IHS Economics Series

Working Paper 294
December 2012

Spatial System Estimators for
Panel Models: A Sensitivity and
Simulation Study

Shuangzhe Liu
Tiefeng Ma
Wolfgang Polasek

I RI HS INSTITUTIONAL REPOSITORY AT IHS

Vienna

INSTITUT FUR HOHERE STUDIEN
' INSTITUTE FOR ADVANCED STUDIES
F




INSTITUT FUR HOHERE STUDIEN
' INSTITUTE FOR ADVANCED STUDIES
Vienna

Impressum

Author(s):
Shuangzhe Liu, Tiefeng Ma, Wolfgang Polasek

Title:
Spatial System Estimators for Panel Models: A Sensitivity and Simulation
Study

ISSN: Unspecified

2012 Institut fiir Hohere Studien - Institute for Advanced Studies
(IHS)

Josefstadter Strale 39, A-1080 Wien

E-Mail: office@ihs.ac.at

Web: www.ihs.ac.at

All IHS Working Papers are available online:
http://irihs.ihs.ac.at/view/ihs_series/

This paper is available for download without charge at:
https://irihs.ihs.ac.at/id/eprint/2177/



mailto:o%EF%AC%83ce@ihs.ac.at
mailto:o%EF%AC%83ce@ihs.ac.at
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
mailto:o%EF%AC%83ce@ihs.ac.at

294
Reihe Okonomie

Economics Series

Spatial System Estimators for
Panel Models: A Sensitivity
and Simulation Study

Shuangzhe Liu, Tiefeng Ma, Wolfgang Polasek

-

INSTITUTE FOR ADVANCED STUDIES
Vienna

5 INSTITUT FUR HOHERE STUDIEN






294
Reihe Okonomie

Economics Series

Spatial System Estimators for
Panel Models: A Sensitivity
and Simulation Study

Shuangzhe Liu, Tiefeng Ma, Wolfgang Polasek

December 2012

Institut fiir Hohere Studien (IHS), Wien
Institute for Advanced Studies, Vienna



Contact:

Shuangzhe Liu

University of Canberra

Canberra, Australia

email: shuangzhe.liu@canberra.edu.au

Tiefeng Ma

Statistics College

Southwestern University of Finance and Economics
Chengdu 610074, China

email: cdtf.ma@gmail.com

Wolfgang Polasek

Department of Economics and Finance
Institute for Advanced Studies
Stumpergasse 56

1060 Vienna, Austria

@: +43/1/599 91-155

email: polasek@ihs.ac.at

Founded in 1963 by two prominent Austrians living in exile — the sociologist Paul F. Lazarsfeld and the
economist Oskar Morgenstern — with the financial support from the Ford Foundation, the Austrian
Federal Ministry of Education and the City of Vienna, the Institute for Advanced Studies (IHS) is the
first institution for postgraduate education and research in economics and the social sciences in
Austria. The Economics Series presents research done at the Department of Economics and Finance
and aims to share “work in progress” in a timely way before formal publication. As usual, authors bear
full responsibility for the content of their contributions.

Das Institut fir Hohere Studien (IHS) wurde im Jahr 1963 von zwei prominenten Exilésterreichern —
dem Soziologen Paul F. Lazarsfeld und dem Okonomen Oskar Morgenstern — mit Hilfe der Ford-
Stiftung, des Osterreichischen Bundesministeriums fiir Unterricht und der Stadt Wien gegriindet und ist
somit die erste nachuniversitare Lehr- und Forschungsstatte fir die Sozial- und Wirtschafts-
wissenschaften in Osterreich. Die Reihe Okonomie bietet Einblick in die Forschungsarbeit der
Abteilung fir Okonomie und Finanzwirtschaft und verfolgt das Ziel, abteilungsinterne
Diskussionsbeitrage einer breiteren fachinternen Offentlichkeit zuganglich zu machen. Die inhaltliche
Verantwortung fir die veréffentlichten Beitrage liegt bei den Autoren und Autorinnen.



Abstract

System of panel models are popular models in applied sciences and the question of spatial
errors has created the recent demand for spatial system estimation of panel models.
Therefore we propose new diagnostic methods to explore if the spatial component will
change significantly the outcome of non-spatial estimates of seemingly unrelated regression
(SUR) systems. We apply a local sensitivity approach to study the behavior of generalized
least squares (GLS) estimators in two spatial autoregression SUR system models: a SAR
model with SUR errors (SAR-SUR) and a SUR model with spatial errors (SUR-SEM). Using
matrix derivative calculus we establish a sensitivity matrix for spatial panel models and we
show how a first order Taylor approximation of the GLS estimators can be used to
approximate the GLS estimators in spatial SUR models. In a simulation study we
demonstrate the good quality of our approximation results.

