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Abstract.

This paper deals with some of the problems evolving from
application of cointegration analysis to VAR models of economic
time series.

Unless data have been seasonally adjusted by popular but
frequently criticized routines such as Census X-11, they often
exhibit seasonal patterns which are sometimes treated by
including dummies in the VAR system. Sometimes models of
additional unit roots at seasonal frequencies are suggested. The
latter ones lead to the conception of seasonal cointegration.

There is no guarantee that the system identified by the analysis
is indeed first-order integrated as implied by standard
assumptions. Two ways are suggested to detect unexpected
explosive and non-stationary behavior: prediction and eigenvalue
analysis of the state-space form.

Macroeconomic systems of Austrian, Danish, German, and U.K. data

illustrate the phenomena. In one case, explosive cycles are
obtained. '

Zusammenfassung

Dieses Papier beschdftigt sich mit einigen Problemen, die bei
der Anwendung der Kointegrationsanalyse auf VAR-Modelle
6konomischer Zeitreihen auftreten. :

AuBer wenn Daten durch {ibliche, jedoch h&ufig kritisierte
Routinen saisonbereinigt wurden - etwa durch Census X-11 -,
zeigen sie oft Saisonmuster, welche bisweilen durch das Einfiigen
von Dummies in das VAR-System behandelt werden. Fallweise werden
Modelle mit zus@tzlichen Einheitswurzeln bei saisonalen
Frequenzen yvorgeschlagen. Letztere filihren zum Konzept der
saisonalen Kointegration. ' )

Es gibt keine Garantie, daB das in der Analyse identifizierte
System tatsdchlich integriert von Ordnung 1 ist, wie dies die
Standardannahmen unterstellen. Zwei Pfade koénnen beschritten
werden, die zur Aufdeckung unerwarteten explosiven Verhaltens
und anderer Instationaritaten fihren: Prognose und
Eigenwertanalyse in der Zustandsraum-Darstellung.

Makrotkonomische Systeme tsterreichischer, ddnischer,
bundesdeutscher und gropbritischer Zeitreihen illustrieren die
Phénomene. In einem Falle treten explosive Zyklen auf.
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1. Introduction

For some time, vector autoregressions (VAR) have been in use now
as the basic mechanical method for description and prediction of
multivariate economic time series. A rather lengthy dispute
between those who advocate the use of differenced data and those
who prefer modeling original ("level") series has been all but
reconciled by the theory of cointegration [Engle and Granger
(1987)]. Detailed and readily applicable results have been
published for first-order integrated systems only but extensions
for higher-order systems and the seasonal case are to be expected
soon [e.g. see Engle, Granger, and Hallman (1989)].

Here, a first-order integrated system will be defined as a VAR
with roots outside the unit disc or at one only. Additionally, we
will assume that all individual series can be made stationary by
first-order differences. The solution of the Gaussian maximum-
likelihood problem for this case has been analyzed by Johansen
(1988) and Johansen and Juselius (1988, 1989). The main results
will be discussed in Section 2.

Raw (non-adjusted) monthly or quarterly economic time series
frequently show seasonal patterns which shed some doubt on the
assumption of stationary first differences. The question whether
these seasonal patterns should be eliminated by regression on
seasonal dummies (the "deterministic" model) or by treating them
by seasonal differencing, thereby assuming additional unit roots
on the unit pircle (the "stochastic" model), reminds of the
discussion of deterministic and stochastic trend models. These
features are revisited in Section 3.

Interestingly, most time series analysts choose to either ignore
the possibility of unit roots within (!) the unit discs or rule it
out by theoretical arguments. If such "explosive" roots should
appear in practice, they will quite probably invalidate most of
the statistical properties valid for the first-order system. The
point is that such explosive roots may be hidden by the estimation
procedure and do not even show necessarily in prediction
experiments. The state space form of the VAR system can be used to



recover the roots. These questions are the subject of Section 4.

Section 5 presents evidence on near-unit roots close to -1 or the
seasonal frequencies at *j in a macroeconomic core system which
has been estimated for Austrian, Danish, German, and U.K. data. In
one case, explosive roots are encountered. It will be tried to
give explanations for these unexpected near-non-stationary modes
in the systems. Section 6 concludes.



2. The Maximum Likelihood Estimator

The following solution of the problem of estimating a VAR system
with cointegrating restrictions is due to Johansen (1988). The
relevant statistical foundations are found in Tso (1981). Only the
main results will be reviewed here.

Assume that the VAR system is given in the following form

X + €

‘X = . X _1 t nzx PR N nk t-k t

Then, without any assumptions on its stability, it can be
_ _ _ _ 1 .

