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SUMMARY

A new test for the presence of seasonal unit roots in a quarterly
time series, i.e. for seasonal integratedness, is constructed. A
seasonally integrated process is characterized by a factor 1-L% in
its autoregressive representation. The +test is based on the
correlation between the series X and its seasonal differences Xt-
Xt-4, adjusted for lagged differences. It is equivalent +to the
likelihood-ratio test against stationary alternatives.

If the series is taken from a seasonally integrated process
indeed, the test statistic can be shown to converge towards a
limit distribution. Fractiles of this distribution are given and
finite-sample properties are studied via Monte Carlo. The use of
‘correlations instead of second-order cross-moments around Zero
imposes a non-trivial ©bias ' whose influence is seen from
simulations. If the series is stationary, a random walk, contains
additional unit roots, or can be stationarized by seasonal moving
averages, the test statistic can be shown to diverge.






l.Introduction

The last few years have seen a burgeoning literature on
unit root tests and on co-integration mostly assuming the
typical non-stationary model to be the integrated process
which  may be transformed ' into a stationary one by
differencing once or several times. Some experience with
quarterly national accounts or related series, however,
reminds of the importance of seasonal cycles which quite
frequently give rise to the presumption that they can be
removed by applying fourth-order rather than first-order
‘differences. Data with a different seasonal frequency -
e.g. monthly data - entail similar properties. Here, we
shall concentrate on the quarterly case.

Important studies in the area of unit roots and seasonal
time series are the ones by Hasza & Fuller (1982) and
Dickey, Hasza & Fuller (1984) who suggest modifications of
the Dickey-Fuller test (Dickey & Fuller 1979, Said & Dickey
1984) in the presence of seasonal and/or trend unit roots.
Alternatively, this paper is devoted to distributional
results of a seasonal unit roots statistic which represents
the analogon to Johansen's (1988) co-integration test. It
can be shown to correspond to the likelihood-ratio test
against stationary alternatives. Fractiles and means of the
distribution will be 1listed based on Monte Carlo
simulation. The statistic is easy to calculate and its

asymptotic law is well approximated in medium samples.

Recently, Hylleberg, Granger, Engle, and Yoo (1988)
presented a test for seasonal unit roots based on a similar
design. Their test does not only take into account an
eventual seasonal differencing factor 1-14 in the
autoregressive representation but also allows for the
separate apparition of the component factors 1-L, 1+L,
1+L2, Except for the 1-L factor -~ and there are special
tests available for this case -~ it is difficult to give
meaning to these single factor hypotheses. The "seasonal
moving average" 1+L+L2+L3=(1+L)(1+L2) could be another
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interesting feature which is touched upon in Section 7 of
this paper.



2. A seasonal unit root test based on__conditional
correlation

The popular test by Dickey & Fuller (1979) for the presence
of the factor A=1-L in the autoregressive (AR)

representation of a time series relies on the fact that any

pth—order AR process

P %
Xt =.2 @ixt_i + E.t
i=1

1

can be written down in first differences keeping only one

lagged level term 2
, p-1 '
ARy =i§1¢iAxt_i + @pxt_p + €y (2°1)

If 4+ is a factor of the AR polynomial

@(L)=1-¢IL-...—¢;LP

then ép must be zero. The likelihood-ratic (LR) test of the
null hypothesis ¢p=0 against the general alternative ¢p+0
(under the environment assumptions of Gaussian innovations
and no further roots of #(L)=0 being inside or on the unit
D in the (2°1)
regression. Fractiles of the asymptotic and finite-sample

circle) is equivalent to the t-value of &

distribution of this test statistic have been tabulated by
Dickey & Fuller (1979). The asymptotic distribution is a
non-standard law which can be represented by integrals over
Brownian motion.

h

For the seasonal problem, a pt -order AR process may be

reparametrized in fourth differences (A4Xt=Xt—Xt_4)

p-4 4

A X, = % diauXe s + 2O . X . + €
44t 44¢- -4+i%t-p+4-i.
i=1 i i i=1 P i o) i t

1 Here and throughout the paper, €, denotes white noise.

2 Dickey and Fuller (1979) rather use a representation with
a level term at lag t-1 instead of t-p. Both forms and
the derived tests are equivalent.



i.e. by an AR process in differences of order pP=p-4 plus
- an influence of four level terms. Similar to the case of
first differences, under the null hypothesis of Ly being a
factor of &(L) all ép—4+i

corresponding LR test is equivalent to an F-test on these

(i=0,...,3) are zero and the
coefficients.

