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Abstract 

Growth rate data that are collected incompletely in cross-sections is a quite frequent 
problem. Chow and Lin (1971) have developed a method for predicting unobserved 
disaggregated time series and we propose an extension of the procedure for completing 
cross-sectional growth rates similar to the spatial Chow-Lin method of Liano et al. (2009). 
Disaggregated growth rates cannot be predicted directly and requires a system estimation of 
two Chow-Lin prediction models, where we compare classical and Bayesian estimation and 
prediction methods. We demonstrate the procedure for Spanish regional GDP growth rates 
between 2000 and 2004 at a NUTS-3 level. We evaluate the growth rate forecasts by 
accuracy criteria, because for the Spanish data-set we can compare the predicted with the 
observed values. 
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1. Introduction

Completing data sets at a disaggregated level when only aggregated values can be observed can be done

by the Chow and Lin (1971) method. The original method was proposed for time series, but in Polasek and

Sellner (2010) this method was extended for cross-sectional data based on a spatial autoregressive model, for

panel data and for spatial flow models. An implicit assumption of the Chow-Lin approach is the summability

of disaggregated variables to aggregated variables, a property that holds for so-called intensive variables. This

paper shows how to extend the spatial Chow-Lin approach for cross-sectional data to non-extensive or inten-

sive variables, like growth rates. In Physics ”an extensive variable is one that is additive for independent, non-

interacting subsystems” (Wikipedia, Feb. 6th, 2013, http : //en.wikipedia.org/wiki/Extensivequantity).

Many data are collected by Eurostat via the individual EU member states using common rules and

methods. But not all member states have started at the same time their data collection, and therefore data

series are often incomplete. In 1995 Eurostat introduced the harmonized European national accounting

system. This leads to inhomogeneous data quality and sometimes to holes in the database if smaller regional

units are needed. In order to apply many modern panel estimation methods one has to complete such data

sets. While the simplest (deterministic) method to repair data holes is deterministic interpolation, this does

not always give satisfactory results, and we prefer to use model based stochastic (imputation) methods for

the missing disaggregated values.

For spatial data, this paper focuses on completing data sets that are growth rates or are extensive (i.e.

summable) cross-sectional variables and we discuss two extensions of the Chow and Lin (1971) method: We

will use spatial econometrics (see e.g. Anselin (1988) ) and also the Bayesian MCMC approach as e.g. in

LeSage and Pace (2009).

The paper is organized as follows. Section 2 outlines the classical estimation and prediction in the spatial

and non-spatial system Chow-Lin (CL) model. The classical (BLUE) estimator for the spatial autoregressive

model (SAR) is derived, along with the error covariance matrix needed for the improved prediction of the

missing values, which leads to the so-called spatial gain terms for predictions. Section 4 describes the

Bayesian approach for the spatial system Chow-Lin method together with the MCMC algorithms and

we show how the numerical predictive densities for the missing disaggregated values can be obtained by

simulating from the conditional density in the system approach. Furthermore we show that the method

can also be used in the presence of outliers in the system Chow-Lin model. An example for completing

the growth rates are given in section 5. We apply the spatial Chow-Lin method to Spanish NUTS-2 and

NUTS-3 data. Because for Spain we can observe all data on the disaggregated level, we will evaluate the
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quality of the spatial Chow-Lin method by comparing the predicted values for GDP at the NUTS-3 level to

their observed values and calculate the usual forecast accuracy criteria. A final section concludes.

1.1. Eurostat and the regional data base for Europe

Eurostat publishes regional data on a range of different statistical topics, collected by the 27 member

states, but also from candidate countries and by the four EFTA states. Usually, this information is collected

at different spatial levels based on the nomenclature of territorial units for statistics (NUTS).

NUTS data are collected by the individual member states using common rules and methods. However,

not all member states have developed the same level and speed of skills, especially after 1995 when the

harmonized European economic account system started. This can lead to inhomogeneous data quality and

sometimes to holes in the data base, especially if it comes to smaller regional units where never had been

data collected before. Thus, although in 2003 the NUTS system was acquired as a basis for a regional EU

data base, it is common to find that the data at the lowest levels of disaggregation (NUTS-3) is missing for

some countries and indicators. Moreover, periodical changes in the NUTS regulation occur since the regional

classification adapts to the new administrative boundaries or economic circumstances. Consequently, these

changes lead to additional disconnections in the time series, which can lead to breaks in the information at

the lowest spatial units under consideration.

Sometimes it is difficult to obtain a complete set of panel data of all EU regions at the NUTS-3 level

covering even the most basic indicators referred to demographics, labor markets, infrastructure, prices or

productivity. For example, if one downloads the Eurostat information for regional GDP at the NUTS-3

level for the EU 27, including EFTA countries and EU candidate countries for the period 1995-2005, one

would find that 15% of the numbers are missing. On top of that, the problems of data restriction at the

NUTS-3 level increases for more disaggregated components of the regional accounts, either from the supply

(Gross Value Added by industries), the demand (investments, public or public expenses) or the income side

(salaries or capital remuneration). Finally, as it has been described above, it could also be the case that

the right spatial level for analyzing a specific economic phenomenon requires the use of data even at a lower

level of aggregation as the presently available NUTS-3 data.

LeSage and Pace (2004) use spatial econometric techniques to estimate missing dependent data. They

predict unobserved house prices by using the information of sold and unsold houses to increase the estimation

efficiency. LeSage and Pace (2004) predict unobserved spatially dependent data with observable data at the

same regional level. The goal is to predict unobserved dependent variables for all regions.
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2. The Chow-Lin method for non-summable (intensive) variables

Chow-Lin (1971) developed a method to forecast (”construct”) quarterly times series observations from

yearly observations, by using appropriate ”indicators” or auxiliary regressors for the quarterly series. This

approach can be extended for constructing disaggregated observations in the spatial context if only aggre-

gated observations are available again using indicator variables in the forecasting equation, as it was shown

in Polasek and Sellner (2010). As a basis for the subsequent analysis we first review the Chow-Lin method

as proposed in Llano et al. (2009).

2.1. The basic Chow-Lin method

Disaggregate (or high frequency) time series are occasionally needed since they offer valuable information

for policy makers. However, such data on a monthly or quarterly basis are often not available- for various

reasons. Attempts have been made to interpolate missing high frequency data by using related series that

are known. Friedman (1962) suggested relating the series in a linear regression framework. The three

problems in connection of missing data are known by statisticians as interpolation, extrapolation and the

distributional problem of time series by related series. Interpolation is used to generate higher frequency level

(or stock) data, while extrapolation extends a given series outside the sample period, and in the distribution

framework one allocates lower frequency flow data, such as GDP (see Fernandez, 1981), to higher frequency

observations. The path-breaking paper by Chow and Lin (1971) embedded the missing data problem to

a predictive system framework of aggregate and disaggregate data, leading to a boost in research on this

topic.

