when shares
are thought of as (possibly risky claims on) ”future consumption”. The
investors’ preferences allow all these interpretations: Preferences for in-
vestor 1 € N are represented by a utility function u': R2 — R which
is assumed smooth (C®), strictly monotone increasing in both its argu-
ments and strictly concave,

ub >0, ul, <0, uj,>0, k#h,

for h=1,2,k=1,2, i€ N, (where subscripts denote partial deriva-
tives) and satisfies

ui(z, ) —rzm0 400, ub(.,T) —z0 +o0,VieN,’
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that is, indifference curves stay away from the boundary. Investors are
maximizers of expected utility, and enter the game with endowments
(wi, Si) € R4+ x R4, where w; > 0 is the endowment with the first
commodity (consumption good, money, or present consumption) and
S; > 0 denotes the endowment with seasoned shares. An investor, for
whom S; > 0 holds, is called a shareholder. Endowments may, of course,
change in the course of the game. Denote S = } ..\ Si. The firm has
no endowment of either commodity.

In case the firm succeeds in financing its investment project, the return
on (one unit of) a share will be (a function of) a random variable, R(6),
with values in a compact interval in R, such that R(8) > 0, V8. The
distribution of the state variable § € Q is given by u: @ — [0, 1], and
satisfies

/ R(6)du(8) > 1
Q

(such that at least risk neutral investors would wish to hold shares), and
is continuous and common knowledge. This may sound slightly removed
from the picture of an equity issue. But R(6) can simply be taken to
be the firm’s liquidation value in the future divided by the number of
all previously issued shares and converted into real consumption. Thus
there is no problem with evaluating shares by multiplication with R(6).

An investor 1 € A, who holds at a terminal node of the game an
endowment z; of the first commodity and (; shares, derives a payoff of
Jo ¥ (zi, R(6)G) du(6).

The three stages of the game work as follows: The first stage is a T-
period (T finite, but large) sequential non-cooperative bargaining game
without discounting between the firm and the m investment bankers on
an underwriting contract. The constituent bargaining steps are bilateral,
but at each step both bargaining partners have an option to withdraw
and contact an other bargaining partner. Since all of this happens un-
der perfect information, potential underwriters effectively engage in a
kind of Bertrand-competition. The details of the bargaining game are
specified in Section 6. Suffice it here to say that a contract with a sin-
gle underwriter is assumed sufficient to guarantee the issue. Thus the
formation of syndicates of underwriters is not considered in the present
paper, but rather it is assumed that each one of the investment bankers
commands a sufficiently large budget to guarantee the whole issue. An
underwriting contract is assumed to be a firm commitment underwriting
contract (which is, however, not a restrictive assumption, as we argue
in Section 5), such that the bargaining is on the price which the un-
derwriter will have to pay for the shares. The number of new shares is
exogeneously fixed at s > 0.



The second stage of the game is termed the primary market. If the
bargaining at the first stage of the game ended with an agreement on a
contract, one of the investment bankers (underwriters) will supply the
shares to the primary market. If the bargaining failed, the firm will
supply the shares to the primary market. In the latter case the firm
must succeed in selling all new shares (or some prefixed proportion) at
the primary market, because otherwise the issue will fail and the in-
vestment project will have to be cancelled. If the issue, on the other
hand, is underwritten, then, in case not all new shares are sold at the
primary market, the investment project is not cancelled (but financed
from the underwriter’s funds), and the underwriter will dump the re-
maining new shares onto the secondary market. That the underwriter
does not simply hold the remaining shares is a consequence of the as-
sumption that investment bankers are pure financial intermediaries and
not institutional investors: They derive no profit from holding shares
beyond the secondary market.

The issue at the primary market is a public offering (general cash-offer
or arights issue): The supplier of new shares sets a price, denoted p°, and
chooses an issuing method (e.g. general cash-offer or non- renounceable
rights issue, among others) which are publicly announced and binding.
Then investors can (simultaneously) take up the offer (if it is a rights
issue, only as far as their rights allow them to) entirely, partially, or
not at all. The price at which investors may take up the offer is the
price announced by the supplier beforehand and cannot be changed in
the light of conditions at the primary market. The extend to which
investors take up the offer and the primary market price p°® constitutes
the outcome of the primary market and determines the endowments with
which investors move on to the secondary market.

. The third stage of the game is the secondary market, where price-
setting power is now reversed. If the supplier at the primary market
did not sell the whole issue s > 0 (and the project did not have to be
cancelled), the remaining new shares are dumped onto the secondary
market by a market order, that is an offer to sell all remaining shares
at the best price available. Investors, on the other hand, are allowed to
play limit orders at the secondary market. A limit order is an offer to
buy (sell) up to a specified maximum quantity at any price equal to or
below (above) a specified bid- (ask-) price. Once investors have (simul-
taneously) submitted their limit orders, a market maker (”specialist”)
determines a market bid- and ask- price at which the (turnover maxi-
mizing and profit maximizing for the specialist) transactions are carried
out. The spread is the specialist’s profit. This game form indeed resem-
bles quite closely what happens on real-world stock exchanges (namely
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so-called specialist-markets, like the New York Stock Exchange) which
tend to be highly centralized markets with similar clearing devices.

Once transactions at the secondary market are carried out, the game
terminates and players receive their payoffs. The firm’s (net) payoff con-
sists of what the underwriter paid for the new shares, if the bargaining
at the first stage was successful, and of the proceeds from the primary
and secondary market from selling the shares, if no underwriting con-
tract was agreed upon and the issue did not fail. If the issue failed,
the firm'’s payoff is zero, because cancellation of the project is costless.
An underwriter, who did not succeed in concluding a contract, always
receives zero payoff. A successful underwriter receives the revenue from
selling the shares at the primary and secondary market minus what he
had to pay to the firm. Investors derive their utility from their final
holdings of the consumption good and shares.

The particular extensive forms for the three markets (stages) are spec-
ified in more detail in the corresponding sections. The solution concept
for the game will be subgame perfect Nash equilibrium [Selten, 1965].

3. SOME HEURISTICS ON THE RESULTS

The present paper contains several messages, depending on how one
reads it. The first and probably major one is on how the costs of is-
suing shares are generated. We identify and analyse two major sources
of costs: The first is that new issues of shares may be underpriced at
the primary market, when measured against the price at the secondary
market. The second source is that, to guard against excessive under-
pricing, an underwriter may have to be employed. And the service of
guaranteeing the issue is costly, even if potential underwriters engage
in Bertrand-like competition, whenever this competition is via free bar-
gaining. These identifications are nothing new as such. What may be
new, 1s, how difficult it is to rigorously derive these conclusions in a
completely specified model, where traders do not take prices as given,
but are rational players in a game.

In fact this paper has grown unfortunately long and technical, because
our original intuition was (mis-?) lead by considering worlds with price
parametric behavior. We should have learned by now that many of these
intuitions do not survive the tough test of non-cooperative game theory.
Still it is interesting to see that some intuition from a world with price
parametrically behaved individuals does indeed carry over to full games.
Consider for the moment a world, where investors always take prices at
the secondary market as given and do not - not even at the primary
market - conceive any influence on the secondary market price. Then
shares at the secondary and the primary market are perfect substitutes,
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such that investors would wish to buy shares exclusively at the primary
(secondary) market, if p° < p' (p® > p'), where p! denotes the price at
the secondary market. For p° = p! investors would be indifferent. Thus
in order to sell anything at all at the primary market, shares have to
be underpriced, p° < p'. The supplier of shares to the primary market
will, consequently, sell all shares at the primary (secondary) market, '
if p° < p! (p° > p'), and has thus, in (p', p°)-space, Leontief-type
preferences with the kink at the diagonal. Figure 1 illustrates.

(Insert Figure 1 about here)

In Figure 1 the bold folded curve is the graph of the correspondence
mapping p° into p! for a given allocation of new shares to investors
which sums to s, i.e. such that all new shares are sold at the primary
market. The price p denotes the price obtained at the secondary mar-
ket, if nothing is sold at the primary market (it is located, where the
folded curve intersects the diagonal at point B, because this will always
be an equilibrium price at the secondary market, if nothing is sold at
the primary market, though it may not be the only one). All indiffer-
ence curves of the supplier of new shares will look like the Leontief-type
indifference curve through point C at the diagonal. Point A, obviously,
is the optimal (p°, p')-combination for the supplier, and point A is an
underpricing equilibrium, because p' > p° holds.

- Have we explained underpricing by this simple example? The answer

% is, of course, negative, because point A is a critical equilibrium (where
© the partial derivative of excess demand at the secondary market with

respect to p! vanishes). And, even if one is willing to concede that
at large markets individual investors have so little influence that price
parametric behavior is a good approximation, this certainly does not
hold true for critical equilibria. But it was precisely the assumption of
price parametric behavior which induced the Leontief-type perferences
of the supplier and led to the selection of a critical equilibrium. (Of
course, if the equilibrium correspondence does not have a fold, as in the
example, then a regular equilibrium will be selected, but then p® = p!
in equilibrium.)

Thus it is essential to specify the game at the secondary market com-
pletely, in order to understand, whether an equilibrium like point A
in Figure 1 may in fact obtain also, when investors do not take prices’
as given at the secondary market. On this issue we have interesting
results to offer: Under the specification of the game adopted for the
secondary market (which resembles closely the rules at real-world mar-
kets), it can be shown that all active equilibria are Walras-equilibria.
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The price which has to be paid for this result is that, although investors
at the secondary market now behave as if they would be price-takers, at
the primary market they are now very much aware of their influence on
the price at the secondary market. In particular, investors now do not
conceive shares at the primary market and at the secondary market as
perfect substitutes. None of the elegant arbitrage arguments does apply,
once investors understand how their actions at the primary market will
translate into the secondary market price. Still we can show that slightly
weaker propositions apply, stating that, under certain conditions, activ-
ity of the primary market in equilibrium will require underpricing. Thus
the first source of the costs of issuing shares may at least hold true also
in a fully specified game.

Moreover, it turns out that underpricing can in principle be broken
into two parts: There is an "unavoidable” degree of underpricing, stem-
ming from the incentive to activate the primary market, which is present
even if the issue is underwritten. But there may be an "extra” degree of
underpricing, if the issue is not underwritten, stemming from the lack of
public trust into the success of the issue. The second part can be avoided
by contracting an underwriter which may explain the widespread use of
this arrangement.

The second source of costs also survives the game-theoretic test. Since
the situation here is reversed in that traditional wisdome would suggest
that this cost should not exist, results here are even slightly stronger:
The equilibrium, where it is costly to contract an underwriter, though
not unique, has very desirable game-theoretic properties.

Are we thus back to the old story? Not quite, because first of all we
only study one particular (class of) equilibrium (equilibria) and it is pos-
sible that there are others which make issuing shares virtually costless.
This should be a warning against to much hope put onto the search for
empirical regularities. Second, the results are generated by the partic-
ular interplay of three different types of markets: A bargaining market
with price-competition, but bilateral negotiations, a centralized mar-
ket, where only one supplier has price-setting power, and a centralized
market, where all investors can set limit orders. Changing one of these
institutions may change the results. If, for example, primary market is-
sues are sold by sealed bid auctions (as in France) or by tender (as in the
UK or Austria), equilibria with overpricing may result. In fact, since the
institutional arrangements at the primary market are crucial, this may
be a potential field for designing optimal institutions via regulations on
primary market issues. The present analysis can also be understood as
a first step towards understanding the mechanisms involved. _

The latter may even be read as another message of the present pa-
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per: The outcomes of markets depend on the institutional details of the
market-organization and the interdependence among different types of
markets [a point already made by Shaked, 1988]. Finally we should
remark against a possible misinterpretation of the term ”costs of issuing
shares”: There is nothing in the analysis to follow that allows welfare
conclusions, i.e. costs of issuing shares are not necessarily welfare losses
(or gains). The next section starts the analysis of the game by working
backwards, i.e. starting with the secondary market.

4. THE SECONDARY MARKET

The secondary market is the spot market for shares which opens after
the primary market has closed and the allocation on the primary market
has become public knowledge. Investors come to the secondary market
endowed with their endowments of old shares plus their purchases of
new shares at the primary market and with their original endowments
of the first commodity (the consumption good) minus what they paid
for new shares at the primary market. There are two crucial differences
on the secondary market as compared to the primary market: Now any
_investor may also supply shares to the market and the supplier of new
shares at the primary market (the underwriter) is now forced to supply
any number of new shares which he did not yet sell at the primary market
~ and he cannot set a price. But, on the other hand, on the secondary
market any investor has an influence on the price by being allowed to
~ submit a limit order.