£ = Xt Xt-l = (1 B)Xt) but with lag

order reduced by 1 plus a matrix which takes care of the fact that

rewritten in differences (X

the unit factor 1-B possibly is not a factor of all polynomial
elements:

AX, = T' X + ... + T

£ 14%¢ 1 + I'' X + €

k-1"%t-k+1 k®t-k t

Generally, 1-B will not be a factor at all and Fk will be a full-

rank matrix. If we restrict attention to systems of first-order
integrated variables and assume Axt to be stationary, the rank of
Fk necessarily is less than the system dimension, say, p. It can
be shown that, in this case, Pk can be represented in the form ap'
with the factor matrices a and B being pxr-matrices with full
smaller rank r where r = rank I, . This representation is unique

k
except for a transformation by a non-singular rxr-matrix.

B has a straightforward interpretation as its columns contain
linearly iﬁdependent cointegrating vectors. The matrix a
distributes the influence of the implied stationary error-

correction variables B'Xt to the components of AXt.

The solution to the problem of estimating the parameters in the Fi

matrices under the restriction rank Fk=r on the basis of Gaussian

white noise errors is obtained by the following steps:

1) Regress iX on Axt_l,...,AX (least squares equation by

t t-k+1

equation)

1l B will denote the backshift or lag operator in the following.



2) Regress Rp_g On 4Xy _qece X 11

3) Calculate the canonical correlations between the residuals from
steps 1 and 2. The eigenvectors corresponding to the non-zero
correlations are the columns of B.

4) An estimate for a is obtained from SOkB with SOk being the
cross-moments matrix of the residuals from steps 1 and 2.

5) Retrieve estimates for the rl""’rk-l from regressing
AXt-aB'Xt_k (using the estimates for a and B) on
R R AL

These estimates can be shown +to be the maximum 1likelihood

estimates and to be consistent of different order (B consistent of

%)

can also be estimated by the same procedure.

. The variance matrix of the €

order T, the remainder of order T £

The canonical correlations or roots calculated in step 3 are
important. Decisions about whether they are zero or not can be
based on the likelihood-ratio (LR) statistic

-T ¥ log(l-ri)

with summation running over the smallest roots T Some fractiles
of the distribution of the LR statistic have been tabulated by
Johansen (1988).

Note that the LR statistic relies on correlations between
differences and level series, conditional on lagged differences
and 1is therefore a direct multivariate generalization of the
popular Dickey-Fuller statistic for univariate series. The column
vectors of .B transform Xt into different variable coordinates
which have non-zero correlation to their differences. This

property is taken as an indicator for stationarity.

In practice, it is sometimes difficult to fix the lag order k. We
suggest to increase k gradually until the residuals from step 5
are white noise according to a portmanteau statistic like the Q by
Ljung and Box which is displayed automatically by the RATS
software package. Note, however, that this decision depends on the
cointegrating dimension r. Therefore, some users prefer using the
Q of the regressions in step 1. In most cases, this procedure



over-estimates the lag order as the error correction terms should
help to whiten the residuals.

Contrary to widespread belief, an over-estimation of the lag order
is not innocuous. Of course, high lag orders decrease the degrees
of freedom but there is a more important point to this. For an
example, take a white noise series. The correlation between the
series and its differences is 0.5. If a spurious lag is taken into
account, the conditional correlation is reduced to 0.33.2 In the
language of our 1likelihood problem, inserting spurious lags
decreases the chance of identifying cointegrating relations and
imposes more integratedness on the system. This is particularly
important in the presence of small samples and of inhomogeneous
lag structures with the Fi matrices showing more zero elements 3
with increasing i. Both properties are met in this paper's

examples.

2 More generally, it is easily shown that k spurious additional
lags reduce the correlation between levels and differences for
the process y, = a y + e, to (1-a)/[k(1l-a)+2]. Compare Kunst
(1989). t -1

3 That is, insignificant elements by their t-value. If these are
really zero, the outlined procedure is not maximum likelihood
‘and the zero restrictions would have to be imposed on
estimation. -



3. Cointegration and Seasonality

For the results summarized in Section 2 to be wvalid, a basic

assumption is that the vector iX_ is stationary. Therefore, it can

only contain stationary and ffrst—order integrated components.
This excludes from further investigation all series that are
suspected of being integrated of higher order, like price series
or nominal wages. In principle, these series could be treated by a

second-order difference representation like 4

A2X, = T_a2X + ... + T A

2
t 145 %1 k-2 Fe ke v T

k-1%t-k+1 T Tk¥e-k * €t
The analogue to the estimation procedure of the last section has
not been elaborated yet for this case, and it is doubtful whether
it can be worked out in the same straightforward fashion.
Moreover, in most cases such higher-order difference
representations contain over-differenced components which tend to
inflate the overall lag order needed to capture a moving-average
by a VAR process.

Note that second-order integrated (I(2)) processes can play havoc
with the procedure set out in Section 2. The real problem is that
conditioning on the differenced lags of the I(2) variate which are
still I(l) reduces the order of integration in the residuals.
Therefore, any conclusions about cointegrating structures between
the level variates from the conditioned values tend to be wrong.
Misspecifications of this type are an important problem in
practice and could be responsible for the feature that some of the
estimated B column vectors in this very investigation have turned
out as beihg unable to cointegrate the corresponding level

variates (compare Section 5.1).

