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ABSTRACT

Six-variable vector autoregressive systems consisting of
macroeconomic series are investigated. Parallel data series for
four European countries are used: Austria, Germany (Federal
Republic), Finland, and the United Kingdom. All data series are
not seasonally adjusted.

The aim of the paper is to show that most of the series are better
modeled using stochastic seasonality and seasonal unit roots
models than simple deterministic models of seasonal structures. As
a second step, seasonal cointegration in the systems is studied.
It is shown that all four economies display seasonal cointegration
as well as usual cointegration.

ZUSAMMENFASSUNG

Gegenstand der Untersuchung sind sechs~dimensionale
vektorautoregressive Systeme. Hiezu werden Paralleldaten aus vier
europdischen Staaten herangezogen: Osterreich, Deutschland

(Bundesrepublik), Finnland, und das Vereinigte Konigreich. Die
Daten liegen in nicht-saisonbereinigter Form vor.

Ziele des Papiers ist es 2zu zeigen, daf die meisten Zeitreihen
besser durch stochastische Saison und saisonale Einheitswurzeln
als durch einfache deterministische Saisonmodelle beschrieben
werden. Als zweiter Schritt wird saisonale Kointegration in den
Systemen studiert. Es wird gezeigt, daB alle vier Okonomien sowohl
saisonale als auch die {(ibliche (Frequenz 0) Kointegration
aufweisen. :






1. Introduction

For some time, vector autoregressions (VAR) have been in use now
as the basic mechanical method for description and prediction of
multivariate economic time series. A rather 1lengthy dispute
between those who advocate the use of differenced data and those
who prefer modeling original  ("level”) series has been all but
reconciled by the theory of cointegration [Engle and Granger
(1987)]. Until recently, detailed and readily applicable results
were available for first-order integrated 'systems only Dbut
extensions for higher-order systems and the seasonal case are in
the focus of current research activities [e.g. see Engle, Granger,
and Hallman (1989), Hylleberg, Engle, Granger, and Yoo (1990), or
Sims, Stock, and Watson (1990)].

For the moment, 1let us start from the first-order integrated
vector autoregressive system which is defined as a vector
autoregression (VAR) with roots outside the unit disc or at one
only. It is assuméd explicitly that all individual series can be
made stationary by first-order differences. A generic feature of
these models 1is the phenomenon of first-order cointegration
(CI1(1,1) in the notation of Engle and Granger (1987)). The
solution of the Gaussian maximum-likelihood problem for this case
has been analyzed by Johansen (1988) and Johansen and Juselius
(J3, 1989).

Raw (non-adjusted) monthly or quarterly economic time series
frequently show seasonal patterns which shed some doubt on the
assumption of stationary first differences. The question whether
these seasonal patterns should be eliminated by regression on
seasonal dummies (the "deterministic" model) or by treating them
by seasonal differencing, thereby assuming additional unit roots
on the unit circle (the "stochastic" model), parallels the
discussion of deterministic and stochastic trend models. If the
stochastic model is accepted, again cointegration arises as a

generic feature, this time cointegration at seasonal frequencies.

Cointegration .at seasonal frequencies means that, although

individual series display stochastic seasonality giving rise to



unit roots e.g. at -1 (frequency mn), there is a linear combination
which is free from that kind of seasonality but might yet have
unit roots at 1 or at other seasonal frequencies (e.g. n/2 in this
example). Up to now, evidence on seasonal cointegration has been
rather scarce (compare the recent contribution by Engle, Granger,
Hylleberg, Lee (1990)). The examples of this paper show that
seasonal cointegration is not uncommon in larger systems whereas
the author must concede that it will be difficult to encounter in

two-variable relations.

The object of this paper's investigations are six-dimensional
macroeconomic data sets from four European economies (Austria,
Federal Republic of Germany, Finland, United Kingdom). The six
series are: gross domestic (or national) product; private
consumption; gross fixed investment; goods (if unavailable, total)
exports; real interest rate on bonds; real wage. This system
coincides with the one used by Kunst and Neusser (1990) for the
Austrian economy. They motivate their specification by the fact
that it contains four cointegrating relationships, according to
neoclassical growth theory (real interest, consumption to output
guota, investment to output quota, real wage to output ratio),
with exports additionally contributing as an important factor in
modern open economies. Therefore, it serves as an appropriate
starting point for investigating multivariate cointegration in
many countries although it may be conceded that, in some
economies, other variables could play a more important role than

some of those included.

The paper is organized as follows. The subsections of Section 2
are concerned with the wunivariate properties of the 24 data
series. (Sub)Section 2.1 discusses the property of integration at
frequency =zero, deterministic versus stochastic trend models.
Section 2.2 expounds a parallel discussion on stochastic wversus
deterministic seasonality and quotes the relevant test statistics.
Section 2.3 allows for a short 1look at the distributional
properties of the data series which can be thought of as tests for
outliers. Section 2.4 describes the data. Section 2.5 gives the
results of the seasonal unit root tests and shows that seasonal

unit roots are not uncommon among economic series.



Section 3.1 quotes the maximum likelihood estimation algorithm of
Johansen (1988) for cointegrated vector autoregressions whereas
Section 3.2 quotes the extensions by Lee (1989) for the seasonally
cointegrated case. Section 3.3 takes a closer look at the results
from the seasonal cointegration testing and estimation procedure.
Section 3.4 gives the frequency zero cointegration wvectors which
emerge as a byproduct from the analysis. A companion paper focuses
on these vectors in an inter-country comparison [Kunst (1990)].
Section 3.5 gives a short summary of an experiment considering
seasonal cointegration and deterministic dummy structures at the

same time. Section 4 concludes.

2. Uni {a1 l isti £t} 1at .
2.1 Integration at frequency zero

For a long.  time, applied economics used trend-stationary models to
represent - typical macro-economic series, such as output or
consumer expenditures. The trend-stationary model views the data
at hand as. the sum of a deterministic long-run growth component
and a stationary (stochastic) business cycle component, the latter
one being the only part which is of genuine economic interest. The
obvious/ remedy is to regress the raw series on some basic
deterministic shapes, preferably linear and maybe quadratic time
trends, and focusing univariate as well as multivariate analysis

on the residual. Such models may look like the following one: 1

X, = a + bt + C
t t (2.1)

In (2.1), the roots of the (determinants of the) lag polynomials
&(.) and 6(.) are restricted to lie outside of the unit disk and
{Et} is white noise (serially uncorrelated). In most cases, {Xt}
will be the log of the original data and (2.1) thus implies that

the original series fluctuates around an exponential trend.

In recent years, the prevalence of models like (2.1) in empirical

economics has waned and unit root models, also called integrated

1 B will denote the backshift or lag operator in the following.



or difference-stationary models, have gained widespread
popularity. The typical model of this type looks

In (2.2), ®(.), ©(.), and {Et} follow the same restrictions as in
(2.1) and 4 is used in short for 1-B. Eliminating 4 from the
equation, i.e. integrating it, leads to a similar deterministic
component a+bt as in (2.1) but now the deviations from this

"trend" are non-stationary.

As the question of whether deviations from the trend are
stationary or not has profound economic implications, e.g. on the
"persistence” of unanticipated shocks, the discrimination problem
among (2.1) and (2.2) haé led to many different testing procedures
and much empirical work on economic series from many countries. In
general, evidence seems to prefer (2.2) but this is still not
being agreed upon universally, even with respect to series
investigated very thoroughly such as U.S. real GNP. It seems that,
given the finite samples available, the question cannot be decided

empirically.

In the following, all series will be assumed to be unit root
processes. Evidence favors this working hypothesis in most cases
as is seen from the first column of the statistics in Table 2. It
may be discomforting for some economists to see the effects of
shocks persist forever in the series but, on the other hand, it
makes more sense to have mean-reverting growth rates than to
believe in a mystic long-run trend to which the processes are
attracted by some magical principle. Interestingly, forecasting
practitioners tend to use second-order integrated models
implicitly by adjusting medium-run growth scenarios to the 1last
available information 2. Except for some wage and price series,
integrated growth rates are, however, safely rejected by virtually

all statistical procedures.