Keywords
Seemingly unrelated regression models, panel systems with spatial errors, SAR and SEM
models, generalized least-squares estimators, Taylor approximations
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1 Introduction

Spatial models and applications in statistics and econometrics have been stud-
ied in the past decades; see e.g. Paelinck and Klaassen (1979), Anselin (1988,
2010), Florax and Van Der Vlist (2003), Haining (2003), LeSage and Polasek
(2008), LeSage and Pace (2009), and Liu et al. (2012). On the other hand,
panel models have become increasingly important and different estimators in
such models with spatial components have also been studied; see e.g. Kapoor
et al. (2007), Anselin et al. (2008), Baltagi (2008), Elhorst (2010), and Lee and
Yu (2010). It is clearly useful to examine the sensitivity of these estimators in
terms of a minor change in the spatial correlation parameter p.

The usual spatial auto-regression (SAR) model for the n x 1 cross-sectional
observations y is given by

y=pWy+ XB+u, u~ N[0,0°L,)]. (1)

In a similar way we define the SEM model:

y=XpB+e, with e=0Wye+u, (2)

where we assume a heteroskedastic error term for u : £(u) = 02D, t,s =
1,..,T.

Sensitivity analysis with respect to p means we are interested in the behavior
of the estimators of 5 upon a small change of p. The numerical computation of
the "spatial filter” estimator of spatial autoregression (SAR) models uses the
spatial filter matrix R = I — pW, which acts as a filter in the reduced form of
the SAR model. Spatial estimators are a function of the spatial neighborhood
matrix W, which can become really large in large spatial panel systems, and
the spatial correlation parameter p.

Our question is if 'good’ approximations of simple spatial estimators exist
to justify a reasonable sensitivity analysis (or making a spatial diagnostics
without employing a time consuming spatial estimation procedure), and if so,
what estimators and what GLS estimation approaches should be considered
to use for diagnostics or approximations? A previous study of the sensitivity
of spatial estimators, like the cross-sectional SAR and the SEM model, has
been made in Liu et al. (2012). It was shown that good approximations exists
for small values of the spatial correlation parameter.

The present paper extends a system of panel models to a seemingly unrelated
regression (SUR) system with spatial errors in two ways: one is a SAR regres-



sion model with SUR errors (SAR-SUR) and the other is a SUR model with
spatial errors model (SUR-SEM). First, we propose a system least squares
(SUR based) estimator with spatially filtered variables, which is the SF-GLS
estimator and we show that it can be expanded in a first order Taylor series
around the non-spatial GLS estimator of a non-spatial regression model. The
second type of system (or SUR based) estimator is the reduced form (RF)
estimator, which is a GLS estimator that amounts to spatially transform all
dependent and independent variables and is called RF-GLS estimator.

While in a cross-sectional SAR or SEM model we have to explore the sensitiv-
ity with respect to only one spatial parameter, we need in the system case a
vector of spatial parameters, i.e. for each cross-sectional sample an own spatial
correlation parameter. To get the sensitivity result using matrix derivatives
for a vector of correlation parameters, we use a simple trick that is found in
Magnus and Neudecker (1999). Because we are only interested in the deriva-
tive with respect to the diagonal matrix, we first derive the matrix-to-matrix
derivative and then in a last step we employ the general result, that a di-
agonal derivative can be obtained by post-multiplying the matrix-to-matrix
derivative with the selection matrix .J, presented in Appendix.

Thus, we are also interested if simplifications of the system sensitivity results
are possible if we make the simplifying assumptions, that there exists only one
common spatial correlation parameter, briefly called the ”cc-case”. Luckily, in
the SAR-SUR system case we gain no new insights by doing these simplifi-
cations, we find for the SAR-SEM model nice interpretations in the line of
global sensitivity analysis as in Leamer (1978). The spatial correlation param-
eter traces out a hyper-curve between two simpler non-spatial estimators.

For the simulation study we develop a basic design involving the number of
observations, the neighborhood matrix W and the SUR covariance matrix X
to compute the average MSE or MPLS for the evaluation of the estimators.
We also discuss how to measure the distance between the GLS estimator and
its first order Taylor approximation in dependence of the spatial parameter p.

The structure of paper is as follows. In section 2, we consider the SAR-SUR
model and their estimators. We derive the sensitivity results with respect to
the two types of spatial correlation parameters (SAR or SEM). In section 3,
we study the SUR-SEM model and the Taylor approximation sensitivity re-
sults. A simulation study for different sample sizes to check the quality of the
approximate GLS estimates together with a comparison of the two estimators,
the spatial filter estimator and the reduced form estimator are presented in
section 4. Our concluding remarks are made in section 5. Finally, some basic
definitions and their relevant mathematical properties are presented in the
appendix, together with our detailed evaluation of the simulation study.