The operation of the secondary market is given by the following game:
.‘ Flrst a market maker (a "specialist”) announces an opening price. The
opemng price is, however, not binding, but is a pure coordination device
which the investors may well ignore, if they wish so. Once the opening
price has been announced, each investor i € A submits, simultaneously
with the others, a limit order which is a (maximum) quantity of shares
offered or demanded at the secondary market plus a limit price. A limit
price is a bid-price, if the quantity demanded from the market is positive,
and is to be interpreted as the maximum price which the bidder is willing
to pay for the quantity demanded. A limit price is an ask-price, if the
quantity offered on the market is negative, and is to be interpreted as the
minimum price which the supplier stays ready to accept for the quantity
offered. A (pure) choice for an investor on the secondary market is thus
a duple

(i 3}) € Ry x [-S; — 57, 00),

consisting of a limit price p; > 0 and a maximum quantity s} supplied
to or demanded from the market, where s? denotes the purchases of new
shares from the primary market by investor :.
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Once all limit orders by investors are submitted, the market maker
(the "specialist”) determines the trades which maximize turnover in
terms of quantities of shares and announces a corresponding market
bid-price and a market ask-price (which may not be equal), such as to
maximize the spread. If the market bid-price strictly exceeds the market
ask-price, the spread is the specialist’s profit. Transactions are carried -
out at these market prices. Since the specialist’s behavior is completely
determined by the rules of the game, he will not be considered as an
active player, but rather as a mechanism.

The underwriter has no move at the secondary market: He supplies
the quantity s — ) ;.\ ¢ > 0 to the market by a market order (again
Zie A 8¢ denotes the total quantity of new shares sold at the primary
market). A market order is an offer to sell (at most) the quantity s —
Y ien 5¢ at the best possible price. That the underwriter is not allowed
to set an ask-price is meant to portray that on the secondary market he
is forced to sell anything he did not yet sell at the primary market.

Let p = (pi)ien, si = ¢} — Si — s, where ¢} denotes final holdings of
shares by investor ¢ € N, and let s’ = (s});en. Say that the secondary
market can be active, if 3(z, j) € N x N': s! >0, s} < 0, and p; > pj,
orif s —3 . a7 > 0and 3 € A: s > 0. If the secondary market can
be active, define functions

Za(p's (ps') = ), max0, s},
JE{iEN|p;i>p!}

Z,(p', (p, s')) = — Z min|0, s}] +s — Z 55 .

JE{1EN] ri<pt} 1EN
Also define
b(p, s') = sup{p' € R+ |Za(p", (p, s")) = Z,(», (p, s*))},
a(p, s') = inf{p' € R4 | Z4(p', (p, s')) < Z, (9", (p, s"))},

b(p, s') = max{p' € Ry |Za(p', (p, s")) = Za(b(p, s*), (p, s"))},
a(p, s') = min{p' € R, | Z,(p", (p, s')) = Z,(a(p, s*), (p, s'))},

and observe that by definition of b and @ also

b(p, 31) = inf{pl € %-l- IZd(pI’ (pa 31)) < Za(pl’ (P, 31))},
a(p, s') = sup{p' € R4 | Za(p', (p, ")) > Z.(p", (p, s"))},

and 5 2> b, @ > a holds. The bid-price b is the minimal bid among
demanders, who will actually trade non-zero quantities at the turnover-
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maximizing trades. The ask-price @ is the maximal ask among suppliers,
who will actually trade non-zero-quantities at the turnover-maximizing
trades. The bid- and ask-prices b and @ are the market bid- and ask-
prices, maximizing the spread. By definition Z, is (a) monotone decreas-
ing (step function) and Z, is (a) monotone increasing (step function) in
P
The rules of the secondary market game are formalized as follows: If,
given (p, s!), the secondary market cannot be active, no transactions
take place. If the market can be active, then:

(1) If Z4(&(p, s'), (p, s*)) = Z,(a(p, s'), (p, s')) then each investor sub-
mitting some limit order (p;, s}) with p; > b(p, s') and s} > 0, or
pi < a(p, s') and s} < 0, will get the quantity he ordered at a price
b(p, s?), if s} > 0, or sell his quantity at a price a(p, s!), if 5; < 0.
The underwriter (or the firm) will get a(p, s')[s — 3 ;cpr 87 in return
for supplying s — 3 ;e ¢ to the market.

(2) If b(p, s') = a(p, s'), then either (1) is applicable, or one side
of the market is longer than the other, but trade is possible. Sup-
pose Zd(é(p’ 51)7 (pv sl)) > Z.,(c'z(p, 31)7 (pa 31)) (the rule, if the in-
equality is reversed, is exactly analogous). Then all investors in the
set {i € N|p; = b(p, s'), s} > 0} will be rationed with a certain proba-
bility, i.e. a random mechanism, the distribution of which is supported
on a set contained in

II [0, 531,

JE{IEN | pi=b(p, s1), s} >0}

decides on who is rationed to what extend. (Higher bidders are always
served first.) The random rationing mechanism may depend on arbitrary
public information in the game, but must be such that for each j € {i €
N|pi = b(p, '), s} > 0} the probability of [s] — ¢, s;] and [0, €] is
strictly positive for any € > 0 (i.e. everybody in this set has a chance
to get nothing and a chance to get what he demanded). Moreover, the
rationing mechanism must ensure that all of the supply is distributed.
In particular this implies that, if there is only one ¢ € N bidding b, then
this investor will be rationed deterministically. Demanders (s} > 0) will
again pay b(p, s') per unit of whatever they are allocated and suppliers
(s} < 0) will obtain a(p, s') per unit supplied to the market.

Investors on the secondary market do not pay or obtain the price they
specified in their limit orders, but demanders pay b(p, s') and suppliers
obtain a(p, s') per unit traded. The reason for this is that the market is
made by a specialist, who has to maximize turnover, but must treat all
investors symmetrically. That is the specialist may, by setting market
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bid- and ask-prices, maximize his profit (viz. the difference between the
turnover evaluated at the market bid-price and the turnover evaluated
at the market ask-price), but is not allowed to discriminate against in-
dividual investors. Thus only marginal traders are charged their limit
prices.

That the rules (1) and (2) completely specify the rules of the game is
demonstrated in the first lemma. (Proofs of lemmas and theorems are
gathered in the Appendix).

LEMMA 1. (i) b(p, s*) > b(p, s*) > a(p, s*) > a(p, s).
(ii) If the market can be active, then b(p, s') > d(p, s!) implies

(ii.a) Za(p", (p, sY)) = Z,(p*, (p, s')), Vp' € (a, b),

Zd(z(pa 31), (p7 sl)) = Zd(é(p’ Sl)’ (P, Sl)) =
= Z,(a(p, '), (p, s1)) = Zs(alp, s'), (p, 57))-

When investors come to the secondary market, they come with en-
dowment vectors (w; — p°s?, Si + s?) € R%, where w; is the original
endowment of ¢ with the first commodity (consumption good, money,
or present consumption), p°s{ is the quantity of the first commodity
which ¢ had to give up in order to purchase s? new shares on the pri-
mary market, and S; > 0 is the investors original endowment with old
shares. Let for the moment p! denote the price which investor : € N
pays for his (allocated) demand or obtains for his (allocated) supply at
the secondary market. Let s} be the quantity which 7 specified in his
limit order. Then the payoffs to investors : € A from the secondary
market are given by

(ii.b)

Ui((pa 31)7 (wi - poS?, Si + S?)) =

=/ /Ui(wi—P°3?-plC,
{min(0, s}), max(0, s})] JQ

R(6)(S:i + 57 + €)) du(8) dF(Cl(p, s1)),

where F' is the marginal distribution induced by the random rationing
mechanism on [min(0, s}), max(0, s})] which degenerates to a unit mass
at s}, if the player is on the short side of the market (or supply equals de-
mand) and otherwise is non-degenerately supported on [0, s?] or [s?, 0].
The random mechanism is common knowledge as a function of (p, s').

The direct payoff from the secondary market to the underwriter is
exactly what he gets in return for his supply, i.e. it is a(p, s')[s —
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Y ien 8¢, if the market is active, and nothing otherwise. Since the
underwriter gets no utility from holding shares at the end of the game,
his utility function has just one argument (final wealth in terms of the
first commodity) and is strictly monotone increasing in this direct payoft.
His utility function can thus, without loss of generality, taken to be
linear.

LEMMA 2. In any pure strategy equilibrium on the secondary market,
where the market can be active,

(i) b(p, s*) = b(p, '), and a(p, s') = a(p, s'),

(i) &(p, s') = a(p, s*).

By Lemma 2 the price configuration at any equilibrium on the sec-
ondary market, where the market can be active, can be described by a
single number

From Lemma 2 it also follows that the market maker’s profit will in any
equilibrium be zero. Hence the market operates efficiently in the sense
that specialists cannot earn money by making the market.

A Walras equilibrium on the secondary market is an n-tuple of quan-
tities (81)ienr € [1;en[—Si — 8¢,00) plus a price p' > 0 such that

(w; — p°s? —p'5;, 3}) €
€ ArgMAXyt vtz <uwimpest / u'(z, R(O)(S:i + 52 + 5)) du(6),
: Q

and Z§}=s—Zs?.

iEN iEN

In this »Walras-economy” investors take p! as given and optimize un-
der their budget constraints, and there is an exogeneous supply of s —
Yien$? 2 0. [A very similar result to the one to follow, though in a
different game, where the market maker discriminates against individ-
ual traders by charging limit prices, has been demonstrated by Simon,
1984.]

THEOREM 1. Any pure strategy (Nash) equilibrium on the secondary
market, where the market can be active, must be a Walras equilibrium,
and any Walras equilibrium can be supported as a pure strategy (Nash)
equilibrium. ‘

Theorem 1 ensures that the set of Nash-equilibria on the secondary
market coincides with the set of Walras equilibria of the correspond-
ing Walras-economy, whenever the market can be active. The’latter
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qualification is needed, because whenever s — 3 .\ s? = 0, there are
Nash-equilibria at which every investor specifies a zero quantity in his
limit order which is as good as anything else, given that nobody else
wishes to trade. For the rest of the paper we will rule out such inactive
equilibria, even when the underwriter’s market order is zero. Then The-
orem 1 allows to identify the equilibria of the subgame on the secondary
market with the set of Walras equilibria which can be characterized.

When characterizing the set of Walras equilibria an assumption on a
reference economy will be used. A reference economy is a ”Walrasian”
economy, where endowments of investors are given by (w;, S;) € R44 X
R+, Vi € NV, and there is an exogeneous supply of new shares s > 0. The
reference economy, therefore, is an economy with price-taking investors,
where no primary market existed prior to the operation of this economy,
but new shares are sold in a perfectly competitive way. The assumption
on the reference economy is that it is regular, i.e. that for all Walras
equilibria of the reference economy the partial derivative of aggregate
excess demand with respect to the price of shares (at the equilibrium) is
non-zero. That this assumption indeed holds for almost all economies in
the space of economies (parametrized by endowments) is a well known
result from General Equilibrium Theory [Dierker, 1982].

To study the set of Walras equilibria redefine variables by setting
¢} = Si+ s? + s}, Vi € N, and consider an investor’s problem in the
Walrasian economy:

max, soew, [ 4/(ai ROKY) du)

st. p'¢l +zi Swi —p°s? +p(Si+ s7),

(1)

and define ¢ = (P, (w; — p°s?, S; + s?)) as the demand function of
investor ¢ € N for shares.

LEMMA 3. For all i € N the demand function (} is a continuously
differentiable function of all arguments, and

()¢l > Si+s2 = 8¢}/dp* <0, VieN;

(i) p! — 0 => (! — 400 and 8C!/Bp! < 0, Vi € N;

(iii) sign(0(} /0s?) = sign(p' — p°), Vi € N;

(iv) Si +s2=0 = (} > 0.

The market clearing condition at the Walrasian equilibrium can be
rewritten as

. ZC,-1=S+3.

iEN
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Let S¢ = {(s?)ien € RL |0 < > ;cn 8! < s} and define the mapping
B: [0, Yienwi/s] = 5 by

B(p°) = {(s?)ien € 57 |p°s] S wi, Vi€ N'}.