A last argument for the use of integrated models is of a more game

2 In years of recession, output growth predictions for following
years are usually tracked down to 1-2 % while this figure rises
to more than 3 % in years of high economic activity. The trend-
stationary model would demand for exactly the opposite reaction.



theoretic nature. In a multivariate system, even one integrated
series suffices for the statistical procedures expounded in
Section 3 to be wuseful whereas the (stationary) modeling of
residuals from regressing integrated series on deterministics

invalidates all results thoroughly.

2.2 Seasonality

The reason for the discussion on trend-stationary versus
integrated models in the last section to be a bit more lengthy
than seems to be fit for this paper has been to enable drawing
parallels between the treatment of trends and of seasonality.
Again, the wusual conception has been that raw measurements of
monthly or quarterly series can be decomposed additively -~ the
frequent use of logged data implies a multiplicative components
model on the original series - into a possibly deterministic
seasonal component and into the economically interesting

remainder, this in turn maybe consisting of "trend" and "cycles".
Xe = S¢ + Eg (2.3)

Here, the second component is labeled E¢ because it is supposed to
be economically interesting. Any univariate and multivariate
modeling is usually performed on these {E{} processes and it is

assumed that these contain all the relevant information of {Xt}.

A principal difference to the trend problem is that components
modeling has actually gone much farther in the sense that, in many
countries for many variables, the {xt} series 1is not even
available. All seasonal information is destroyed carefully by
specialists, often on a low level of aggregation (e.g. for
agricultural exports and not for the gross national product).
Recent years have seen, however, a general increase of interest in
the raw series. Within Europe, the criterion of the availability
of unadjusted series has confined this investigation to four
countries: Austria, Finland, Germany (Federal Republic), and the

United Kingdom.

The decomposition in (2.3) 1is the backbone of the so-called

seasonal adjustment procedures, all of them designed to clean the



series at hand from seasonal noise. The most well-known and
internationally standardized procedure is Census X-11 which is
used by many statistical offices in various versions. The use of
these non-linear filters brings us back into a non-seasonal Ei-
world. Once original data are available, many econometricians
prefer to use simple deterministics, such as quarterly 3 dummies
or dummy trends, in accordance with linear time series analysis on
the stochastic part of the process or system. The specification

with seasonal dummies

4
Ky = ZayDyg + 2~ 1(B)e(B)e, (2.4)
1=

is the exact replica of the deterministic trend modeling in (2.1).

The counterpart of the integrated modeling of (2.2) in the
presence of seasonal effects is the application of seasonal
differences

®(L)agXe = O(L)E, (2.5)

Here, 44 is used to denote 1—84 which has a direct interpretation
if {X{} is a logged series as iyX, then is the annual growth rate.
iy mathematically consists of the two factors 1-B and 1+B+BZ+B3,
the former one of which removes the trend while the latter one
removes all seasonal structure. An application of i, together with
an extra i is rarely justified. Model (2.5) is a member of the
SARIMA (seasonal integrated ARMA) class defined by Box and Jenkins
(1976). In the following, the more precise terminblogy suggested
by HEGY is adopted here and the process {Xt} is rather called
"integrated at the frequencies 0, n/2, n", as these are the
frequencies of the spectral poles implied by the unit roots at +1,
ti, -1 respectively, these in turn being the roots of the iy
operator.

It is important to understand the difference between the two
seasonal models. (2.4) describes the behavior of a series that is

governed by four alternating deterministic trends with identical

3 All formulae in this paper assume that seasonal data are
guarterly. In case of monthly series, some of the analysis
becomes slightly more cumbersome but remains similar in
principle.



slopes, i.e. parallel lines. This means that the original shape of
the seasonal pattern will remain constant. (2.5), on the other
hand, in its extreme form with uncorrelated errors ¢(.)=0(.)=1
describes four circularly merged random walks with the same drift
constant, which implies persistent changes in the seasonal pattern
although the best prediction of its future shape will always be
its present one. Neither of the two models accounts for
monotonously expanding seasonal patterns though a model using
dummy trends instead of dummy constants would. Visual evidence
prefers the stochastic model in some cases but the seasonal
pattern of many other series does not appear to change enough to
reject the deterministic model (2.4). Compare the Austrian wage
series in Figure 6 for a good example for a changing seasonal

pattern.

At this point, anyone unfamiliar with the problem is 1likely to
predict that the research paradigm with respect to seasonality
will be subject to the same development as with respect to
detrending: discriminatory tests will be developed which
corroborate the stochastic model and the deterministic model
finally will be all but abandoned in favor of the seasonal unit
roots model. Interestingly, the first prediction holds true while

the second one does not, this being due to several reasons.

Firstly, the pure model &(.)=6(.)=1 (the "seasonal random walk")
is not very attractive. If started from a flat seasonal pattern,
it tends to produce too many changes in seasonality, summer peaks
becoming winter peaks and spring troughs turning into autumn
troughs too easily. Against this, it <can be argued that
$(.)=6(.)=1 is unrealistic for economic series and that annual
growth rates usually exhibit substantial positive correlations
among quarters. If additionally a distinct seasonal starting
pattern of high volatility relative to the innovations sequence is
used, summer peaks turning into winter peaks will be a rare sight
in simulated series. One should not be too reluctant, however, to
attach positive probability e.g. to the'event of shifting the main
feast from Christmas to .summer solstice in Europe after a time

span of one or two centuries.

Secondly, seasonal data are still not accessible in many cases, as
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some series is not due to isolated outliers but rather to true
leptokurtic volatility. Some of the statistics could be affected
by this phenomenon.

TABLE 1: Skewness and kurtosis of seasonal differences of
investigated (logged) series

Austria Finland
Skewness Kurtosis Skewness Kurtosis
Y -.016 -.508 -.213 .232
C -.267 1.082%* .024 -.635
I .145 .481 -.204 .598
X .210 1.002 -.872**% 1,331%
R -.260 .650 .358 2.730**
W -.016 .112 -.256 -.024
Germany United Kingdom
Skewness Kurtosis Skewness Kurtosis
Y -.149 -.260 .153 2.006**
C -.081 -.477 -.057 -.415
I -.236 1.036%* .088 2.101**
X -.173 .335 .010 1.164%*
R 271 .597 -.356 2.980%%*
W .064 -.441 -.841*% .275

Note: * indicates significance at 5 %, ** at 1 %.

2.4 The data

For each country, data consist of 6 quarterly series on: real
gross domestic product (Y), real private consumption (C), real
gross investment (1), real interest rate (deflated bond rate R),
real goods exports (X), real wages (deflated per capita wages W).
Countries investigated are Austria, Finland, Germany (Federal
Republic), and the United Kingdom. The selection of variables has
been adopted from Kunst and Neusser (1990) who investigate
cointegrating structures in the Austrian system. The selection of
countries has been implied by the requirement that quarterly
national accounts data be available which have not been seasonally
adjusted. In many countries (including e.g. the United States),
only seasonally adjusted accounts are published. Anyway, the cases

include two large and two small European economies and thus
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represent an interesting selection. Data series start at first
quarters of the following years: Austria 1964, Finland 1972,
Germany 1960, United Kingdom 1963. All series end at 1987/88 with
the end of the availability of data. The four national accounts
series Y, C, I, X are in constant prices, so that the whole system
is in real terms. All series except R are used in logarithms. All

series are displayed graphically in Figures 1 to 6. -

2.5 Results of the univariate unit root tests

HEGY tests have been performed for all 24 series in the sample.
The results are summarized in Table 2. Two of the many different
specifications of deterministics have been selected for the table:
firstly, linear trend plus seasonal constants; secondly, linear
trend alone. In the first case, all alternative hypotheses are
modeled explicitly in the test. Additionally, test statistics from
a test on the full seasonal difference factor are given, these
based on a regression without any - deterministics save an

intercept.