2 SAR-SUR models and their estimators

In this section, we consider the SAR model (1) and the extension of the model
to a panel system. This leads to a system of regression equations and a seem-
ingly unrelated regression (SUR) specification of the residual variance matrix,
as in e.g. Anselin et al. (2008).

2.1 Simple GLS estimators of the SAR-SUR model

First we discuss the system or panel SAR model with a SUR error structure
and the simple GLS estimators for this model. The following spatial auto-
regression (SAR) model is as in Anselin et al. (2008, pp 637-638) for time
t=1,...,T

Ve =pWiye + XiBr + e,  with  E(eil) = oIy, for t# s, (3)

where p; is the spatial AR (SAR) correlation parameter for time ¢, y; is the
N x 1 dependent variable, Wy is the N x N neighborhood matrix, X; is the
N X k regressor matrix, 3; is the k x 1 regression coefficient, ¢, is the N x 1
error term, oy is the temporal covariance parameter between time s and ¢ (for
convenience, the variance terms are expressed as o), and Iy is the N x N
identity matrix.

In compact form, the SAR-SUR model for T" cross-sections is given by

y=(D,@Wn)y+XB+e, with e~ N[Onp,Xsu] (4)

where y = (y},...,y7) = vecY is a NT x 1 vector obtained from Y which
is a N x T dependent panel matrix, vec is the vectorisation operator (see
e.g. Neudecker et al. 1995a, 1995b), D, = diag(ps, ..., pr) is a T' x T diagonal
matrix, X = diag(Xy, ..., Xr) is an NT' xkT matrix with X; of order N xk, § =
(B, ..., ) contains the kT x 1 system regression coefficients, e = (€}, ..., %)
is the error vector and its covariance matrix is

Sowr = E(ee) =S @ Iy (5)
with a T' x T positive definite covariance matrix > for the SUR system.

Assuming normal errors, the log-likelihood function (ignoring the constants)
is given by



1 1
L=In|Inr = D, @ Wy| + 5ln S0, | = 5¢ (S )e
N 1
=Sisin [T = pWa| + Sin 571 = 5

5 ¢ (X7 ® In)e,

where the error term is e = (Inyp — D, ® Wy)y — X 3. For further details see
Anselin (1988, pp 145-146) and Anselin et al. (2008 p. 650).

Definition 1: The spatial filter SF-GLS estimator Bg.
We consider the spatial filter (SF) form of the SAR-SUR panel model (4)

Ryry = XpB+e with e~ N[0, Xg,] (6)

The generalized LS (GLS) estimator is then given by

éG = (Xlzs_uer)_lX/Es_uerNTy7 (7)
where E(ee’) = Yy = X7 ® Iy is the SUR covariance matrix (5), and the
system spread matrix is Ryr = Iy — D, ® Wy

Denote the T' x 1 vector of spatial correlations p = (py, ..., pr) of the SAR-
SUR system in (4). When p = 0 we get D, = 0 and the simplification of the
filter matrix Ry = Iyt to the homoskedastic case, such that the spatial GLS
estimator reduces to the non-spatial (panel) GLS estimator, which is the SUR
estimator for equation systems

Bas = (X'(S7' @ In) X) ' X' (57! @ In)y. (8)

Next, we derive the sensitivity of the GLS estimator and the Taylor approxi-
mation of B¢ with respect to p, using Magnus and Neudecker’s (1999) matrix
differential calculus; for their differential idea, see part Al in Appendix 6.

Theorem 1 The kT x T sensitivity matriz of the GLS estimator (7) of the
spatial SAR-SUR panel model (4) with respect to p = (p1,...pr)" is

Se=0pq/op
= (X' X)X (I @ WhY) T (9)

sur sur

where J is the T? x T selection matriz given in (10) and Y = (y1, ..., yr) is
the N x T' de-vectorized (or stacked) panel matriz such that vec' Y = y.



Proof: In the SAR-SUR system the spread matrix is Ryr = Inyr — D, @ Wy
and we find the derivative with respective to p

d Rnry=—d(D, ® Wx)vecY
= —vec (WynY dD,)
=—(Ir @ WxY)vec (dD,)
— (Ir @ WyY)J dp,

where vec is the vectorisation operator, J is the 72 x T selection matrix for
diagonal derivatives, defined as

J = (1 @11, ..., 0ir ®ir) (10)

with I7 = (i1, ...,i7) being a T x T' identity matrix, and ® denotes the matrix
Kronecker product; for these definitions and the relevant properties, see part
A1 of the Appendix 6.

