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Zusammenfassung

Die vorliegende Arbeit versteht sich als explorative Studie, die

ein System, welches ~aus sechs Haupt-Kenngrépen der
6sterreichischen Volkswirtschaft besteht (BIP, privater Konsum,
Investitionen, BIP-Deflator, Sekundirmarktzins, Lohnsatz),
aufgreift und vektor-autoregressiv modelliert. Besonderes

Augenmerk wird dabei dem Phdnomen der Kointegration gewidmet, also
der Bildung stationdrer Variablen durch Linearkombination mehrerer
instationdrer (trendender) Variablen. Mittels der Prozedur von
Johansen (1987) werden drei solcher Beziehungen identifiziert.
Auch ein Versuch der &konomischen Interpretation wird unternommen.
Breiten Raum nimmt eine in dieser Form neuartige Sensitivitits-
- analyse ein, die vor allem die Technik der kanonischen Korrelation
zu Hilfe nimmt.

Eine kritische Bewertung der durch die Modellierung implizierten
Prognosen (bis 1999) ergibt, dap ein gewisses MiBtrauen beziliglich
der vorher identifizierten kointegrierenden Struktur angebracht
ist bzw. daB hoéchstens eine oder zwei Beziehungen prognostisch -
gegeniiber der herkdmmlichen Modellierung, die Kointegration
iberhaupt nicht berilicksichtigt - effizienzsteigernd wirken
kénnten, wdhrend das volle kointegrierende System "excess
stationarity" impliziert, die der Prognosebewertung nicht
standhilt.



Abstract

This paper represents an exploratory study that investigates the
vector autoregressive properties of a time series system
containing six main indicators of the Austrian economy (gross
domestic product GDP, private consumption, investment, GDP
deflator, interest rate, wages). Interest focuses on cointegrating
structures in the system, i.e. on 1linear combinations of some
(trending) variates that generate stationary series. Johansen's
(1987) procedure identifies three relations of this kind. It is
also tried to give an economic interpretation to these relations.
More extensively, a variety of sensitivity experiments are
performed which make somehow original use of the technique of
canonical correlations.

Contrary to the sensitivity experiments, a critical assessment of
the identified structure by medium-term forecasting (until 1999)
sheds considerable doubt on its correctness. At most one or two
cointegrating relations may help to increase forecasting precision
relative to traditional vector autoregression which do not use the
idea of cointegration at all. On the other hand, using all three
identified relations seems to impose "excess stationarity” on the
system which is not replicated by actual data behavior.
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0. Introduction

Multivariate and, especially, vector autoregressive (VAR) time
series models are now well on the way to establish themselves asv
an alternative to structural economic models. The principal
problem of multivariate +time series models, the inflation of
parameters which restricts the possible dimensionality of the
system, has already gained widespread attention and led to some
interesting procedures to solve it. Only within +the past few
years, another aspect has shifted into the focus of research which
is related to the inherent non-stationary nature of many economic
variables. More specifically, most economic time series are well
represented univariately as stationary after taking first
differences, i.e. as "integrated of order one". To save the
applicability of standard asymptotic econometric theory, it looks
tempting to take first differences first and estimate the
unrestricted vector autoregressive model for the transformed
series. However, it can be shown that such models are only
efficient in the special case that all linear combinations of the
(trending) variables are also trending (i.e. integrated). For all
other cases, the vector moving average representation of the first
differences is not invertible. Therefore, a vector autoregressive
representation does not even exist. The instrument to handle these
difficulties is provided by the theory of cointegration introduced
by Engle and Granger (1987).

Fundamental properties and definitions involved with cointegrated
time series are well summarized in fhe seminal paper by Engle and
Granger (1987) and therefqre the problem will be explained only in
short here. If there is a linear combination of the (integrated)
variables which is (covariance-)stationary, the variables are said
to be "cointegrated" (of order one-one) and the coefficients of
the linear combination form a "cointegrating vector". Not only
that cointegration is frequently observed in interdependent
economic systems, economic theory suggests it +to happen for
specific sets of time series and provides an interpretation for
the cointegrating vectors (see e.g. Campbell and Shiller (1987)



and Juselius (1987)). The gquestion whether cointegration may be
viewed as a "generic” or "non-generic" event is unsettled. For two
arbitrary integrated series, a stationary linear combination seems
an unusual feature. However, in any non-stationary autoregressive
system of m individually integrated series, the generic event
would be exactly m-1 cointegrating vectors. Any other case
(excluding the jointly stationary system) can be shown to
correspond to imposing a rank deficiency on a matrix, which

certainly is non-generic.l

This paper is explorative in nature. It takes up a set of six time
series on Austria which describes a country more or less
adequately. The set is quite similar to a core set for the
Austrian economy which already has been exploited successfully for
VAR forecasting both by models in levels and in differences (see
Kunst and Neusser(1986)). Based on this data set, we shall try to
answer the following questions: Are there cointegrating vectors in
the system ? If yes, how many ? Can they be given an econcmic
interpretation ?

First, the univariate properties of the time series are examined
to see whether they are integrated of order one - a prerequisite
for the analysis of cointegration. This is done by the tests
introduced by Dickey and Fuller (1979) and Stock and Watson
(1986). The tests are applied to seasonal series as well as to
series adjusted by an MA filter that corresponds to seasonal
differences. Seasonal differencing of some of the series is
justified by additional tests.