The graph of this mapping

G(B) = {(p°, (s9)ien) € [0, Y wifs] x 87 |(s])ien € A(P°)}
iEN
is a connected and compact set of dimension n + 1 and can serve as
the parameter space for the correspondence assigning Walras equilibria.
Letting G, G D G(B), be a neighbourhood of G(B) one may define the
mapping (1: R4+ X G — R by

G, (0% (Dien) = Y, (@', (wi —p°s?, Si+ 7))
iEN
and view the Walras equilibria as the preimage of S + s > 0, i.e. as
(7' (S + s). To make things sensible it will be assumed from now on
that all investors together have sufficient budget to buy all shares in any
of the Walras economies in G(8): D _;car wi > p*s, where p* denotes the
largest equilibrium price at the secondary market over G(3).

LEMMA 4. If the reference economy (with endowments (w;, Si)ien) is
regular, then the preimage of S + s > 0 under (1, le. (TS +s) C
R4+ x G, is a differentiable manifold of dimension n + 1. Moreover,

0¢,/0p* # 0 for almost all (p°, (s?)ien) € G.

There is precious little extra information to be had on (;'(S + s)
which will, however not be formally proved here [Dierker, 1972]:
i] For almost all (p°, (s{)ien) € G the set of equilibrium prices p! is a
finite set of odd cardinality.
ii] For almost all economies the sum of sign(—8¢; / Op!) over all equilib-
rium prices p! must be +1. (This follows essentially from Lemma 4 and
the boundary behavior of aggregate excess demand, {; —,1_¢ +00, and
pl = +00 = (1 < S+s.)
iii] Both for the largest and the smallest equilibrium price p' one has
generically 8¢;/8p* < 0. (This follows essentially from Lemma 3, (ii),
together with the preceeding statement.)

The preimage (" (S + s) N R4+ x G(B) gives all (n + 2)-tuples of the
form (p', (p°, (s2)ien’)) of prices and allocations such that ;.\ 57 < s,
p°s? < w;, Vi € N, and

- Z ¢Hp', (wi —p°s?, Si+s?)=S+s,
€N
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and, by Theorem 1, the set of all equilibria in the subgame at the sec-
ondary market, where the market can be active, for any feasible constel-
lation on the primary market. An equilibrium of the overall game will
specify a selection from ¢(;(S + s). In other words: An equilibrium of
the overall game will associate a single p' to any (p°, (s?)ienr) on the pri-
mary market. For the moment we will, however, be especially interested’
in how the prices on the secondary market change, when parameters
change.

LEMMA 5. For all active equilibria at the secondary market

6(1 : dpl : 1 o ;
o <0 = s1gn(ds?)=sxgn(p -p°), Vi €N,
8(1 . dpl o o 1 .
Bp1 >0 = szgn(E) = sign(p°® — p'), Vi € N.

Lemma 5 shows that in (s?, p!)-space the slope of p! with respect to
¢ depends on the sign of p® —p': If p° > p!, then "perverse” equilibria,
with 8¢, /0p* > 0, will be upward sloping in s¢, and the "good” equilib-
ria, with 8¢, /0p! < 0, will be downward sloping in s. If p® < p', then
"perverse” equilibria will be downward sloping and the "good” equilib-
ria will be upward sloping in s?. This completes the investigation of
potential equilibria on the secondary market.

The market maker ("specialist”) has not been considered as an active
player here, because by Lemma 2 his profit is always zero in equilibrium.
The market maker may, however, serve as an important coordination
authority, when there are multiple equilibria, by communicating through
his opening price to the investors which equilibrium will be played. If he
does this in the interest of market participants, who play market orders
("best price orders”), this will select particular equilibria. In the present
case only the underwriter places a supply-side market order. If the
market maker indeed tries to obtain the best price for the underwriter,
he will try to coordinate investors on the Walras equilibrium with the
highest equilibrium price. This will yield a selection

Pt = Pi(p®, (sD)ien) = maX(p1, o, (ot)senneci (s+e) P
This particular selection will play a prominent role and is referred to as
efficiency with respect to market orders.
5. THE PRIMARY MARKET

The primary market operates after the bargaining between the firm
and the potential underwriters has ended and before the secondary mar-
ket opens. On the primary market an underwriter or, if the bargaining
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ended without the conclusion of a contract, the firm attempts to sell
the number s > 0 of new shares to investors via a public issue. The
first case to be studied in the sequel is the case, where the bargaining
was concluded successfully and the issue cannot fail anymore, because
it is guaranteed by an underwriter with sufficient budget. The crucial
effect of this is that trading opportunities at the secondary market are
rationally expected by all investors in this case, for any constellation of
trades at the primary market. The latter holds true, even if the primary
market stays inactive, because all shares unsold at the primary market
must then be dumped onto the secondary market by a market order. For
the case of an underwritten issue only (subgame perfect) equilibria will
be studied which assign an active equilibrium of the secondary market
to outcomes of the primary market.

The alternative case of a non-underwritten issue, where the bargain-
ing was unsuccessful and the firm itself supplies the new shares to the
primary market, will be studied later in this section. This case still
involves the risk of failure of the issue, leading to the possibility of a
cancellation of the investment project of the firm.

‘Concerning information of investors, when they enter the primary
market, they only know whether the issue is underwritten (the bar-
gaining was successful) or not (the firm supplies the shares without a
guarantee), but they are uninformed on any details of the preceeding
bargaining process. In particular investors do not know at which price -
the underwriter and the firm have concluded a contract. This rules out
that investors may condition their behavior at the primary market on
detmls of the equilibrium path of the bargaining process and seems a
rather realistic assumption.

~ The procedure at the primary market is as follows: First the under-
writer publicly announces a price p° € [0, ) ;c o wi/s] and an issuing
method (from a restricted class of issuing methods). The constraint
p° < (1/8) 3 ;en wi ensures that the underwriter does not ask a price
at which it would be impossible to sell all new shares. The price p° is
understood as an offer to sell at the price p° a maximum quantity of
s > 0 shares. That the price p° forms a binding commitment is part of
the rules of the game at least at the US-market [Ritter, 1987, p.270;
Smith, 1986, p.15]. An issuing method is a vector r € R} which sat-
isfles Y ;enmi = 8, i € [0, 8], Vi € N, and a rationing mechanism ¢
which is a probability measure on (a set contained in) %} conditional
upon (z9)ien € R such that

0< Y 22 <s = ¢({(zD)ien}) = 1,
iEN
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and

Yoz >s = ¢({(si)iew| D si=s, s €[0,2],Vie N}) =1,
€N ieN

which is continuous and (weakly) monotone increasing in all its (con-
ditioning) arguments. The z?,7 € N, on which the ra‘ioning rule is
conditional, are the investors’ market orders of shares. The r;, 1 € N
can be interpreted as non-renounceable rights (i.e. non-tradable rights),
if 3 ;enmi =8 and r; = (8/S5)S;, Vi € N, or as the a-priori exclusion of
particular investors (for whom r; = 0) from participation in a general
cash-offer, if Zie)\/ r; > s and r; = 0 for some 1.

This class of issuing methods is chosen to include both general cash-
offers and non-renounceable rights issues, but it excludes renounceable
(i.e. tradable) rights issues. The reason for this restriction is that
public (underwritten) issues via general cash-offers of seasoned shares
have dominated at least the (largest) US-market during the past decade
(hence their inclusion), while rights issues are more common on smaller
markets like the UK- or the Australian market (at the latter about one
third of the rights issues were non- renounceable). And the underpricing
phenomenon seems to be considerably more common at the US-market
[Asquith and Mullins, 1986; Kalay and Shimrat, 1987; Masulis
and Korwar, 1986; Mikkelson and Partch, 1986; Smith, 1986] than
at smaller, rights-dominated markets; hence the exclusion of renounce-
able rights issues.

That renounceable rights issues are excluded from consideration sim-
plyfies the analysis considerably, but is not a truely restrictive assump-
tion. The reason, why this assumption only involves a minor loss of
generality, works as follows: Suppose rights can be traded. We claim
that there is always an equilibrium, where rights are not actually traded
at the equilibrium path. Since transactions in rights are simply a real-
location of the investors’ endowments which sums to zero (i.e. holding
total endowments constant at ) .., w; and S + s) the non- existence
of an inactive equilibrium of the rights market would imply that there
exists such a reallocation among investors which pareto-dominates the
allocation without trades in rights. But this contradicts the first theo-
rem of welfare economics, because the equilibria at the secondary market
are Walras equilibria. Thus the exclusion of renounceable rights issues
from the analysis can also be understood as the assumption that on the
market for renounceable rights the inactive equilibrium will be played.

A general cash-offer will be taken to mean r; > w;/p°, Vi € N, and
a rights issue can be taken to mean r; = (s/S)S;, Vi € N. The class of
allowable issuing methods is potentially much larger than just the two
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abovementioned methods for the mere sake of generality. The rationing
mechanism for excess demand of new shares is chosen endogeneously
to avoid problems of the sensitivity of the solutions with respect to ra-
tioning mechanisms [cf. Kreps and Scheinkman, 1983]. It will be
shown, however, that the chosen issuing method has not a very large
role to play. Letting effectively the underwriter supply the new shares
even in a rights issue is without loss of generality, because the subscrip-
tion of the issue by the underwriter is effectively a purchase of the new
shares with the option to resell on the market; hence the assumption of
a firm commitment underwriting contract. An alternative justification
for assuming a firm commitment underwriting contract is that this is
consistent with the present assumption of symmetric information: In
the absence of asymmetric information the theory of contract choice
predicts firm commitment contracts [Mandelker and Raviv, 1977;
Ritter, 1987]. Summarizing, a choice (pure behavior strategy) for the
underwriter at the primary market is a triple (p°, (7;)ien’, ¢) consisting
of a price and an issuing method. :

The underwriter’s choice of (p°, (ri)ien, ¢) defines a simultaneous
move game among investors, in which the choices of investors are quan-
tities of shares which they wish to buy at p° (market orders). For tech-
nical reasons we have to assume that the possible quantity choicec of
investors at the primary market form a finite set.! Although this as-
‘sumption is made for technical reasons, it is by no means an unrealistic
‘assumption: On most markets for primary issues shares are sold only in
discrete quantities. Formally, let

Z.={0,¢,...,2¢}, ze=3>0,

where z = s/¢ is assumed to be an integer number. Then the choices of
investors at the primary market are

z? € [0, min(r;, wi/p°)| N Z.,

where the z¢ are interpreted as market orders to buy, if z? > 0.

1The reason is as follows: Since the function mapping outcomes of the primary market
into equilibria of the secondary market may have discontinuities, one may encounter
the phenomenon that an investor wishes to increase (decrease) his purchases at the
primary market up to a point, where p! jumps and makes the investor strictly worse
off. Depending on where the discontinuity point is mapped to, the investor may
or may not have a (pure) best response.- Moreover, the properties of the Nash-
equilibrium correspondence will have to be extensively used, and these are much
better understood for finite games than for infinite action games. '
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Given an n-tuple (27)ien, either 0 < 3. 1 27 < s in which case
transactions (s?)ienr = (29)ien are carried out at the price p°, or
2 ien 2{ > s in which case the rationing rule ¢ assigns (s?)ien such
that ) ;o 57 = s, and 87 € [0, 27], Vi € N, and the quantities (s?)ien
are traded at p° by the investors.

An outcome of the primary market is an (n + 1)-tuple (p°, (s?)ien)
which is a point in G(3). Note that the current assumptions rule out
short trading and credit facilities. The crucial difference of the primary
market as compared to the secondary market is that on the former only
the underwriter is allowed to play a publicly known limit order.

Since an outcome of the game at the primary market is a point in G(5)
and after each of these points (nodes of the extensive form) a subgame at
the secondary market starts, it is straightforeward to define payoffs for
players at the primary market. Subgame perfection allows to substitute
equilibrium payoffs from subgames for the subgames ["Backward Induc-
tion”, cf. Kohlberg and Mertens, 1986], such that payoffs to players
at the primary market can be defined directly for any equilibrium price
p' at the secondary market (where p! is, of course, a function mapping
points in G() into equilibria of the secondary market). The payoff to
an investors 1 € N from purchasing at the primary market a quantity
s? at the price p°® can thus be written as the investor’s indirect utility
function

Vi(p!, (wi — p°s?,Si + 7)) =

= M4 <us—pent 41 (5100 /Q wi(z, R(6)¢) du(6).

The underwriter’s payoff from the operation of the primary market is
given by

7(p, (2% (sien) = p° 3 st +p' (s — 3 &9,

iEN iEN

where for both types of payoffs (p!, (p°, (s2)ien)) € ¢({ (S + s) must
hold. Again observe that the underwriter’s payoff can be taken to be lin-
ear without loss of generality, because the underwriter derives no utility
from holding shares beyond the secondary market.