Therefore, for the differential of the SAR-SUR GLS estimator (7) of the spatial
filter form we find

dBg=d [(X'SLX) ' X'S,L Ryry)

sur

= —(X'SI L X)TIXIS) (Ir @ Wy Y)J dp. (11)

sur sur

This establishes the theorem.

Note that Sg is free of the correlations in p and hence we obtain a simple
expression of the derivative matrix Sgo = S¢|p—0 = S¢-

Theorem 2 The first order Taylor approzimation of the SF-GLS estimator
Be in (7) of the SAR-SUR panel model is

/QG ~ Bgls + SGOpa (12)
where Bg is the kT x 1 vector and Scyo is the kT x T sensitivity matriz in (9).

Proof: Use the Taylor series expansion.
2.2 The reduced form of the SAR-SUR model

From the SF form of the SAR-SUR panel model



Ryry=XB+e with e~ N[O, Esur] (13)

with E(e€’) = Y4, = Yr ® Iy, we get the reduced form of the SAR-SUR
model with RNT = INT - Dp X WN to be

y = Ry X3+ Ryhe with Ryve~ N[0, Zy7] (14)

and
Ynr = var(Ryye) = Ryr Yo Rt = (RypXol Ryr) (15)

sur

Note that the GLS estimator in the reduced form of the SAR-SUR model is
the same as (g in (7). Next we consider a GLS estimator.

Definition 2: The GLS estimator in the reduced form SAR-SUR model .
The reduced form GLS estimator of the SAR-SUR model (14) is just the OLS
estimator in terms of the transformed regressor

B.=(2'2)"'Z'y with Z =Ry-X or
B.=Z%y with Z* = (X'RyYRyy-X)'X'RyL. (16)

For the special case with p = 0 we get Ryt = Iy and then the GLS estimator
simply becomes the OLS estimator of the untransformed panel system

/éols - (X,X)_lX/y'

Theorem 3 In the SAR-SUR model in (14), the sensitivity of the reduced
form GLS estimator (16) is the kT x T matriz

S.=0p./0p
=7 (I @ WNEY)J — Z* Ry (Ir @ W Yys)J
=7tQ J (17)

with

Q= (Ir ® Wi Er) — Ryp(Ir @ WY
where Z = Ry X is the transformed regressor, E is de-vectorized residual
matriz obtained from vecE, = Ryr(I — ZZ%)y = Ry} (y — Ggs), and the GLS
fit }Afgls is computed from vecf/;]ls = Ygis = LZTy.

Proof: Because the differential of the inverse matrix of Ryp = Iy —D,& Wy
with respect to p is d Ryp = —Ryp(d Ryr) Ry, ARyt = —(dD,) ® Wy and
vec dD, = Jdp, we get for (16)



dB.=d(Z'2)"" Z'y)
=—(Z2'2)NZ'Z2)2'2) 2"y + (2'2)7(dZ")y
=7"(dD, @ WN)Ryt(I — ZZT)y — ZT"Ryir(dD, @ Wx)Z Zty
=7+ (dD, ® Wi )vecEy, — Z* Ryh(dD, @ Wy)vecY
= Ztvec(WiEvdD,) — Z* Ryrvec(WyYyedD,)
= 7 (Ir @ Wy Ey)vee(dD,) — Z* Rys(Ir @ WYy )vee(dD,)
=Z (I @ WL EL)J dp — ZT Rk (Ir @ WyYy,)J dp.

We establish the theorem by rearranging terms.

Theorem 4 The first order Taylor approximation of the RF-GLS estimator
of the SAR-SUR model in (16) is

Bz ~ Bols + Sz(]p7 (18>

where .
S.o = (X'X)'X'[Ir @ Ey)J (19)
is the first order sensitivity matriz S, evaluated at the originp = (p1, ..., pr) =

A

0, Ey = Wiy — (Wi + WN)YO, Yy is de-vectorized from the OLS fit vecYy =
X(X'X)™' X"y, and vec Y =y is the vectorized panel matriz.

Proof: From Theorem 3 we get

SzO - a/éz/ap,|1u:0
= (X'X)'X[Ir @ WLYJ — (X' X)X Iy @ WiY]J
—(X'X)7' X [Ir ® WyYo]J (20)

and then the Taylor approximation follows.
2.8 Special case: common spatial SAR correlation coefficient

We get a special case of the SAR-SUR model (4) when all the spatial corre-
lations across the system are equal p; = ... = pr = p. In this case we have
D, = pIr with p being the common correlation coefficient and the model re-
duces to the simple SAR regression model as in Anselin et al. (2008)

y=pUr@Wn)y+ XB+u (21)

where the error term u = (u},...,u}) is a N x 1 error vector and follows a

normal distribution with a NT x 1 mean vector centered at 0 and a NT X NT



variance matrix 021 y7r. Also y = vecY is an NT x 1 vectorized panel vector, p
is the common spatial autocorrelation parameter (a scalar), Wyr = I @ Wy
is a system common neighborhood matrix Wy is the N x N spatial weight
matrix normalized with row sums 1, X is an NT' x kT regressor matrix, and
(G is a kT x 1 regression coefficient vector.