While for any two series cointegration analysis may rely on
straightforward least-squares regressions, in higher-dimensional
systems it is a more difficult task. Several methods have been
proposed in the 1literature to deal with this issue (Stock and
Watson (1986), Phillips and Ouliaris (1987)). In this paper we
explore the method developed by Johansen (1987) which, wunlike

previous approaches, provides a unified framework for testing and

1 Compare the description of Johansen's procedure in Section 1.1



estimation. We contrast this approach with one proposed by Box and

Tiao (1977) which relies on "almost non-stationary" time series.

According to the author's knowledge, this study is the first one
which (see Section 3) directly investigates into the sensitivity
of the results with respect to several slight modifications of the
original exercise: the share of de-seasonalized series in the data
set; a change in the overall AR lag order hypothesized for the
level series; the "classic" experiment of changing the sample
length; finally, the similarities between the results from
cointegration and from Box/Tiao canonical analyis. The
interpretative wvalue of the results and the applicability for
forecasting purposes critically depends on these robustness
features.

..Section 4 tentatively tries to give the identified cointegrating
- relations an economic meaning, whereas section 5 performs selected
forecasting experiments based on the estimated systems. The
- cointegrating dimension is changed between zero (the model in
differences) and the estimated value of three.



1. Procedures

1.1. Estimating the cointegrated model according to Johansen

The guestion concerning the existence of cointegrating
relationships in a multivariate system may be investigated into by
several procedures, e.g. Stock and Watson (1986), Phillips and
Ouliaris (1987), Johansen (1987). The former two articles are
concerned solely with the problem of performing tests about the
number of relationships, whereas Johansen's paper provides a
unified approach for the testing problem as well as for the
estimation of the cointegrating vectors or, rather, of an
orthogonal basis for the r-dimensional cointegrating space if r
denotes the number of independent relationships identified in the
testing stage. This paper will be concerned primarily with
Johansen's approach.

Johansen (1987) starts from a vector-autoregressive process of
order k+l1 and dimension p

k+1
(1.1) Xeg = I nj Xeei + et
i=1

with non-singular (not necessarily diagonal) covariance matrix 1.

The process may be re-parameterized as a first-difference process

(1.2) 1X¢g = Z Tj0Xe-i + Tre1¥t-k-1 + et (Ci==I+ny+...+14)

If T'kg4+1l 1is zero, (Xy) 1is autoregressive as a first-difference
process. This coincides with the case of Xy depending on p
independent trends in the terminology of Stock and Watson (1986).
On the other hand, if T'yy1 has full rank, X+ is stationary. In all
other cases, Tk4+1 has rank r between 0 and p, i.e. it may be
represented as



(1.3) - ~Tk4+1 = a'B (= I-mi-...=Tg+1)

with a and B dimensioned as r X p and of full rank r. The sign
convention - was chosen to recover the "impact matrix" in
parentheses. The matrix of cointegrating vectors B is not unique
but the space spanned by its column vectors is and may be
estimated together with the remaining parameters in the problem by
the method of maximum likelihood assuming normally distributed
errors. According to Johansen's derivation, this may be done by
using moments and cross-moments matrices of the residuals from
auxiliary regressions of iX on the lagged differences

(1.4) aj 4Xe-4i + TOt

-
b
ct
I

[T =y

and of Xt_k-1 on the same regressors

(1.5) Xt-k-1 ajsXg-i + Ikt

Il
xR
[

The moment matrices are called Sqq, SOk, Skk. Now, the
eigenvectors of

(1.6) Skk~1Sok 'S00~ S0k

corresponding to the largest r eigenvalues give the required B
basis and

(1.7) ~  a = -SokB

solves the corresponding a problem. Finally, the full model is
given by



(1.8) AXy + a'BXg-k-1 = IR ]

[T Iy
|-l

1

from which regression the remaining 'y may be estimated. While
these calculations are rather straightforward, two problems will
arise in macro-economic practice which have not been covered fully
by present theory. First, seasonality remaining in the data might
cause roots on the unit circle different from one which could
impair or even destroy the procedure (see section 2.3). Second,
the analysis is founded on polynomial matrices of order k while
the optimal order k may differ between elements rendering the
procedure inefficient. Moreover, multivariate MA terms may play a
role but vector ARMA modeling does not look a promising task.

The number r which gives the number of cointegrating vectors or,
likewise, the smaller dimension of a and B, is to be determined by
a likelihood-ratio +test of the null hypothesis of "at most r

cointegrating vectors". The statistic to be used is

) p
(1.9) -2 1logQ = -T I log(l-zTji)
i=r+l

comprising the p-r smallest eigenvalues tj; of the above problem.
The asymptotic distribution of (1.9) is tractable but complicated.
Selected fractiles are given in Johansen(1987).
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1.2. Canonical analysis according to Box and Tiao

It seems worth contrasting Johansen's method with an older
technique based on canonical correlation analysis. The concept of
canonical correlations was introduced by Hotelling (1936) and
applied to the ~vector-autoregressive setting by Box  and Tiao
(1977). Similar to Johansen's method, but relying on  stationary
theory with near-unit roots  (sometimes called "almost non-~
stationary" processes ANS, see Tj¢stheim and Paulsen (1982)),
their procedure identifies orthogonal vectors which transform the

time series at hand into stationary (far-from-unit-root) series.