We assume a linear relationship for the high frequency (disaggregate) data yd and the indicators Xd, i.e.

yd = Xdβd + εd with εd ∼ N [0, σ2Ω], (1)

where yd is a (n× 1) vector of unobserved disaggregate variables, but Xd is a (n× k) matrix of observed

regressors. βd is a (k × 1) vector of regression coefficients, and εd is a vector of random disturbances, with

mean E(ε) = 0 and covariance matrix E(εdε
′
d) = σ2Ω, Chow and Lin (1971) showed that the BLUE for the

regression parameter β̂d and the disaggregated (or unobserved high frequency) data ŷd are given by

β̂d = (X ′dC
′(CΩC ′)−1CXd)

−1X ′dC
′(CΩC ′)−1ya (2)

ŷd = Xdβ̂d + ΩC ′(CΩC ′)−1(ya − CXdβ̂d), (3)
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where ya = Cyd is the observed dependent variable at the aggregated level (while yd is unobserved at

the disaggregated level), and C is a N × n (with n ≥ N) aggregation matrix consisting of 0’s and 1’s,

indicating which cells have to be aggregated together. The essential part in the equation 2 and 3 is the

residual covariance matrix Ω, which has to be estimated. The Chow-Lin procedure for the BLUE requires

the knowledge or assumptions about this error covariance matrix. In the literature assumptions like random

walk, white noise, Markov random walk or autoregressive process of order one have been suggested and

tested (e.g. Fernandez, 1981; Di Fonzo, 1990; Litterman, 1983; Pavia-Miralles et al., 2003). Some authors

extended the framework for the multivariate case (e.g. Rossi, 1982; Di Fonzo, 1990) covering time and space

for example (e.g. Pavia-Miralles and Cabrer-Borras, 2007). Usually, constraints are imposed to make sure

that the predicted unobserved series adds up to the observed lower frequency series, e.g. by specifying

penalty functions (e.g. Denton, 1971). In this case, the discrepancy between the sum of the predicted

high frequency observations and the corresponding low frequency observation is divided up over the high

frequency data through some other assumptions.

There are important practical problems to solve if the Chow-Lin procedure is applied. First, one has to

find a suitable set of observed disaggregated indicators. The Chow-Lin data completion are predictions of

the model and totally rely on the indicators chosen and the fit of the forecasting model. Another important

feature is the structure of the residual covariance matrix, which becomes important for the spatial and the

system extension of the Chow-Lin method.

We summarize the structure of any Chow-Lin data completion (= fine-forecasting) method in the fol-

lowing 4 steps:

1. First, decide on a forecasting or base model with only intensive (or aggregable) regression variables

for the unobserved data at the disaggregated level.

2. Decide on an aggregation matrix C that aggregates the disaggregated model into a fully observed

aggregated model.

3. Estimates the disaggregated parameters using the aggregated reduced form of the base model.

4. Compute the disaggregated Chow-Lin forecasts based on known regression indicators in the base model.

These basic 4 steps can be adapted to more complex Chow-Lin models and form the basis for different

estimation methods (classical or Bayesian, etc.) for the parameters and predictions of the disaggregated
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model. In this paper we will show how the Chow-Lin method can be extended for the case where the

dependent variable in the base model is intensive (non-summable over sub-units as e.g. growth rates).

Note that the Chow-Lin method is a (conditional) forecasting method for disaggregated data and can

be eventually evaluated by forecast criteria if disaggregated data could be observed. In general, a good

Chow-Lin model is in first line a predictive model and follows the advices and rules of how to build good

forecasting models and is in second line an inference model. The goal is to get a good fit at an aggregated

level, which in turn should lead to good forecasts at the disaggregate level.

2.2. Assumptions for the Chow-Lin forecasting procedure

For a successful application of the Chow-Lin method we need the following assumptions:

Assumption 1. Structural similarity: The aggregated model for yc and the disaggregated model for yd are
structurally similar. This implies that variable relationships that are observed on an aggregated level are
following the same empirical law as on a disaggregated level: the regression parameters in both models are
the same.

Assumption 2. Error similarity: The spatially correlated errors have a similar error structure on an ag-
gregated level and on a disaggregated level: The spatial correlations on both aggregation levels are similar.
In the system approach we are assuming that the correlation structure between first differences and levels
are similar on an aggregated and on a disaggregated level.

Assumption 3. Reliable indicators: The indicators to make the formats on a disaggregated level have
sufficiently large predictive power: The R2 (or the F test) is significantly different from zero.

2.3. Some properties of the Chow-Lin forecasts

This section discusses the structure of the Chow-Lin forecasts and analyzes some properties. First, the

gain-in-mean term Qε̂a can be seen as a cutting or ’spatial smearing out’ of the aggregated residual vector

ε̂a to the simple disaggregate forecasts ŷd. In case of ρ = 0 or R = In we find the gain to be a simple ’reverse

projection’ or allocator matrix Q = C ′(CC ′)−1: in this case each aggregated residual ε̂a,i is divided by ni

and is equally distributed over the ni disaggregated sub-units.

It is interesting to note that G is a right generalized inverse of C (i.e. is orthogonal to the aggregation

matrix C), because of CG = IN and the aggregated Chow-Lin forecasts have the property

C ˆ̂yd = Cŷd + ε̂a, or agg.CL.forecast = agg.plain + agg.residual. (4)

That means that the aggregated Chow-Lin forecasts are equal to the aggregated naive forecasts plus the
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aggregated residuals. We like to note the following statistical properties of the Chow-Lin forecasts:

• The first property that follows from (4) is that on average the Chow-Lin forecasts and the plain

forecasts are equal (just post-multiply (4) by a vector of 1’s).

C Ave(ˆ̂yd) = C Ave(ŷd).

• The second property is that the aggregated Chow-Lin forecasts have a larger variance than the aggre-

gated naive forecasts:

ˆ̂y′dC
′C ˆ̂yd > ŷ′dC

′Cŷd.

• The third property is based on

ŷd = Xdβ̂d +Qε̂a

with the ’reverse projection’ or allocator matrix Q = ΩC ′(CΩC ′)−1 and leads to the following error

sum of squares (ESS) decomposition

ESSCL = ESSplain + ESSalloc + noise or

ŷ′dŷd = β̂′dX
′
dXdβ̂d + ε̂′aQ

′Qε̂a + noise. (5)

ε̂q = Qε̂a is the allocation residual for the disaggregated units, which is the gain term that stems from

the allocation of the aggregated residual ε̂a using the allocator Q. ESSCL is the error sum of squares

of the Chow-Lin forecasts ŷd, ESSplain is the error sum of squares of the plain or reduced form (RF)

forecasts and ESSalloc is the error sum of squares of the allocation residuals or gain-in-mean term.

The relative decomposition takes the form

1 =
β̂′dX

′
dXdβ̂d
ŷ′dŷd

+
ε̂′aQ

′Qε̂a
ŷ′dŷd

+ rest . (6)

where the ’rest’ is the remainder of the decomposition that adds up to 1.
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For the special case that Ω = In we find for the allocator product Q′Q = (CC ′)−1 = D−1
N , but in the

general case the allocator product is Q′Q = (CΩC ′)−1CΩ2C ′(CΩC ′)−1.

Therefore the Chow-Lin point forecasts for the disaggregated observations yd are forecasts ’with gain’,

where the average size of the gain – or the improvements to the naive forecasts – comes from the size of

the aggregated residuals. The dispersion of the Chow-Lin forecasts are smaller due to the reduction of the

variance of the gain-in-variance term G in (38).

3. The system Chow-Lin method for completing growth rates

3.1. The non-spatial intensive Chow-Lin procedure

To see the need for a different method for intensive (non-additive or non-aggregable) variables, consider

the growth rates in 2 disaggregated regions: ∆y1
y1

and ∆y2
y2

, which have to be combined to the growth rate of

the aggregated region: ∆y1+∆y2
y1+y2

. The growth rate has to be understood as made up by the usual temporal

difference between 2 periods, i.e. ∆y1 = y1t − y1,t−1 and ∆y2 = y2t − y2,t−1. Since this is a non-linear

operation we have to aggregate the numerator and the denominator separately.