With economic sub-annual data, another phenomenon seems somehow
more important. Most of these series contain seasonal cycles that
contradict the stationarity assumption of time-constant means. As
set out in the introduction, the correct method to handle seasonal
patterns is subject to ‘ongoing discussions. If seasonal dummies

are introduced, these can be inserted into the system as well as

4 The notation Fi has different meaning in different formulae. If
this is recognized, it should not confuse the reader too much.



into all regression (steps 1, 2, 5) in a straightforward manner

A X, = I 44X + ... + T

¥
£ 1481 k-1%p-ke1 ¥ OB X+ T a;8, + €

where summation runs over four or twelve dummy series, depending
on the seasonal frequency. Johansen and Juselius (1989) have shown
that the distribution of the LR statistic in this case slightly
deviates from that in the original setting but is exactly the same
as in the original model taking intercepts into account. Most
economic series not only are well represented by integrated
processes but also show non-negligible "drifts" and, therefore,
this corrected distribution is the more relevant one for most
empirical problems. A third and also slightly different
distribution comes up if intercepts are imposed in the level
regression (steps 2 and 5) only or sample averages are subtracted
from the individual series before the analysis.

An alternative conception of seasonality has been suggested e.g.
by Hylleberg, Engle, Granger, Yoo (1988). A model like

4
(1-B )Xt = (1-B)(1+B)(1+Bz)xt = Et

with white noise or general stationary errors Et is known to
generate stochastic cycles of semi-annual and annual periodicity
(for quarterly data). As unit roots are imposed, neither xt nor
its differences are stationary. Hylleberg et al. suggest a test on
the factors for univariate series. According to the outcomes from
that test, most economic time series (unless seasonally adjusted
before analysis e.g. by Census X-11) contain seasonal unit roots
at -1 and #*i. fhe basic model has been criticized frequently as it
allows the seasonal pattern to change, in other words it allows
"summer to become winter". This issue is less important if drift
terms are included and actual series often exhibit substantial

changes of their seasonal pattern.

A process demanding for filtering by l-B4 in order to become

stationary can be named a "seasonally integrated process" 5. The

naive procedure to handle such a process consists in application

5 This expression does not have exactly equivalent meaning if it
is used by different authors or in different articles.



of the filter 1+B+BZ+B3 which removes the cycles but 1leaves

stochastic trends in the data. The so constructed series is
integrated of order one and standard cointegration analysis can be
applied to a vector consisting of these filtered series.

The loss in efficiency and information implied by this strategy
parallels the loss by analyzing systems in differences instead of
using cointegration analysis. Suppose the VAR system is written in
its seasonal differences representation (A4 = 1-B4)

A X =T,4,X + ... +

4%t 144%¢-1 +Z

Tr-i%eok+i * &t

Tk-4'4%t-k+a
with summation running over i=0,...,3. Strictly speakiﬁg,

application of the seasonal filter is only allowed if (1+B)(1+B2)

2 3 ;
cancels from the 1lag polynomial T, .+ ,B+T, ,B"+[ B”. This

amounts to imposing 3p2 restrictions on the general
representation. This becomes more obvious from the decomposition

used by Hylleberg et al. (1988)

A X

a¥¢ = Titg¥er v -o0

Tp-ata¥eokea * T AyY 0 ka3 + &

where summation runs over 1i=1,...,4. The Yi (i=1,...,4) are

obtained from (xt,xt_l,xt_z,xt_s) via a one-to;%ne transformation
by applying the filter factors (1+B)(1+B2), (1-B)(1+B2),
(1-B)(1+B) and B(1l-B)(1+B) to xt. If A2 = A3 = A4 = 0, the model
immediately reduces to the first-order cointegration model of
Section 2. Al then corresponds to the "impact matrix" aB'.

An elegant solution to estimating the above model is not yet
available. Foliowing the lines by Tso (1981), estimates can be

obtained, even taking the possibly reduced rank of the full matrix

[A; A, A; A,]
into account. Empirical experience tells that this matrix
frequently has full rank as cointegrating and ‘"seasonally

cointegrating” [in the sense of Engle et al. (1989)] relationships
are only found from the component matrices. Correlation between

the Yit should be 1low, however, and a decomposition of the

individual Ai can be a useful exercise.