Rather than to calculate this F statistic directly, we
shall exploit the property that the F-test can be
interpreted as a description of the multiple correlation
between i,X, and Xt-p+i (i=0,...,3), conditional on p-1
lagged seasonal differences. The calculations by Johansen
(1988) can be used to establish this equivalence and allow
for a  potential extension of the test idea to the
multivariate setting. This entails that the following

primary regression equations can be used as an intermediate

step:
p-4
p-4
Xt-p+i=j§€ij‘4xt-j+rit i=0,1,2,3 (2°3)

and the residual sums-of-squares and cross-sums matrices
can be calculated: the scalar Sp0- the 4-vector SOp' the

4x4-matrix S The maximized 1log-likelihood under the

pp°
general case is seen to be

-1
-%T log(2m)-%T log{(soo—sopspp spo)/T}—%T
Under the null hypothesis of b;=0, i=0,...,3, the corre-
sponding maximum is the outcome from a simple regression
(2°2), i.e.

-%T log(2n)-%T log(sOo/T)—%T

Consequently, the 1log of the 1likelihood-ratio test
statistic is



-1 -1
-JET lOg( 1—500 Sopspp Spo )

The test statistic of this paper will be defined as twice
this expression, i.e

Jg = -T log(l-sgg tsgps (2°4)

-1
pp Spo)
This Jg represents the equivalent of the J statistic by
Johansen (1988) to the fourth-difference case in the case
of scalar X..

The representation (2°4) facilitates the calculation of
some theoretical results in the next sections but there are
hardly any numerical finite-sample differences to a
straightforward F-test which needs only two instead of five
auxiliary regressions. Note, however, that these two
regressions cannot use the same regressor matrix and the
difference in computer time between the two versions is
almost zero. The two versions can be viewed as the same’
test.
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This section and the succeeding ones focus on asymptotic
distributional properties if only one lagged difference is
included into the primary regressions (2°2) and (2°3). In
most cases, it will be shown that Jg will follow analogous
patterns with higher orders. Let us repeat the primary
regression equations in the first-order case to determine

notational conventions:

]

A4Xt aA4Xt_l+r0t (3°1)

Xpoj = DijaXe 1+T5¢ i=2,3,4,5 (3°2)

The asymptotic properties of conventional unit root tests
for the factor i rely on the convergence of random elements
like

T
7-1/2ze, (3°3)
t=1

to Wiener processes (to B(s) 1if T 1is replaced by
entier(Ts)) where €¢ denotes white noise. This generalizes
to stationary €, under mild restrictions and e.g. implies
that for a random walk X

T 1
T'3/22:Xt converges to B(t)dt
t=1 O

In the context of seasonal unit roots, the basic process is
the seasonal random walk (SRW)

rather than the random walk. In its strict definition, the
th
t

observation is independent of X1, X2, Xe3- The SRW
allows the representation

*



with x* a starting value whose time index depends on the
remainder from an integer division of t by 4. The sum only
comprises about entier(t/4) white noise increments. The SRW
can be considered as consisting of four independent random
walks. The elementary processes (e4t—i)'i=0'°‘°'3 are white

noise just as (Et).

For SRW, the least-squares estimate of a in (3°1) is root-
consistent for the true value 0, and sgg necessarily
converges to the innovations variance if downweighted by T.
The b; estimates in (3°2) do not converge but their
distribution approaches a well-defined 1limit Ilaw. This
implies that Spp is asymptotically equivalent to the cross-
products matrix of four consecutive observations from a
seasonally integrated process. All matrix elements have to
be weighted by T2 +to warrant convergence to random
integrals. Let Bj, i=1,...,4 denote the Wiener processes
corresponding to the mutually independent random walks
cohstituting the SRW. We have

Spp/T? - H = (hyy)

1 4 1
h;; = -- I (| B2(t)dt = A
16 1=1 ) T
1 1
0

1
1
hi,i+2 = ; [ (BZB4(t)+BlB3(t))dt = C
0

and generally h; s=h..

hjy = b ij=Hji

i, i+1

giving a Toeplitz matrix
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The inverse of H needed for calculating Jg is the product
of its inverted determinant and its adjoint:

det(H) = (A-C)2((a+C)2-4B2)