The test results show that seasonal unit roots and thus stochastic
seasonality are very common phenomena indeed among economic
series. Evidence against stochastic seasohality is strongest in
the United Kingdom where it appears to be restricted to consumer
expenditures. On the other hand, all German series display
stochastic seasonal cycles and rejection of the i, operator in the
R series is rather due to the absence of the factor 4. The real
interest rate is seasonally infested as it has been deflated via
the GDP deflator. The officially published deflator of the United
Kingdom is non-seasonal and this is reflected in non-seasonal R.
Austria and Finland are intermediate cases, the non-seasonal

nature of goods exports is corroborated by inspection of Figure 4.

Interestingly, the insertion of seasonal dummies is of less help
in coping with seasonal cycles than would have been expected. The
fixed cycles are a good model for the investment series where
construction investment is low during the winter due to climatic
reasons. They are maybe also adequate for a characterization of

British GNP. For the rest of the sample, differences among the two
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versions of the HEGY test are erratic or absent. In summary, with

the stated exceptions, seasonality is either absent or stochastic.

The column headed p in Tables 2a-b indicates the number of
conditioning (augmenting) lags used in the HEGY regression. p was
fixed by first fitting autoregressive models in levels and then
subtracting four from the minimum lag order set by the requirement
of clean residuals. The Austrian and some of the German lag orders
are disturbingly high which indicates the possibility that these
series might be better approximated by moving-average (or mixed)

than by autoregressive structures.

Additional to these tests, conventional unit root tests have been
performed on the original, on seasonally adjusted, and on
differenced series. The overall results are that the assumption of
first-order integration at frequency zero is consistent with all
series except for some cases which may be stationary already and
that no indication is given on higher-order integration which
would have been harmful for the cointegration analysis. The

detailed results are not given in order to save space.
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TABLE 2a: Seasonal unit root test statistics

k51 t2 t3 T4 F3q F,a p

Austria

Y -.96 -3.10*%* -1.81 -1.31 2.50 3.55%% 5
-1.01 -.16 -.95 -.88 .84

C -.80 -2.50 -1.79 -1.63 2.90 2.22 5
-.95 -.75 -1.33 -.73 1.15

1 -1.88 ~3.58%*%%..3 52%% -.57 6.44% 1.02 4
-1.71 -.46 .01 .06 .00

X -.19 -3.73%*%_4 58%*%x _3 12%*%*% 15 ,38*%**% 10.68*** 5
-.51 -1.27 -2.72%%% -1 _,89% 5.46%%%

R -2.44 -2.62* -3.08 1.36 5.86% 5.17*%*% 2
-2.43 -1.53 -2.70%*%*% 1 .35 4.,72%%%

W -1.05 -3.26%*% -1.66 -1.35 2.36 3.01% 6
-1.03 -.51 -1.95%*% -1.68%* 3.45%%

Germany

Y -1.52 -2.83* -2.28 -1.15 3.29 1.56 1
-1.56 -1.06 -1.22 -1.11 1.37

C -1.21 -1.45 -2.51 -.65 3.41 1.50 4
-1.23 -.59 -1.53% -.15 1.18

I -2.41 -2.86% -4, 30*%*%**x - _§58 9.41%*%* .92 1
-2.41 -.38 -1.05 -.19 .57

X -.13 -1.66 -2.86 -.92 4.60 2.97% 8
-.04 -.68 -1.30 -.58 1.03

R -3.76** _-1.65 -2.59 -1.20 4.07 3.23%* 7
-3.85%%* -.11 -1.24 -.57 .93

W -1.18 -1.62 -1.36 -1.55 2.18 2.33 4
-1.08 .51 .76 -1.04 .82 :

Note: First row gives HEGY test result with trend and seasonals
included; second row with trend only. ty, tp, t3 and ty test
for the roots +1,-1,%i; Fg3y4 tests for *i; F,, tests for all
four roots jointly. * denotes significance at the 10 %, **
at the 5 %, and *** at the 1 % level.
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TABLE 2b: Seasonal unit root test statistics

t ta t3 T4 F34 F,a

Finland

Y -1.97 -1.28 -3.18 -.90 5.46%* 0.69
-2.05 1.04 -1.30 .37 .91

C -1.39 -2.83* -3.03 -1.79 6.20% 2.61
-1.51 -.99 -2.38** -1.39 3.79%*%*

I -1.62 -2.04 -4.,28%*%* -.01 9.,15%*% 0.36
-1.50 -.45 -.68 .37 .30

X -1.83 -3.71%% -5,68%*%%x -1 27 17.04*%%*% 4 15%*
-1.99 -1.77* -3.62%*%%%x _ 37 6.60%**%

R -2.98 -1.88 -4.93**% 1,82 13.82**%* 1,89
-2.50 -1.84* -1.52% .36 1.22

W -3.84** -3 ,23*%*% -2 .59 1.18 4.05 3.42%%
-4,77*%* -2 _58%*% _ B89 .90 .80

U.Kingdom

Y -2.24 -2.20 -4.,12*%** 1,76 10.09%%*x 1,43
-2.27 -1.75* -1.36 -.66 1.14

C -2.61 -1.97 -3.08 -1.05 5.40 .48
-2.67 -.97 -.16 -.74 .29

I -2.12 -3.37%*% -4 ,97%**%x _ _Gg] 12.94**%* 2 56
-1.88 -2.47*% -1,75% -.00 1.53

X -1.33 -2.74* -3.,70%* -2,22% 10.35*%**% 6 35%*%
-1.24 -1.79*% -3,07%*% _2 21%% 7.83%%%

R -2.79 -3.16%* -6,70%** .28 22.49%*% 14 95***%
-2.77 -3.20%*%*_§ 32%*% .30 19.99**x*

W -1.53 -2.93*%*% -3 ,88%*% -3 Qg3%*%x ]5 ]8%*%*% Qg _ 3Q%%%
-1.59 -2.57*%% _3,82%%% _3 78%%*% 14 39%*%

Note: see Table 2a
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3. The Maxi Likelil 1 Estimat e i nt ted VAR
3.1 VAR systems integrated at frequency zero

The following solution of the problem of estimating a VAR system
with cointegrating restrictions is due to Johansen (1988). The
relevant statistical foundations are found in Tso (1981). Only the

main results will be reviewed here.

Assume that the VAR system is given in the following form
Xpg = X + MpXp 5 + .00 + nkxt_p + €4 (3.1)

Then, without any assumptions on its stability, it can be
rewritten in differences (AXt = xt'xt—l = (l-B)xt) but with 1lag
order reduced by 1 plus a matrix which takes cafe of the fact that
the unit factor 1-B possibly is not a factor of all polynomial
elements:

AXp = TyaXp g + oo + rp-l‘xt-p+l + prt_p + € (3.2)

Generally, 1-B will not be a factor at all and Fp willvbe a full-
rank matrix. If we restrict attention to systems of first-order
integrated variables and assume iX, to be stationary, the rank of
Fp necessarily is less than the system dimension, say, n. It can

be shown that, in this case, Fp can be represented in the form ap'
with the factor matrices a and B being nxr-matrices with full
smaller rank r where r = rank Fp. This representation is unique

except for a transformation by a non-singular rxr-matrix.

B has a straightforward interpretation as its columns contain
linearly independent cointegrating vectors. The matrix a
distributes the influence of the implied stationary error-
correction variables B'Xy to the components of iX,.

The solution to the problem of efficiently estimating the
parameters in the Iy matrices under the restriction rank Fp=r on
the basis of Gaussian white noise errors is obtained by the

following steps:
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1) Regress Axt on ‘Xt—l"""xt—p+l (least squares equation by
equation)
2) Regress Xt—p on AXt_l,...,AXt_p+l

3) Calculate the canonical correlations between the residuals from
steps 1 and 2. The eigenvectors corresponding to the non-zero
correlations are the columns of B.