An empirical example is provided by a preliminary estimation of
the Austrian macroeconomic system to be revisited in Section 5. It
consists of 6 quarterly series on : real gross domestic product
(Y), real consumption expenditures (C), real gross investment (1),
real interest rate (deflated bond rate R), real goods exports (X),
real wages (deflated per capita wages W). All series are first-
order integrated - this has been corroborated by several tests,
see Kunst and Neusser (1988) - and all but exports show seasonal
patterns. The presumption that the B matrices obtained from
decomposing Al and from the "naive" approach are close to one
another in the sense of the angle between the column spaces is
corroborated empirically. Such a comparison between similar r-
dimensional vector spaces can be performed by means of canonical
correlations. If the spaces are close to one another, they share
an r-l-dimensional subspace almost completely and therefore r-1
canonical correlations are 1. The smallest root then gives the
cosine of the angle between the rth axes.

Furthermore, the fifth wunit wvector, which corresponds to the
exports series, 1is contained in the column spaces of the B8
decompositions of the other three matrices which shows once more
that - exports do not contain seasonal unit roots. Note that the B
obtained by decomposing A2 to A4 more or less accurately describe
vectors that transform the seasonally integrated series into
processes where certain parts of the seasonality (either the "jump
root" or the complex pair +j) are absent. In our case, the fifth
unit wvector describes such a seasonal cointegration structure. As
all Ai matrices seem to be of rank 3, two more seasonal
cointegrating vectors can exist. One of them links the seasonality
in Y to those in C and I, which allows for an easy interpretation
since the remaining demand components usually do not exhibit
seasonal patterns. A related analysis (there of U.S. energy
series) has been given by Engle et al. (1989).
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4. Explosive roots

Autoregressive processes with zeros on the wrong side of the unit
disc are generally excluded from empirical analysis. One of the
reasons is that their trajectories tend to follow exponentially
increasing trends or cycles 1like those displayed in the Figure
contained in section 5. These pictures are rarely found in actual
data. On the other hand, within the limits of a finite sample,
such an exponential growth can be a good representation of that
sample as long as the explosive roots remain close to the unit
circle.

Empirical findings of explosive behavior are not so rare if slight
misspecifications are present. For example, if a drifting random
walk is estimated as an AR(1l) process without a drift term, the
estimated coefficient will usually exceed one. Even more
frequently, explosive roots are identified implicitly - without
ever showing - in multivariate VAR systems. A full representation
of a VAR system is obtained from its state space form

xt nl n2 e nk—l “k Xt—l Et
Xt_1 I o ... 0 0 Xt__2 0
= +
I xt-k+1_ i 0 o ... I 0 1L xt—k ] I 0] ]

It is known from the 1literature [e.g. Hannan (1970)] that the

eigenvalues of  the square asymmetric matrix above are the inverse
k

z" |

roots of the determinantal equation |I—nlz-...—n = 0 which, in

k
turn, give the stationary (|z|>1) and non-stationary (|z|<l) modes
of the VAR system. There are Kkp roots and some of them may be
greater than one by pure chance or, more exactly, by the

properties of small sample distributions.

In all preceding results, only the eigenvalues of the impact
matrix were used. The publication by Velu, Wichern, Reinsel (1987)
treats some of the difficulties in making conclusions on the state

space modes from the impact matrix. An exact correspondence is
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provided only for the AR(1l) case where it is straightforward. For
higher-order processes, only conjectures are given.

While many explosive roots are left unnoticed - estimation
procedures usually do not restrict parameters to 1lie in the
stationarity area although that property is frequently needed to
establish results on the estimation procedure - they almost
necessarily show up in forecasting experiments. Unless the state
of the system in the immediate pre-period of forecasting is
exactly orthogonal to the eigenvector space corresponding to the
explosive roots, the behavior implied by the inherently explosive
nature of the system will dominate in the longer run. A joint
attack by prediction experiments and eigenvalue calculation will
detect all hidden explosiveness safely.

Sometimes, deletion of the first few or last few observations
-makes the VAR system explosive by shifting one of the roots over
the boundary. This happens e.g. in the Austrian model 4 given in
section 5. Even if this feature is not observed, unexpected roots
close to the unit circle, though still on the right side, give
warning that the whole system runs the risk of becoming unstable

after moderate changes, e.g. updating or data revision.

Recently, Phillips (1988) conceded in a side remark the
possibility of mildly explosive systems. Anyway, here these will
be viewed as unwanted features stemming from small sample effects
and misspecification, which point of view is certainly enhanced if
a different treatment of "design specification parameters" 1like
the implied modeling of deterministics makes them into well-
behaved inteérated VAR processes. Of course, the argument is valid
that, if one accepts a root of 1 as a plausible choice, one should
also take the possibility of roots in an €-vicinity into account.
Within the VAR systems of this paper, it should be kept in mind
that all data has been logged and therefore an explosive root does
not describe exponential growth in the original series but double
exponential growth.
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5. Empirical evidence

5.1. The Austrian -system

The Austrian system already has been the subject of some empirical
studies of the author [Kunst and Neusser(1988), Kunst(1988)] where
its properties have been presented and analyzed in detail. So only
the main results will be summarized in short.