As stated above, Box and Tiao's method relies on the assumption of
jointly stationary processes which, however, includes almost non-
stationary cases. It is well known that discrimination between
highly dependent stationary processes and pure random walks is
impossible at conventional significance levelsvfor smaller samples
like the one under investigation (e.g. compare the simulation
results in Stock and Watson(1986) and section 2 of this paper).
Conversely, the system which provided an example in Box and
' Tiao(1977) probably would be judged to be co-integrated by today's
standards. ' ‘

Given a correct forecast Z¢ for the vector Xy from its past,
ideally the conditional expectation, the eigenvalues and
eigenvectors of the matrix

(1.10) (X'x)~1(z'2)

provide special information on the dynamic structure. In the
univariate case, it is obvious that (1.10) is restricted to the
interval [0,1] and that values close to one represent processes
whose innovations wvariance 1is negligible as compared to the
process variance. This condition is fulfilled for the near-unit
root cases. Conversely, values close to zero represent random

processes of low temporal dependence approaching white noise. In



the multivariate case, the eigenvalues are restricted to the same
interval. Additionally, the corresponding eigenvectors may be used
to transform the vector (Xt) into a component vector (Xt*)
consisting of recursively dependent components corresponding to
the respective location of the eigenvalues.

Although Box and Tiao only used the case of first-order
autoregressive forecasts the method may be extended to higher-
order processes. However, if the lag order is increased, all
eigenvalues are taken towards one since no AIC-like term is
involved impeding parameter inflation relative to prediction
accuracy. An alternative way of generalization was followed by
Velu et al.(1987) sticking to the interpretation of the AR(1) case
as looking for the canonical correlations between X and ZXt.1.
Consequently, they look for the canonical correlations between Xt
and Xt-p in the AR(p) model, adjusted for X¢-3,...,Xt-p+1- Since
these generalizations are not yet fully covered by theory, we

shall restrict ourselves to the first-order case here.

What makes Box and Tiao's procedure interesting in the context of
co-integration is that any component within (Xt*) corresponding to
an eigenvalue far from unity, that is, a stationary component,
necessarily gives a co-integrating relationship and makes the
respective eigenvector a co-integrating vector. Thus, the Box-Tiao
eigenvectors may be compared +to the Johansen eigenvectors
although, of course, only the latter ones are derived from genuine
co-integration theory.



2. Preliminary steps

2.1. Data series

Taking the exposition in the previous sections into account, the
following data set of quarterly Austrian time series (1964-1987)
is investigated:

real gross domestic product'

real private consumption

real gross fixed investment

deflator of GDP

interest rate on the secondary bond market

= WY H O K

nominal gross wages per employee

All series except R are used in logs to stabilize variances. Of
course, this step could weaken dependencies which rather exist
between briginal series - compare the definitional identity which
connects? output, investment, cohsumption and a remainder term
which cd%prises public consumption, inventory changes, and exports
minus imports - but this could not justify the use of data with
their wvariance increasing over time. Note that the assumptions of
stationary level differences and stationary log differences are
mutually exclusive. Evidence seems to prefer the latter
hypothesis.
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2.2. Order of integration

A prerequisite for cointegration analysis is that all series of
the system under investigation be integrated of order one, i.e.
that their individual AR representations contain only roots
outside the unit circle and exactly one root of unity. This
implies that none of the series should be stationary or integrated
of higher order.

To corroborate this assumption statistically, integration tests as
introduced by Stock and Watson (1986), Dickey and Fuller (1979),
and an integration test implied by the cointegration analysis of
Johansen (1987) were performed on levels and differences of the
original series as well as to levels and differences of series
transformed by the seasonal moving average (sMa) filter
%(1+L+L2+L3)2. The SMA filter assures that no seasonal unit roots
at -1, i enter into the investigation (see Section 2.3). In the
following, data series adjusted by SMA will be labeled YMA, CMA,
IMA, PMA, RMA, WMA whenever confusion could arise.

The power of the tests critically relies on the number of
autoregressive corrections which should be equivalent to the true
AR order generating the series. For the tests by Dickey and Fuller
(labeled ADF) and by Stock and Watson (labeled SW), an order was
selected which rendered the Ljung-Box Q statistic of the residuals
insignificant at 10 %. For the Johansen test (J), it was set to
four to ensure maximal compatibility with the Johansen (1987)
cointegration analysis of Section 3 where a lag order of four was
motivated by the above Q criterion on the multivariate differences
model. SW is known to be more robust than ADF with respect to lag
orders. Since an analysis of all series via the extended ACF
approach (see Tsay and Tiao (1984)) gave indication of ARMA(p,Qq)
models with p<gq in most cases, ADF in particular could be of
rather low power (compare Schwert (1987)).

2 The factor % is used to retain original scales. It does not
modify any dynamic properties.
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The significance of the statistics is displayed in Table 1. If the
integration hypothesis is correct, statistics should be
insignificant for 1levels and significant for differences. If
judgment relies on SW and J, this behavior is reproduced by the
adjusted data with 'the exception of wages. SW and ADF render
adjusted wages WMA to be integrated of order two while J rejects
the second unit root at 2.5 %. Closer inspection of WMA increments
by ARMA estimation resulted in an inverse root around 0.8 which is
situated in an area that is impossible to discriminate from one by
80 data points (compare Stock and Watson (1986)). However, the
root is much smaller than the roots of the level series and slight
changes of the sample period generate significant SW. In this
case, we decided to assume wages to be integrated of order one
henceforth. During this sensitivity experiment, the interest rate
series R and RMA sometimes indicated stationary behavior. Recent
years enhance the integrated (random walk-like) nature of R and
RMA. -
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2.3. Seasonal adjustment

An important implication of the integration requirement is that
none of the series contain unit roots different from one which is
a problem for seasonal data. A former investigation on the subject
(see Kunst (1987)) used regression on seasonal dummies to extract
the seasonal component, following a similar approach by Juselius
(1987). This resulted in an estimated cointegrating dimension of
two which, however, was rather sensitive towards changes of the
sample length.