4) An estimate for a is obtained from SOpB with SOp being the

cross-moments matrix of the residuals from steps 1 and 2.

5) Retrieve estimates for the Fl,...,Fp_l from regressing
AXt—aB'Xt_p (using the estimates for a and B8) on
Ax.t_l, .« e, AXt_p+l.

These estimates can be shown to be the maximum likelihood
estimates and to be consistent of different order (f consistent of
order T, the remainder of order T%). The variance matrix of the €t

can also be estimated by the same procedure.

The canonical correlations or roots calculated in step 3 are
important. Decisions about whether they are zero or not can be
based on the likelihood-ratio (LR) statistic

-T ¥ log(l—ri) (3.3)

with summation running over the smallest roots r;. For instance,
one wants to test the null hypothesis that the rank r is n, i.e.
the rank deficiency is 0. One has to look at the sum (3.3) over
the smallest root only. If LR rejects, one usually proceeds with
the null hypothesis "r is n-1" and calculates LR as the sum over
the two smallest r;. Some fractiles of the distribution of the LR

i
statistic have been tabulated by Johansen (1988).

Note that the LR statistic relies on correlations between
differences and 1level series, conditional on lagged differences
and is therefore a direct multivariate generalization of the
popular Dickey-Fuller statistic for univariate series. The column
vectors of B transform X, into different variable coordinates
which have non-zero correlation to their differences. This

property is taken as an indicator for stationarity.

In practice, it is sometimes difficult to fix the lag order p. We
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suggest to increase p gradually until the residuals from step 5
are white noise according to a portmanteau statistic like the Q by
Ljung and Box which is displayed automatically by the RATS
software package. Note, however, that this decision depends on the
cointegrating dimension r. Therefore, some users prefer using the
Q of the regressions in step 1. In most cases, this procedure
over-estimates the lag order as the error correction terms should
help to whiten the residuals.

Contrary to widespread belief, an over-estimation of the lag order
is not innocuous. Of course, high lag orders decrease the degrees
of freedom but there is a more important point to this. For an
example, take a white noise series. The correlafion between the
series and its differences is 0.5. If a spurious lag is taken into
account, the conditional correlation is reduced to 0.33.4 In the
language of our 1likelihood problem, inserting spurious 1lags
decreases the chance of identifying cointegrating relations and
imposes more integratedness on the system. This 1is particularly
important in the presence of small samples and of inhomogeneous
lag structures with the I; matrices showing more zero elements 5
with increasing i. Both properties are met in this paper's
examples.

“As has been already set out, the correct method to handle seasonal
patterns is subject to ongoing discussions. Stochastic seasonality
is treated in the next section. However, if seasonality is viewed
as deterministic and seasonal dummies are introduced, these can be
inserted into the system as well as into all regression (steps 1,
2, 5) in a straightforward manner

ajDj¢ + €¢

AXt = rlAXt_l + e o o + Fp"lAXt-p*‘l + aB'Xt_p + l

i

L ae B

JJ have shown that the distribution of the LR statistic in this

4 More generally, it can be shown that k spurious additional lags
reduce the correlation between levels and differences for the
process yi = @ yy_; * € to (l1-a)/[k(l-a)+2]. Compare Kunst
(1989a).

5 That is, insignificant elements by their t-value. If these are
restricted at zero, the outlined procedure is not maximum
likelihoocd and the zero restrictions would have to be imposed on
estimation.
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case deviates from that in the original setting and corresponds to
the case of taking intercepts into account (JJ's Table VI). Most
economic series not only are well represented by integrated
processes but also show non-negligible "drifts" and, therefore,
this corrected distribution is the more relevant one for most
empirical problens. A third and also slightly different
distribution comes up if intercepts are imposed in the level
regression (steps 2 and 5) only or sample averages are subtracted

from the individual series before the analysis (JJ's Table VII).

3.2 The seasonally integrated system

The solution to the maximum likelihood problem in the case of
seasonally integrated variables is due to  Lee (1989) who
elaborated in detail the transformations suggested by HEGY (1990)
6. In principle, the solution is based on a straightforward
extension of the analysis of the last section where the spectral
pole at frequency zero caused by the unit root at 1 was in the

focus of interest. Here, the basic system
Xp = MyXpq + X o + ..o+ nkxt_p + €4 (3.4)

is transformed by an application of the operator that is
appropriate for deleting all unit roots, i.e. iy = 1—B4, the same
way that 1-B has been used to delete the unit root at 1 in (3.2)
and thus a direct analogue of the univariate HEGY test in (2.7).
Suppose the VAR system is written in its seasonal differences

representation (i, = l—B4)

3
A4Xt = 1"1A4Xt_l + ... + I‘p_4A4Xt_p+4 +.Z Fp_lXt_p+l + E.t
i=0 (3.5)
Application of the seasonal filter to all individual series and
VAR modeling of the filtered data is only allowed if (1+B)(1+B?)
2 3 ;
p—lB +FpB . This
amounts to imposing 3n2 restrictions on the general

cancels from the lag polynomial Fp_3+rp_2B+F

representation. This becomes more obvious from the decomposition

6 The HEGY paper is dated correctly 1990 in its published version
but had been circulating as a discussion paper since 1988.
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used by HEGY

4
A4Xt = F1A4Xt_l + .. + Fp_4A4Xt_p+4 +'Z AiYit_p+3 + Et
l=l (3.6)
The Y+ (i=1,...,4) are obtained from (Xt,xt_l,xt_z,xt_3) via a

one-to-one transformation by applying the filter factors
(1+B)(1+B2), (1-B)(1+B2), (1-B)(1+B) and B(1l-B)(1+B) to Xeo If Ay
= Ag = Ay = 0, the model immediately reduces to the first-order
cointegration model of Section 3.1. A1 then corresponds to the

"impact matrix" aB'.

Writing a system in pure seasonal differences would impose severe
restrictions on (3.4). Not only would this imply the absence of
cointegration at frequency zero among the seasonally filtered
variables, it also entails the existence of n independent sources
of seasonal behavior in the system, acting mutually independently

at both seasonal frequencies, i.e. semi-annual and annual cycles.

Note the exact parallels to the Johansen representation of Section
2. For example, A, can be split up into ajB,' which makes sense if
there is a rank deficiency. The columns of B, will contain vectors
which remove the root at -1 from the resulting series. By 'Xy will
- be trending but will not exhibit semi-annual seasonality while
| B 'Y,y necessarily will be stationary. In other words, the columns
of B, "cointegrate at frequency n". Similarly, the rows of B3 from
Az = agBy' cointegrate at frequency n/2 immediately if Ay=0. If
A4+0, properties can become slightly more complicated because of

"dynamic cointegration vectors".

A first solution to estimating (3.7) has been elaborated by Lee

(1989). Lee's solution suffers from two restrictions: Ay is
generally restricted to be zero and the cointegration vectors at
frequency wy are estimated independently from eventual
restrictions on the structure at frequency Wy The first

assumption excludes eventual polynomial or dynamic cointegrating
vectors (PCIV) at frequency n/2. Little is known about the

importance of this restriction in practice.

Lee's method furthermore extensively exploits asymptotic
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independence between estimates based on {Ylt}, {YZt}' and {Y3t}
which could impose problems in smaller samples. If this is taken
as granted, then B; can be estimated from the canonical vectors on
{Ylt} with respect to {A4Xt}, B, from {YZt} and {A4Xt}, finally B3
from {Y3t} and {A4Xt}. Canonical analysis is to be performed
conditional on the other {Yit} elements (e.g. the {Ylt} to {A4Xt}
correlations are calculated conditional on {YZt}' {Y3t}, {Y4t})
and on p-4 lags of {iy4X;}, the same way that Johansen's procedure
uses p-1 lags of {AXt}, the original (level) system assumed to be

autoregressive of order p.