This leads to the system Chow-Lin model for a disaggregated n×1 cross-sectional model with differences

and levels:

Definition [The bivariate system Chow-Lin (biCL) model]

(
∆yd
yd

)
=

 Xd1 0

0 Xd2


 βd1

βd2

+

(
ε1

ε2

)
with

(
ε1

ε2

)
∼ N

[(
0

0

)
,Σ⊗ In

]
, (7)

where we assume that different sets of regression indicators in Xd1 and Xd1 explain nominator and denomi-

nator. Σ is a 2× 2 covariance matrix where the off-diagonal element σ12 contains the correlation parameter

between the levels and the first differences. In compact notation these two equations in (7) are called ’system’

or ’bivariate Chow-Lin’ model and can be written compactly as

ỹd = X̃dβ̃d + ε̃ with ε̃ ∼ N [0, Σ̃ = Σ⊗ In], (8)

where ỹd =
(

∆yd
yd

)
, X̃d =

(
Xd1

Xd2

)
, β̃d =

(
βd1

βd2

)
, and ε̃ =

(
ε1
ε2

)
.

Now we have to apply the aggregation matrix C : N ×n for both equations separately or use the system
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aggregation matrix C̃ = diag(C,C) = I2 ⊗ C. As before, we obtain the aggregated reduced form (ARF)

C̃ỹd = C̃X̃dβ̃d + C̃ε̃ with C̃ε̃ ∼ N [0,Ω = C̃Σ̃C̃ ′] or

ỹa ∼ N [X̃aβ̃d,Ω] with Ω = Σ⊗DN , (9)

because CC ′ = DN and the observed aggregates are X̃a = C̃X̃d and ỹa = C̃ỹd. For the estimated regression

coefficients
̂̃
βd in the non-spatial eCL model (7) we get the GLS estimate

̂̃
βd = (X̃ ′a(Σ̂⊗DN )−1X̃a)−1X̃ ′a(Σ̂⊗DN )−1ya. (10)

Since the covariance matrix is not known we need to estimate them from the LS estimates of the system

equation:

Σ̂ =

 σ̂11 σ̂12

./. σ̂22

 =

 V ar(ε̂1) Cov(ε̂1, ε̂2)

./. V ar(ε̂2)

 (11)

with σ̂11 = V ar(ε̂1), σ̂22 = V ar(ε̂2), and σ̂12 = Cov(ε̂1, ε̂2). The estimated aggregated residuals are

ε̂a1 = ∆ya −Xa1β̂d1 and ε̂a2 = ya −Xa2β̂d2 with the GLS estimates

β̂d1 = (X ′a1(Σ̂⊗DN )−1Xa1)−1X ′a1(Σ̂⊗DN )−1∆ya (12)

β̂d2 = (X ′a2(Σ̂⊗DN )−1Xa2)−1X ′a2(Σ̂⊗DN )−1ya. (13)

The plain system forecasts of the growth rate model in the non-spatial case are given by (7)

̂̃yd,0 = X̃d
̂̃
βd and ŷd,% = Xd1β̂d1./.Xd2β̂d2 (14)

with
̂̃
βd =

(β̂d1

β̂d2

)
and ./. denotes element-wise division.

In a diagonal system we can separate the 2 β coefficient estimates into β̂di = (X ′aiD
−1
N Xai)

−1X ′aiD
−1
N yai,

because the variances cancel out and CC ′ = DN = diag(n1, ..., nN ) : N ×N , where the ni are the number

of sub-units in each aggregated unit and ya1 = ∆ya and ya2 = ya.

Finally, the non-additive or intensive Chow-Lin forecasts ŷd (for the unobserved disaggregated yd in the
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non-spatial model is given by

̂̃yd = X̃d
̂̃
βd + ̂̃ΣC̃ ′(C̃ ̂̃ΣC̃ ′)−1(ỹa − X̃a

̂̃
βd) (15)

with Σ̃ = Σ̂⊗DN already given in (10).

Finally, the disaggregate forecasts of the growth rates vector r(yd) are given by the ratio of the Chow-Lin

forecasted nominator and denominator

r̂(yd) = ∆̂yd./.ŷd, (16)

where ./. denotes element-wise division, and the Chow-Lin forecast vectors ∆̂yd and ŷd given in (3). The

non-summable or intensive Chow-Lin forecasts are computed by

̂̃yd = X̃d
̂̃
β + Σ̃C̃ ′(C̃Σ̃C̃ ′)−1ε̃a, ε̃a = ỹa − X̃a

̂̃
βd, (17)

and the system allocator C̃e can be simplified by

C̃e = Σ̃C̃ ′(C̃Σ̃C̃ ′)−1 = (Σ̃⊗ In)(I2⊗C ′)((I2⊗C)(Σ̃⊗ In)(I2⊗C ′))−1 = (I2⊗C ′(CC ′)−1) = I2⊗Ce (18)

with CC ′ = DN and C ′(CC ′)−1 = Ce being the univariate allocator of residuals. This leads to the

surprising result that in the system Chow-Lin model the Chow-Lin forecasts can be made independently for

both equations:

∆̂yd = Xd1β̂d1 + C ′(CC ′)−1ε̂a1, ε̂a1 = ∆ya −Xa1β̂d1,

ŷd = Xd2β̂d2 + C ′(CC ′)−1ε̂a2, ε̂a2 = ya −Xa2β̂d2. (19)

Thus the correlation of the components of the non-additive or intensive Chow-Lin model for growth rates

forecast have no influence on the Chow-Lin predictions. The Chow-Lin point forecasts for the (disaggregated)

growth rates are given by: ̂̂yd0 = ∆̂yd./.ŷd. (20)
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3.2. The spatial extension of the system Chow-Lin (SAR-SCL) model

Consider a ’bivariate’ cross-sectional Chow-Lin model of n regions as in (7) where we fit a spatial

autoregressive (SAR) model for the system of 2 equations

ỹd = diag(ρ1d, ρ2d)W̃dỹd + X̃dβ̃d + ε̃d, ε̃d ∼ N [0,Σ2 ⊗ In] (21)

where Σ2 is the covariance matrix between the 2 equations and has to be estimated as in (11), X̃d =

diag(Xd1, Xd2), β̃d =
(
β1d

β2d

)
and W̃d = diag(W1d,W2d). ρ1 and ρ2 are the spatial correlation coefficients

associated with spatial lag variables ∆yd,�1 = W1∆y1d and yd,�1 = W2y2d, where the index �1 stands for

the first order spatial neighbor and the neighborhood matrix W̃d is row normalized.

This has the advantage that the SAR model restricts the spatial correlation coefficients to the interval

ρid ∈ (λ−1
min, λ

−1
max), where λmin and λmax (= 1 because of the row normalizing) are the extreme eigenvalues

of Wi, i = 1, 2. The reduced form model is obtained by the spread matrix R̃ = diag(In−ρ1W1, In−ρ2W2) =

diag(R1, R2) for an appropriately chosen weight matrices Wi : n× n for i = 1, 2.

ỹd = R̃−1X̃dβ̃d + R̃−1ε̃d, with R̃−1ε̃d ∼ N [0,Ω = (R̃′Σ̃−1R̃)−1]. (22)

For Σ̃ = Σ ⊗ In we find Ω−1 = R′1Σ−1R1 ⊗ R′2R2. In case Σ = diag(σ1, σ2) is diagonal we get Ω =

σ1(R′1R1)−1 ⊗ σ2(R′2R2)−1.

The spread matrix R̃ has to be positive definite to be inverted and this imposes another feasibility

condition on the parameter space of the ρi’s:

R̃ > 0 (pos.def.) if Det(R̃) > 0 . (23)

In a Bayesian estimation procedure this condition is easy to implement: After the draws from the full

conditional distributions we just have to check this condition. see LeSage and Pace (2004).