For several reasons, seasonal adjustment by dummy regressions was
not satisfactory. First, visual inspection showed remaining
seasonal patterns in the adjusted series. In particular, the dummy
regression method seems to extract seasonality in the center of
the sample interval but even to add some seasonality at the
beginning and at the end. This adding of noise might distort the
results in two different directions: on the one hand, it reduces
significance of actual interdependence between the underlying
processes; on the other hand, it increases spurious

interdependence between deterministic seasonal components.

Second, subjecting the original and the adjusted (!) series to
definite tests 1like the 1likelihood-ratio approximation of Kunst
(1988) or the modified Dickey-Fuller test of Dickey, Hasza &
Fuller (1984) - in both cases with a null hypothesis of a factor
1-1.4 making part of the AR polynomial of a time series model -
resulted in insignificant wvalues at least for Y,C,I. This means
that seasonal differencing might be needed to produce stationary
series. Dummy regression would be unable to de-seasonalize such a
series.

Third, not all series seem to show seasonal patterns. In
particular, R and P do not show any sign of seasonality, according
to visual inspection as well as to the tests mentioned above.
Seasonally adjusting these series could, at best, prove worthless,
at worst "it could even add spurious patterns or smooth out
important characteristics.
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The conclusion that dummy regression is inappropriate does not
help much in finding the appropriate method. Several adjustment
procedures are available, based either on additive or
multiplicative modeling of seasonality, the most popular being
Census X-11l. Application of Census X-11 is less inviting here, as
it does not imply a linear, data-independent transfer function.
The risk of destroying interdependence patterns is too high. A
good alternative seems to be looking for a fixed filter whose
properties are Kknown. Since tests cannot reject 1-14 as an AR
factor and 1-L%= (1-L)(1+L+L2+L3), the fourth-order MA transform

XtS= 4(1+L+L2+L3)x¢

suggests itself as a good procedurez. It is perfectly compatible
with the wusual Box/Jenkins (1976) approach of +time series
modeling.

Since tests reported Y,C,I as seasonally infested and W as a
borderline case (significance between 5 and 15 %), while visual
inspection renders Y,C,I,W as seasonal cases, several versions

were investigated:

a) all six series adjusted by moving averages
b) ¥,C,I,W adjusted; R and P not adjusted

c) ¥,C,I adjusted; W,R,P not adjusted

d) original series system

As outlined in Section 1, the AR lag order has to be determined
for all models. The use of multivariate information criteria is
not very reliable for typical sample sizes and in general
underestimates orders (see Nickelsburg (1985)). Alternatively,
model order in a first-difference AR model was increased until an
insignificant Q statistic was found. This rendered order 4 for all
models except for (d) where order 5 was indicated. Note that the
optimal order could be smaller if Q is calculated on the final

equation of the Johansen (1987) setup. Intuitively, too high
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orders should bias the results less than too low ones, as is usual

in time series problems.

Table 2 comprises the principal results from subjecting versions
a) to d) to Johansen's method: the eigenvalues, the significance

of cointegrating relationships, and the first three eigenvectors.
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3. Sensitivity of the results

3.1. Sensitivity against seasonal adjustment

According to Table 2, the detected dimension of the cointegrating
space is influenced by the share of deseasonalized series within
the system. It seems that more seasonal adjustment generates more
cointegrating vectors. Since it was motivated why we tend to
believe in model b), furthermore it seems that mistakes can be
made in both directions: on the one hand, seasonal patterns may
mask existing cointegrating relations; on the other hand,
oversmoothing could produce spurious relations if there is high
correlation between the added seasonal noise components in two or
more series. Overall evidence leaves us with three cointegrating
vectors, i.e. the system may be seen as being generated by three
independent random walks. This dimension of 3 is detected at the
2.5 % level of significance for all models but d), in which case
dimension 2 is preferred. This dimension of 2 coincides with the
cointegrating dimension reported in Kunst (1987) where all

variables were de-seasonalized by regression on dummies.

Although the estimated dimension of the cointegrating space is
affected by +the model selected, the space itself, with its
dimension fixed at three, is more or less reproduced in all cases.
A first test on this subject may be performed by simply regressing
the basis vectors of the respective models on those of model b).
This gives the results summarized in Table 3a. Not only the three
vectors sets are closely related but this also holds for certain
subsets containing one or two vectors. In particular, the first
and second a) vector span almost the same space as the first two
b) vectors, and the same holds for the third vectors in each set.
Similarly, the first c) vector is approximately the same as the
first b) vector, and the remaining two wvectors of both b) and c¢)
sets correspond. The connection with the d) set is less obvious.