The system consist of one output series (gross domestic product)
and three demand aggregates (consumption, investment, goods
exports), all in real terms. A deflated interest rate was added to
represent the influence of the monetary system and real wages were
also inserted. Neoclassical growth theory would imply stationary
quotas of consumption to output and of investment to output,
moreover proportionality between wages and output and a stationary
real interest rate. This makes a system of 6 series of quarterly
data, available from 1964 on. All series have been logged, except
for the interest rate.

According to appropriate tests [see Hylleberg et al. (1988)] on
the unit factors, four of the six series contain the factor 1—84.
Exports seem to contain 1-B but there is no evidence on seasonal
unit roots, and for the interest rate the evidence 1is
inconclusive. Experiments with the unfiltered interest rate were
unsatisfactory, and o) our main version performed the
cointegration analysis on five series adjusted by the filter
(1+4B)(1+B2) and on the original export series.

The number of 6ointegrating vectors and the lag length depend on
the treatment of the intercept. Not including any drift at all, 4
lags whiten the residuals (5 1lags in the VAR). Adjusting the
series to their sample means (a popular strategy in time series
analysis) also gives 4(5) lags. In these cases, evidence prefers 2
cointegrating vectors but a third vector seems possible. If drifts
are properly taken into account, the lag length is reduced to 3(4)
and any evidence on a third vector disappears. This is not changed
if exports are also subjected to pre-filtering. The vector spaces
and roots are only moderately sensitive to these changes.
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Replacing the pre-filtering by seasonal dummies in all
regressions, the lag length is again reduced to 2(3) lags and now
3 cointegrating vectors are found again (1 % significance).
According to the statistics, a fully stationary system is possible
but we will rule out this possibility in the following. The error
correction components implied by the versions using seasonal
dummies do not look stationary even if corrected for deterministic
seasonals. In particular, the component corresponding to the
largest root, which is supposed to be the "most stationary"”" one,
shows strong negative first-order correlation, an indication for
both the inability of dummy extraction to remove seasonality and
for the inability of the testing procedure to discriminate between
stationary and non-stationary processes when the latter ones do
not contain the unit root at 1.

Following the discussion in Section 4, the following models will
be checked for stability of the roots of the state‘space form:

. series pre-filtered, 4(5) lags, 2 cointegrating vectors
. series pre-filtered, drift, 3(4) lags, 2 vectors

series pre-filtered, adjusted to means, 4(5) lags, 2 vectors
.series pre-filtered, adjusted to means, 4(5) lags, 3 vectors

L ]
(o )TN S B S N6 IS |

-series pre-filtered, drift, 3(4) lags, 2 vectors

S G B W N -

. dummies included, 2(3) lags, 3 vectors

The 1largest roots implied by the state space representation of
these models are given in the following table:

Model 1 Model 2 Model 3 Model 4 Model 5§ Model 6
1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*) 1.00 (*)

1.00 (*) 1.00 (*) 1.00 (*) .98 1.00 (*) .95
.98 -.92 .98 -.95 .83+.367 -.02%.937
-.95 .90£.05F -.95 .89+.135  .89+.03j7  .01l%.797

.82+.427  .81#.32j  .86%.15j -.67+.56j -.56+.56] -.71
-.53+.71j  .05%.78j -.77%.55j -.54+.67F .59%.51F -.55

It is seen that, additional to the unit roots imposed by the
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identification procedure marked by asterisks, all models contain
near-unit roots. In particular, Models 1, 3, 4 imply one positive
root of .98 which disappears if eventual linear trends are
properly accounted for by drift terms as in Models 2 and 5. One
further root <close to -1 1is caused by different seasonal
adjustment of individual series. It is even possible that the
exports series itself follows semi-annual fluctuations as the
corresponding eigenvector strongly relies on oscillating exports.
The near-unit complex roots in the seasonal dummies model indicate
that dummy extraction is insufficient to stationarize the
relations. The eigenVector corresponding to the *.93j root has its
largest entries at the interest rate and investment variables.
This could indicate that fluctuations in these variables are the
"most stochastic" ones. It was already mentioned that Model 4
produced divergent cycles for shortened samples (e.g. 1964 to
1985). In stable cases, the system variables quickly approach a
linear trend lines if drift terms are included but only slowly
approach horizontal lines if they are excluded.