The indirect utility functions of investors, V;, 1 € M, can be used to
define induced preferences of investors on the space of pairs (22, p') €
[—S;, w;/p°] X R4 +. The properties of these preferences are summarized
in the following lemma:
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LEMMA 6. (i) For each i € N indifference curves on [—S;, w;/p°] X R4 4
for given p° > 0 are described by

dp' _ p°—p
dS? V;=const. Si + s? - Ctl ’

where ¢} = (}(p!, (wi — p°s?, Si + s?)) is the demand fvuction at the
secondary market.

(ii) For each i € N there exists a continuously differentiable function
p}: (82, p°) — p} which is strictly monotone decreasing in s? and strictly
monotone decreasing (increasing) in p°® for all s? > 0 (s? < 0), such that

> S+ 82, ifp! < pl(s?, p°),
C:’l(pl» (wi - posg’ Si + 3?)) =5+ s?’ ifpl = p}(s;’, po)v
< S;+s2, ifp! > pl(s?, p°).

Moreover, if the parameter S; > 0 increases, the function p}(s?, p°)
shifts downward in (s, p°)-space and

p::l (S?, po) —')s:.’-—vw.-/po 0, Vpo > O,
pi(s?, p°) —ge—5; +o0, Vp°>0.

By Lemma 6 the space of pairs (s?, p!) is partitioned into four re-
gions by the graph of the function p}(s?, p°), for fixed p°, and the
horizontal line p! = p°: The first region is to the South-West, where
p' < min(p°, p}(s?, p°)) and, consequently, {} > S; + s?. This first
-region extends to the right until s{ = w;/p® holds. The second region
.ds to the South-East, where p}(s?, p°) < p! < p° and (] < S; + s?.
The third region is to the North-East, where p' > max(p°, p}(s?, p°))
and ¢} < Si + s?. The fourth region is to the North-West, where
p° < p' < pi(s? p°) and ¢} > Si+ s?. In the first and third re-
gion indifference curves are downward sloping, while in the second and
fourth region indifference curves are upward sloping. Along the graph
of p}(s?, p°), for fixed p°, indifference curves are vertical. For p!' > p°
the direction of increasing utility is to the right, for p! < p° it is to
the left, and the horizontal line p! = p° is itself an indifference curve.
Finally, any pair (s?, p!) in the second or fourth region is strictly worse
than any pair on the horizontal line p! = p°. Monotonicity and the
boundary behavior of p}(s?, p°) imply that there exists a unique point
in the interior, where p}(s?, p°) = p°. The value of s{ at this point can
be determined from

CH(p°s (wi = p°st, Si+ 7)) = G0, (wir $)) = Si+ s
. = 57 = C}p° (wi, 5i)) — Si.
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Hence (¢} (p°, (wi, Si)) — Si, p°) is a saddle point of the indirect utility
function V.

Part of any subgame perfect equilibrium of the overall game is some
function P;: G(8) — R4+ defined by the equilibrium condition at the
secondary market,

(P1(p% (7)ien), (p°) (s3)ien)) € CTH(S +9),

i.e. the graph of P; satisfies G(P;) C ([ (S +s). Two qualifications are
in order here: Strictly speaking, if s = Zie A 8¢, then P; may also map
into inactive equilibria of the secondary market. Since this is not a very
interesting case, it has been ruled out for all what follows.  Second, P,
may also depend on the chosen issuing method at the primary market,
rather than only on the price p® and the allocation (s?)iear. But since
the (Walrasian) equilibria of the secondary market only depend on the
investors’ endowments, there is no loss of generality for the results to
be presented, when P, is assumed to depend exclusively on the outcome
of the primary market (in fact any dependence on the issuing method,
or other information in the game, can be packed into the way G(P,) is
selected from ([1(S + s)).

The function P; can potentially have very awkward properties. In
principle, for all subsets of G(8) for which multiple (active) equilibria
exist at the secondary market, P; can potentially be a nowhere differ-
entiable function. This, however, would imply that, given some point
in G(f) for which multiple equilibria of the secondary market do exist,
for any close point in G(J3) the equilibrium of the secondary market (se-
lected by P;) may be quite far away from the original one. Hence small
“trembles” in the strategy choice of any player at the primary market
could alter the equilibrium in the ensuing subgame dramatically. Al-
though equilibria with such strongly discontinuous P;- functions may
lend some substance to the notion that financial markets may be unsta-
ble, it is hard to see, why such phenomena should be peculiar to financial
markets. The game theoretic consequences of allowing excessively many
discontinuities of P; (though some discontinuities may be unavoidable)
are rather unattractive: Potentially a proper choice of discontinuities
may support all sorts of fancy behavior as equilibrium behavior. On
the other hand, P, also enters directly the underwriter’s payoff func-
tion which may, therefore, not be continuous in his pure strategies. The
latter may even prohibit the existence of equilibria in pure strategies.
Thus the following theorem implicitely defines restrictions on P; and
is, therefore, of some and not merely technical importance. Effectively
the following theorem shows that an equilibrium of the primary market
exists, if the secondary market is efficient with respect to market orders.
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THEOREM 2. There always exists a subgame perfect equilibrium for the
game at the primary market.

The proof of Theorem 2 indicates what a sufficient condition on P; to
ensure existence is: The set of discontinuities of P; must be "small” in
G(B), viz. Py should be "almost everywhere” continuous. The particular
choice of P; in the proof of Theorem 2, P, = Py, ensures this stability
property in a natural way. The selection P, = P; is also desirable
from a purely game theoretic point of view, because it ensures that
the property, that small trembles do not change the equilibrium in the
ensuing subgame too much, holds for most of G(5).

But there is also some economic significance of P; = P;. Recall that,
in case s > Y. 57, the underwriter will be forced to dump the re-
maining shares onto the secondary market by a market order. A market
order is an order to sell the specified quantity at the best price available.
If the underwriter, or the market maker at the secondary market, could
somehow communicate to investors what the best price is, at which the
market order can be carried out, this would always result in P, = P;. Of
course, a communication mechanism by which the underwriter (or the
market maker) could coordinate investors on a particular equilibrium
was not specified in such a way that it would be binding for investors.
The opening price of the market maker could serve as such a coordina-
tion device, but nothing prohibits the investors from ignoring the open- |
ing price. Still an interpretation of P, = Py in this spirit is possible:
As.in Section 4, say that the secondary market is efficient with respect
to market orders, if P, = P,. (This definition is not vacuous, because
Theorem 2 demonstrates existence precisely for this selection.)

The next and core underpricing result of the analysis says two things:
First it states that, if an equilibrium of the primary market is an inactive

“equilibrium with s¢ = 0, Vi € N, then the primary market can be
made active by underpricing the issue. The second part states that, if
the secondary market is efficient with respect to market orders, then
any active equilibrium of the primary market must be an underpricing
equilibrium.

PROPOSITION 1. (i) If there exists an equilibrium at the primary mar-
ket such that s = 0, Vi € N, then there exists an equilibrium with
Yien$¢ >0 and p! > p°.

(ii) If the secondary market is efficient with respect to market orders,
P, = Py, then for any equilibrium at the primary market '

IeN:sI>0 = p' >p°,

for all ¢ > 0 sufficiently small.
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PROOF: (i) Assume there exists an equilibrium with s = 0, Vi € N,
as its outcome. Let p be the largest equilibrium price in the reference
economy, i.e. the largest p which solves

(2) > e, (wi, Si)) =S +s.

iEN

By definition, § > Py(p°, (0)ien), ¥P° € (0, 3 ;car wi/s], because clearly
P;(p°, (0)ien) also solves (2). Thus the underwriter’s profit at the con-
jectured equilibrium is

(P, (p°, (0)ien)) = P1s < ps.

Now suppose the underwriter sets, instead of p°, the price at the primary
market equal to p. Then alter P; at p to evaluate to

Pi(p, (sD)ien) =5 V(sDiew € [] [0, wi/p),
1EN

which is always possible, because
Czl(ﬁa (wi —ps, Si+s7)) = C:I(Zi (wi, S¥)), V7,

leaving the rest of Py intact. By Lemma 6 investors are now indiffer-
ent among all allocations of (s?)iea and thus there exists an allocation
(s?)ien such that 3.\ 8?7 > 0, 87 € [0, w;/p°], Vi € N, which is an
equilibrium of the subgame starting after the underwriter has announced
p and an issuing method which makes the new allocation feasible. But
now the underwriter’s profit is ps, such that, if the original configuration
was an equilibrium, then the new one must be an equilibrium as well.

(ii) To demonstrate the second part, set P, = P; and suppose that
p! = Pi(p°, (s%)ien) < p° and 3i € N': s2 > 0. Lemma 5 shows that,
wherever P, is differentable,

d 1
sign(diq) = sign(p! — p°) = -1, Vi e N.

We first claim that the conjectured equilibrium pair (s?, p!), s > 0,
cannot be located in the second region of (s?, p')-space as specified
by Lemma 6, where p° > p! > pl(s?, p°). To see this, first observe
that, if P, is differentiable on the whole interval [0, w;/p°], then it must
be decreasing in s? € [0, w;/p°]. But P; may have discontinuities on
[0, w;7/p°]. Such a discontinuity can be an upward or a downward jump
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(from the left). If a discontinuity is a downward jump from the left,
then P, remains strictly monotone decreasing. If the discontinuity is an
upward jump from the left, the value of p! = P;(.) to which P, jumps
upward must be located (weakly) above p°: If the value of p! to which
P, jumps upward (from the left) would be located below p°, then from
this value p! two branches (extending to the right) of ‘

G (S +8) N Rt x ({p°} x {(s])jem iy} % [0, wi/p))

emerge, because possible discontinuities only occur at ”critical” Walras
economies, where the projection of {{1(S+s) into G() is not surjective.
By Lemma 5 the higher one of these two branches must have 8¢; /9p* >
0 and can, therefore, not be the location of P, (see the third remark
following Lemma 4) which contradicts the assumption of an upward
jump leading to a value p! < p°. Thus any upward jump from the left
must lead to a value of p! (weakly) above p°. If this is the case and
the value of z¢ € [0, w;/p°], at which this upward jump of P, occurs,
satisfies z¢ < r;, then this z? is certainly preferable to sY < z2 by
Lemma 6, such that (from the equilibrium assumption) it cannot be
feasible under ((r;)ien, ¢). Consequently, for all feasible values of z?
the function P; must be strictly decreasing with respect to z?. But by
Lemma 6 indifference curves in the second region are upward sloping
and the direction of increased utility is to the North- West, such that,

if Py is monotone decreasing in the feasible region, the optimal value is

22K CH(p°, (wi, Si)) — Si, contradicting the assumption that (s?, p'),
82> 0, is located in the second region. Hence (s?, p') must be located
in the first region.

We claim that (s?, p!), s¢ > 0, p' = P;(.) < p°, cannot be located
in the first region either. To see this, observe that by Lemma 5 for
P, = P, any differentiable branch of P, in the first region must be
downward sloping in s?. By Lemma 4 P; can only have finitely many
discontinuities, when s{ varies, but it may have some: Suppose it has an
upward jump (from the left) at s? > 0. Then again this jump must lead
to a value of p! satisfying p' > p°. Since by definition of P, this p! > p°
is the value of P}, s? > 0 cannot be located exactly at the point, where P,
jumps upward by the hypothesis, but must be located either to the left of
the discontinuity, in a differentiable region, or at a downward jump (from
the left) of P;. Hence, if s? sits below a discontinuity of P, then the
discontinuity must be a downward jump (from the left). Again, because
discontinuities occur at “critical economies”, this implies that there is
some 37 < s? arbitrary close to s? for € > 0 sufficiently small, such that
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at ‘§?, ﬁl = -Pl(po’ (z_je,}\f\{i} 3}?, ‘;?)) < po, zjeNaC}/apl |p1=13‘< 0,

3) 0s P —151 (p —p )3C /By,

(with the obvious notation and §; = w; — p°3? + p'(S; + §?2)) which is
equivalent to

-~

¢! . OC1
> 6—;’1—_>_(S;+§?—(})% =

- 3 Ghag [us
2 uy du,
1 A 1
jeN\{}ap

(4)

where A; > 0 is the determinant defined in the proof of Lemma 3. But
this implies that there is some j € N \ {¢}, such that 34211 Jop! > 0
and by continuity 6(11- /8p* > 0, for £ > 0 sufficiently small. The latter
implies that for this 7 € A\ {¢} it must be true by Lemma 3, (i), that
C} < S§j+s%. But, combined with p! < p°, this is the statement that the
pair (s?, p') for this investor j is located in the second region of Lemma
6, contradicting the finding above.