A mathematically more sustainable test may be done by calculating

the canonical correlations between any two sets of basis wvectors.
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The root of the separate R2 corresponds to the cosine of the angle
between the regressand vectors and the regressors hyperplane which
may significantly exceed the cosine of the angles between the two
hyperplanes, i.e. the canonical correlations. The larger two
cancnical correlations (not shown) indicate that a two-dimensional
subspace is shared almost completely by the hyperplanes, and the
smallest correlations given in Table 3b show that even the third

axes almost coincide.

3.2. Sensitivity against lag order

In the Johansen estimating procedure, the number of autoregressive
lags included plays an important role. It was motivated above why
we used the criterion of an insignificant Q statistic to determine
a common lag order. For some series, this almost inevitably leads
to an overfitting of the process. For model b), the sensitivity of
the results against a reduction in lag order was investigated by
calculating the canonical correlations between the estimated
three-dimensional cointegrating spaces based on lag orders varying
from one to four. The results are displayed in Table 4. It is seen
that the presumably misspecified models with lag orders one to
three generate very similar results while increasing the lag order
to four changes the results slightly. This could indicate that a
lag order of four is necessary to capture the remaining

seasonality in the data.

3.3. Temporal sensitivity

To investigate into the question whether the results are robust
towards changes of the time interval, the end of the sample was
reduced gradually back to 1985:4 (1985, 4th quarter) and the
resulting eigenvalues and eigenvectors of model b) were evaluated.
Note that the seasonal adjustment is not time-dependent or data-
dependent and that therefore the data does not need to be revised
for this experiment.
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With regard to the eigenvalues, the results are very stable (see
Table 5a). The first root shows its first major change in 1986:1;
inclusion of the 1986:2 and succeeding observations reduce it from
around .51 to around .45. The third root shows a similar decline
from .32 to .28 and once more moves down slightly from .29 to .26
in 1987:1. The remaining roots are even more stable. There is
slight evidence on a tendency of the third cointegrating component
to have become "less important" or "less stationary" in recent
quarters. No indication of seasonal cycles in the results can be
found.

More fluctuations show up in the respective cointegrating spaces
(see Table 5b). Throughout all variants, a common 2-dimensional
hyperplane is shared, but the angle between the third principal
axes changes. While we should expect this angle to open gradually
with a backward movement of the sample end, in fact it opens to
around 25° in the samples ending on 1987:3 and and 1987:2 and then
closes ~again to 9°, afterwards opening slowly and more
monotonously. This means that, had we ended the sample at 1987:2
or 1987:3, we should have got different cointegrating vectors.
Future observations will decide whether these two time points may
be regarded as outliers or whether the data rather is beginning to
switch towards a new regime and the return to the old one in
1987:4 is transitory. Again, there is no indication for
seasonality in the results.

3.4 Sensitivity against the Box/Tiao canonical analysis

As outlined in section 1.2, the results of the cointegration
analysis may be compared to results based on a canonical analysis
developed by Box and Tiao (1977) which relies on the assumption of
joint stationary but maybe "almost non-stationary processes" and
on the canonical correlations between the observations and their
AR(1l) forecasts.

Contrary to the Johansen method, now the eigenvectors
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corresponding to the smallest eigenvalues are the most interesting
ones since they generate processes which are poorly explained by
their own past and are, therefore, the "most stationary"” ones.
Eigenvalues and the three interesting eigenvectors are given in
Table 6a for models a) through d). In Table 6b, these eigenvectors
are compared to the cointegrating spaces detected by the Johansen
analysis by smallest canonical correlations and the resulting
third axes angles. The spaces are not equal but again share 2-
dimensional hyperplanes and look very similar if it is taken into
account that AR(1l) forecasts are far from the optimal forecasts
theoretically needed for the analysis. Remember that the Johansen

mocdels include up to six lags of the time series.
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4. Economic interpretation

One of the main perspectives of cointegration modeling is the
extraction of long-run relationships from the data which reflect
equilibrium conditions known from macroeconomic theory. The other

one is improved forecasting performance. The former point will be

treated in this section, the latter one is deferred to section 5.

Economists would be far from unanimous as far as the long-run or
steady-state properties of the present model are concerned. A
tentative specification, however, could include the following
three relations:

a) C-Y is stationary, i.e. the consumption quota is, since all
variables enter in logs:

b) 1I-Y is stationary, i.e. the investment quota is.

c) Y-(W-P) 1is stationary, i.e. real national income grows
proportional to wage income keeping the income distribution
constant in the long run.

The estimation and testing procedures suggested by Johansen (1987)
include an approximative likelihood-ratio +test on whether the
theoretical vectors are in the estimated cointegrating space.
Since this test is rather cumbersome and all such tests are
subject to some arbitrariness concerning the level of significance
and the wvalidity of asymptotics, we preferred the insight given by
directly calculating the canonical correlations between the space
spanned by the theoretical vectors and the empirical cointegrating
space. The two spaces almost share a two-dimensional hyperplane
but it is seen from Table 7 that the third coordinate axes form a
non-zero angle of about arccos(.88) (28 degrees) for b) and c)
models and an even larger angle for the extreme models a) and d).
This means that, at least, one of the above restriétions is not
corroborated by the data.

It is still possible that one or two of the restrictions are wvalid

in the long run. Since optical evidence renders the investment
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quota as non-stationary, the canonical analysis was repeated on
the basis of the theoretical vectors C-Y and Y-W+P and the three-
dimensional cointegrating spaces. Here, one of the roots is
necessarily zero and evidence relies on the second root. From
Table 6b, we see that these roots are close to one and that,
keeping in mind that we do not know any stochastic properties of
this kind of "testing", our investigation should concentrate on
identifying the third, missing, vector.