The corresponding canonical roots can be used to obtain LRy
(i=1,...,3) statistics on the rank of the B; in full analogy to
(3.3). Lee (1989) gives significance points for this test. For the
frequencies 0 and n, these are very close to the classical
Johansen (1988) fractiles. For the frequency n/2, they are only
slightly smaller. The Lee fractiles, however, correspond to
homogeneous systems and, as in the case of pure cointegration at
frequency zero, change if intercepts are inserted. It is logical
to presume that these again will roughly coincide with the numbers
given in JJ's Tables VI and VII. Some Monte Carlo experiments of
the author corroborate this presumption although it is too early
to state this safely. Anyway, in the following JJ's tables will be
used for the seasonal cointegration test suggested by Lee.
Calculations were simplified greatly due to a GAUSS program code
which the author obtained from Siklos (1989). Tables 3a to 3d give

the LRy statistics for the four six-variable country systems.

In detail, the cumulated sums -T L 1og(l-ri) over the smallest
roots of the corresponding problem have been used. Under the null
hypothesis, these roots are all zero. If the significance points
are exceeded, this 1is taken as evidence that the largest root
among them is non-zero which yields the rank of A;. To make up for
the slight differences between tests on 1 and. on i, 10 %
fractiles have been used in the latter case instead of the 5 %
fractiles in the former case. Values which exceed these bounds

have been boldfaced to provide a summary picture.
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TABLE 3a: Season%} cointegration test statistics for the Austrian

1

81.007
69.983
57.943

45.589
39.662
33.762

19.401
19.332
13.497

9.288
8.503
4.068

3.100
0.033
1.059

system
lags =0
w=20 217.611 128.580
W =T 137.848 113.455
w=n/2 118.712 126.593
w=20 77 .676
W =T 84.228
w = n/2 59.387
w =20 39.374
W =T 56.187
w = 1n/2 31.230
w =20 19.437
W =T 30.958
w = 1n/2 12.708
w =20 5.469
W =T 10.550
w =1n/2 3.737
w =20 0.111
W =T 0.142
w = 1n/2 0.233
7

"# roots" indicates the number of unit roots

second line: -1;

rejection in the first block e.g.

2

125.306
121.266
112.324

84.907
74.289
61.034

48.358
41.639
35.863

16.513
21.141
17.991

7.993
8.930
5.980

2.129
0.171
1.646

third 1line:

respectivg frequency.

3%

154.856
122.360
100.594

100.285
- 65.364
61.521

58.574
37.870
36.459

24.383
13.636
18.515

13.483
4.795
6.925

3.756

0.021
1.098

*i) which

4

201.874
93.760
105.629

127.980
61.429
65.743

74.123
36.100
30.638

41.383
14.876
11.733

16.319
4.012
4.770

2.935
0.001
0.789

# roots

6

(first 1line:
is tested for.
means no cointegration at the

1;
No
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TABLE 3b: Season%% 4cointegration test statistics for the German
system

lags = 0 1 2% 3 4 # roots
0; 236.364 121.237 137.006 149.885 146.774 6

130.537 97.432 98.720 76.427 84.110
n/2; 124.263 111.200 116.492 110.852 119.043

£ € =
T
2l

w = 0; 107.743 72.065 88.735 98.759 82.987 5
w = T 82.258 46.637 52.154 44.055 52.111
w = n/2; 51.537 44.132 48.743 52.840 61.183
w = 0; 52.457 42.933 53.788 56.947 49.442 4
w o= T; 36.762 22.410 29.554 25.823 32.708
w = n/2; 24.466 22.677 23.622 22.698 22.430
w = 0; 24.226 24.883 25.479 29.888 24.701 3
W o= T 10.696 10.392 12.275 14.576 14.713
w = n/2; 9.559 9.947 8.926 9.382 9.527
w = 0; 4.849 8.282 7.893 8.923 9.870 2
w o= T 5.064 4.970 5.613 5.600 4.840
w = n/2; 2.329 1.275 0.339 1.540 0.505
w = 0; 0.002 2.631 1.958 1.239 2.079 1
w o= T 0.734 0.254 0.214 0.312 0.188
w = n/2; 0.707 0.086 0.000 0.000 0.092

8 See Table 3a.
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TABLE 3c: Seasonal cointegration test statistics for the Finnish

system

lags = 0% 1 . 2 3 4 # roots
w =20 117.007 123.574 169.396 204.146 335.202 6
W =T 96.159 107.352 149.280 159.011 277.810

w = n/2 118.433 114.035 96.394 128.694 131.502

w =20 71.552 71.985 87.832 113.774 161.548 5
W =T 60.615 71.889 80.668 90.886 129.248
w=n/2 70.953 67.515 57.782 65.232 66.055
w=20 40.307 40.010 39.184 56.128 78.801 4
W =T 34.231 42.589 40.912 50.706 51.849
w=mn/2 42.111 32.787 32.032 35.490 33.104

w =20 18.112 19.901 17.653 23.400 40.678 3
W =T 18.425 21.706 20.302 19.476 29.285
w=1n/2 23.074 16.910 15.121 13.914 13.201

w =20 6.456 3.467 3.777 8.584 12.921 2
w =T 6.384 8.148 8.929 8.366 12.630
w=Tn/2 8.062 5.848 5.971 2.361 3.024

w =20 2.102 0.201 0.112 1.859 0.138 1
W =T 0.062 0.634 3.387 3.130 5.643

w = 1n/2 0.070 0.304 0.507 0.317 0.876

9 See Table 3a.
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TABLE 3d: Seasona% cointegration test statistics for the British
system 0

lags =0 1 2% 3 4 # roots

w =20 120.735 89.230 106.692 124.268 132.766 6
w =T 143.655 94.094 87.706 80.491 102.543
w = n/2 171.508 135.497 122.086 100.996 74.031
w=20 67.652 48.660 70.530 82.797 88.729 5
w =T 97.300 64.275 57.989 53.110 54.627
w = n/2 93.097 60.567 63.777 58.803 39.512
w=20 30.781 29.587 38.854 53.844 58.872 4
w =T 53.652 39.593 33.746 29.548 31.371
w = /2 59.658 35.213 36.581 33.390 19.454
w =20 15.158 14.928 21.804 27.262 30.745 3
Ww =T 23.628 17.674 15.027 13.974 15.873
w = n/2 30.616 15.423 12.881 8.5800 6.325
w=20 4.398 5.534 7.009 7.161 8.838 2
w =T 11.360 6.856 5.226 5.874 5.258
w = 1n/2 10.639 4.598 2.986 1.788 0.853
w =20 0.002 0.302 0.377 0.336 0.421 1
w =1 2.741 1.354 1.475 1.111 0.934
w=T1n/2 2.822 1.131 0.305 0.183 0.068

10 See Table 3a.
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3.3 Empirical evidence on seasonal cointegration

Tables 3a-d report the results from an application of the Siklos
(1989) procedure to the multivariate (6-dimensional) systems of
the individual countries. It 1is seen from the = tables that
cointegration at the seasonal frequencies can be quite substantial
and in many cases the correlation coefficients even exceed those
at frequency zero, i.e. evidence on seasonal cointegration is

stronger than usual frequency-zero cointegration.

With regard to lag order specification, up to four lags of auX,
were tentatively inserted. Some lines, however, exhibit "perverse"
behavior as the correlation between stationary and non-stationary
variates increases as the lag order is extended. It is obvious
that the true conditional correlation must decrease if the
conditioning set becomes 1larger. If +the sample correlation
increases this 1is a strong indication for an exhaustion of the
sample information by relative overparametrization. Kunst (1989a)
reports that this effect is felt strongly for more than around ten
lags in a sample of 100 observations on a univariate random walk.
In the multivariate system which is treated here, the effect could

be troublesome for fewer lags already.

It is difficult to give a definite answer to the question which
lag order can be regarded as the correct one. It seems, however,
that the Austrian system demands for an augmentation of 3 lags to
render uncorrelated vector residuals and that the Finnish system
does not need any augmentation (0 lags). In the cases of Germany
and the United Kingdom, 2 lags could be a good choice but leave
substantial residual autocorrelation in some directions.
Particularly for the United Kingdom, the C series would demand for
an excessive number of lags of C and the other wvariables to be
described with clean errors in an unrestricted vector
autoregression. Suggested lag orders are marked by asterisks in
the tables.