D E F E
1 E D E F
) :
(A-C)((A+C)2-4B2)| F E D E
E F E D
where
D = A2+AC-2B2 E = BC-AB F = 2B2-AC-C=2

The eigenvalues of H are C-A (twice) and A+C*2B but one A-C
factor cancels with the adjoint. As the coefficient
estimates in the (3°2) regressions approach a well-defined
limit law, the elements of Sop will behave asymptotically
like the sums

zxt_iet i=2, oo o, 5

Taking the nature of the SRW into account, T"lsop converges
toward a limit vector h=(h1,...,h4)'

' r r r

r ~

[ [
h2 = %( BldB4+ Bdel+ BSdB2+ B4dB3

4
%(iJBidBi)

o3
w
It



h4 = %({BldB2+JBdes+[BsdB4+JB4dBl

Ignoring the variances of et and By which cancel, the limit

of Tsoo‘lsopspp‘lspo is given by a quadratic form

[D(Eh])+2E(h) +hg) (hy+hy)+2F(hyjhg+hyhy)1/
/[(A=C)((A+C)2-4B2)]

If Y. is a general seasonally integrated process of higher
order, properties of martingale differences may be used to
straightforwardly establish asymptotic equivalence to the
SRW case. See, for example, Phillips (1987). To ensure
convergence - of sOO/T to the residual wvariance, it is
necessary to insert at least the correct number of lags
into the first preliminary equation. As this is not known
in practice, an identification stage is required before
estimating (2*1) and (2°2). An automatic approach for this
aim can incorporate information. criteria, preferring
slightly overparametrizing criteria 1like AIC to more
restrictive ones like BIC. An alternative used in some
simulations of this paper is to base the decision on the
- Ljung-Box Q statistic. As uncorrelated residuals are more
important for the procedure than minimized residual

variances, this Q approach seems somehow more natural.

The empirical fractiles and means of the distribution of Jg
given in Table 1 for selected seasonally integrated
processes and alternatives using samples of size T=100 are
based on a variant which uses regressions with constant
terms in both (3°1l) and (3°*2). In the case of pure SRW,
larger samples of T=1000 and T=10000 were also
investigated. It is seen that fractiles hardly change at
all if T is increased. Table 2 compares empirical and
theoretical fractiles for the homogeneous regression
variant tackled in the text. The marked differences between
Tables 1 and 2 are due to the influence of the constant
estimate in (2°3) or (3*2) which does not go to =zero
asymptotically. On the other hand, insertion of a constant
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term in (3°1l) does not affect the limit distribution. If
one is not sure whether or not the data process contains a
non-zero "drift" it is recommended to use inhomogeneous
regression in (3°*1) in order to retain asymptotically
correct residuals rgp and to avoid misspecification of lag
orders.

The "cyclically integrated chi-square with four degrees of
freedom”  and its finite-sample "cyclically integrated F"
are bell-shaped with modi around 4 (around 6 for the
inhomogeneous variant) and left and right tails. Neither
the size of the first-order autoregression coefficient in a
seasonal AR model (0 represents the SRW case) nor the
sample size change the fractiles too much. Note that even
an additional unit factor seems not to matter either, but
compare Table 3 and Section 6. For Tables 1 and 2, the lag
orders p were fixed at the true wvalue of one. Some control

simulations for estimated p produced very similar results.
An Example: European temperature readings

Quarterly temperature averages provide a good example for
severely seasonally infested series. Here, time series over
two decades from 1960 to 1980 were investigated. We
considered meteorological stations in Austria, France,
Germany (Federal Republic), Italy, Sweden, Switzerland, and
the United Kingdom. For none of the series, the hypothesis
of a seasonal unit factor could be rejected, JS values
ranging from 1.25 (Italy) to 7.67 (Sweden). The models
suggested by Q varied considerably between near-SRW (United
Kingdom) and a fourth-order process for seasonal
differences (Italy and Switzerland). Generally, explaining
power of the models remained low, the best model being that
for Switzerland with a corrected R2 of 0.297.
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The most common alternative +to the seasonal unit root
process 1is a (covariance-) stationary one without unit
roots, in particular with complex roots in its lag
polynomial which are known to generate cyclical behavior.
In this case, i4X; will also be stationary, the first-stage
regressions produce parameter estimates which are

convergent of order /T, and all s;; elements will converge

J
if weighted by T. It follows that, unless any element
converges towards zero, Soo_lsOpSpp—lspo converges and Jg

necessarily diverges of order T towards infinity.