Thus s? > 0 must be somewhere in the first region, where P; is
differentiable. But this implies from dV;/ds? > 0 and the hypothe-
sis p! = Py(.) < p° again the inequalities (3) which yield, via the
equivalent inequalities (4), again the conclusion that for some investor
j € N\ {1} the pair (s? 5P 1) must be in the second reg1on - a contra-
dxct1on The conclusion is that for all equilibria 3 € M: s? > 0 implies
p' = Pu(p®, (s2)ien) 2 p°- 1

Proposition 1 shows that there is a close relationship between un-
derpricing of new issues and activity of the primary market. Still this
relationship is much less rigid as it would be, if investors would take
prices (at the secondary market) as given: In case investors conceive no
influence on the price at the secondary market, shares at the primary
and the secondary market would be perfect substitutes. Then p! < p°
(overpricing) would imply that all investors wish to buy exclusively at
the secondary market, while only p! > p° (underpricing) can ensure that
the primary market is active.

Proposition 1, (i), also reveals an interesting a.spect of the underpricing
phenomenon. If, in fact, strict underpricing, p! > p°, occurs at an active
primary market, then it is underpricing with respect to the equ1hbr1um
price at the secondary market after the (non- zero) trades at the primary
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market. It is not underpricing with respect to the (largest) equilibrium
price of shares in the reference economy, in the sense that no equilibrium
would exist which would yield the underwriter the (largest) equilibrium
price in the reference economy. On the contrary, there always exists an
equilibrium in which the underwriter gets at least what he would earn
as a passive supplier to the reference economy.

The present theory also yields a straightforward explanation of why
initial public offerings (of unseasoned shares) are quite systematically
underpriced [Ibbotson, Sindelair and Ritter, 1988; for alternative
explanations under asymmetric information, see: Gale and Stiglitz,
1989; Grinblatt and Hwang, 1989; Welch, 1989.]

COROLLARY 1. In any equilibrium of the primary market for an initial
public offering, S; =0, Vi € N,

dosi=s = p'2p°
ien

PROOF: For an initial public offering S; = 0, Vi € N, implies that
C(p®, (wi, Si)) = ¢Hp°, (wi, 0)) > S; = 0, such that the saddle point
of V; in (s?, p')-space from Lemma 6 occurs for some strictly positive
value of s¢. This implies that the pair (s, p') can for no investor be
located in the closure of the second region of Lemma 6, if p' < p°,
because setting z? = (}(p°, (w;, 0)) < s? would always dominate s?
and is always feasible. Thus for all investors the pairs (s¢, p') must be
located in the interior of the first region of Lemma 6, if p' < p°. But
this implies ¢} > Si + s¢ = s2, Vi € N. The latter, however, yields
the contradiction S+ s = Y, ¢! > S+ 3, car8? to the hypothesis
$=2iensi- I

The Corollary is especially important, if the firm rather than an under-
writer supplies the unseasoned shares to the primary market. In this case
it may be forced to sell all shares at the primary market to avoid a failure
of the issue. Then it can never avoid underpricing. Thus an underwrit-
ten initial public offering may be underpriced, a non-underwritten issue
of unseasoned shares will be underpriced (if the investment project is
cancelled, in case not all new shares are sold at the primary market).

The reader may wonder, when strict underpricing, p' > p°, can be
an equilibrium. We have no general result to offer on this problem.
The only thing we can say is that examples suggest that multiplicity of
equilibria in the neighbourhood of the largest equilibrium price of the
reference economy (yielding discontinuities of P;) seems to do the job.
The issue remains, however, an important field for future research.
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Turning to the case, where the issue is not underwritten, i.e. the
bargaining failed, it will from now on be assumed that there is a unique
equilibrium price p° in the subgame, where the issue is offered underwrit-
ten at the primary market. This may seem like a restrictive assumption
at first sight, but in fact there is no loss of generality for what we will
have to say: Any equilibrium of the subgame, where the issue is offered
underwritten at the primary market, is part of some solution of the
overall game. Since the characterization of the solution to the subgame,
where the issue is offered non-underwritten, will depend exclusively on
the price which can be obtained in the other subgame (where the issue is
underwritten), the equilibria can be parametrized by the price obtained
in the subgame, where the issue is underwritten. (Recall that all the
information which investors have, when they enter the primary market,
is whether the issue is underwritten or not, and nothing more.) Thus
any statement which refers to "the” price p° in the subgame, where the
issue is underwritten, can also be read as a statement conditional upon
the value of the equilibrium price in the subgame, where the issue is
offered underwritten at the primary market.

In the subgame, where the issue is non-underwritten, the procedure is
basically the same as in the case, where it is underwritten, except that
now, if not all new shares are sold at the primary market, the project
is cancelled and nothing is traded at the primary market. Alternatively
one could fix a quantity § € (0, s), such that, if not at least 5 new shares
are sold at the primary market, the issue fails and no transactions take
place (or: investors, who bought new shares, get fully reimbursed). Since
it is quite obvious, how the proposition to follow has to be adapted to
the alternative case, there is no true loss of generality in assuming § = s.

Thus, if the issue is non-underwritten, the firm chooses a price and an
issuing method, (p°, (;)ien, ¢), which is publicly announced and bind-
ing, and then investors choose market orders 2{ € {0, min(r;, w;/p°)] N
Z,, as before. The investors’ payoff functions also remain unchanged.
The firm’s payoff is p°s, if 3 ;a8 = s (;en 2! 2 ), and zero oth-
erwise, because, if the issue fails, the firm cannot dump the remain-
ing shares onto the secondary market. (If 3 < s, then it would be

P° Y ien ¢+ PN = Xien 9), if 2oienr 82 2 3, and zero otherwise.)

PROPOSITION 2. If the firm offers the new shares non- underwritten at
the primary market, then any price p° which satisfies

1
;max;e,;\/w,- <p’<p°

can be supported as a subgame perfect equilibrium, where p° denotes the
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equilibrium price in the subgame, where the issue is offered underwritten
at the primary market.

PROOF: The proof is by construction. Clearly p° can be supported by
imitating the behavior in the subgame, where the issue is underwritten.
Let p, € (max;enx w;/s, p°] and assume that investors play the following
strategies: If p° > p,, then 2 =0, and, if p° < p,, then

z{ € argmaX,e(o, min(ri, wi/p®)INZ /Vi(Pl(po’ (3;)1'6/\/'),
(wi —p°s], Si + 7)) dé((s7)jen] (27)jem i}y 2)s

for some fixed function P, : G(8) — Ry+. We claim that this is subgame
perfect behavior, because given some p® > p, and 27 =0, Vj € M\ {¢},
the maximum that investor ¢ can invest in new shares is min(r;, w;/p°) <
w;/p° < s, by p°® > p, > maxjen w;/s > w;/s. Hence investor i cannot
guarantee the issue, such that it will fail under p°® > p,. Given that the
issue fails and no transactions will be carried out at the primary market,
any z? is a best response for investor i. Thus the investor’s behavior is
subgame perfect behavior. Given the investors’ behavior, the firm’s best
choice is to set p° = p, which is then the equilibrium price at the primary
market. JJ

The method of the proof of Proposition 2 is familiar from the literature
on bank-runs [Diamond and Dybvig, 1983; Eichberger and Milne,
1990] in that it uses the dependence of the value of an asset on the
public’s expectation on its value. Although the proof of the proposition
follows directly from the fact that no individual investor can guarantee
the issue, it is - at least in our opinion - a method of proof indeed peculiar
to financial markets (as opposed to markets for real consumption): A
financial asset has only value, if sufficiently many players believe it to
have value. Hence the valuation of a financial security is not underpinned
by the utility which holders derive from its consumption, but rather rests
on equilibrium expectations on how it will convert into real commodities
at a later stage, viz. on a Nash-equilibrium rather than on technological
fundamentals. If the project, presumably financed by the issue of new
shares, would be perfectly divisible (with constant returns to scale) and
each investor could somehow persuade the firm to erect the piece of
the project which the investor can finance, the proof of Proposition
2 would not go through anymore. The reason for this is that in the
latter case each share translates automatically (without being dependend
on the other investors’ decisions) into real consumption. The point of
Proposition 2 is that precisely, because the latter case is not typical for
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equity issues, there may be extra costs (in the form of even more severe
underpricing) associated with an issue, if it is non-underwritten. And
this is a possible explanation, why firms do indeed, in the vast majority
of cases, use underwriters.

This does not imply that a non-underwritten issue will always be
more severely underpriced than an underwritten issue. Proposition 2
only states that this can happen. In fact, an outside observer of games
with the above structure is likely to observe less underpricing of non-
underwritten issues than of underwritten issues. The reason is as follows:
If the firm expects strong underpricing in the subgame, where the issue
is non-underwritten, it has a strong incentive to conclude a contract
with an underwriter. If, on the other hand, the firm expects no under-
pricing in the subgame, where the issue is offered without the aid of
an underwriter, it may in fact decline the underwriter’s service. But in
equilibrium this must be “rational expectations”, i.e. if the firm does
not conclude a contract with an underwriter, then in equilibrium the
issue will not fail and will not be ”"too much” underpriced.

The above discussion already makes it clear on what the firm and
the potential underwriters will have to bargain at the first stage of the
overall game: Let 7 denote the expected equilibrium profit of the under-
writer in the subgame, where the issue is offered underwritten. Again
this is mere terminology, because the arguments to follow hold for all
equilibrium payoffs to underwriters from the corresponding subgames.
Since investors at the primary market only know, whether the issue is
underwritten or not, 7 is constant across potential underwriters. The
net return for an underwriter from an underwritten issue is # minus what
the underwriter has to pay to the firm for the new shares which will be
denoted by gs. The firm’s revenue from an underwritten issue is ¢s.
If the issue is non-underwritten, any potential underwriter obtains zero
and the firm obtains p,s which is understood as the equilibrium revenue
from the primary market, if the issue does not fail, and p, = 0, if the issue
will fail in a non- underwritten issue. (If 5§ < s, then p, = 0, if the issue
fails in equilibrium, and pos = p° 3 _;cpr 7 +D' (s — 3 ;e ar $7), Otherwise.)
Since the assumptions on the investors’ information structure imply that
only the fact, whether the issue is underwritten or not, matters, # and
Pos can be held constant for all what follows. If p,s > 7, then, since the
firm will never accept a contract with ¢gs < p,s, ¥ — ¢s < 0 such that no
underwriter is willing to conclude a contract. Hence for p,s > 7 there
is nothing to bargain on. If p,s = 7, then ¢s > p,s = * > ¢s implies
that, if the bargaining ends with a contract, the ¢ = p,. Thus the case
to be studied in the next section is the case, where p,s < 7, i.e. where
the underwriter can indeed earn a larger return on the market than the
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firm can do on its own.

6. BARGAINING ON AN UNDERWRITING CONTRACT

The first of the three stages of the game is a finite bargaining process
between the firm and m > 2 potential underwriters. The underwrit-
ers are all identical, that is they all derive utility only from the first -
commodity (consumption good, or money), with constant marginal util-
ity, and will have no utility from holding shares beyond the final stage
of the game. Moreover, each underwriter has sufficient budget to po-
tentially finance the firm’s project without the aid of investors, that
is, each underwriter can unilaterally guarantee the issue. Underwrit-
ers, however, compete with each other for the contract with the firm, if
the contract is profitable. The profitability of an underwriting contract
is measured against alternative uses of the underwriter’s funds in the
economy. These alternative uses of funds are either contracts with other
firms in the background, or investments of the funds into other securi-
ties. The payoff to an underwriter from investing his budget into these
alternative opportunities is normalized to zero.

The firm wishes to finance a given indivisible project by the issue of
new shares and the cost of this project is fixed exogeneously. But the firm
also derives utility from earnings in excess of the cost of the investment
project. Denoting by ¢ > 0 the cost of the investment project, the
firm’s payoff from the issue is whatever it earns in return for the new
shares minus ¢. Let = = max(c, p,s) denote the firm’s "reservation-

.....