The panel spatial filter (SF-GLS) estimator b, : k7" x 1 of the SAR-SUR model
(4) can be written in analogy to the non-system case as a linear combination
of 2 simpler GLS estimators

bﬁ = (X/Es_uer)_lezs_uerNTy
= (X,Zs_uer)_lX/Zs_ulr(]NT - pWNT)y
= (X,ZQJTX)_lX/Z;ulry - p(X,ZglerX)_lX/Z;ulrWNTy
= bO - p(X/Z;uer)_lX,Z;}TWNTy

We see that the difference between the SUR-GLS estimator

Beur = (X', X)Xy
and the spatial lag estimator Bour — b, = pﬁlag is proportional in size to the
spatial parameter p and the first order spatial lag estimator

Brag = (X'S3LX) XS5 Wy, (23)

sur

Next we compute the derivative of b, with respect to the common p, which
measures the sensitivity of b, with respect to a small change in p. For analytical
and mathematical convenience, we use the differential notation from where
the derivative can be obtained equivalently and more easily; see Magnus and
Neudecker (1999) and Liu and Neudecker (2009).

Theorem 5 The sensitivity or first deriwative of the spatial filter b, estimator
in the common correlation model with respect to the p parameter is the negative
spatial lag estimator in the linear model for explaining the first order spatial
lag

b, /0p = —(X'Sob X) T XIS Wty = —Brag, (24)

sur

where the spatial lag estimator ﬁlag is given in (23).

Proof The matrix differential of the b, estimator with respect to p in (22) is

db, = —Biagdp

and by rearranging terms, we establish the derivative.



2.4 The common correlation (cc) SAR model

In some cases it might be interesting to look at SAR models that have a
common correlation and common coefficient. For practical applications like
model choice this can be a good starting point.

The stacked panel SUR-SAR model has the same structure as the model (4)
before

y=(D,@Wn)y+XB+e, with e~ N[Onp,Xsu] (25)

where y = (y1, ..., y7) = vecY is a NT x 1 vector, Y is an N x T dependent
panel matrix, the diagonal matrix D, : T x T' reduces in the cc case to plr,
X = (X{,...,X}) is an NT x k stacked regressor matrix with X, of order
N xk, 8= (01,...,0c) is a k x 1 vector of stacked regression coefficients.

Assuming a common correlation and common coefficient (cc&cc), we simplify
the model structure of the GLS estimator, because Ry = Iy ® Ry with
Ry = In — pWy, g = Y7 ® Iy, and then the covariance matrix (15)
reduces to

Se = (37" ® RyRy) ™ (26)
Therefore the GLS estimator in the cc case takes the form

b= (XS X)TIXIE Ny, (27)

which is the SUR estimator with common spatial heteroskedasdicity of the
form Riy Ry, because X1 is the covariance/correlation matrix across the
equations of the panel system. This estimator is a SUR-GLS estimator for
the spatial transformed (SEM filtered) variables X, = (Ir ® Ry)X and

Y = (IT ® RN)y: Bc = (X/Z_l X*)_lXiZs_z}ry*'

* sur

3 Approximating the GLS estimator in the SUR-SEM model

This section computes the sensitivity of the GLS estimator in the SUR-SEM
model and describes the first order Taylor approximation using the sensitivity
results.

3.1 SUR models with SEM errors

In this section we look at a system generalization of the spatial error model
(SEM), which can be found as alternative to the SAR-SUR model in e.g.



LeSage and Pace (2009).

Consider the following panel SUR-SEM model

Yy =Xi08+ e, with e =60,Wne, +uy, (28)

where we assume a centered homoskedastic error term for u : E(ug,ul) =

oIy (t,s = 1,...,T). Now the error term in the SUR-SEM model can be
written as

€ = (]N - etWN)_lut = BK/}Wﬁ (29)
where By, = Iy —0,Wy is the t-th component of the SEM filter matrix Byr.