A further interesting phenomenon is illustrated by Figures 1 to 3.
These are graphs of the autocorrelation function (ACF) estimates
of each of the six components of pe'x where Be simply extends the
estimated B (the cointegrating vectors) by the remaining
eigenvectors which correspond to the roots which are statistically
zero. One would expect that the first two or three components are
stationary and the remaining ones are integrated and, moreover,
that the last component is the "most non-stationary”. In all cases
where seasonality has remained in the data, one would also expect
to see seasonal cycles in the ACF of at 1least some of the
components. 'Figures 1 and 2 which correspond to Models 2 and 6
show that the first expectation is not necessarily corroborated.
In fact, the second component looks extremely non-stationary which
raises severe doubts on whether the second f column really
cointegrates. On the other hand, Figure 3 based on the fully de-
seasonalized model 5 fulfils the expectations. Even though ex-post
prediction experiments see Models 2 and 6 in the lead relative to
Model 5, which might be oversmoothed in its turn, this kind of
visual evidence can only be recommended in cointegration analysis.
It has been pointed out in Sections 2 and 3 that, in the presence
of ignored unit roots, the B vectors may cointegrate the
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conditioned residuals on which they were constructed but not the
data series. In both Models 2 and 6, near-unit root seasonality
has remained in the system, in model 2 due to the seasonal
fluctuation in exports and in model 6 due +to the stochastic
seasonal patterns which cannot be extracted by dummy regression
and this might have given rise to the counter-intuitive Figures 1
and 2.

5.2. The German system

The German system differs from the Austrian one with respect to
the interest rate where we replaced the average yield of long-run
emissions by an average bond rate and used total exports in stead
of goods exports. Tourism plays a minor role in +the Federal
Republic of Germany as compared to Austria, and therefore this
second modification should not have tremendous effects. Start time

of the German quarterly series is 1960.

Again, all series except for exports show significant seasonal
patterns. Here, the real interest rate is among the most obviously
seasonal series because of.the wild seasonal fluctuations in the
implicit price deflator. Contrary to the Austrian case, seasonal
dummies were unable to reduce lag order and a lag order of 4(5)
was needed in order to obtain white noise errors. Inclusion of
seasonal dummies together with seasonal differencing was also
tried but again failed to decrease lag order.

The statistical cointegration tests according to Johansen and
Juselius (1989) indicate two cointegrating vectors for most
specifications (the word "specification" refers to the assumptions
concerning lag order, drifts, and seasonal behavior).
Interestingly, the statistically preferred specification of 4(5)
lags and seasonal differencing with drift casts doubts on the
existence of the second vector. Therefore, the following models
have been submitted to the state space eigenvalue analysis:
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1. 5 series pre-filtered, drift included, 4(5) lags, 2
cointegrating vectors
2. As in 1. but only 1 cointegrating vector

3. Seasonal dummies, 4(5) lags, 2 cointegrating vectors

None of the models resulted in explosive unit roots. In the

following 1list the 1largest roots for each of the models are

displayed:
Model 1 Model 2 Model 3
1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*)
-.96 1.00 (*) *.9775
.96 -.96 -.97
.88+.267 .95 .04+.897
.78%.4275 .86+277 -.88+.057

It is seen that the dynamics implied by model 3 are less
satisfactory. Three seasonal roots are clearly there, quite close
to the wvalues -1,*j implied by seasonal differencing. This means
that seasonal dummies are unable to extract the seasonal
structure. The corresponding eigenvectors show that the real
interest rate is the principal source of the possible
oscillations. Model 1 and 2 have remarkably similar roots,
remarkable insofar as the additional root of 1 imposed by Model 2
does not reduce the amount of remaining near-unit roots. Complex
roots and cohsequent four-quarters oscillations are not found but
one of the roots is close to the "jump root" of -1 implying semi-
annual cycles. These seem to stem from the export series which,

unlike the Austrian one, exhibits certain signs of seasonality.

These findings are corroborated by prediction experiments. Cycles
in exports and interest rate are quite persistent but usually
decay after around 20 ‘steps. Some artificial states generate
negative trends in investment but, on the whole, a long-run growth
in investment of 1.6 % and in consumption and total output of

around 3 % is projected.
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5.3: The Danish system

The Danish data starts at 1974, with the beginning of quarterly
national accounting in Denmark. This restricts the number of
usable observations to around 50, which makes statistical
decisions based on asymptotic results extremely difficult. Note
that the tables provided by Johansen and Juselius (1989) demand
for a value of around .5 for the third or fourth root (counted
from the smallest) to warrant a decision with a significance of
5 % on whether or not the fourth or third cointegrating vectors
are present. This value, however, is already the ideal value
representing the correlation between levels and differences of a
white noise process. In other words, the procedure is unable to
discriminate white noise from a random walk. Consequently, the
absolute size of the roots should be rather used as a guideline.
Similar caveats apply to the portmanteau statistics of residual
correlation.

If seasonal dummies are used, 1(2) lags already suffice to whiten
the residual series, according to the Q-statistic by Ljung and
Box. Two cointegrating vectors are found but this decision is
extremely sensitive to specification changes and therefore a model
with -3 vectors is also investigated. Among these vectors we find a
relation between output and the demand components, with almost
equal coefficients with respect to I and X and with a slightly
higher one with respect to C. This vector is also found in most
cointegrating spaces in the German and in the Austrian model. A
second vector seems to involve the consumption quota and the
interest rate whereas wages do not play a role in cointegration.