Then there is room for a mutually profitable contract between the firm
and an underwriter, if and only if # > =, because, if # < =&, then
either # < ¢, in which case the underwriter cannot even raise the cost
of the project, or ¥ < p,s, in which case the firm has no incentive to
conclude a contract with an underwriter (or both cases hold), and # > 7
implies both # — ¢ > 0 and © — p,s > 0. For # > x the surplus to be
shared between the firm and the underwriter is given by # — ¢ > 0. For
convenience this surplus will be normalized to 1 (i.e. the equilibrium
division of the surplus has to be multiplied by # — ¢ to obtain the true
values).

Then the bargaining problem reduces to the problem of splitting a
unit surplus between the firm and any of the m potential underwrit-
ers. This problem will be treated in the fashion of the literature on
non-cooperative bargaining [Rubinstein, 1982; Shaked and Sutton,
1984; Wolinsky, 1985; for an overview see: Osborne and Rubinstein,
1990].
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The precise extensive form of the bargaining stage works as follows: It
is a T-period bargaining game without discounting, where m < T < o0
is a finite number (taken to be very large). The set of potential un-
derwriters, M = {1,..., m}, is indexed in such a way as to reflect the
order in which the firm contacts the various underwriters (the indexing
of underwriters together with the set M will sometimes be referred to
as a "queue”). In the first of the T periods, the firm is matched with un-
derwriter j = 1 and a chance move decides whether the firm (with prob-
ability a € (0, 1)) or underwriter 1 (with probability (1 — «) € (0, 1))
will make an offer. Then the chosen proposer makes his offer, which
is a number w € [0, 1], if the firm proposes, and 7 € [0, 1], if under-
writer 1 proposes. The responder can then choose to accept the offer
or to reject it. If the offer is accepted, the first stage of the game ter-
minates immediately and the underwriter offers the new shares at the
primary market. If the offer is rejected, then the proposer can choose
whether to continue bargaining or to split and then the responder can
decide whether to continue or quit. If both partners decide to continue
bargaining, then in the next period the firm and underwriter 1 repeat
the same game (but now with a time horizon of T — 1). If any one of.
the two partners decides to split, then underwriter 1 chooses whether
to invest his funds somewhere else (yielding him a payoff of zero) or to
wait for a chance to renegotiate with the firm after it has declined con-
tracts with all other underwriters j € M \ {1}, and the firm moves on
to bargain with underwriter j = 2 in the next period. In the latter case,
the firm repeats the same structure of bargaining in period ¢t = 2 with
underwriter j = 2. If underwriter 1 has decided not to withdraw, but to
wait for renegotiation with the firm, he has to queue in behind the other
underwriters, who still wait for a chance to bargain with the firm, at the
end of the queue. This procedure is repeated until either an agreement
between the firm and some underwriter has been reached, or period T
is reached, or all underwriters have withdrawn by investing their funds
somewhere else. In the first case, if an agreement has been reached, the
firm obtains w, if it proposed, or 1 — 7, if the underwriter proposed, and
the successful underwriter obtains 1 — w, if the firm proposed, of «, if
he himself proposed, i.e. the subgame, where the underwriter supplies
to the primary market, is reached. If period T is reached without an
agreement, then the firm tries to issue the shares non-underwritten and
obtains its payoff from the equilibrium in this subgame, and all under-
writers obtain zero. The latter also holds true, in case all underwriters
withdraw from potential bargains with the firm.

THEOREM 3. There exists a subgame perfect equilibrium of the bar-
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gaining stage, such that the firm’s share of the surplus is given by
w=1-(1-a)™ € (0, 1).

The equilibrium constructed in the proof of Theorem 3 shows that the
firm will conclude a contract with underwriter ;7 = 1 in the first period.
Hence the reader may wonder, why the other underwriters j € M\ {1}
do not withdraw immediately. The answer is that they may well do so,
once the contract is concluded, without altering anything in Theorem
3. In fact, the set M of potential underwriters is meant as a pool of,
say, investment bankers having frequent contacts with the firm and thus
staying potentially ready to subscribe to the firm’s issue of new shares.
Once the firm has chosen one of them, all the others are free to invest
their funds in alternative uses. An investment banker, who is not willing
to contact the firm from the very outset, is simply eliminated from the
set M.

The point which we wish to make with Theorem 3 is that the use
of an underwriter constitutes a potential extra cost of issuing shares,
though this cost is unavoidable, if # > =. Since m is a finite integer
number (there cannot be more potential underwriters than investors),
1—-(1-a)™ < 1, ie. despite the fact that potential underwriters
engage in a Bertrand-type competition, a successful underwriter obtains
a non-vanishing share of the surplus in the equilibrium constructed in
Theorem 3. And the equilibrium constructed in Theorem 3, although
notiunique in the class of subgame perfect equilibria, has very desirable
game theoretic properties. Without explicitely giving a formal proof,
we claim that in particular the equilibrium constructed in the proof of
Theorem 3 satisfies Strategic Equilibrium [Leininger, 1988] and a proper
version of Forward Induction [van Damme, 1989).

7. CONCLUSIONS

The present paper has studied a three stage game which resembles
the sequencing of events, when a firm attempts to raise funds for an
investment project by issuing new shares. At the first stage the firm
bargains with potential underwriters on a subscription of the issue. Then
a primary market opens, where private investors can take up some or all
of the new stock. Finally trades at a secondary market are allowed. It
turns out that the cost of issuing shares split into two principle parts:
Underpricing of the issue at the primary market (when measured against
the price at the secondary market) and the costs for the services of an
underwriter. Both types of costs may be unavoidable (i.e. equilibrium
costs), because by declining the services of an underwriter, the firm
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risks even more severe underpricing at the primary market as it would
with the support of an underwriter. But the notion of underpricing
as a (part of the) cost of issuing shares also carries a slight ambiguity.
Though an issue may be underpriced, when measured against the price
at the secondary market after the (non-zero) transactions at the primary
market, this does not imply underpricing as measured against the price .
which would obtain, if no primary market existed, but shares are sold
in a perfectly competitive world (the "reference economy”).

The main point of the paper is to carry through these arguments
in a rigorous game-theoretic framework: Underpricing is a device to
generate an incentive for investors to take up the issue at the primary
market, rather than to wait for the secondary market, despite the fact
that investors at the primary market are aware of their influence on the
secondary market price. And the services of an underwriter are costly,
because, if the underwriter would not get more than with an alternative
use of his funds, he will reject the firm’s approach; this threat (being
subgame perfect) forces the firm to concede a non-vanishing part of the
surplus to the underwriter.

Results generated in the course of the analysis are: The secondary
market, modelled to resemble closely the rules of real-world stock ex-
changes, has all active equilibria Walrasian, despite the fact that all
investors have price-setting power. Activity of the primary market will
require underpricing, if the secondary market is efficient with respect
to market orders. And to sell the whole issue of an initial public offer-
ing at the primary market will require underpricing in any equilibrium.
The bargaining on an underwriting contract will result in an underwrit-
ten issue, if and only if a non-underwritten issue would require even
more severe underpricing than an underwritten issue. And the latter
always happens in at least some of the equilibria, precisely because a
non-underwritten issue still carries the risk of failure. Thus the costs of
issuing shares are generated by the very nature of shares: Since shares
are financial claims, their valuation depends on an equilibrium of expec-
tations on how the financial asset will translate into real consumption
in the future. But the way the financial asset converts into real com-
modities does itself depend on expectations. Equity issues are just one
example for this - distinguishing - feature of financial instruments.

APPENDIX

PROOF OF LEMMA 1: (i) Since Z4(g,.) < Z,(q,.), Yg > b, and
Z4(q,.) > Z,(q,.), Vg < @, an assumption b < a would imply that
3¢ € (b, @) such that both Z4(§, .) < Z,(§, .) and Z4(q, .) > Z,(4, .),
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which is clearly impossible.
(ii.a) First suppose that there existsno § € (@, b): Z4(§, .) = Z,(4, .)-

Then from
Zd(q’ ) < Zs(q, . ), Vq > a, and

Zd(Qa ) 2 Zs(qs . )t Vq < é’
the hypothesis implies

Z4(q,.) < Z4(q,.), Vqe€(a,b), and
Z4(g,.)> Z,(q,.), Vqe€(a,bd),

which is clearly not possible. Consequently 3§ € (@, b), such that
Z4(§,.) = Z4§,.). But then by the monotonicity properties of Z,
and Z,

Za(g,-) £ Zs(g,-), Vq€l§, b, and

Z4(g,.) 2 Zs(g,-), Vge€la, 4]
which from the definition of b and a implies

Zd(q, ) = Zs(q’ . )7 Vq € (C—l, .b.)

(ii.b) Consider a sequence ¢* — @, ¢* € (@, b), Vk. Since Z, is con-
tinuous from the right, i.e.

qk \, ¢° and Z,(qk, N\ 20 = 20 = Z(¢°%, ),
it must be true that
limi—ooZ,(q¥, .} = Z4(a, .) = Z4(q, .),

for all ¢ € (@, b). For a sequence ¢¢ — b, ¢* € (@, b), Vk, left hand
continuity of Zg4, i.e.

¢* /¢°and Zy(¢*, .) \ 2§ = 2§ = Za(q°, ),
implies that
limk-—’cozd(qka ) = Zd(.b.y ) = Z,(q, . )’

for all ¢ € (@, b). Using (i) this yields the desired result. §

PROOF OF LEMMA 2: (i) Suppose first that b > b. Then there must be
some bidder : € N on the demand side, who bids p; = b, and who can
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reduce his bid without risking any change in the allocation of shares.
Since this contradicts optimality, this cannot be an equilibrium.

Now suppose that @ < a. This case is somewhat more involved, be-
cause on the supply side the underwriter has to play a market order
and he may be the only supplier (otherwise an analogous argument
as above holds): From the definition of @ it follows that Z4(p!,.) >
Z,(p, .), Vp! € [a, @). But Z,(p?, .) is constant on [a, @] by the defi-
nition of a, and Z,4 is continuous from the left, such that a < a implies
Z4(a, .) > Zs(a, .). From the right-hand continuity of Z, it follows that

aﬁl >a: Zs(plv ) = Z,((_l, : )a Vpl € [aa ﬁll
But from the definition of a also

a= sup{pl € R+ |Zd(P1a ) > Za(Pl’ )}

which implies that Z4(p',.) < Z,(p',.), Vp' € (@, p'], such that
Za(pt, .) < Z,(a,.), Vp' € (&, p']. Consequently there are only two
possible cases:
(a) Za(p', .) = Z,(a, . ) for some p! € (a, p'], or
(b) Za(p', .) < Z4(a, .) for all p' € (@, p'].

If case (a) holds, the definition of b implies b > a, and, therefore,
b > b > a. But then again there is some investor ¢ € N on the demand
side, who bids p; = b > @, and who can lower his bid, thereby reducing
the price which he will have to pay, without risking a change in the
allocation (by Lemma 1). Since this investor would be strictly better off
with a lower bid, case (a) cannot hold in equilibrium.

If case (b) holds, the definition of b implies b = @ and one has

Zd(év ) = Zd(av ) > Zs(ba ) = Z,((_l, . ),

from the argument above. Since there is excess demand at b = a, there
must be some bidder ¢ € A on the demand side, who will be rationed. If
there is more than one bidder, who will be rationed, then risk- aversion
(strict concavity of u’, Vi € N) implies that each of these bidders is
better off with reducing his demanded quantity to the expected value

ls '! ¢ dF(¢|(p, s')), holding limit prices constant. But this again contra-
dicts the equilibrium assumption. If there is only one bidder, who will
be rationed (with certainty), then this bidder can strictly improve his
payoff by lowering his limit price from p; = b > btopl =a < b = a.
Since Z, is constant on [a, a] this will not change his allocated quantity,
but the price which he will have to pay is lowered. '
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Since both the implications (a) and (b) contradict the equilibrium
assumption, this completes the demonstration of (i).

(ii)) Suppose b > @ holds. Then from Lemma 1 above it follows that
Zy(d, .) = Z,(a, .), and Zy4(p, .) = Z,(a, .), for all p! € (a, b). Con-
sequently there must be some bidder : € A on the demand side, who
bids p; = b = b (by (i)), and who will not be rationed. This bidder
can lowerd his limit price without risking a change in the allocatmn of
shares, contradicting optimality. §

PROOF OF THEOREM 1: The first part, p* = b = @, follows from Lemma
2. Now consider the indifference curves of an investor : € A in (p!, s}) €
R, x R space, given by

—4/9@(»@@1+{/Qu;;(.mdu—pI/Qui(.)dmols%=o

_ JuiRdp—p' Juidu

- ds} si [uidp

Step 1: Each indifference curve has a unique maximum in 4 X R4,
i.e. when s! > 0, and a unique minimum in 4+ X R__, i.e. when s} < 0:
The second derivative of indifference curves is given by

d’p' _ (JujRdp)® /u.- gy JuaRdu

d(s})?  st(fuidu)® J T sH([uf dp)?