In the cc case the cross-equation covariance matrix between the error vectors
e; and e, then becomes

Eler €] = By'Euy u)BNY = 01 By By = 0vs(BiyBy) ™. (30)

Definition 3: The spatial SUR-SEM model.
In matrix form, the SUR-SEM model with the NT x 1 error vector e can be
written as

y=XpB+e, with e= Byru, or
Y~N[XB, Seem] with Yem = Byp(Xr @ In) Byt (31)

where the error term w contains the SUR correlation matrix £(uu') = ¥r® Iy,
and the SUR-SEM system filter matrix

BNT = INT - Dg (029 WN with Dg = dz'ag(ﬁl, ceuy GT) (32)

is a T' x T diagonal SUR-SEM correlation parameter matrix. Furthermore,
y = (y1,.,yp) = vecY : NT x 1 is the vectorized panel matrix, X =
diag(Xy,...,Xr) is a NT x KT block-diagonal regressor matrix, and e =
(€], ...,e7) is the error vector.

Note that the log-likelihood function of the SUR-SEM model (31) is

1 1
L= §ln | By (571 @ In)Byr| — §e’B§VT(Z;1 ® Iy)Byre

1
=—In |X}

1
5 — =Yt e (33)

se 2 sem

10



Definition 4: The spatial SEM-GLS estimator ﬁsem.
The SEM-GLS estimator in the SUR-SEM model (31) is the k7" x 1 vector

Beem = [X'S2E X]7IX'D]1 (34)

sem semy‘

Define the SEM correlation parameter vector as ¢ = (6,...,07)". For zero
correlation ¢ = 0, the SEM filter vanishes to Byr = Iny7, and the GLS
estimator in the SUR-SEM model reduces to the GLS type SUR estimator

(8)-

Theorem 6 (The sensitivity of ﬁsem) Let ¢ = (04, ...,07)" be the correla-
tion vector, then will use the classical sensitivity results. The KT x T sensi-
tivity matrixz of the reduced form RF-GLS estimator in the SUR-SEM model
18

Ssem = a/ésem/aq/
=—[X'SE X' X' (Ir @ Wy MY:Y) J

sSem

_[X/Zs_elmX]_lX/BEVT(Z;l ® WN(Y - }A/sem)) J
:_[X/Z_l X]_lésem J

with

Quem = (It @ WL[E — Wy EDg|S7Y) + (271 @ W E), (35)

whef’e E=Y — YsemA 1s the SEM panel residual matriz and Ysem 1s the fit of
'UeCY:sem = 'gsem = X/Gsem-

We see that the derivative consists of the scaling matrix times the residual
quantity matrix Qem,, which is a complicated mixture of two components,
because the covariance matrix Y;' appears at both sides of the Kronecker
product.

-1

Proof: First we get the derivative of the covariance matrix using (41), d¥_}

with respect to the vector ¢

3, =d(Byr(Xr @ In)Byr)
=—(dDy @ Wy) (37" @ In)(Int — Dy @ W) = Byp(37' @ In)(dDg @ W)
=—(dDp)S7' @ Wy + dDg%7" Dy @ WWx — Byp(37'dDy @ W)

-1

2L into the derivative of B, in (34) we get

Inserting dX

11



ABgem = — (XS0, X)X AYE X (XS X)TIX'S Ly
(XS0 X) T XSy

= (XS X)X (A% ) (Y — Fisem)

Sem

= —(X'27) X)7'X'(dDy)L7! @ Wi )vecE

sem

+(X'S7L X)TLX (dDy S Dy @ Wi Wiy JvecE
—(X'SE X)X By (85 dDy @ Wy )vecE

= —(X'27L X)7IX'(dDy) L7t @ Wi )vecE
+H(X'S7E X)X (dDy X7 Dy @ Wi Wy )veck
—(X'S7E X)X By (27 dDy @ Wy )vecE

= —(X'S7L X)7TUX (I @ W[E — Wy EDgS7Y) Jdp
—(X'272L X)TIX'[S5 @ WhE] Jdp

= (X2 X)X [(Ir @ Wi [E — Wy EDg|S7Y) + (370 @ W E)] Jdp

This proves the theorem.

Theorem 7 The Taylor approximation of the reduced form GLS estimator
(34) is

ﬁsem ~ ﬁsur + Ssurqa (36)
where we briefly write V = (X'Y1 X)) and 3, = X7 ® Iy to get the the

sur

sensitivity matriz Sy, for the SEM-SUR model

Ssur = 8Bsem/aq/|q:0
=V X'[(S7' @ W (Y = Y)) = (Ir @ Wi(Y = Y)=7)],

where Y is de-vectorized from the regression fit vecY = X BSW with BSW being
the SUR system estimator.

We see that the central quantity for this evaluation at point zero is the panel
residual Y — Y, which is scaled in 2 different ways in the Kronecker product.

Proof: If ¢ = 0 then Byr = Iyt with residual E=Y - Y, and Sy, 1S
obtained from S, evaluated at ¢ = 0.