We rewrite the intensive CL system (21) as a SAR(2) model in the following way

ỹd = ρ1dW̃1dỹd + ρ2dW̃2dỹd + X̃dβ̃d + ε̃d, ε̃d ∼ N [0, Σ̃ = Σ⊗ In] (24)
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with W̃1d =

 W1 0

0 0

 and W̃2d =

 0 0

0 W2

.

Note: The aggregation of the intensive Chow-Lin SAR(2) model is obtained by multiplying equation

(24) with the 2N × 2n matrix C̃ and produces

C̃ỹd = ρ1dC̃W̃1dỹd + ρ2dC̃W̃2dỹd + C̃X̃dβ̃d + C̃ε̃d, C̃ε̃d ∼ N [0, CΣC ′ ⊗ CC ′] or

ỹa = ρ1dW̃1C ỹd + ρ2dW̃2C ỹd + X̃aβ̃d + ε̃a, ε̃a = C̃ε̃d ∼ N [0, CΣC ′ ⊗DN ], (25)

where DN = CC ′ is a diagonal matrix and W̃1C = C̃W̃1d and W̃2C = C̃W̃2d are left-aggregated Wi matrices.

This aggregation of the SAR(2)-formulation of the intensive Chow-Lin cannot be used to estimate the β̃d

coefficients, so we need the aggregated reduced form (ARF).

Note that the aggregation of the differences ∆yd has the commutation property C∆yd = ∆Cyd as

C∆yd = Cyd − Cyd,−1 = ya − ya,−1 = ∆ya. (26)

The aggregated reduced form (ARF) model is obtained by multiplying the reduced form equation (22)

with the 2N × 2n matrix C̃

C̃ỹd = C̃R̃−1X̃dβ̃d + C̃R̃−1ε̃d, with C̃R̃−1ε̃d ∼ N [0, Ω̃ = C̃ΩC̃ ′]

or

ỹa = X̃aρβ̃d + ε̃aρ with C̃R̃−1ε̃a ∼ N [0, Ω̃] (27)

with ỹa = C̃ỹd =
(
C∆yd
Cyd

)
, X̃aρ = C̃R̃−1X̃d = diag(CR1Xd1, CR2Xd2) the ’sprawled’ regressors, and ε̃aρ =

C̃R̃−1ε̃d =
(
CR1εd1
CR2εd2

)
. The variance-covariance matrix Ω of the ’sprawled’ residuals R̃−1ε̃d is given by

Cov(R̃−1ε̃d) = Ω = R̃−1Σ̃R̃′−1 = (R̃′Σ̃−1R̃)−1.

11



The precision matrix is

Ω−1 = R̃′Σ̃−1R̃ = diag(R′1, R
′
2)

 σ11 σ12

./. σ22

 diag(R1, R2) =

=

 σ11(R′1R1) σ12(R′1R2)

./. σ22(R′2R2)

 . (28)

In case of a diagonal Σ = diag(σ11, σ22) matrix we find Ω = diag((R′1R1)−1/σ11, (R
′
2R2)−1/σ22).

Thus, the 2N × 2N covariance matrix Ω̃ of the aggregated residuals ε̃a takes the form

Ω̃ = C̃ΩC̃ ′ =

= (I2 ⊗ C)

 Ω11 Ω12

./. Ω22

 (I2 ⊗ C ′) =

=

 σ11C(R′1R1)−1C ′ σ12C(R′1R2)−1C ′

./. σ22C(R′2R2)−1C ′

 =

 Ω̃11 Ω̃12

./. Ω̃22

 . (29)

Based on the aggregated reduced form (27), the GLS estimate of β̃d for known ρ1, ρ2 and Ω can be

computed as

β̃GLS = (X̃ ′aΩ−1X̃a)−1X̃aΩ−1ỹa (30)

and the feasible GLS estimate
̂̃
βGLS replaces Ω with an estimate Ω̂. Denote the partitioned inverse by

 Ω11 Ω12

./. Ω22


−1

=

 Ω11 Ω12

./. Ω22

 : 2N × 2N (31)

then the GLS estimates are given by the 2k × 1 vector

β̃d =

diag (X ′a1, X
′
a2)

 Ω11 Ω12

./. Ω22

 diag (Xa1, Xa2)


−1

diag (X ′a1, X
′
a2)

 Ω11 Ω12

./. Ω22


 ya1

ya2

 =

=

 X ′a1Ω11Xa1 X ′a1Ω12Xa2

X ′a2Ω21Xa1 X ′a2Ω22Xa2


−1 X ′a1(Ω11ya1 + Ω12ya2)

X ′a2(Ω21ya1 + Ω22ya2)

 (32)

In case the ρi’s have to be estimated we refer to this procedure as feasible GLS (FGLS) estimation. Based

12



on the coefficients estimate of the aggregated model we can forecast the missing values at the disaggregate

level. This is possible in two ways: the first way neglects the system framework of the Chow-Lin method, i.e.

the seemingly unrelated correlation of the aggregated and the disaggregated model and is therefore the usual

univariate regression forecasts, in this paper called Chow-Lin without gain. This plain or ’no-gain’ forecast

in the reduced form is the usual point forecast at the observed disaggregated (low-frequency) indicator Xd

and is given by

 ∆̂yd

ŷd

 = ̂̃yd = R̂−1X̃d
̂̃
βd =

 R̂−1
1 Xd,1β̂d1

R̂−1
2 Xd,2β̂d2

 , (33)

with the estimated spread matrix R̂ = diag(R̂1, R̂2) and R̂i = In− ρ̂iW . For the plain prediction, all the

regressor variables in X̃d at the disaggregated level have to be known for all n regions. The second method

uses the spatial correlation structure between the aggregated and the disaggregated model and we obtain

forecasts with the gain, i.e. conditional normal estimates, where we condition the disaggregated forecasts

on the known values of the aggregated model.

Note the dependency of the covariance matrix on the parameters ρ1, ρ2 that is part of the spread matrix

R. In the Chow-Lin framework, the aggregated model is almost always given by completely observed data.

Therefore, we can estimate β̃d by GLS or maximum likelihood methods, although the estimates can become

quite unreliable because only fewer observations are available for estimation on an aggregate level.

The joint distribution of disaggregates and aggregates uses the reduced form of the aggregated (27) and the

disaggregated model (22) is given by

(
ỹd
Cỹd

)
∼ N

(µ̃d = ỹd = R̃−1X̃dβ̃d
µ̃a = Cµ̃d

)
,

 Ω ΩC̃ ′

C̃Ω C̃ΩC̃ ′


 (34)

with Ω given in (27). The conditional mean ̂̃yd for the disaggregated observations given the aggregated data

ỹa = C̃ỹd have to be calculated by the partitioned inverse rule.1

1For the partitioned normal distribution (x
y

)
∼ N

[(µx
µy

)
,

(
Σxx Σxy

Σ′xy Σyy

)]
the conditional distribution is given by N [µx|y ,Σx|y ] with

µx|y = µx + Σxy(Σyy)−1(y − µy)

13



This leads to the forecasting formula (3) for ŷd that is common to all Chow-Lin methods, see Polasek

and Sellner (2010). ̂̂yd = ̂̃R−1

X̃d
̂̃
βd + ̂̃gd = ŷplain + ŷgain, (35)

where the ̂̃gd is the ’gain-in-mean’ term of the Chow-Lin forecasts, because it is an improvement over the

plain or reduced form forecast of the not observed yd values in (33).