The asymptotic forms may bé calculated analytically. Here,
this will be done for the case of first-order regressions
(3°1) and (3°2) but the analysis may be extended to higher-
order cases with slightly more intricate results. For the

following, assume that X, has an infinite MA representation
Xg = E 83645

with white noise innovation (€i). Note the notation

Ry = X Gjej_i R_:=R;

i
with j running over all possible coefficients. First, we
see that the regression coefficients a, by, by, by, b5
converge to the following limits
' b2 - Bz = (Rl-RS)/(2R0—2R4)
b3 - 0
by - -B3

bS - —1/2
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Convergence is of order /T, so the asymptotic covariance
matrix of the residuals is equivalent +to the errors
covariance matrix, particularly:

SOO - Z(Ro"R4)"(ZRl-Rs-RS)z/(2R0-2R4)
Spo - (a(R3-R1) , R3—Rl , —G(Ra—R1)+R4-RO , (RS—R3)/2)

R* = (R;-Rg)%/(2Ry-2R,)

[ Rg-R* R, Ry+R” (R{+Rg)/2 |
s - Ry Rg Rl* R,
Ry+Rx Ry RO—R (R1+R3)/2
(Ry+R3)/2 R,  (Ry+Rg)/2 (Rg+R4)/2

These properties may be derived by straightforward calcula-
tion. Since Spp has to be inverted to calculate Jg but has
no ocbvious simple structure, it makes no sense to calculate
a general closed form for the limit of JS.'However, this is
fairly easy for any given MA process. Note that Spp is
slightly different from a Toeplitz autocovariance matrix
and that the statistic approaches the convergence boundary
for the fourth-order autocorrelation approaching one, i.e.
the seasonal unit root case. For the special case of a
white noise process, JS/T converges to log(%). More

generally, for any fourth-order AR process of the form
Xe = Rp_4g+€¢ le|<1

it is seen that Jg behaves asymptotically like T log(%+%%).
However, from Tables 1 and 2 we see that this approximation
- for any fixed T - becomes poor if ¢ approaches 1.
Moreover, it seems that Jg stays ‘"above" the null
distribution for all stationary cases. Note from Table 2
that 100 observations do not allow discrimination between
the null hypothesis and the "near-seasonal unit root" model
Xt=0.9xt_4+€t whereas 1000 observations enable safe
decisions. Thus, the power of Jg is'comparable to the unit
root tests of Dickey & Fuller (1979).
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This and the following sections analyze alternatives for
which the test is not the LR test. Nevertheless, we shall

see that JS remains useful even in these cases.

An important alternative, especially if economic data are
used, to the seasonal unit roots process is the integrated
process with only one unit root at 1, whose seasohality is
too "weak" to imply the factor 1-1.4. We shall investigate
into the properties of Jg assuming that X, is the random
walk (RW) but the results generalize to stationary
increments.

First note that, for RW, 14Xy 1s stationary or, more
precisely, is an MA process

MpXy = E+€p 1+€L p+€¢ 3

and that the coefficient of the first-stage regression of
bgXy on 44Xy, converges to 3/4. It follows that Sggr down-
weighted by T, converges to 7/4 +times the innovations
variance.

In the other preliminary regressions, RW lags are regressed
on MA processes. RW may be decomposed‘into a part which is
uncorrelated with the MA process and another only consist-
ing of €r_1s++++€t_4- This motivates that the regression
coefficients converge to sums of Brownian integrals and
scalars

1
(by,...,bg) » (3/4,1/2,1/4,0) + JB(t)dB(U) (3,1,1,1)
0

If the cross-products from the riy (i=2,...,5) residuals
are downweighted by Tz, only the cross-products between the
RW lags do not disappear asymptotically. This implies that
all Spp elements converge to the identical distribution
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1
JBz(t)dt
0

and that Spp
that its inverse diverges to infinity. On the other hand,

converges to a singular matrix of rank one and

Sgp converges to the random vector

1
7/4 JB(t)dB(u) (1,1,1,1) - (1/4,1/2,3/4,0)
0

which is not zero. Consequently, for RW and other
integrated processes, Jg diverges towards infinity. (Also
compare Table 1)
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6. Seasonal double convolutes