If seasonal adjustment is performed via moving average filtering,
2 to 3 lags are needed to whiten the residuals in the preliminary
regressions of differenced data on lagged differences. Because of
the small sample, residuals sometimes show substantial
autocorrelation if error correction terms are included (this is
contrary to all experience from the Austrian and the German system
and a tentative éxplanation is given in the concluding section).
If the asymptotic tables are used, 2 lags generate a stationary
(!) system with 6 cointegrating vectors. 3 lags entail 4 vectors
but the resulting model does not look satisfactory. Below the
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largest roots of the state representation of three selected models
are given: first, dummies with 2 vectors; second, dummies with 3

vectors; third, pre-filtering with 4 vectors:

Model 1 Model 2 Model 3
1.00 (*) 1.00 (*) 1.07+.1875
1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) 1.00 (*) 1.00 (*)
1.00 (*) -.12+.687 .51%.797
-.14+.697 .59 .67+.647
-.54+.3275 -.51+.297 -.53+.767

Model 3 obviously produces explosive behavior. The corresponding
state vector describes four successive quarters of expansion with
particularly high investment, rapidly falling interest rate and
low wages. Contrary to Austrian and German evidence, seasonal
dummies seem to be a better description of seasonal patterns in
the data. Model 1 and 2 show similar roots, with model 1 obviously
restricting a root of .6 to unity which would recommend the use of

Model 2. Anyway, the small sample caveats should be kept in mind.

To illustrate explosive behavior, a forecast from Model 3 for the
(presumably stationary) series 1Y and X (i.e. the first
differences of the output and the exports series) until the end of
the century is displayed graphically. The years 1988-1991 show
unusual behavior - relative to past performance - but do not
obviously contradict stationarity. After those years, prediction
degenerates into nonsensical cycles with increasing amplitude and
an uncertain frequency which should correspond to the detected
pair of complex roots.

5.4. The British system

For the British system, six series equivalent to the three other
countries were used. As for the Federal Republic of Germany,
exports included goods as well as service exports. Contrary to the

other countries, the real interest shows no seasonal patterns. The
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"not seasonally adjusted" real series accounts published by the
Central Statistical Office differ from the respective nominal
series by non-seasonal deflators. And the GDP deflator has been
used for all countries to deflate the non-seasonal nominal
interest rate. Quarterly series used here start in 1963.

According to statistical tests on the factor l—B4, all series

except interest rate and exports show significant seasonality.

Since data clearly exhibit drifting behavior, the following three

specifications were used for further investigation:

1. Dummies included, 5(6) lags, 2 cointegrating vectors.

2. All series filtered by (1+B)(1+B2), 5(6) lags, 2 cointegrating
vectors.

3. Four series filtered by (1+B)(1+B2), 5(6) lags, 2 cointegrating
vectors. _

Note the 1long lags enforced on the system by the consumption

series. According to some integration tests, British private

consumption could be I(2) but we shall not accept this possibility

here. The following table shows the largest roots implied by the

three specifications.

Model 1 Model 2 Model 3
1.00 (*) 1.00 (*) 1.00 (*) (4 times)
-.06+.907 .92+ ,.237 .92+,2275
-.89+.067 .81+.497 .77+.487
.71%+.,467 -.62+.677 -.64+.6575
.47+.707 .59%.697 -.89

Taking some summary statistics and forecasting performance into
account, Model 3 seems to be the best model of the three. Contrary
to Austrian and German evidence, both seasonal adjustment methods
generate qualitatively similar results as none of them shifts
seasonal roots too close to the unit circle.

The three above models tacitly assume two cointegrating vectors.
Evidence on the second vector is, however, not clear and it is
possible that only one cointegrating vector is present in the
British system. The real interest rate already is "almost"
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stationary by itself and much more so if linked to some of the
other variables. A 1link between wages and consumption and the
accounts growth vector already encountered in the other systems

are also candidates for cointegrating relations.
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TABLE 1: First two B column vectors (cointegrating vectors) for
selected country models -

Y C I R X W6
Austria (model 2)
240.16 -54.44 -67.61 -3.98 -59.63 16.65

-6.37 -56.29 3.69 70.09 18.83 12.93
Denmark (model 1)
-54.86 58.60 -3.39 .34 14.68 1.96
-127.35 32.06 14.74 -.14 20.31 2.75
Germany, Federal Republic (model 1)
68.15 -14.72 -12,.22 .88 -19.45 -.22

'172.79 -90.55 -26.24 -1.10 -33.22 11.32
United Kingdom (model 3)

-27.86 -45.40 24.64 - .38 13.99 25.20

135.71 -122.50 -34.24 .16 -35.38 88.82

6 The numbers beneath the labels denote the coefficients of: gross
national (or domestic) product; private consumption; gross fixed
investment; real interest rate; exports; real wages.
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TABLE 2: Squared canonical correlations of 2-vector spaces

corresponding to the largest eigenvalues

D DK UK

A .986 .966 .965
.373 .321 .369

D .990 .929
.760 .841

DK .892
.684

7 Country labels are defined as follows: A = Austria, D = Federal
Republic of Germany, DK = Denmark, UK = United Kingdom of Great
Britain