Thus, the aggregated reduced form (ARF) of the spatial regression system is the important model basis

to make Chow-Lin forecasts and is structurally similar to the univariate spatial model (1) - in order to apply

the Chow-Lin forecast formula. Using the covariance matrix Ω in (29) of the reduced form model of the

spatial Chow-Lin system for growth rates (point forecasts) are given by

̂̃yd = X̃d
̂̃
β + ΩC̃ ′(C̃ΩC̃ ′)−1(ỹa − C̃X̃d

̂̃
βd), (36)

and the gain-in-mean term ˜̂gd plays the role of an allocator (of the residuals), where the estimated

aggregated residual is given by ̂̃εa = ỹa − C̃R̃−1X̃d
ˆ̃
βd

and the gain-in-mean term is

̂̃gd = ΩC̃ ′(C̃ΩC̃ ′)−1 ˆ̃εa =

 Ω11C
′ Ω12C

′

./. Ω22C
′


 CΩ11C

′ CΩ12C
′

./. CΩ22C
′


−1 ε̂a1

ε̂a2

 (37)

and the ’gain-in-variance’ matrix G̃, which was first used by Goldberger (1962), is given by

G̃ = ΩC̃ ′(C̃ΩC̃ ′)−1C̃Ω. (38)

3.3. A two step feasible GLS (FGLS) estimation

Based on the above system extension of the Chow-Lin method we suggest the following 2-step (feasible

GLS) estimation for a spatial system Chow-Lin procedure to complete growth rates.

,
Σx|y = Σxx −Σxy(Σyy)−1Σyx.

14



Procedure 1 (Two step feasible GLS (FGLS) estimation).

1. First, we estimate ρ̂1, ρ̂2 by ML (or LS) in the SAR model for first differences and in levels.

2. Get the LS residuals from the SAR models and estimate the simple covariance matrix Σ̂ = Σ(ρ̂1, ρ̂2).

3. Compute the feasible system estimate β̃FGLS,d using Ω̂.

4. Compute the vector of system Chow-Lin forecasts as in (19).

5. Compute the vector of growth rates from the Chow-Lin forecasts ∆ŷd./.ŷd.

This procedure can be easily implemented along the existing statical program packages that allow SAR

model estimation.

4. A Bayesian Chow-Lin model for completing growth rates

This section describes the estimation Bayesian system SAR-CL model, which builds upon the C-aggregation

of the reduced form as given (27). The prior distribution for the parameters of the SAR-CL model

θ = (β̃d,Σ
−1, ρ1, ρ2) is proportional to

p(β̃d,Σ
−1, ρ1, ρ2) ∝ p(β̃d) p(Σ

−1) = N [β̃d | β̃∗, H∗] W[Σ−1 | Σ−1
∗ , n∗],

whereW stands for the Wishart distribution and where we assume a uniform prior for ρi ∼ U [−1, 1], i = 1, 2.

The joint distribution of θd = (β̃d, ρ1, ρ2,Σ
−1) in the Bayesian SAR-CL model is given by

p(θd | ỹd) = N [ỹd | C̃R̃−1X̃dβ̃d, σ
2Σ] N [β̃d | β∗, H∗] W[Σ−1 | S∗, n∗]. (39)

Consider the Bayesian SAR system that we use to model the intensive Chow-Lin (SAR-eCL) model. and

let us denote the 3 types of conditional distributions by p(ρ | ya, θc), p(βd | ya, θc), and p(Σ−1 | ya, θc), where

θ = (ρ, βd,Σ
−1) denotes all the parameter of the model, and θc denotes the complementary parameters (to

the current daily new argument) of the full conditional distribution (fcd), respectively. The Markov Chain

Monte Carlo (MCMC) procedure consists of 3 blocks of sampling, as is shown in the next theorem:
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Theorem 1 (MCMC for the non-additive or intensive Chow-Lin (eCL-SAR) model).

The MCMC estimation for the system SAR Chow-Lin model (21), with the joint dis-
tribution defined in (39) involves the following iteration steps:

Step 1: Draw β̃d from N
[
β̃d | b̃∗∗, H̃∗∗

]
;

Step 2: Draw ρ1 and ρ2 by griddy Gibbs;

Step 3: Draw Σ−1 from W[Σ−1 | S∗∗, n∗∗];
Step 4: Repeat until convergence.

Proof 1.

(a) The full conditional for the β̃d regression coefficients is

p(β̃d | ỹa, θc) = N [β̃d | b̃∗, H̃∗] N [C̃ỹd | C̃R̃−1X̃dβ̃d,Ω]

= N
[
β̃d | b̃∗∗, H̃∗∗

]
(40)

with C̃ỹd = ỹa,
Σ̃ = Σ⊗ In and Ω̃ = C̃(R̃′Σ̃−1R̃)−1C̃ ′. (41)

The hyper-parameters are

H̃−1
∗∗ = H̃−1

∗ + X̃ ′dR̃
′−1C̃ ′Ω̃−1C̃R̃−1X̃dH̃

−1
∗ + H̃,

b̃∗∗ = H̃∗∗[H̃
−1
∗ b̃∗ + X̃ ′dR̃

′−1C̃Ω̃−1ỹa].

Denote the partitioned inverse Ω matrix as in (29) by

Ω̃−1 =

(
Ω̃11 Ω̃12

./. Ω̃22

)
, (42)

then the variance-covariance part H̃ = X̃ ′dR̃
′−1C̃ ′Ω̃−1C̃R̃−1X̃d in the hyper-parameters is

H̃ =

(
X ′d1R

′
1C
′Ω̃11CR1Xd1 X ′d1R

′
1C
′Ω̃12CR2Xd2

./. X ′d2R
′
2C
′Ω̃22CR2Xd2

)
and h̃ =

(
X ′d1R

′
1C
′Ω̃11ya1 +X ′d1R

′
1C
′Ω̃12ya2

X ′d2R
′
2C
′Ω̃21ya1 +X ′d2R

′
2C
′Ω̃22ya2

)
.

(43)

(b) For the fcd of the inverse variance matrix Σ−1 of the residuals we find from the reduced form in (22)

p(Σ−1 | ỹa, θc) ∝ W[Σ−1 | S∗, n∗] N [ya | µ, Ω̃ = C̃Σ̃C̃ ′]

∝ W[Σ−1 | S∗∗, n∗∗] (44)

with the (hyper-)parameters n∗∗ = n∗ + n and n∗∗S∗∗ = n∗S∗ + nŜ. The error sum of squares matrix
nŜ is given by

nŜ =

(
ε′1ε1 ε′1ε2

./. ε′2ε2

)
(45)

because of
vec E = ε = z̃a − X̃aβ̃d with z̃a = ỹa − ρ1dW̃1C ỹd + ρ2dW̃2C ỹd
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we find for the quadratic form

(z̃a − X̃aβ̃d)
′(I2 ⊗ C)(Σ⊗ In)(I2 ⊗ C ′)(z̃a − X̃aβ̃d) = ε′a(Σ⊗Dn)C̃ ′ε = tr(ẼaΣẼ′aDn).

with Dn = CC ′, ε̃a = vecẼa and the residual matrix Ea = [ε1a : ε2a] : n× 2 with the columns being the
residuals ε1a = ∆ya −Xa,1β1d and ε2a = ya −Xa,2β2d.