Another model that sometimes represents an alternative to
the seasonally integrated process is the seasonal double
convolute. Letting i denote the unit factor 1-L, such a
process is defined by a factor of Ady 1in its AR
representation. This factor can be separated into

sag = (1-L)(1-L4) = (1-L)2(1+L+52+L3)

This means that seasonal adjustment by forming a four-
quarter moving average leaves a process with two unit roots
at one, i.e. an integrated process of order two. Such
processes are less frequent than seasonally integrated bnes
and some occasions where they were hypothesized presumably

involved overdifferencing of the data.
6.1. An Example: The Series G of Box & Jenkins

When using the JS test (with lag orders identified wvia the
Ljung-Box Q) on quarterly aggregates of the famous Series G
from Box & Jenkins (1976) representing the numbers of
airline passengers from 1949-1960, some interesting results
obtain. Box & Jenkins used a model of the form
u4xt=(1+aL)(1+bL4)€t on the logged data (originally
seasonal factors of order 12 for monthly observations).
Later critics objected that Box & Jenkins might have
overdifferenced +the data. This is corroborated by our
analysis. The Q stage of the test stops at p=1, reporting
a coefficient around .68 for original as well as for logged
data. The seasonal factor i, is rejected (Jg=15.74) for the
original data model which is probably misspecified, a fact
also pointed out by Box & Jenkins, but the test is unable
to reject for the logged model (Jg=4.66). The test
indicates that annual growth rates of the airline data are
stationary and may be modeled according to an ARMA scheme,
preferably a first-order AR process although some higher-
order dependencies might have been masked by the summary Q
statistic and an MA model might be more parsimonious.
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6.2. JS and seasonal double convolutes

Of course, some cases remain where the seasonal double is a
good model. A typical example might be nominal wage series.
Such series can be characterized by integrated behavior of
their first differences and strong seasonal patterns.
Table 1 shows that, at least for smaller samples, the
properties of Jg under the null hypothesis remain wvalid.
Table 3 reports further Monte Carlo on the basis of
seasonal doubles of the form

(1-L)(1-L4)&, = (1+6L)(1+0L4) | (6°1)

It is seén that the empirical distribution quickly moves
away from the "cyclically integrated F" for 6<0 and reaches
obviously divergent behavior for 6=-0.5. Such models
approach stationary cases which are explicitly reached at
0=-1] when the unit roots cancel. On the other hand, 6>0
generates less pronounced differences to the null
distribution.

The finite-sample Monte Carlo results do not coincide with
asymptotical properties. It can be shown that T'4Spp
converges to a singular limit; T‘3/ZsOp approaches a well-
defined 1limit 1law; and T'lsoo still converges to the
innovations variance. Consequently, Jg diverges whatever
the values of 0 in (6°1) or whatever the stable ARMA part
in a more complicated seasonal double. According to the
simulations, this divergence is slow and Jg could still
detect seasonal factors in smaller samples of double
convolutes with low dependence in the stationarized series.
For larger samples, it will become easier to discriminate a
double convolute by the integrated behavior of its fourth
differences.

Table 4 gives the empirical frequencies of the
identification of lag orders in the models used in Table 3.
With the exception of the basic model with 6=0, a true lag
order does not exist. Note that 10 % of the replications in
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the 8=0.5 design had to be discarded because the wvariables
reached the size limits of the mainframe. Such processes

are less likely to show up in empirical data analysis.
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7. Jg and seasonal series with constant long-run mean

Among the many models for seasonality whose treatment is
outside the scope of this paper (see e.g. Hylleberg, 1986)
there is a popular one expressing the seasonal process as a
sum of a stationary component and a deterministic series
with periodicity four

The di can be estimated by regressing on four dummy series

s; that are 1 in the i-th quarter and 0 otherwise. Such

i
models are related in the same way to seasonally integrated
processes as linear time trends are related to integrated
processes and have comparable disadvantages. They seem to
impose a seasonal pattern which is too constant and stable
for most data series, even though they can be interpreted
as solutions to difference equations with canceling

factors.3

If the seasonal moving average (SMA) factor 1+L+L2+13 is
applied to the process of (7°1), its seasonality disappears
but a complicated dependence structure is imposed on the
"adjusted" series. As the SMA factor is contained in the Ay
operator, it makes sense to focus attention on a similar
class of processes which are stationarized by applying SMA

(1+L+L2+13) 8 (L)X =8(L) €y C(7°2)

where all (.) roots are outside and 8(.) roots are outside
or on the unit circle.