A different way to obtain information is to loock at the estimated
cointegrating vectors first and to base theoretical wvectors on
relations which are easy to interpret. Since Table 3 tells us that
the four different sets of basic vectors listed in Table 2 span
about the same space, any combination of relations of Table 2 can
be used as a starting point for such investigations. After some
trial and error, the following three relations were found,
coefficients obtained by appropriate least-squares regression on
the model b) wvariates:

a) I-Ww = 1.8(Y-P) - 0.5C
had a slightly better fit than regressing Y-P on I-W and C. The
inclusion of C was necessary to warrant stationarity. The
equation may tell that, if real income grows at the same rate
as prices, wages still grow faster than investment unless
consumption stagnates. This relation is reflected in the first
component of model b) and definitely seems to hold over the
whole sample.

b) Y = .56C + .22I + .15P
replicates the average consumption and investment quota by the
first two respective coefficients. The third coefficient is
difficult to interpret. It seems that P approximates the
behavior of the sum of public consumption and net foreign
trade.

c) R = -15(C-Y) + 2.4(W-P)
relates the consumption quota, real wages and the interest
rate. Taken as an equation for C-Y, it reflects the dependence
of the consumption quota on real wages (positive) and on R
(negative).
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By the results of the canonical analysis in Table 7, we see that
these vectors give a far better fit than the "theory" vectors,
i.e. that the estimated space almost satisfies the imposed
identity and zero restrictions on the coefficients. Further on, we
see that the fit may be improved by parameter modifications
relative to the least-squares solution, in particular for the
relevant models b) and c).

From the second equation, we deduce that, in the long run,
assuming an average current balance of zero - a usual external
equilibrium condition - expansions of the government sector occur
in phases of high inflation while contractive policy wusually
accompanies low inflation phases.

- Returning to the missing vector problem, the 2-dimensional system

generated by Y-C and Y-W+P was augmented by each of the "optimal
restricted" basis vectors. The canonical correlations between
these augmented systems and the estimated model b) system indicate
whether the respective additional vector could be the missing
third one. The results are summarized in Table 8: +the 2-
dimensional theoretical space together with any of the first two
"optimal restricted" basis vectors approximately spans the same
space as the estimated b) vectors. On the other hand, the +third
vector fails to do so. Since the second vector contains more zero
restrictions and is somehow easier to interpret than the first
one, let us focus on the cointegrating basis vectors Y-C, Y-W+P,
and Y-.55C-.27I-.18P, to be labeled henceforth ci,Cc2,c3. Note that
R does not appear in the basis and now does not seem to provide
any important long-run information whatsoever.

The explanation for c3 given above may be corroborated by actually
calculating the difference between the output exp(Y) and the sum
of the principal demand aggregates exp(C)+exp(I). This difference
consists of public consumption, exports minus imports, and
inventory changes and statistical differences. Its logarithm may
be regressed on P. This was done for the seasonally adjusted and
non-adjusted series. In both cases, although residual
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autocorrelation was strong, visual inspection of the residuals
gave strong indication of their stationary nature. This means that
the difference between output and principal domestic demand on the
one hand and the output deflator on the other are cointegrated.

A different interpretation is obtained if C in c3 is eliminated by

using cj and the resulting vector is normalized in Y. This gives
Y = .6I+.4P

which reminds of a production function with the factors capital
(expressed by I) and 1labor including technical progress, this
latter factor expressed by P. The approximation of the factor
labor by the GDP deflator may be viewed as a variant of the
Phillips curve. The Phillips curve is the best known example for
an interdependence between prices and real aggregates (even though
recent economic theory has reduced it to a transitory short-run
phenomenon). The cointegration analysis shows that at least one

such (long-run) transmission exists in the data.
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5. Forecasting

According to the study by Engle and Yoo (1987), which is based on
a two-dimensional system, the inclusion of cointegrating
restrictions helps to outperform models in differences with
respect to predictive accuracy from around ten steps on even if
the cointegrating vectors have to be estimated from the data.
Brandner and Kunst (1988) apply cointegration analysis to three-
dimensional systems with two cointegrating vectors and conclude
that forecasts using estimated vectors dominate those from
modeling in differences even at less steps but that this benefit
is lost on the average if the cointegrating dimension is unknown
since any over-estimation of +this number leads to "excess

stationarity"” and to inferior forecasting performance.

For this paper, ex-ante forecasts from model b) samples ending at
the last quarters of 1984, 1985, 1986, 1987 were generated until
the end of the present century. In all experiments but the last
one, the outcomes may be compared to actual realizations, at least
for some observations. We believe that a graphic display of these
experiments is more telling than the use of conventional summary
statistics.

The results  from the 1985, 1986, and 1987 experiments are
displayed in Figures 1, 2, and 3, respectively. The different
curves correspond to different assumptions with respect to the
cointegrating dimension which was changed between zero and three,
the former number representing a model in differences generated by
six independent random walks, the latter number corresponding to
the estimated dimension reported in Section 3.

In summary, the strongest reaction to cointegrating wvectors
happens in the series I and R. For three or two vectors, R more or
less approaches a stationary series and tends to revert towards
its historic average. This mean-reverting behavior has not been
corroborated by actual data within the last years, although it
cannot be rejected easily for the most part of the sample. One may
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compare the results from the unit root tests for R which cannot
reject the unit root hypothesis now but would have done so some
years ago.