Numbers corresponding to the frequencies 0 and n in Tables 3a-d
are marked in bold face if they are significant at the 5 % level

according to JJ's Table VI. At the frequency n/2, values are bold-



26

faced if significant at 10 %. According to this criterion, at
least one seasonal cointegrating vector exists for all countries.
A second seasonal vector is supported for Finland. If this result
really holds, it is not surprising. If exports are non-seasonal,
which is the case for most countries, maybe with the exception of
Germany, one vector is given by the corresponding unit vector. If
no seasonality comes in from +the inventory changes, the state
sector, and imports, one is tempted to conclude that seasonality
in national income Y evolves from seasonality in consumption C and
investment I, which establishes a second seasonal cointegrating

vector.

The analysis of the eigenvectors is to be used with care only. In
some cases, the vectors corresponding to the largest eigenvalues
of the A; problem, for example, were unable to cointegrate the
seasonally filtered series convincingly which they are supposed to
do according to the procedure. We shall return to these vectors in
the next section. In much the same way, the eigenvectors
corresponding to the A, and A3:A4 problem did not always extract
the kind of seésonal cycles which they were supposed to
annihjilate. Possible explanations for this phenomenon are
manifold: overparametrization, ignoring of residual correlations
due to modeling ARMA structures by pure VARs, deviations from
distributional assumptions, cross-effects among the Y,;, processes
in smaller samples, near-integration of second order. The general
dilemma of the algorithm, however, seems to be that one
instinctively searches for maximum unconditional correlations
although this is <clearly done via calculating conditional
correlations. Theoretically, a series with non-zero conditional
correlations cannot display zero unconditional ones but, sadly,

empirical results sometimes point in this direction.

In the following, the first two canonical vectors or eigenvectors
corresponding to the semi-annual frequency will be described for
each country. These are denoted v; and vy, Vv, corresponding to the
largest root, v, to the second largest one. Later, we will use the
remaining v; in analogous notation, i.e. vg corresponding to the
smallest root etc. With the German data, these vectors v; and v,
which are supposed to cointegrate at frequency n (only the first

one 1is significant) are given approximately by the following
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vectors (coefficient on R very small and suppressed):

\41 Y+0.78*C+0.42*%1-1.27*X-1.38*W

Y-0.48*C+0.32*%I+0.28*%X-0.68*W

V2

Here, v; could be interpreted as relating seasonality in wages to
the seasonal structure of the national account aggregates Y, C, I
with an interesting adverse contribution from exports. Using some
algebraic transformations, a linear combination of vy and v, can
be viewed as explaining seasonality in output (Y) primarily by
seasonality in C and X. Furthermore, it is seen that the X unit
vector is not contained in the linear space generated by vy and vy
which is further evidence on the seasonal nature of German
exports.

A similar experiment performed on the British data yields the
following two vectors:

1.80*Y+0.35*C-0.39*%I-2.45*%X+0.32*R+1.35*W
5.91*Y-5.77*C+2.73*I-0.01*X+1.25*R+4.67*W

Vi
V2

The;second vector eliminates seasonality in the consumption quota
C-Y;by help of W while the first one relates seasonal exports to
output and wages. The comparatively small influence of I is due to
the weak seasonal pattern of that variable (compare Figure 3 and
Table 2b). This weakness of the seasonal investment pattern
separates the United Kingdom from the other countries which suffer
from the influence of cold winters impairing investments in the
construction sector. Surprisingly, non-seasonal R again fails to

show big coefficients in the vectors. 11

For Austria, the following vectors were obtained:

vy = Y-0.01*%C-0.25*%1-0.01*X-0.01*R-0.06*W
¥-0.11*C-0.45%1-0.39*X-0.07*R+0.60*W

V2

Again, R does not enter in both vectors. The statistically

significant v, seems to relate the seasonality in Y to I whereas

11 Scales in the series R and W have been adjusted in order to
have the same magnitude as the accounts series Y,C,I.
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the remaining variables contribute very little to seasonal (semi-
annual) output cycles. The less significant v, has an easier
interpretation if v, is subtracted. After doing so, it relates the
seasonal pattern in W to the demand components C, I, and X, the
appearance of the latter one being interesting as it looks non-
seasonal at first sight.

Finally, the Finnish data yield the following two vectors that

should cointegrate at frequency n:

5.07%Y-11.98*C-0.46*1-0.41*X+1.75%R+8.87*W
1.65%Y+0.75*C-1.26*1+0.91*%X-0.19*%R-3.70*W

Vi

V2

The first vector links seasonality in C to influences from output,
from wages, and the interest rate, the latter two series also
reflecting seasonal cycles in the price deflator due to their
construction. v, treats seasonality in I and links it to wages and
output. v, shows a rather strong infiuence of R which can be
interpreted as the influence of short-run interest rate.
fluctuations on C while the absence of R in v, could indicate that

these fluctuations have no impact on investors' behavior.

Figure 7a-d provide for graphical displays of the sample
autocorrelation functions (ACF) of all six components generated by
the system rotations which are given by the vectors v,, v,, and
the remaining vg to vg. The generated components have been
filtered by 1-B+B2-B3 - (l-B)(1+B2) to get rid of the remaining
unit roots whose elimination the canonical problem on the factor
1+B has not been designed for. Notwithstanding eventual distorting
effects caused by the conditioning variates, one expects from the
ACF graphs that they are ordered such that the first one is
certainly stationary, that the sixth one clearly reflects the unit
root at -1 and that the remaining ones are somehow in between.

This expectation is satisfied by Figure 7.

Instead of the ACF, the spectrum could have been used as a visual
criterion but the ACF was preferred here for two reasons: firstly,
it 1is conveniently standardized whereas spectra allow for a
variety of versions according to window size, window shape, and

normalization of the ordinate axis; secondly, the ACF is less
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prone to produce arbitrary wiggles that fool the eye in smaller
samples as all the shown points are natural parameters.

Returning to Figure 7 in more detail, the following basic shapes

can be distinguished:

1) The ACF of a white noise series displays only arbitrary and
insignificant deviations from the abscissa axis.

la) The ACF of a stationary series with reasonably short memory
shows significant deviations at the first few lags only or a
quick decay.

lb) The ACF of a series over-differenced by 1-B+B2-B3 starts with
a distinct 1/minus/plus/minus pattern and then parallels la or
1b.

2) The ACF of a series containing 1+B shows a repetitive and only

slowly decaying zigzag pattern.

Three of the German and British ACFs point to the class 2 but only
two of the Finnish ones and only the last one in the Austrian
case. Recognizing that the Lee-Siklos testing procedure tends to
categorize borderline cases into the second class due to the
principle of conservative testing, visual evidence gives
substantially more "cointegrating" vectors than formal testing,
classifying a substantial share of the transformed series into
category 1b, e.g. the first British component which, however,
shows disturbing wiggles around lag 20 which might be responsible
for its failure to cointegrate formally. The only surprising
feature found in these graphs is that Germany seems to have
substantially more independent sources of stochastic season than
Austria. The concentration of all seasonal structure into the last
component could even enhance the possibility of a completely
deterministic model of seasonality for Austria whereas this is

obviously impossible in all remaining cases.

A comparison of Figure 7 with the univariate statistics of Table
2, particularly t, which tests for 1+B, allows further
conclusions. In Austria, the only safely stochastic fluctuation at
this frequency in the consumption series and the deterministic
fluctuations are contracted in the last component, the rest of the
system being free from seasonal patterns. There is only one source

of stochastic seasonality, possibly consumption, which in turn may
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influence other aggregates - and therefore, 1literally, much
"seasonal cointegration", all words like "season" meaning just the
semi-annual frequency. Over-differencing effects and the high
number of conditioning terms (a lag order of 7) prevent the LR

statistic from rejection.