3.2 Special case: a common 6 correlation coefficient in the SUR-SEM model

A special case of the SUR-SEM model (31) is obtained for ¢; = ... = gr = 0,
which leads to the homogeneity model

12



y=XB+e, with e= Byru, or
y~N[X3,%,] with %, = (3;'® ByBy)™! (37)

where y is a NT x 1 observation vector, X is a NT x kT regressor matrix, 3
is a kT x 1 coefficient vector, and

BNT:]T®(IN_9WN>:IT®BN with BN:]N—GWN (38)
is the system spatial filter of the SUR-SEM model.

For the non-SUR case Y7 = ¢2Ir we get a simple common correlation (cc)
GLS estimator, which is exactly the ’associated’” GLS estimator in the formula
(19.37) for the model (19.9) given in Anselin et al. (2008):

Be. = [X'(Ir ® ByBy) X' X'(Ir ® BiyBy)y. (39)

The non-SUR GLS estimator is a simple OLS estimator for the spatial trans-
formed (SEM filtered) variables X, = (Ir ® By)X and y,. = (It ® Bn)y:

It # = 0 we have By = Iy and we get a special case the OLS estimator
ﬁols == (X/X)_lX/y.

Theorem 8 The sensitivity of the kT x 1 non-SUR GLS estimator (e, in (39)
of the SEM panel system model with respect to 6 is

Scc:aﬁcc/ﬁe
—V X' (Ir @ W)X V X'(Ir @ ByBx)y — V X'(Ir @ Wg)y,
==V X'(Ir @ Wg)(y — &),

where we use V = [X'(I7 @ ByBy)X|™Y, W = Wi By + ByWx and 4y, =
X V X'(Ir ® ByBy)y is the Anselin estimator in (77).

Again the central quantity of this sensitivity result is the residual of the
Anselin estimator (y — g,) of the SUR-SEM model.

Proof: Using the §EM filter matrix By = Iy — Wy, we find for the matrix

differential of the .. estimator with respect to 6

dBee=V X'(Ir @ WyBN)XV X'(Ir @ ByBy)y df

13



By rearranging the differential, we get the result.

Theorem 9 looks at the Taylor approximation of the non-SUR GLS estimator
Bec for the SEM panel system.

Theorem 9 (The first order Taylor approximation of the cc case) The
first order Taylor approximation of the cc GLS estimator (.. of the panel SEM
model is

écc ~ Bols + SCCOG (42>

where

Seeo = — (X' X)) X vec((W) + W) Ep)

Ey=Y -V

where S, is the SEM sensitivity matrix S.. evaluated around zero and y =
vecY = X(X'X)"'X'y is the OLS fit. The central quantity of this result is
the OLS residual, which gets scaled twice, the matrix (X’X)™'X’ and the
symmetric weighting matrix W}, + Wy.

Proof The evaluation of the matrix differential S,.. around 6 = 0 is

Seco = 0Bee/ 9050
= [X'X]' X' (Ir @ W) X (X' X)Xy
+(X’X)‘1X’(IT ® WN)X(X/X)_IX/y
—(X' X)X (Ir @ (Wi + W)
= —(X'X)' X (Ir @ (W + W) (y — 9). (43)

4 Simulation study: how good are Taylor approximations of GLS
estimates?

In this section, we use simulated data to compute the (generalized) least
squares GLS estimates and their corresponding first order approximations,
that were given in Theorems 2, 4, 7 and 9. We set the dimension of the panel
system to T" = 2, the number of observations to N = 50, 100, 400, and then Iy
as an NT x NT identity matrix, D, = diag(p1, p2), and Dy = diag (61, 0). We
set p = (p1,p2) = (0.2,0.15)" for Theorems 2 and 4, ¢ = (6, 62)" = (0.1,0.3)’
for Theorem 7, and 6 = 0.3 for Theorem 9.
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Two regressors X are drawn randomly from two 7" x 2 matrices of uniformly
distributed random numbers from a uniform distribution U0, 1]. We fix the
regression coefficient values as 51 = (1,2) and [y = (0.5, 1.5).

We choose two neighborhood matrices Wy as follows:

0 05050 ---0 01 0 0---0
050050 ---0 050050 ---0

W, — O 05 0 05 --- 0 W, - 0 05 0 05--- O (44)
0 --- 0050 05 0 --- 005005
0 --- 005050 0O ---0 0 1 0

We generate the error terms in e from a bivariate normal distribution N[0, X]
with mean 0 and covariance matrix Y. The following two choices of 3 have
been used, the first being the uncorrelated case and the second being the

correlated:
05 0 0.50.3
21 == 5 22 == (45)
0 04 0304

Furthermore, we use the four combinations of the two choices of Wy and X
matrices to generate the data for the response values y in the two models. For
Theorems 2 and 4, we have y calculated using SUR model (3), i.e.