(c) The full conditional distribution (fcd) for the spatial correlation coefficients ρ is done with griddy Gibbs
in 2 steps and the rho-grid for both spatial correlation coefficients have to be set-up independently. We
propose to use a symmetric grid around an initial simple rho estimate.
1) For the fcd for ρ1 we use as dependent variable z2 = ỹa − ρ2W̃2ỹa

p(ρ1) ∝ exp

[
− 1

2σ2
y

(z2 − ρ1W̃1ỹa)′(z2 − ρ1W̃1ỹa)

]
∝ exp

[
− 1

2σ2
y

(ρ1 − ρ̂1)2S2

]
∝ N

[
ρ1 | ρ̂1, σ

2
y/S2

]
(46)

with ρ̂1 = y′W′
1z2/S2 and S2 = y′W′

1W1y.
2) For the fcd for ρ2 we use as dependent variable z1 = ỹa − ρ1W̃1ỹa

p(ρ2) ∝ exp

[
− 1

2σ2
y

(z1 − ρ2W̃1ỹa)′(z1 − ρ2W̃1ỹa)

]
∝ exp

[
− 1

2σ2
y

(ρ2 − ρ̂1)2S1

]
∝ N

[
ρ2 | ρ̂2, σ

2
y/S1

]
(47)

with ρ̂2 = ỹ′aW̃
′
2z1/S1 and S1 = ỹ′aW̃

′
2W̃2ỹa.

Note: In case of a diagonal Σ matrix there have 2 residual σ2
i variances to be estimated. Draw

σ−2
1 ∼ Γ[σ−2

1 | s2
1∗∗, n1∗∗] and σ−2

2 ∼ Γ[σ−2
2 | s2

2∗∗, n2∗∗]

with ni∗∗ = ni∗ + N, i = 1, 2 and s2
i∗∗ni∗∗ = s2

i∗ni∗ + ESSi. The error sum of squares (ESS) are given by

ESS1 = (∆ya−ρ1CW1yd−Xa1βd1)′(∆ya−ρ1CW1yd−Xa1βd1) and ESS2 = (ya−ρ2CW2yd−Xa2βd2)′(ya−

ρ2CW2yd −Xa2βd2).

From the MCMC simulation we obtain a numerical sample of the posterior distribution ΘMCMC =

p(β
(j)
d , ρ

(j)
1 , ρ

(j)
2 ,Σ−1

j | yd), which is used to make the predictions for the missing disaggregate observations

yd.

4.1. The Bayesian Chow-Lin predictions of growth rates

In Bayesian inference, we obtain the posterior predictive distribution for ỹp in the following way, by

integrating over the conditional predictive distribution with the posterior distribution p(β̃d, ρ,Σ
−1 | ỹa)

p(ỹp | ỹd) =

∫ ∫ ∫
p(ỹp | β̃, ρ,Σ−1) p(β̃, ρ,Σ−1 | ỹ) dβ̃ dρ dΣ−1
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with ρ = (ρ1, ρ2) and where the posterior normal-gamma density p(β̃d, ρ,Σ
−1 | ỹa) is found numerically by

the MCMC sample, yielding a posterior sample of the θ parameters: ΘMCMC = {(β̃(j)
d , ρj,1, ρj,2,Σ

−1
j ), j =

1, ..., J}.

Next, we compute a numerical predictive sample of the unknown vector ỹd by drawing from the reduced

form using the known regressors X̃d for j = 1, ..., J

ỹ
(j)
d ∼ N [R̃−1

j X̃dβ̃
(j)
d + g̃j ,Ωj − G̃j ] with R̃ = diag(R1, R2), (48)

where Ω given in (29) and the spread matrix R̃ = diag(R1, R2) depends on the spread matrices Rj =

In − ρjW, j = 1, ..., J . g̃ is the gain-in-mean vector as in (37) and G̃ is the gain-in-variance matrix as in

(38) for the mean and covariance matrix of the predictions, which are computed by

G̃j = ΩjC̃
′(C̃ΩjC̃

′)−1C̃Ωj

g̃j = ΩjC̃
′(C̃ΩjC̃

′)−1ẽa,j

Ωj = R̃−1
j (Σj ⊗ In)R̃′−1 =

 Ω
(j)
11 Ω

(j)
12

./. Ω
(j)
22

 , (49)

using the covariance structure as in (29)

Ω = (σik(R′iRk)−1)i=1,2;k=1,2 =

 σ11(R′1R1)−1 σ12(R′1R2)−1

./. σ22(R′2R2)−1

 .

The σik are the inverse elements of Σ−1 and we use the aggregated residuals ẽa,j = ỹa − µ̃a,j since the

current aggregate fit is µ̃a,j = C̃R̃−1
j X̃dβ̃

(j)
d .

Finally, the disaggregate forecasts of the growth rates vector r(yd) is given by the ratio of the Chow-Lin

forecasted nominator and denominator similar to (16). The forecast sample of the n× 1 vectors of growth

rates r is

r̂mcmc(yd) = {∆y(j)
d ./.y

(j)
d = y

(j)
d1 ./.y

(j)
d2 , j = 1, ..., J}, (50)

from where we can compute numerically the mean vector Ave(r̂mcmc(yd)) of the draws and the interval

predictions (e.g. by deciles, quantiles, etc.) for all of the n sub-units. A simpler way is found by applying
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the method of Doucet (2010). We start from the joint distribution as in (34)

(
ỹd
ỹa

)
∼ N

(µ̃(j)
d = R̃−1

(j)X̃dβ̃
(j)
d

µ̃
(j)
a = C̃µ̃

(j)
d

)
,

 Ω(j) Ω(j)C̃ ′

C̃Ω(j) C̃Ω(j)C̃ ′


 (51)

with Ω given in (29). We propose the following procedure to predict the disaggregate growth rates rd by

MCMC:

Procedure 2 (Fine-forecasting growth rates rmcmc = {rjd} by MCMC).

1. Draw
(Ỹ (j)

d

Ỹ
(j)
a

)
, j = 1, ..., J from the joint density (51);

2. Compute the conditional draws given the observed aggregate values ya

Ỹ
(j)
d |ya = Y

(j)
d − g(j)

d

with the gain-in-mean term g
(j)
d = Ω(j)C̃ ′(C̃Ω(j)C̃ ′)−1(Y

(j)
a − ya) as in (37) and compute

g̃
(j)
d = Ω(j)C̃ ′(C̃Ω(j)C̃ ′)−1ε̃(j)

a =

(
Ω

(j)
11 C

′ Ω
(j)
12 C

′

./. Ω
(j)
22 C

′

)(
CΩ

(j)
11 C

′ CΩ
(j)
12 C

′

./. CΩ
(j)
22 C

′

)−1(
ε

(j)
a1

ε
(j)
a2

)
(52)

with Ω
(j)
ik = σik(j)(R

′
jRj)

−1 and ε̃
(j)
a = ỹa − C̃R̃−1

j X̃dβ̃
(j)
d =

(ε(j)a1

ε
(j)
a2

)
.

3. Compute the MCMC sample of growth rates by the ratio r(j) = Y
(j)
d1 ./.Y

(j)
d2 from Ỹ

(j)
d |ya =

(Y (j)
d1

Y
(j)
d2

)
for

all j.

4.2. Sampling a conditional r.v. from a joint distribution

Recently Doucet (2010) has proposed a possibly faster way as how to simulate a conditional random

variable from a joint normal distribution. A draw from the conditional density N [µx|y,Σx|y] based on the

joint density

N [µ,Σ] = N


 µx

µy

 ,

 Σxx Σxy

Σ′xy Σyy


 (53)

can be obtained in the following way:

1. Draw the bivariate r.v.
(
Ẋ
Ẏ

)
from N [µ,Σ] ;

2. Compute the conditional r.v. Ẋ|y = Ẋ − ΣxyΣ−1
yy (Ẏ − y) for a known y-value.

In our case for the prediction of the disaggregate observations leads to the procedure

1. Draw
(Ẏd

Ẏa

)
from the joint density (51);

19



2. Compute the Chow-Lin forecasts by the conditional Ẏd|ŷd = Ẏd−(R′R)−1C ′(C(R′R)−1C ′)−1(Ẏa−Cŷd)

evaluated at the plain forecasts ŷd from (48), which can be embedded into the MCMC iteration.