In Germany, an economy with clear evidence on stochastic
seasonality in most series, there are three independent sources of
that phenomenon, a fourth one (ACF3) being weak and unconvincing,
and therefore three or at least two true and meaningful seasonal
cointegrating vectors. In Finland, the shortest data set of the
four, ACFgj3 and ACF, leave the specfator without a decision. Two
sources of semi-annual season are certain, one of them "engulfing”
the deterministic season, and two vectors of seasonal

cointegration at the other end of the scale.

In the United Kingdom, the country where deterministic seasonality
is most prevalent, the stochastic sources in the consumption and
income series and the deterministic shapes are mirrored by the ACF
plots which leaves virtually no room for any seasonal

cointegration effects.

Restricting attention to vg and vg, i.e. the vectors generating
the most virulent sources of stochastic season, enables a
comparison among the four countries. By calculating mutual
correlations, it is immediately seen that Austria, the United
Kingdom, and Finland share one very similar source of seasonality
which is not present in Germany and is almost identical to
Y-0.8%*C, among the remaining entries only X being more
conspicuous. Germany and Finland share another vector which 1is
related to seasonal fluctuations in the wage and output series
(weights of equal sign, see below). In contrast, the possibly

cointegrating vectors v; and v, vary notably among countries.

We now turn to the seasonal cointegration problem at frequency n/2
or, equivalently, at the factor 1+B2 or at the complex unit roots
+i. The search is restricted to static vectors (A4=0) and thus it
may ignore some cointegrating structures which need one lag in the
variables. An eventual underestimation of seasonal cointegrating

structures entails an eventual overestimation of the number of
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independent sources of annual cycles in the system. Again, the ACF
of all related components are displayed in Figure 8a-d. The
components have been filtered by 1-B2 to get rid of the roots at
1. A checklist similar to the one from the semi-annual problem

can be constructed easily.

It is seen from Figure 8 that, not unexpectedly, independent
seasonal cycles are fewest in the United Kingdom, possibly only
two. Austria and Finland show evidence on a third non-stationary
component whereas Germany displays four seasonal components.
Again, there seems to be substantially more cointegration in the

system than can be seen from the statistics in Table 3.

The tentative interpretation of the vectors at frequency u/2
should be more succinct than that at frequency n as these are less
reliable due to the restriction of being static. Both frequencies
usually come together in economic series and it is difficult to
decide which of the two frequencies is the more important one. The
vectors corresponding to the two largest roots are given in Table
4. Although the. individual vectors do not coincide across
countries, common vectors are shared approximately by the spaces
spanned by vy and v,. To begin with, Austria and Germany share a
three-entry vector Y-1.3*X-.4*W which indicates that the seasonal
structure of the exports series of these countries can be
eliminated by accounting for wages and output. These countries are
neighboring countries with strong economic interdependencies and
similar climatic conditions and, therefore, this vector could even
make sense economically. Secondly, Austria and the United Kingdom
share a vector Y-0.6*C with smaller entries by the other variates,
including interest. This vector relates the seasonal fluctuations
in consumption to the weaker ones in output by appropriate
weighting. More interesting than the appearance of this vector in
two non-related economies is its failure to appear (or at least of
a similar vector) in Germany and Finland. Finland, however, has a
common vector with the United Kingdom which links consumption to
the wage-output ratio taking the remaining variables into account
via lesser coefficients, i.e.. Y-0.8*C-Wx... This means that
seasonality in C is best explained by Y in Austria but by W-Y in

Finland, the United Kingdom allowing for both interpretations.
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At the other end of the scale, the main sources of the annual
fluctuations are given by the last two components and thus by vg
and vg. Here, Germany and Austria share a structure close to
Y-0.5*C~-.0.3*I+0.1*R+0.2*W, the coefficients in the other
variables serving to enhance seasonality in Y. Germany and Finland
are connected by a simpler structure, W-0.8*Y with very small
entries by other variables. Table 2 corroborates the view that
seasonality is strong in German as well as Finnish wages. At
first, it is surprising that the non-stationary variates do not
have entries of the same sign from W or Y at the same time but
this is only an indication how one tends to mix up integration at
frequency O and integration at cycles: W+Y certainly is strongly
trending but it is not necessarily more strongly seasonal than
combinations like the German-Finnish one. Yet more confusingly,
the sign of Y and W is the same in the common seasonal component

vector of Germany and Finland at n but the signs alternate at n/2.

Lee (1989) also treats the special case that the same vectors
cointegrate at both seasonal frequencies, which he calls "uniform
seasonal cointegration”, and develops a test for this hypothesis.
At first sight, this property does not appear to be present in any
of the four systems, another indication that the true
cointegrating vectors might be dynamic. The only economy coming
close to uniform seasonal cointegration is the United Kingdom with
a cointegration vector relating C-Y to wages (positively) and
maybe interest. Even there, it is a linear combination of vy and
v, that does the trick, the vectors v; being completely different
at the two frequencies. Anyway, Y-0.8*C is recognized as a source
of seasonal fluctuations both at the n and at the n/2 frequency in
Finland and there is a somewhat weaker correlation among vectors
relating investment to wages at both seasonal frequencies in
Germany whereas no such correspondences can be found in Austria or

the United Kingdom.
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TABLE 4: First two solution vectors to the seasonal cointegration

problem at frequency n/2

Y c 1 X R w 12

Austria
1.000 -0.226 -0.188 -0.601 0.737 -0.127 *
1.000 -0.548 -0.146 0.166 0.988 0.129

Finland
1.000 2.453 -0.763 -0.022 1.220 3.040 *
1.000 -0.112 -0.334 0.430 -0.053 -0.146 *

Germany (Federal Republic)
1.000 0.701 -0.469 -1.980 -0.063 0.217 *
1.000 -0.443 0.358 -0.431 0.619 -0.962

United Kingdom
1.000 -0.657 -0.187 -0.673 1.273 2.651 *
1.000 -0.713 -0.114 0.186 0.111 0.118

12 The numbers beneath the 1labels denote the coefficients of:
gross national (or domestic) product; private consumption;
gross fixed investment; real interest rate;  exports; real
wages. Significant vectors are marked by asterisks.
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3.4 Cointegration at frequency O

A detailed analysis and interpretation of the long-run structures
encountered in the four country systems is given in a companion
paper [Kunst (1990)] but the cointegrating vectors identified by
the algorithm are repeated in Table 5 for ‘the sake of
completeness. The displayed vectors -are based on the model
specifications starred in Tables 3a-d. Note that, according to the
statistics, three vectors cointegrate in Austria and Germany but

only two in Finland and in the United Kingdom.

TABLE 5: Cointegrating vectors at frequency zero for selected

country models

Y c 1 X R w 13
Austria

1.00 -.29 -.28 -.22 .01 .07

1.00 -.54 .64 -.12 .32 -.68

1.00 .10 -.10 -.35 .02 -.17
Finland

1.00 .51 -.88 .08 -1.05 -1.82

1.00 -.63 -.28 -.27 .81 .12

Germany, Federal Republic

1.00 -.64 -.30 -.14 -.14 .18
1.00 .44 -.03 -.43 -.04 -.54
1.00 .30 -.85 -.43 .48 .24

United Kingdom

1.00 1.01 -1.98 -.36 -.02 -.06
1.00 -.56 -.18 .35 .00 .45

13 The numbers beneath the 1labels denote the coefficients of:
gross national (or domestic) product; private consumption;
gross fixed investment; real interest rate; exports; real
wages. Significant vectors are marked by asterisks.
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3.5 The alternative model : deterministic seasonality

After this detailed study of all structures encountered on the
basis of stochastic seasonality and seasonal unit factors, it may
be interesting to see how things change if deterministic
seasonality is assumed and therefore seasonal dummies are inserted
into the regressions. Taken literally, such a system is suspect as
now seasonality is granted too much freedom. It means that the
seasonal pattern is allowed to persistently change its shape and
to expand at the same time. Therefore, no quantitative results of

this experiment are tabulated in this paper.