; ; 2 dp! ub, R? du
x[/“lsz.U'*'/“led#] gzt £1 }2ui i’
i 48 iJ U

such that

dp' 1 d’p'
E =0 and s$; > 0 = d(s} )2. < 0,
dp! d*p!
_ds} =0 and s} <0 = —d(s})2 > 0.

First consider the case s} > 0 and a point 3} > 0, where dp'/ds! = 0.
To the left of 3! for some s} € (0, 3}) sufficiently close to 3} it will be
true that dp! /ds} > 0. But then at this point d?p*/d(s})? < 0. Iterating
this argument shows that for any sj € (0, 5{) one has dp'/ds; > 0. As
a conséquence E} must be unique. _

If s} < 0 again con51der some s < 0 such that dp'/ds! = 0 at 5}. By
d?p! /d(.sl)2 > 0 at 3}, for some s} € (3}, 0) one must have dp!/ds} > 0
which implies that d2p /d(s})? > 0 at s! € (3}, 0) and consequently for

all s} to the right of 3}. This aga.in,implies that 3} is unique.
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Step 2: Define for a given investor i € N the sets

Di(pi, (p, s")) = {j € {0} UN\ {i} |p; > pi},
Ti(pi, (p, 1)) = {j € {Q}UN\ {i}|p; = pi},
Si(pi, (p, 5)) = {j € {0} UN\ {i} [p; < pi},

and set s = > ;car5¢ — s < 0 and the implicit ask-price of the under-
writer pg = 0. Let

bi(p, ') = sup{pi € R | ) max[0, 1] >
JEDi(pi, (p, s}))UTi(pi, (p, s'))

> - > min[0, s}]},

jESi(Pi,(P, 31))UT-'(P-',(P1 31))
ai(p, s') = inf{p; € R4 | > max|0, s}] <

J€Di(pi, (p, ' ))UTi(pi, (p, s*))

<- Z min[0, s;]}

J€Si(pi, (p, s1))UTi(pi, (p, s1))

Define the correspondences T;: 4 — R4 and ¥;: R, — R_ by

( {O}a if pi < bi(p7 31)’
. 1
[0, — 2 esi(pi. (0, s DUTi(rs, (9, o)) ™iID(0, 85)—
- EJ'GD.'(p.',(p,S‘)) max(0, s} )]’

Ti(pi) =/ ifp,' > -b.i(p’ 31)’ /BJ € Ti(Pi, (p’ 31)): S} > 0,
[0’ - Eiesi(p-’,(PJ‘))UT.‘(P.',(IJ,SI))min[o’ S}]_

= 2 jeDi(pi, (p, a1y MaX[0, 53]),
\ lfpt Z .lli(p’ sl)a 3] € Ti(pia (pa 31)): S} > 03

and analogously

({0}, if pi>a(p, '),
[= 2 ieDitoi. (9, e NUT (pis (5, a1y MEX(0; 57)—
= 2jeSu(pi, (p, 51y Min(0; 55), 0],
Vilpi)=1{ ifpi<alp, s'), Aj € Tulpir (s 81): 55 <0,
(= 2 5eDitri, (. 1)U i, (5, 81)) MaX(0, 83)—
= Zjesiti, p, o1y RIn(0, 53), 0],
- (. ifpi <a(p, s'), 3j € Ti(pi, (py 8%)): s} < 0. -
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In Step 2 we claim that the union of the graphs of T; and ¥;, G(T;)U
G(¥;), is exactly the set of feasible trades for investor : € . In other
words: We claim that, by choosing an appropriate strategy, an investor
¢ € N can secure for himself any price- quantity pair contained in G(7;)U
G(¥;), but nothing outside. Consider the demand side first: If investor
i € N bids p; < b;, then he will clearly not get any shares. If he bids
pi = b;, then T;(p;, . ) # 0 by definition. From the left hana continuity of
demand it follows that there exists some p} > p; = b;, but smaller than
the lowest bid of any bidder j other than ¢, whose limit price satisfies
p; > b;. Since at p; > b; supply must exceed demand, investor i will,
by bidding p!, be able to get any quantity in Y(p}). But as long as
he demands some s} strictly smaller than the smallest upper bound of
Y(p!), he will only have to pay b;, because by definition demand will fall
short of supply at p! for any such s}. However, investor 7 will not be able
to get the upper bound of Y;(p}) at the price b;: If he only bids p; = b;
and demands a quantity equal to the upper bound of T;(p}) (which
equals the smallest upper bound of T;(b;)), then Ti(b;, .) # @ implies
that at p; = b, there are rival demands and all investors in {¢} UT;(b;, .)
will be rationed. A quantity equal to the upper bound of T;(p}) can only
be had by raising the effective market price to p; > b;. By the rationing
mechanism no quantity above the upper bound of T;(p;) can be had.

A quantity above the upper bound of T;(p}) can only be achieved by
bidding higher than the next bidder j € A\ {}, who bids the lowest limit
price p; > b;. To this step the same arguments apply: By overbidding,
i can get access to the half open interval without raising the effective
market price; to get access to the (upper or right) boundary of the
interval, ¢ has to raise the effective market price. The arguments on the
supply side are completely analogous, except that "overbidding” has to
be substituted by “undercutting” and T; has to be substituted by ¥;.
We have shown that the feasibility set for any investor on the demand
(supply) side is the area above (below) an increasing (decreasing) step-
function, where the "corners” to the South-East (North-West) are left
out.

Step 3: Now substitute the allocation (inclusive of the price) resulting
from an equilibrium strategy combination for the strategy combination
itself. We claim that at any equilibrium the allocation must be such
that the slope of the indifference curve through the allocation for an
individual investor is zero.

Step 1 has shown that for any investor on the demand (supply) side
the indifference curve through the equilibrium allocation has a unique
maximum (minimum) and is strictly concave (convex) to the left (right)
of the maximum (minimum). Consequently the equilibrium allocation
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can never be on a vertical piece (”vertical” means a fixed quantity, but
several prices) of the feasibility set, because in this case the intersec-
tion of the upper contour set with the interior of the feasibility set is
non- empty, and the investor can improve upon the allocation. The
equilibrium allocation can also not be on a corner of the feasibility set
to the South-East (North-West), because these points do not belong to .
the feasibility set. Consequently, the equilibrium allocation must be on
a horizontal piece ("horizontal” means fixed price, but variable quan-
tity) of the step-function, because it can also not lie in the interior of
the feasibility set. But this implies that for any investor, who trades in
equilibrium,

/ﬂ wj(w; — p°s? — pis, R(6)(S; + 52 + s1))R(6) du(8) =
=" [ wimi= g5t = gl RIO)(S: + 52 + 51)) (o),

where p! = b(p, s!) = a(p, s'), from Lemma 2. That none of the in-
vestors, who trade in equilibrium, will be rationed follows from the defi-
nition of the horizontal pieces on the boundary of the feasibility set.
Hence any investor, who trades in equilibrium, is on his Walrasian de-
mand (supply) function. Since no one is rationed, supply equals demand
and all investors are on their excess demand curves, the equilibrium al-
location is a Walrasian equilibrium.

Step 4: To show the converse, let a Walras-equilibrium (p?, (3} )ien)
be given. Consider the following strategy combination:

(pi, s1) = (p', 8)), VieN.

The feasibility set for an investor ¢ € A" on the demand side is now

{[o, — Z min(0, 5} S+Z s3]x
JEM\{i} JEN
x[p',00)}\ {(= ) min(0,5})—s+ > 2 p")}

JEN\{i} JEN

and his optimal choice from this set is exactly his Walrasian demand.
For the supply side, again, an analogous argument holds. Consequently,
no one has an incentive to deviate, verifying that a Nash-equilibrium
has been constructed. §

PRrROOF OF LEMMA 3: Since the budget set is compact and convex und
u' is continuous, the maximum-theorem yields that ¢} is an UHC corre-
spondénce. Strict concavity implies that ¢} is a function (single valued),
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such that it is a continuous function. The Kuhn-Tucker conditions for
problem (1) are

[ v, ROHR®)du(®) - 3p* <0, compl. ¢} 20,
Q

[ it RO du) = A <0, compl. 23 0,
Q
w; — p°s? + p'(Si +8¢) —z; —p'¢} >0, compl. A > 0.

By the assumption that ub(., ) —,—o +00 and ui(z, .) —,—0 +oo0,
the optimal choice can never be on the boundary and from u! > 0 one
concludes A > 0, such that at the optimum the system of Kuhn-Tucker
conditions has to hold with equalities, implicitely defining ¢}, z;, and A.

The determinant of the Jacobian matrix of this system, viz. the bor-
dered Hessian, is given by

/ u§2R2du / uhRdﬂ -p!
[ulRdy  [ulyde  ~1
-p! -1 0

=p' [u} Rdp + p' [ ui,Rdp — (p*)? [ ui,du — [ uby R*dp > 0

which verifies the s.o.c. Moreover, this implies that (! and z; are con-

tinuously differentiable functions of p! and all other parameters, by the

implicit function theorem. '
Implicitely differentiating the f.o.c.’s yields

d 1

oot = 2 [ uladu— [y R - Si— 7))

dz;

= -;—{Ap +(f uby R?dps — p* [ ul, Rdp)(C} ~ Si — s2)],
¢l _ 8¢

dp° = A—[P [ui dp — f“21RdP]

d 1

diq P’ A, [Plf“nd/‘ f“ledﬂ]

from which (i) and the first part of (ii) follows directly. The second part
of (ii) follows from strict monotonicity of u’ and (iii), (iv) follow from
the above differentials and u}(., ) —,—¢ +oo directly. I

PROOF OF LEMMA 4: The gradient of (; is given by

grad(G) = (3 641,2 ,,,("< Jiew).

. = 0p
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We wish to show that grad(¢;) # 0. Suppose grad(¢;) = 0. Then
(8¢} /0s?)ien = 0 and 3, 0¢}/Op° = 0 imply from Lemma 3, (iii),
that p' = p°. But then (}(p', (wi — p°s{, Si + s2)) = ¢} (p°, (wi, S:))
implies from

o)
25

iEN

g

s9=0,ViEN pi=ps  jgn OP°

o¢}

1
pl=p° ieN p

that ). 9¢}/Op! # 0, from the assumption that the reference econ-
omy is regular.

Hence grad({;) # 0, ¥Y(p!, (p°, (s%)ien)) € R4y x G, ensures that
S 4+ s > 0 is a regular value of ;. The preimage theorem [Guillemin
and Pollack, 1974, p.21] implies that ¢;'(S + s) is a smooth manifold
of dimension n + 1. The second part of the Lemma follows from the
parametric transversality theorem [Hirsch, 1976, p.79] which states that
the set of parameter values (p°, (s?)iear) € G for which 8¢;/8p' # 0 at
the equilibrium price is open and dense in G. |}

PrROOF OF LEMMA 5: Implicitely differentiating the market clearing
condition yields

dpt _ __ 0G0t _ (p"=pDOG /0y .
ds? ZjeNaC}/apl Zje,/\/a(}/apl ’ ’

where y; = w; — p°s? 4+ p!(S — i + s?) and 8¢} /8y; > 0. This completes
the proof.

PROOF OF LEMMA 6: (i) The first part follows directly from implicitely
differentiating V; and applying the envelope- theorem.

(i1) The existence of the function p} follows from Lemma 3, (i) ("once
the price has risen sufficiently high for an investor to become a supplier,
the investor will never again become a demander for any higher price”).