Assuming ®(.)=6(.)=1 and the first-order regressions (3°1)
and (3°2), calculation of the asymptotic properties of Jg
is easy. The a estimates converge to -% of order /T; ot
behave asymptotically 1like € -%(€ _;+€i_,) and sgo/T
converges to 3/2 times the innovations variance. The b;

3 For example, the solutions of A2Xt=A2€t differ from those
of X,=€; by allowing for a linear time trend Xi=a+bt+€,.
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estimates approach well-defined random distributions and
Sop and Spp behave asymptotically like sums of squares and
cross-sums of X; and rgy. In particular, Spp/T2 converges
towards

2(A-B) 2B-A-C 2(C-B) 2B-A-C
2B-A-C 2(A-B) 2B-A-C 2(C-B)

2(C-B) 2B-A-C 2(A-B) 2B-A-C

2B-A-C 2(C-B) 2B~A-C 2(A-B)

The elements A to D were defined in Section 3. The matrix
is singular and has rank three. On the other hand, sop/T
converges to a well-defined limit distribution vector whose
elements are linear combinations of the h; integrals also
defined in Section 3. Consequently, Jg diverges for all
(7*2) models. Particularly in larger samples, Jg can be
used to discriminate seasonally integrated processes from
series with constant seasonal means.
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8. Qutlook

The present test can be perfofmed on a univariate time
series. If the null hypothesis is accepted, the usual
proceeding will be to apply seasonal differencing and to
fit an ARMA structure to the differenced data.

Perhaps even more interesting is the situation if the
series at hand is embedded into a multivariate system of
quarterly data. In most cases, Jdg will reject for some
series and accept for others. For those series containing
(l—L)(1+L+L2+L3) application of the seasonal moving average
vl+L+L2+L3 renders integrated processes. Again in most cases
- not 'necessarily always - the remainder will contain
integrated and stationary series and tests like the one by
Dickey & Fuller (1979) can be used to decide upon this
question. The generated and the original integrated series
constitute an integrated system and tests for cointegration
(see Engle & Granger, 1987, Johansen, 1988) should be
carried out in order to avoid any 1loss of long-run
information. The final form of the equations should then
contain the differenced series, some error correction
terms, and the original stationary cases. This proceeding
has theoretical drawbacks as 1linear combinations of
individual series may also reduce +the amount of unit
factors of the type 1+L or 1+L2, This feature, "seasonal
cointegration", is the subject of recent work by Hylleberg
et al. (1988).

The asymptotic distribution of Jg 1s similar but not
identical to the chi-square distribution with four degrees
of freedom. The variant based on inhomogeneous regression
shows closer similarities with a chi-square of five to six
degrees of freedom. Both laws are members of larger classes
of probability laws generated by cyclically integrated
processes. A further important case could be a law
generated by 12 independent Brownian motion elements which
is implied by testing for the factor 1-112 in monthly data.
For all of these cases, analogues to our LR-based Jg should
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be preferable to the higher-order AR suggestion of Dickey,
Hasza & Fuller (1979) but <this presumption has to be
subjected to further studies. Finally, factorizations like
l-L4=(1—L)(1+L)(l+L2) suggest testing for individual unit
factors by tests similar to Jg even if Jg rejects. 1In
general, behavior of such statistics is not robust to the
existence of additional unit roots (compare Section 6) and
knowledge of corresponding limit fractiles could empossible
a descriptive "unit roots map" of tests on a variety of
products of individual unit factors where the optimal
description of the data is concluded from the least
significant value. The work by Hylleberg et al. (1988)
seems to point in a similar direction.

Most reports on unit root tests published in recent years
include versions of the test which allow for certain
deterministic components, like linear or even gquadratic
time trends. Unless insertion of such deterministic parts
is suggested by the general solution of basic difference
equations, like e.g. seasonal constants by iyX =€, there
is some arbitrariness around these models. Neither does it
seem to be promising to perform tests of "deterministic”
structures against "stochastic" ones (as linear trends
against integrated processes) on the basis of rather small
samples. Accordingly, this paper did not focus on this kind
of problems. ’
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