I negatively reacts to R which means that 1less cointegrating
vectors generate continuous though somewhat slow growth in I while
higher dimensions entail cycles at a stagnating level. Note that,
for the sample ending 1985, a cointegrating dimension of two was
enough to produce such cycles while, for the whole sample,
dimensions of one and two generate the same slow upward trend.

Y and C almost simultaneously react to the business cycles created
by R and I. The pure differences model is linked to the most
expansionary path while the three-dimensional cointegrating space
heads for a persistent recession. The nominal indicators P and W
parallel these scenarios.

Although all models slightly overpredicted the actual observations
for 1986 and 1987, a visual summary seems to prefer cointegrating
dimensions of one or two but rejects the zero and three models.
Note that the expansionary growth path predicted by the zero mocdel
is not overwhelming. It corresponds to an annual growth rate of
around one percent.

The results of the 1984 experiment are not reported since during
1983-84 a 1legislative change of consumer taxes and other
transitory phenomena disturbed all time series forecasts. For the
1984 experiment, the relative predictive performance of the pure
differences VAR model was best while all cointegrating models drew
all variables towards zero in the long run.

Since Kunst and Neusser (1987) reported VAR models in differences
restricted by subset searches as dominating ,all other models
(including Doan/Litterman/Sims Bayesian VAR) their suggested
subset search was performed on the differences model. The results
are not reported in detail here as they more or less coincide with
those from the differences VAR without subset modeling.
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6. Tentative conclusions

It would be foolhardy to draw general conclusions from any work on
a single system with individual features. ' Some conjectures,
however, inevitably arise. Future work with different data and
additional information by mathematical analysis will show whether

these conjectures are justified.

First, we note that the robustness of the cointegrating dimension
and the cointegrating space is of satisfactory quality with
respect to slight modifications of the data set, such as
shortening of the sample and seasonal adjustment. This may be
contrasted with the estimated individual cointegrating vectors
which are highly sensitive and unstable. Of course, more research
is needed to determine the sensitivity of forecasts via
cointegrating vectors with respect to the "distance" between

underlying vector spaces.

Second ;" the size of Johansen(1987)'s cointegration test does not
seem appropriate in typical economic samples. The null hypothesis
of no {or less) cointegration is rejected too often even if 2.5 %-
fractiles are used. Together with the results of Brandner and
Kunst (1988) concerning the high wupward risk of estimating
cointegrating dimensions with respect to forecasting performance,
this would imply the recommendation to use very low levels of
significance for cointegration analyis by the Johansen (1987)
procedure, e.g. 1 % or less. Regrettably, necessary fractiles have
not been published and would have to be simulated.

Finally - but this has already been evident from other empirical
studies - the step from the estimated cointegrating space to
economically reasonable relationships is a difficult one, even if
simple relations are contained in the estimated space. To find the
relations, it sometimes pays to fit regressions with zero
restrictions and use some trial and error. Of course, sometimes

the resulting relations do not satisfy the economic theorist.
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TABLE 1: Approximate significance of unit root test statistics3

CMA

IMA

PMA

ADF SW J ADFa
*k % * - -

* %% - kK
* %%k - %%

* % - - %%

- - - % %

% - - *

- - % *%

- - - %k

3 For explanation of ADF, SW, J see text:;
for differenced series. * indicates significance at 10 %,

5 %,

*** at 1 % (2.5 % for J and Ja)

SWi

% k%

ke k%

* %k

% %%

ke k%

*kk

* %%

% % %

% %k %

* k%

* %

Ji

% % %

* k%

% k%

% %k

* %k

% % %

* %k

* %k

k%

* %%

*k%k

* %k %

A indicates statistics

*%k at
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TABLE 2: Primary results of cointegration analysis4

Model a)
eigenvalues .469 .442 .267 .198 .057 .001
(Significance) kk%k % %%k kkk * %
eigenvectors
Y Cc I P R W
81.1 -27.1 -6.21 22,12 1.27 -31.6
84.3 16.6 -57.8 -99.7 -1.59 47.5
51.0 -173.4 8.47 -61.0 -1.35 85.26
Model b)
eigenvalues .435 .307 .249 .157 .071 .015
(significance) *** *kk ¥ %% *
eigenvectors
Y C I P R W
59.0 -10.2 -36.8 -83.5 -1.66 48.1
102.8 -15.1 -32.3 -31.5 .26 -1.35
-42.3 47.3 -7.19 21.6 1.97 -15.51
Model c)
eigenvalues .436 .268 .252 .153 .064 .003
(significance) *%% * %k %% ¥
eigenvectors
Y C I P R W
-83.3 8.16 49.4 94.9 1.65 -50.3
78.5 -43.4 -12.0 -20.1 -.28 6.06
14.7 -44.0 12.5 -18.5 -2.07 20.6
Model d)
eigenvalues .430 .329 .189 .148 .041 .000
(significance) *** *kk *
eigenvectors
Y C I P R W
36.0 78.4 -37.1 -47.0 -1.32 -.08
-64.3 -.48 12.4 -9.55 -.98 26.00
-84.8 112.1 10.63 73.0 2.34 -64.3

4 * indicates significance at 10 %, ** at 5 %, ***% at 2.5 %
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TABLE 3a: Relations between the three-dimensional cointegrating
spaces from models a) to d) and respective R