Implicitely differentiating the equation

Ci(pi, (wi —p°sg, Si+59)) = Si—s?=0

yields
dp; _ 14+ (p° — ") /8y
ds? (l=Si+s? 66:'1 /apa1 ,

where y; = w; — p°s? + p'(S; + s?). Using the calculations in the proof
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of Lemma 3 yields

d ]

ds? C,-‘=S.'+s;’— [uidu
—p° [ uj; Rdy] <0,

[p°p f“ildﬂ + f“gzszdﬂ -p' fuisz#—

dpl s? 1 . .
=t =+ ful d _ u’ Rd )
dp° |erasivsr [ uldl‘[p 1dp = [ vy Ryl

By the implicit function theorem, therefore, p}(s?, p°) is continuously
differentiable with the required monotonicity properties. Next,

dp; 1 i p2 1p,i
as: < = [uidp [J upe R*dp — p' [uj,Rdp] < 0
PG =Sitsy

shows monotonicity in S;. Finally, if s — w;/p°, the assumption
ui(z,.) —z—o +oo implies that S; + s > (}, Vp' > 0, such that
by definition of p}, p}(s?, p°) < p!, Vp! > 0, as s? — w;/p°. On the
other hand, whenever s? — —S;, the assumption u}(., ) —z-0 +00
implies that ¢} > S; + s — 0, Vp! > 0. This completes the proof. 1

PROOF OF THEOREM 2: Let P; = 131,‘ where P; is defined by
Py(p®, (s9)ien) = MaX (1 (po, (s0)icnneci (S49) P

and fix some rationing mechanism ¢. The latter is always possible, be-
cause for any profile of market orders (z?)iea which satifies 3 ;- 27 > s
the underwriter is indifferent among rationing mechanisms, and for any
(22)ien satisfying 3 .car 28 < 8, #({(20)ien}) = 1 for all rationing
rules. Then, given (p°, (7i)ien), the investors i € N play a finite
simultaneous move game, because Z, is a finite grid. Now extend
the pure strategy spaces of investors in these games to pure strategy
spaces Z, for all 1 € N by assigning strictly dominated payoffs to any
z? & [0, min(r;, w;/p°)] N Z, for all i € N. This operation does not
eliminate any equilibrium of the original games and does not generate
any new equilibria in which some investor uses any of the artificial new
strategies. Then, given (p°, (r;)ien’), investors play finite games with
fixed pure strategy spaces Z., all of which have equilibria (in possibly
mixed strategies) by the Nash- theorem.

We do not show in greater detail here, but basically assert that for
finite games the following theorem holds: Let G be a subspace of the
space of normal form games with fixed pure strategy spaces for all play-
ers; then G can be partitioned into a closed set Go C G with. lower
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dimension than G and finitely many connected (relatively open) compo-
nents Gy, Gt C G\ Go,t =1,...,T, such that on each G4, t =1,...,T,
there exists a continuous function f; (mapping G; into the product of
the simplices of probability distributions on pure strategy sets) assign-
ing an equilibrium to each game in G;. A formal proof of this theorem
can be deduced from Theorem 4 and its Corollary 9 in Ritzberger
and Vogelsberger [1990]. Alternatively it follows from the fact that
the graph of the Nash- equilibrium correspondence is a semi-algebraic
set [Blume and Zame, 1989, p.10): Consider the projection of the
graph of the Nash-equilibrium correspondence into G. Generic trivial-
ity [Blume and Zame, 1989, p.3] yields a subset Gy and connected
components Gy, t = 1,...,T, of G\ Gy, semi-algebraic sets (fibres) F}
and homeomorphisms h;, mapping G x F; into the inverse image of the
projection of Gy, such that by fixing a point in F; foreach ¢t =1,...,T
a continuous function (the composition of the projection of the graph
into mixed strategies with the homeomorphism h;) can be defined on
U;F=1 G: which maps continuously into equilibria. This procedure can
be repeated on Gy and the critical set of Gy. Since the dimension of
critical sets is strictly decreasing, this is a finite process. (This theorem
has been proved by Schanuel, Simon and Zame [1990, p.13-14] for
the whole space of games. That it also applies to a subspace follows
from considering the restriction of the continuous selection of equilibria
to the decomposed subspace, where the decomposition is obtained by
intersecting with Gy and G;,t=1,...,T.)

In the present case the space of games under consideration, G, is
generated by varying (p°, (ri)ien) and determining the corresponding
payoffs V; for any pure strategy combination (2{)icnr € Z7' given ¢
(with the convention that pure strategies which are not strategies of the
original games get assigned strictly dominated payoffs). Applying the
above theorem then ensures that on finitely many subsets, the union of
which is dense in G, continuous selections of equilibrium distributions
on the (s?)ien’s can be constructed. Let {G:}7_, be the collection
of these subsets and {f,}7_, the corresponding collection of continuous
equilibrium selections. Now extend each f; continuously to the boundary
of G4. Since any finite game has at least one hyperstable component of
equilibria [Kohlberg and Mertens, 1986 the continuous extension
will select an equilibrium even for games at the boundary of G, (in Gjy)
and, therefore, on the whole closure of G4, t =1,...,T.

The choice of P, = P, by Lemma 4 partitions G(4) into finitely many
subsets of "regular economies” (for which all Walras equilibria are regu-
lar) on which P, is continuous. The boundaries of these subsets are the
sets of ”critical Walras economies”, i.e. the subsets of G(3) on which the
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projection of {{!(S+s) into G(B) is not surjective. Now, on each of these
sets of "regular economies” extend P, continuously to the boundary.

With these constructions at hand the underwriter’s pure strategy
space can be partitioned into finitely many (relatively open) subsets,
the union of which is dense. On the closure of each of these subsets
both the Nash-equilibrium distributions of the (s?)iear’s and the assign-
ment of p! (the equilibrium at the secondary market) are continuous
by construction. Hence a maximum of E n(p!, (p° (5?)ien’)), Where
the expectation is taken with respect to the equilibrium distributions
of the (s?)ien’s, exists on the closure of each of these subsets, by the
Weierstrass-theorem. Since there are only finitely many such subsets, a
global maximum exists.

Since the general existence of hyperstable components ensures that
at the global maximum an equilibrium distribution of the (s¢);ea’s has
been used to evaluate the underwriter’s expected payoff, it remains to
show that the solution sits not at a ”critical Walras economy”, where
P, was defined artificially by continuous extension of P; (and does not
coincide with P;). But the latter is impossible, because by definition of
Py the true value of P, will always be at least as large as the value of
the continuous extension. |

PRrOOF OF THEOREM 3: The proof is by construction.

Step 1: First consider the case, where t = T (the current period is the
final one) and there is at least one underwriter (the current bargaining
partner) left to bargain with. Then by subgame perfection, if the firm
makes the offer, the underwriter cannot reject any w < 1 (because his
reservation payoff is zero and 1 —w > 0), and if the underwriter proposes,
the firm cannot reject any offer # < 1. Consequently, by a standard
argument (rejection at the boundary offer would force the proposer to
optimize on an open set which is impossible), w = 1 is accepted, if the
firm proposes, and 7 = 1 is accepted by the firm, if the underwriter
proposes. Expected equilibrium payoffs are thus a for the firm and
(1 — @) for the underwriter.

Next consider the case, where all except one underwriter already have
withdrawn from the game (invested somewhere else) and only the current
bargaining partner is left. If t = T the above applies and expected
payoffs are a resp. (1 — a) for the firm resp. the remaining underwriter.
Now suppose that expected payoffs are a resp. (1 — a) for the firm resp.
the underwriter, if the remaining time horizon is T — ¢t > 1. We claim
that offers w = a and 7 = 1 — a, acceptance of these offers (rejection of
all strictly higher offers), continuation of bargaining (if an offer should be
rejected), and no withdrawal by the underwriter (if one partner should
decide-to split), form subgame perfect equilibrium behavior: Starting
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with the decision of the underwriter to withdraw or not, it is optimal to

stay, because the firm will have to come back to the only underwriter

(who has not yet withdrawn) which yields him 1 — a« > 0. Given this

behavior both partners are indifferent between splitting and continuation

of bargaining after a rejection of an offer, verifying that continuation in

response to a rejection is equilibrium behavior. Since the responder .
cannot reject any offer w < a (7 < 1 — a) acceptance of the offers w = o

(7 =1 — a) is the only equilibrium behavior and the optimal offers are

w = a and 7 = 1 — a. This yields expected equilibrium payoffs of

o®* +a(l—a)=a, resp.
a(l-a)+(1-a)’=1-a,

for the firm resp. the underwriter. Backward induction then yields that
for all subgames, where either only one underwriter or only one period
remains, expected equilibrium payoffs are a for the firm and (1 — «) for
the underwriter.

Step 2: Let for some stage of the bargaining process k denote the num-
ber of remaining potential underwriters (inclusive of the firm’s current
bargaining partner) and denote by T + 1 — ¢t the length of the remain-
ing time horizon in period ¢t. Step 1 has shown that, whenever £ = 1
or t = T, then the expected equilibrium payoffs to the firm resp. the
(currently bargaining) underwriter are a = 1 — (1 — a) resp. (1 — a).

As an induction hypothesis now assume that for k = h — 1 > 1 the
expected equilibrium payoffs to the firm resp. the (currently bargaining)
underwriter in period ¢ are given by

1— (1 _ a)min[T-H—t, h-1] resp. (1 _ a)min[T+l—t,h—1].

Now consider a situation, where k = h > 1. For all periods t > T + 1 —
h we claim that the following constitutes subgame perfect equilibrium
behavior: If the firm is chosen the proposer, it offers w = 1, and, if an
underwriter is the proposer, he offers m; = (1 — a)T; these offers are
accepted and all strictly higher offers are rejected by the responder; if
an offer is rejected, the firm quits the bargaining and the underwriter
withdraws. Given that the firm quits and ¥ = h > T + 1 — ¢, the
underwriter is indifferent between withdrawing or not, because he will
not have a chance to renegotiate with the firm, such that withdrawing is
optimal. Since by k = h > T+1—t the firm is never short of underwriters
quitting in response to a rejection is also optimal. Consequently, the
acceptability constraints for the offers of the firm resp. the underwriter
are given by
1-w2>0, resp.

-7 >1-(1-a)T
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The latter inequality follows by induction from ¢t =T = mr = 1 (Step
Dand 1y = (1 - )T ) — a4+ (1-a)l-(1-0a)T""] =
1—(1—a)7T~7: By the standard argument the acceptability constraints
are equalities in equilibrium, such that expected payoffs are a + (1 —
@)l - (1-a)T~=1-(1—a)T+~* for the firm and (1 — a)T+1~ for
the underwriter. Hence for t > T + 1 — h the formula in the induction
hypothesis follows also for k£ = h.

Next for all t < T'+1—h we claim that the following is subgame perfect
equilibrium behavior: If the firm proposes, the offer is w = 1 — (1 — a)?
and, if an underwriter proposes, the offer is = (1 — a)*; these offers are
accepted and all strictly larger ones are rejected; in response to a rejec-
tion both partners decide to continue bargaining; if indeed one partner
should quit the bargaining, the underwriter withdraws. From k=h > 1
it follows that, after a quitting of the bargaining process, the underwriter
will not have a chance to renegotiate, because the firm will conclude a
contract with another underwriter next period. Hence the underwriter’s
withdrawal is optimal. Given that the underwriter withdraws after a
quitting, the firm is faced with the choice between a situation, where
(after quitting) the number of remaining underwritersisk —1=h -1
and the remaining time horizon is T — ¢, and a situation, where (after
continuation) the number of remaining underwriters is £k = h and the
remaining time horizon is T — ¢. In the first situation (after quitting)
the firm will obtain 1 — (1 — a)®™!, from the induction hypothesis, and .
h—1< T —t. To evaluate the second situation (after the decision to
continue bargaining with the present partner) let first t+1=T+1—h,
such that T — ¢ = h; then the firm will by continuing to bargain obtain
1—(1 —a)* which is strictly larger that 1— (1 —a)*~!. Hence at least in
t =T — h it is optimal for the firm to continue bargaining. For the un-
derwriter it is also optimal to continue, because in t = T'—h his expected
‘payoff is (1 —a)? > 0, if bargaining continues. Hence the expected equi-
librium payoffs to the firm resp. the underwriter in ¢ = T — h, when
k = h, are from the acceptability constraints

al-(1-a)']+(1-a)l-(1-a)]=1-(1-0a)
resp. ol —a)* +(1-a)1-a)* =1 -a)’.

Suppose these are also the equilibrium payoffs for + < T — h, 7 > t.
Then, in case the firm has in period t to decide on quitting or con-
tinuation of the bargaining (in response to a rejection), it is faced with
choosing between [1 — (1 —a)"~!] after quitting, because the underwriter
withdraws, and [1 — (1 — a)*] after continuation, such that continuation
is strictly preferable. Obviously an analogous argument holds for the
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underwriter, such that the acceptability constraints

1-w>(1-a)t
l1-7>1-(1-a)h,

yield the desired equilibrium payoffs by induction. Comparing these
results with the induction hypothesis verifies that the formula in the
induction hypothesis also holds for £ = A, if it holds for k = h — 1. In
period t = 1, then T > m yield the statement of the theorem. §
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