If the deterministic model is correct, one would expect the
following phenomena: firstly, the optimum lag order of the VAR
will decrease as the stochastic seasonal model entails over-
differencing and artificial moving-average terms; secondly, all
roots on the n and n/2 will be significant as the analysis is
conditioned on the dummies and the residuals are non-seasonal;
thirdly, the roots at frequency zero, particularly the largest,
will not change too much, otherwise (e.g. with roots of 0.6 to

0.7) it would indicate seasonal unit roots.

In Section 2, we have seen already that the degree of stochastic
fluctuations in seasonal patterns differs among countries. Germany
seems to have more stochastic seasonality than the United Kingdom.
These findings are corroborated if the seasonal cointegration

procedure is applied conditional on seasonal dummies.

In the case of Germany, the optimum lag order increases from 2 to
3 relative to the purely stochastic model. There is now evidence
on four cointegrating vectors at n/2 but the evidence remains
unclear on n. The number of cointegrating vectors at 0 increases
to 4. In summary, insertion of dummies is not enough to get rid of

the seasonal unit root effects in the system.

In the case of the United Kingdom, the optimum lag order decreases
to 0 although some doubts remain with respect to the consumption
series. All canonical roots at n and n/2, including the smallest

one, are significantly different from zero but this observation
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ceases to hold if two or more lags are inserted. All numbers
related to the zero frequency are replicated almost exactly from
Table 3d. In summary, British seasonality could be entirely
deterministic while German seasonality is, at least to a certain

degree, stochastic.

The two smaller economies produced intermediate results between

the two extreme cases of Germany and the United Kingdom.

4. Summary and conclusions

It is difficult if not impossible to give definite answers on
behalf of questions of classification such as integrated versus
trend-stationary on the basis of finite samples. The same goes for
the classification of the seasonal patterns. Properties at the
seasonal frequencies such as integration or cointegration are
inseparable from near-cointegration at these frequencies, the same
way that integration at zero is inseparable from near-integration
at low frequenciés. Perhaps, it makes more sense to speak of
vectors that are able to reduce the correlation structure of the
resulting series substantially, compared to the components series,
a point which has been taken up under the name of "codependence"
in the French econometrics 1literature (compare Gourieroux and
Peaucelle (1988)). This would also be compatible with the
viewpoint that the question of classification has been given too
much weight recently which has also been addressed by Christiano
and Eichenbaum (1990) and has given rise to a closer look at
possible intermediate structures such as fractionally integrated

models (see e.g. Geweke and Porter-Hudak (1983)).

One more caveat must be attributed to the treatment of
seasonality. From the results of this paper as compared with
related studies [Kunst (1989b,1990)], it is seen thét the selected
procedure to extract seasonality influences the results quite
substantially. The influence of the usual univariate "seasonal
adjustment"” on the estimation and testing in the cointegration
framework is still an open field for research. Jaeger and Kunst
(1990) have shown the strong influence of Census X-11 on

univariate measures of integratedness and the influence on
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multivariate measures, such as the LR statistics used in this

paper, may even be more troublesome.

As far as evidence on the phenomenon of seasonal cointegration is
concerned, this paper's results corroborate the presumption that
it may be quite common in multivariate systems for several
reasons. Firstly, all series which do not have seasonal unit roots
univariately - even if they should show signs of weak or
deterministically stable seasonal patterns - are by definition
cointegrated with themselves, i.e. the corresponding unit vectors
cointegrate. Secondiy, the absence of seasonal cointegration would
mean that there are as many sources of seasonality as series which
is, again by definition, impossible if output, consumption, and
investment are included in the'system and the remaining aggregates
(i.e. output minus private consumption and investment) is non-
seasonal. Compared to this, the numbers of seasonal cointegrating
vectors identified by the test procedure alone are surprisingly
small but the analysis has shown that these are underestimated in

some cases.

It remains to investigate whether these more complete models are
actually helpful, for instance, in increasing forecasting
precision. In many cases, although this of course depends on the
tradition set by the national statistical offices, quarterly
forecasts on unadjusted series and annual forecasts are more
interesting than quarterly adjusted values. Additionally, if
cross-effects as strong as seasonal cointegrating vectors are
present, even the annual forecasts should be impfoved by using the
full model.

Note that, in the presence of seasonal cointegration, some popular
modeling strategies are necessarily incorrect, in particular:
individual seasonal adjustment by Census X-11; individual seasonal
filtering by four-quarter moving averages; VAR modeling with
seasonal dummies included. Interestingly, the deficiencies of the
latter strategy. are quickly seen from the largest roots of the
cointegration test which, in that case, exceeds 0.5 and
corresponds to a strongly negatively autocorrelated series, i.e.
the component which contains the unit root at -1. This phenomenon
can be obtained by applying the procedure to any (including U.K.)
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of the four country systems of this study, another indication for

the importance of stochastic seasonality.
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FIGURE 1l: Gross domestic (national) product series

CERHANY
[vo

—-—-—dd—---—-—-w-—-—-—-

860 83 88 83 72 7S5 78 81 B84 87

11 .

11.

11.

11 .

11 .

10 .

11 .

11 .

11 .

11.

10 .

2]
S —
o
3
”'
u.ll.
°l
_ YSF e _
9 T | T LA L A B B
72 74 78 7B 80 ©82 84 88
8
Y —
2 ]
[o
_<nw ) —_— _
m - — - -I---—-\--—-
83 B8 83 72 75 78 81 B9 87




10.9

Private consumption series

10 .8 —
10 .7 -
10 .8 -
10 .5 —
10 .4 —

_n: _ _nwm _
—--.---—--I-q—-l “°-u - L - LJ - L - L — L - L - L - L]
e4 87 70 73 78 78S 82 @S 72 74 .78 76 80 82 884 88

11 .1
10 .9 -
10 .7 -
10.5 -

_ GEAAANY _ HlllddlﬂﬂﬂﬂqqqlllJ

co — CGB —_—

FIGURE 2

—-—-—-—-uudd—-—----— 10 .3 rrvyvyrryrvyryyryrryyrryrry«yrrvrgzv

80 83 868 83 72 75 78 681 B84 87 83 88 as 72 75 78 a1 84 87



T8 BL S4 24 68 989 E9 09

L8 K8

La 10 0L Se (¥ A 68 o9

49

FIGURE 3: Gross fixeci investment series
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Exports series

FIGURE 4
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Real interest rate series

FIGURE 5
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Wage series
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FIGURE 7a: Autocorrelation functions of the six components of the
Austrian system which emerge as solutions of +the seasonal
cointggrgtion problem at frequency n. All components filtered by
1-L+L~-
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FIGURE 7b: Autocorrelation functions of the six components of the

German

system

which emerge

as

solutions

coint%grgtion problem at frequency n.
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FIGURE 7c: Autocorrelation functions of the six components of the
Finnish system which emerge as solutions of the seasonal
coint%grgtion problem at frequency n. All components filtered by
1-L+L~-
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FIGURE 7d: Autocorrelation functions of the six components of the
British system which emerge as solutions of the seasonal
cointggrgtion problem at frequency n. All components filtered by
1-L+L“4-
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FIGURE 8a: Autocorrelation functions of the six components of the
Austrian system which emerge as solutions of +the seasonal
coiletegration problem at frequency n/2. All components filtered by
1-L
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FIGURE 8b: Autocorrelation functions of the six components of the

German

system which emerge

as

solutions

of the seasonal

COLEtegratlon problem at frequency n/2. All components filtered by
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FIGURE 8c: Autocorrelation functions of the six components of the
Finnish system which emerge as solutions of the seasonal
coigtegration problem at frequency n/2. All components filtered by
1-L
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FIGURE 8d: Autocorrelation functions of the six components of the

British

system

which emerge

as

solutions

of the seasonal

001 tegration problem at frequency n/2. All components filtered by
o2
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