-.76 1.08 -.37 .999

Va)= 1.21 .39 .68 | Vp) .999
.44 -1.12 -3.53 .948

-1.08 -.25 -.14 1.00

Ve)= -.12 .54 -.73 Vb) .996
.09 -.32 -1.00 .999

.67 .64 1.77 .935

Va)= .44 -.95 -.18 | Vp) .997
-.54 .34 2.17 .983

TABLE 3b: Smallest canonical correlations between the estimated
cointegrating vector sets from models a) to d)

a) b) c) da)
a) 1 .9355 .9454 .9941
b) - 1 .9932 .9251

c) - - 1 .9388
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TABLE 4: Smallest canonical correlations between b) type models

based on changing autoregressive lag order (4 lags
retrieve the original b) model)

lag orders 2 3 4
1 .9809 .9970 .9212
2 . 9909 .8812

3 .9134
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TABLE S5a: Sensitivity of Johansen roots against shortening of the

sample

sample end r] ry r3 rg rs Trg

1987:4 .435 .307 .249 .157 .071 .015
1987:3 .435 .331 .233 .169 .074 .011
1987:2 .435 .346 .242 .169 .052 .019
1987:1 .456 .343 .259 .172 .056 .019
1986:4 .457 .334 .292 .170 .074 .006
1986:3 .456 .345 .288 .172 .070 .004
1986:2 .452 .341 .283 .174 .081 .002
1986:1 .518 .336 .323 .176 .089 .006
1985:4 .514 .331 .322 177 .084 .001

TABLE 5b: Sensitivity of 3~-dimensional cointegrating space:
smallest canonical correlations and corresponding angles
between model b) space of sample ending at 1987:4 and
reduced samples

sample end can.corr. angle
1987:3 . 840 24°
1987:2 .811 26°
1987:1 .977 9°
1986:4 .972 10°
1986:3 .961 11°
1986:2 .963 11-°
1986:1 .945 14-°

1985:4 . 945 14°
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TABLE 6a: Results of the Box/Tiao canonical analysis relying on
first-order autoregressive forecasts
Model a)
eigenvaluesr .999 .994 .964 .941 .906 .613
Y C I P R W
-8.990 1.972 2.898 1.562 -.010 .788

-2.007 1.547 -1.029 -6.127 -.123 4.705
.393 -12.983 1.405 -4.145 -.088 7.339

Model b)
- eigenvalues .999 .987 .948 .910 .695 .254
Y c I P R W
-4.709 1.528 1.674 -.107 -.112 .860
-.160 11.391 -~2.274 -.480 .036 -3.389
1.771 -4.600 -.559 -5.754 -.056 5.167
Model c)
eigenvalues .998 .986 .927 .890 .615 .483
Y | C I P R 1)
8.193 -5.887 -1.672 -.665 .051 .039
-2.055 -6.132 2.409 3.707 .004 -.030
-.830 -3.260 .555 -1.086 -.031 2.202
Model d)
eigenvalues .996 .937 .796 .695 .553 .304
Y C I P R W
-3.200 .046 1.203 2.206 .038 -.665
3.926 -3.766 -.246 -2.436 -.041 1.712

-3.016 .403 .698 -1.767 -.031 2.016
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TABLE 6b: Smallest canonical correlations® and corresponding third

axes angles between spaces spanned by Box and
eigenvectors and cointegrating spaces

corresponding optimal restricted
estimated spaces [Y-C,Y-W+P] vectors
model can.corr. angle can.corr. can.corr. angle
a) .9876 6° .9918 .9123 17°
b) .8814 20° .9674 .9211 16°
c) .9168 17° .9910 .8961 19°
d) .9786 8° . 9806 .9416 14°

5 For case 2: smallest non-zero eigenvalue

Tiao
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TABLE 7: Smallest canonical correlations® between the estimated
cointegration spaces of
models a) b) c) d) and
1. "theory" vectors (1,-1,0,0,0,0),(1,0,-1,0,0,0),(1,0,0,1,0,-1)
.6595 -7774 . 7746 .6033
2. only two theory vectors (1,-1,0,0,0,0),(1,0,0,1,0,-1)
. 9964 .9718 .9803 .9988

3. restricted regression vectors (1.8,-.5,-1,-1.8,0,1),
(1,-.56,-.22,-.15,0,0),(15,-15,0,-2.4,-1,2.4)

.9266 .8950 .8998 .9240

4. optimal restricted vectors (1.8,-.6,-1,-1.8,0,1),
(1,-.55,~-.27,-.18,0,0),(34,-34,0,-2.3,-1,2.3)

.9312 .9721 .9848 .9236

6 For case 2: smallest non-zero eigenvalue
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TABLE 8: Canonical correlations between augmented vector space
{¢(1,-1,0,0,0,0),¢(1,0,0,1,0,-1),V] and estimated model b)
space

vector V canonical correlations
(1.8,-.6,-1,-1.8,0,1) 1.0000 .9994 .9664
(1,-.55,-.27,-.18,0,0) .9995 .9979 .9704

(-34,34,0,-2.3,-1,2.3) 1.0000 .9839 .4017
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: Forecasts from a sample ending at 1985:4
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Figure 2b:

Forecasts from a sample ending at 1986:4
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Figure 3a: Forecasts from a sample ending at 1987:4
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