The conditional system or panel forecasts are made in the same way.

The estimation of the SAR system (21) with two ρ’s is equivalent to the estimation of the SAR(2) model,

which is outlined in the appendix. Note that we can write the SAR regression system as

(
x

y

)
=

 ρ1W1 0

0 ρ2W2

(x
y

)
+ ε =

= ρ1

 W1 0

0 0

(x
y

)
+ ρ2

 0 0

0 W2

(x
y

)
+ ε or

ỹ = ρ1 W̃1ỹ + ρ2 W̃2ỹ + ε. (54)

Note that the 0-augmented Wi matrices act like a selection matrix for the x and the y component when

modeling the dependent variable ỹ.2

4.3. Model selection by marginal likelihood

The marginal likelihood of model M is computed by the harmonic mean formula

m̂(y | M)−1 =
1

nrep

nrep∑
j=1

(
n∑
i=1

l(Di | M, θj)

)−1

(55)

where Di = (∆yi, yi) is the i-th data observation and with the likelihood given in (21). We also use the 1%

trimmed harmonic estimator.

5. Application of the spatial Chow-Lin to Spanish regions

In this section, the performance of the classical and Bayesian Chow-Lin method is evaluated using actual

data for the Spanish GDP at NUTS-2 and NUTS-3 level3. Spain has 18 regions (NUTS-2) and 52 provinces

(NUTS-3). The associated C matrix is constructed from the knowledge of the hierarchical structure of

the NUTS-2 to NUTS-3 regions. Note that, in contrast to the temporal Chow-Lin method where each

2The LS estimate in the model
(x
y

)
= β

(0
z

)
is β̂ = ((0, z′)

(0
z

)
)−1(0, z′)

(x
y

)
= (z′z)−1z′y .

3All data and the hierarchical C-Matrix for Spanish provinces are available from the authors upon request.
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aggregated period (year) has the same number of disaggregated stretches (4 quarters, 12 months etc.), in

the spatial framework the number of provinces (NUTS-3) varies for each region (NUTS-2). In Spain, the

number of provinces by regions range between 1 and 9, and 7 regions are single unit regions, having just

1 province. This heterogeneity in terms of size and administrative structure makes Spanish regions a real

challenge and testing ground for spatial Chow-Lin methods.

The Figures 5 a) and b) show the outcome of the Chow-Lin forecasting method for aggregated (NUTS-2)

and disaggregated (NUTS-3) regions. The forecast evaluations are given in Table 1.

Table 1: Chow-Lin Prediction Accuracy: Classical vs. Bayesian estimates

growth rates CORRa MAEb MAPEc RMSEd

Classic simple (no gain) -0.005 1.666 0.109 0.340
with gain 0.204 0.5146*) 0.03475*) 0.05115

spatial with gain 0.217*) 0.5180 0.03501 0.05067*)
Bayesian gain 0.101 0.377695 0.025228 .038274
MCMC no gain 0.200 0.327792 0.021307 .035276

spatial with gain 0.211*) 0.308276*) 0.020109*) .033292*)
*)... best value

aCorrelation of predicted and observed
bMean Absolute Error
cMean Absolute Percentage Error
dRoot Mean Squared Error

Figure 1: a) Spanish regional CL forecasts: aggregated growth rates; b) disaggregated growth rates
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6. Outliers in the aggregate equation

Since the aggregate equation is an auxiliary equation in the Chow-Lin forecasting problem, we can use

all the usual techniques to eliminate extreme and outlying observations from the aggregate equation. Also,

since the number of observation is considerably smaller in the aggregate equation, an outlier will have a

larger effect on the regression coefficients of the indicator variables that are the primary targets and of direct

interests. Thus we can estimate as aggregate equation the model

y = Xβ + Zγ + u,

where the matrix Z could contain all nuisance variables that might potentiality alter or distort the effects

of the indicator variables, β. The matrix Z could contain any other external variables or fixed effects that

is irrelevant to the forecasting process. For the Chow-Lin forecasting in the disaggregate equation we are

only using the β coefficients since we are interested in the mean effects of the disaggregate units and we

not trying to forecast idiosyncratic effects. It could be argued that the outlier in the aggregate equation is

stemming from a certain unit in the area of the aggregate unit. But unless we don’t know the origin of the

outliers with certainty we can neglect this effect for the purpose of forecasting, which is computed always

as a mean effect, and also the forecasting evaluation measures should reflect only the average behavior of

the forecasting procedure.

Figure 2: a) Residuals from agg. level data; b) Resid of agg. differenced data
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The relative decomposition as in (6) takes the form

1 =
ˆ̃
β′dX̃

′
dX̃d

ˆ̃
βd

ˆ̃y′d
ˆ̃yd

+
ε̂′aQ

′Qε̂a
ˆ̃y′d

ˆ̃yd
+ rest . (56)

Figure 3: GDP level 2004

7. Conclusions

In regional science the task of fine-casting, i.e. the prediction of variables for quite small spatial units

when only larger units can be observed, is called the Chow-Lin forecasting method. Surprisingly, the pro-

cedure needs an extension if non-summable variables have to be predicted. For spatial or regional analyses

we sometimes need to predict growth rates for smaller, disaggregated units and this paper has shown that

the spatial Chow-Lin procedure can be used to make forecasts (better fine-forecasts) for these missing sub-

units. The new procedure is demonstrated for growth rates, which is an example of non-summable random

variables, uses the regression-indicators at the disaggregated regional level to predict the disaggregated

unobserved dependent variable, conditional on the complete aggregated observed model. Spatial economet-

ric applications have become increasingly important for many regional economic policy questions, especially

through the integration process of the European Union, which focusses on quite small regional units, because
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no EU region should be left behind.

The new approach has shown that it pays to get a good spatial model if one is interested in good

predictions of missing data in a cross-sectional model. An important condition for finding a good model

is the existence of good indicator variables and some good modeling skills to find the appropriate weight

matrix to estimate the spatial effects. In future research we will explore these modeling possibilities in more

heterogenous environments, especially if it comes to the question what is the best way of aggregating smaller

to larger units, and we could extend the spatial Chow-Lin method to complete large blocks of data at the

national and European level, including flow data such as inter-regional trade or migration flows.
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9. APPENDIX: Higher order SAR models

9.1. MCM: Griddy Gibbs for the SARX model

We consider the SAR(1)X model

y = ρWy +Xβ + ε, ε ∼ N [0, σ2
y] (57)

with the informative prior p(θ) = N [C̃R̃−1X̃β̃d, σ
2Σ] N [βd | β∗, H∗] W[Σ−1 | S∗, n∗].

Theorem 2 (MCMC for the SARX model).
The MCMC estimation for the SARX model (57), with the joint distribution p(θ, y) = N [ρWy +

Xβ, σ2
yIn] p(θ) involves the following iteration steps:

Step 1: Starting value ρ = 0;

Step 2: Draw β from N [β | b∗∗, H∗∗];
Step 3: Draw σ−2 from Γ[σ−2 | s2

∗∗, n∗∗];

Step 4: Draw ρ by griddy Gibbs;

Step 5: Repeat until convergence.