23

TABLE 3: Squared canonical correlations of estimated spaces and
prescribed spaces [Y-aC-al-aX, v2] where a=1/3

\Z) cC-Yy I-Y W-Y R

A .985 .354 .985 .039 .985 .048 .985 .567
D .994 .825  .985 .104 .981 .105 .979 .004
DK .986 .652 .957 .372 .956 .047 .943 .000

UK .983 .654 .960 .244 .990 .298 .946 .000






FIGURE 1: ACF of transformed components of Aus
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FIGURE 2: ACF of transformed components of Austrian
(seasonal dummies used in all regressions)

model 6
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FIGURE 3: ACF of transformed components of Austrian model 5

series filtered by 1+B+B*+B’) °®
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6. Summary and conclusions

In summary, findings of explosive roots have proved to be
infrequent but still a non-negligible nuisance in empirical VAR
systems. It is true that the displayed behavior has its sources in
a thorough misspecification of the system but similar
misspecifications could easily evolve in similar situations. The
inclusion of four cointegrating vectors in the Danish system is
based on asymptotic fractiles which are incorrect in a sample of
50. This misspecification 1is seen from the deteriorating error
structure in the final models relative to the preliminary
regression (step 5 relative to step 1 in section 2). The spurious
cointegrating vectors produce integrated instead of stationary
components which are added to the original differences and the
whole procedure breaks down. Note, however, that in principle this
mistake can be reduced to ignoring a rank restriction. Lots of
rank restrictions on the short-run coefficient matrices Fi are
usually not imposed.

The final answer on the correct treatment of seasonality cannot be
given here. Two systems seem to prefer stochastic patterns though
the Austrian one can be modeled more parsimoniously (but probably
less correctly) by dummies. The Danish system not only prefers the
deterministic model but stochastic modeling was a crucial factor
in attaining explosive behavior. Different treatment of individual
series is often suggested by statistics like those of Hylleberg et
al. (1988) but it might destroy information about relations
between original variables of the non-adjusted and the adjusted
set. This "naive" procedure is responsible for some of the near-
unit roots éncéuntered. Estimation of the "full" model set out in
section 3 is unbacked yet by statistical theory.

Apart from the explosive behavior encountered in two
specifications only out of fifteen (and in one of them only for a
reduced sample), there are more interesting findings evolving from
the economic nature of our comparison of economies of different
countries. A full analysis of these cannot be given at the moment
(and would be beyond the scope of this paper) but it can be stated
that the detected cointegrating relations are remarkably similar.
To illustrate this remark, the spaces spanned by the first two
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columns in the four best individual country models were compared
by calculating the mutual canonical correlations (see Table 2).
Interestingly, the German and the British vectors are the
"closest" ones. The Danish system is slightly more different
whereas the Austrian two-dimensional system only shares one axis
with the other countries in the sample.

These coincidences are reflected in the structure of the
cointegrating relations. One (usually the one corresponding to the
largest root) links output to consumption, investment, and exports
in the form

Y = aC + BI + BX

The equality restriction of the coefficients also seems to hold
for all three economies, and generally a is greater than B. Kunst
~and Neusser (1988) used model 4 for the Austrian economy and were
unable to reject a vector with a=g. Their result could rely on a
misspecification of drift terms.

The .remaining relations (usually only one) are more difficult to
interpret. It always contains the interest rate and links it to
different variables. In Denmark, the consumption quota (C-Y) seems
to complete the relation optimally, leaving wages outside of the
cointegrating space. In the large-country economy of Germany,
exports seem to play a key role in this second relation whereas in
Austria wages and investment enter in a way that is difficult to
interpret. For none of the countries, there is evidence on the
"classical" growth assumptions of stationary consumption and
investment dguota to hold and only the UK system could allow for a
stationary real interest rate. This may be due partly, however, to
the manner of deflating the interest rate and to the income
variable selected.

Just for the sake of an experiment, two-vector systems containing
the output growth vector with a=B=1/3 and one out of the four
"theoretical" vectors assumed by neoclassical growth theory
(consumption quota; investment quota; real wage to output ratio;
real interest rate, i.e. fourth unit vector) were compared to all
fifteen country models and mutual canonical correlations with the
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spaces given by the first two B columns were evaluated. The
specified systems share at least one axis with all models which
seems to be generated by the output growth vector. The system
including the stationary real interest rate coincides best with
the Austrian specifications. For the three other countries,
inclusion of the consumption quota yields the best fit (compare
Table 3 for selected results). Note, however, that all of these
two-vector specifications are rejected by statistical tests as
suggested by Johansen and Juselius (1989), though by iterating the
coefficients in the output growth vector the null region could be

possibly reached in some cases.
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