Proof 2.

(a) The full conditional for the β regression coefficients follows for known ρ a simple linear regression model
with dependent variable z = y − ρWy

p(β | y, θc) = N [β | b∗, H∗] N [z | Xβ, σ2
yIn] = N [β | b∗∗, H∗∗]

with the hyper-parameters

H−1
∗∗ = H−1

∗ + σ−2X ′X

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2X ′z].

(b) The fcd for the residual variance we find

p(σ−2 | ya,θ
c) = Γ[σ−2 | s2

∗∗, n∗∗] (58)

with n∗∗ = n∗ + n and s2
∗∗n∗∗ = s2

∗n∗ + (z −Xβ)′(z −Xβ).

(c) The fcd for the spatial ρ we look at the kernel of the normal fcd, which is given with z = y −Xβ by

p(ρ) ∝ exp

[
− 1

2σ2
y

(z − ρWy)′(z − ρWy)/σ2

]
∝ exp

[
− 1

2σ2
y

(ρ− ρ̂)2Sy

]
∝ N

[
ρ | ρ̂, σ2

y/Sy
]

(59)

with ρ̂ = y′W ′z/Sy and Sy = y′W ′Wy. Using the griddy Gibbs concept of Ritter and Tanner (1992) we
generate from the normal pdf a grid of 100 points and draw draw according to the discrete ordinates of
the pdf. Note that the spatial rho is now estimated after y is purged from the influence of X.

From the MCMC simulation we obtain a numerical sample of the posterior distribution ΘMCMC =

p(β
(j)
d , ρj ,Σ

−1
j | yd). The ml = 1.403897 for EMP model.

25



Figure 4: SAR(1)X with X=EMP data

9.2. The SAR(2) model

Using two types of neighborhood matrices W1 and W2 of the of a cross-sectional variable y, we can define

the second order spatial SAR(2) model in the following formulate a ’structural’ form:

y = Xβ + ρ1W1y + ρ2W2y + ε, ε ∼ N
[
0, σ2In

]
, (60)

where In is the n × n identity matrix, and ρ1 and ρ2 are the first and second order spatial correlation

parameter, respectively.

Next, we obtain a reduced form if we take all y variables on the left hand side:

z = y− ρ1W1y− ρ2W2y = Xβ + ε, ε ∼ N
[
0, σ2In

]
, (61)

where z = (In − ρ1W1 − ρ2W2)y is a transformed dependent variable that can be easily computed if the

ρ’s in ρ = (ρ1, ρ2) would be known. Now we denote the inverse of the spatial transformation by the matrix

R using the neighborhood polynomial:

R−1
ρ = (In −W(ρ))−1 with W(ρ) = ρ1W1 + ρ2W2.
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Therefore we can write the spatial regression model in its transformed form as

Rρy ∼ N
[
Xdβ, σ

2In
]
. (62)

Note that the reduced form is normally distributed with

y ∼ N
[
R−1
ρ Xdβ, σ

2(R>
ρRρ)

−1
]
, (63)

because V ar(Rε) = σ2RR>. The prior distribution for the parameter θ = (βd, σ
−2,ρ) is given by the

product of (independent) blocks of normal and gamma distributions:

p(β, σ−2,ρ) = p(βd) p(σ
−2) U [ρ1 | −1, 1] U [ρ2 | −1, 1]

= N [βd | b∗,H∗] Γ[σ−2 | s2
∗, n∗]

1

4
, (64)

where U [−1, 1] stands for a uniform distribution in the interval (−1, 1). Because of restrictions the interval of

feasible ρ’s depends on λmin and λmax, the minimum and maximum eigenvalue of W. Because of λ−1
min < 0

and λ−1
max > 0 and therefore the ρi’s must lie between these bounds. Thus, we restrict the prior space of the

ρ’s to the interval (λ−1
min, λ

−1
max).

The joint distribution for yd and the parameter θ = (βd, σ
2, ρ) is

p(βd, σ
−2, ρ,y) ∝ N

[
yd | Xdβd, σ

2
]
N [βd | b∗,H∗] Γ[σ−2 | s2

∗, n∗].

Theorem 3 (Griddy Gibbs sampling in the Normal*Gamma SAR(2) model).

We consider the SAR(2) model as in (60) with prior (64)

1. Starting values: set βd = βOLS and ρ = 0 in the aggregated model

2. Draw σ−2 from Γ[σ−2 | s2
∗∗, n∗∗]

3. Draw βd from N [βd | b∗∗,H∗∗]
4. Draw ρ by a griddy Gibbs step for (−1, 1)× (−1, 1)

5. Repeat until convergence.

The full conditional distributions are:

1. For the regression coefficients βd we use the transformation of the dependent variable y to z as in (61)
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since ρ is conditionally known

p(βd | σ−2,ρ,y) ∝ N [βd | b∗∗,H∗∗] , (65)

and by combining quadratic forms in the usual way we find for the hyper-parameters

H−1
∗∗ = H−1

∗ + σ−2X>X,

b∗∗ = H∗∗
[
H−1
∗ b∗ + σ−2X>z

]
.

2. The fcd for the inverse residual variance σ2 is

p(σ−2 | β, ρ,y) ∝ Γ[σ−2 | s2
∗∗, n∗∗],

a gamma distribution with the parameters n∗∗ = n∗ + n and

n∗∗s
2
∗∗ = n∗s

2
∗∗ + (Rρy−Xβ)>(Rρy−Xβ), (66)

where Rρy = y− ρ1W1y− ρ2W2y.

3. The full conditional distribution for the spatial correlation coefficients ρ is done with griddy Gibbs in

2 steps and the ρ-grid for both spatial correlation coefficients have to be set-up independently. We

propose to use a symmetric grid around an initial simple rho estimate.

1) For the fcd for ρ1 we use as dependent variable z2 = y− ρ2W2y

p(ρ1) ∝ exp

[
− 1

2σ2
y

(z2 − ρ1W1y)′(z2 − ρ1W1y)

]
∝ exp

[
− 1

2σ2
y

(ρ1 − ρ̂1)2S1

]
∝ N

[
ρ1 | ρ̂1, σ

2
y/S1

]
(67)

with ρ̂1 = y>W>
1z2/S2 and S1 = y>W>

1W1y.

2) For the fcd for ρ2 we use as dependent variable z1 = y− ρ1W1y

p(ρ2) ∝ exp

[
− 1

2σ2
y

(z1 − ρ2W2y)>(z1 − ρ2W2y)

]
∝ exp

[
− 1

2σ2
y

(ρ2 − ρ̂1)2S2

]
∝ N

[
ρ2 | ρ̂2, σ

2
y/S2

]
(68)

with ρ̂2 = y>W>
2z1/S2 and S2 = y>W>

2W2y. Because these two fcd for ρ1 and ρ2 are structural
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identical to the fcd of ρ1 in the SAR(1) model, we can easily use the griddy Gibbs or the multiple try

MH algorithm for the MCMC estimation of the SAR(2) model.

The marginal likelihood is given by the harmonic MDL formula

pN (y | SAR(2)...)−1 =
1

nrep

nrep∑
i=1

pN (y | θ(i),X,W)−1

with the parameters for simulation i given by θ(i) = (β(i), σ
−2
(i) ,ρ(i)) and the likelihood function is

pN (y | θ(i),X,W) = (2πσ2)−n/2 exp

[
− 1

2σ2
y

(Rρy−Xβ)>(Rρy−Xβ)

]
. (69)

Figure 5: a) Paths and ACF of the rho coefficients; b) SAR(2): estimated coefficients
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