Yy = (INT_Dp®WN)_1(Xﬁ+€)- (46)
For Theorems 7 and 9, we can simulate y using the reduced form model, i.e.
y=XB+ (Iny — Dy @ Wy) e (47)

After generating the data, we calculate the corresponding GLS estimates 3
and their approximations 3 as given in Theorems 2 and 4 for the SUR-SAR
model, and Theorems 7 and 9 for the SEM model, respectively.

To get an overview of the approximation property of our sensitivity approach
we calculate the mean squared error (MSE) between the estimators 5 and the
true values (8 of the regression coefficients:

MSE(3) = (8- 8) (8- B).
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Since we are simulating a 2-dimensional system, we are estimating two spatial
correlation coefficients, for each equation one parameter, over a 2-dimensional
grid. We choose a grid between -0.8 and 0.8 with steps of 0.2, so we get a MSE
for 81 points for each estimator. These MSE calculations are presented in part
A2 of Appendix 6. To get a rough idea regarding what estimator is better in
terms of MSE, we suggest computing the following average MSE over the grid:

A N N A
AMSE,(B) =>_> MSE;;(B; pi, pj)/NM

i=1j=1

where MSE;; (B : pi, p;) stands for the MSE of the estimator B evaluated at the
grid point p;, p;. Similarly, we can evaluate an average MSE for the 4 possible
design points of weights and covariance matrices:

2
=1

AMSEs,w,(8) =3

=17

To get an overview of the simulation results we use the AMSE as a rough
guideline for a summary if the matrix combinations > and Wy matter or the
values of the spatial autocorrelation.

Table 1 and 2 show the AMSE for Theorem 2 using our summary programs
of the simulation. As we see, there are no differences between estimates and
approximations, a result that we have also shown theoretically.

Table 1. The AMSE, of estimates and approximations for Theorem 2 (N=10)

Bsr Bsro + Ssrop
1, Wi [ X, Wa |21, Wy | X, W2
3.9325 | 3.1327 | 3.9325 | 3.1327
Yo, Wy | g, Wa | Ea, Wy [Z2, Wa
4.1473 | 4.9678 | 4.1473 | 4.9678
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Table 2. The AMSEyx y of estimates and approximations for Theorem 2(N=10)

Pl o8] 06 -0a]-02] o [o2]o0a] o6 os

Bsk

—0.8 9.8785(7.4475|5.6425|4.3905|3.7173 | 3.6207 [ 4.0318 | 5.0363 | 6.6324
—0.6 9.0683 [ 6.6232 [4.8398 [3.5732|2.8352|2.7177|3.1116 | 4.0871 | 5.6204
—-0.4 8.5354 6.0524 (4.2165 [2.9113|2.1887|1.9952 | 2.3674 | 3.2997 | 4.8248
—0.2 8.1684 | 5.712 |3.7833|2.4719|1.7157|1.5133 [ 1.8674 |2.7809 | 4.2703

0 8.0487 [ 5.5195 [ 3.6247 [ 2.2658 | 1.4442 | 1.2327 | 1.5629 | 2.4372 | 3.8979
0.2 8.089 [5.5759(3.6423|2.2296|1.4312|1.1657 | 1.4849 (2.3423 |3.7847
0.4 8.3733[5.8542 [ 3.8685 2.4634 | 1.5972| 1.328 |1.5964 | 2.415 |3.8201
0.6 8.8887(6.2621|4.3248 |2.8963|1.9996 | 1.6764 [ 1.9319 |2.7318 |4.1391
0.8 9.6054 (6.9745 | 4.9366 | 3.5011 | 2.5884 | 2.2341 [ 2.4856 | 3.2388 | 4.5929

Bsro + Ssrop
—0.8 9.8785|7.4475 [ 5.6425|4.3905 | 3.7173 | 3.6207 [ 4.0318 | 5.0363 | 6.6324
—0.6 |9.0683|6.6232|4.8398 3.5732|2.8352(2.7177|3.1116 | 4.0871 | 5.6204
—0.4 |8.5354(6.0524 |4.2165|2.9113 [2.1887 | 1.9952|2.3674 | 3.2997 | 4.8248
—0.2 |8.1684]| 5.712 |3.7833[2.4719|1.7157|1.5133|1.8674 | 2.7809 |4.2703
0 8.0487 [5.5195 | 3.6247 | 2.2658 | 1.4442 | 1.2327 | 1.5629 | 2.4372 | 3.8979
0.2 8.089 |5.5759 |3.6423(2.2296 | 1.4312 | 1.1657 | 1.4849 | 2.3423 | 3.7847
0.4 8.3733|5.8542 [ 3.8685 [2.4634 | 1.5972 | 1.328 |1.5964 | 2.415 |3.8201
0.6 8.8887 [6.2621 |4.3248 |2.8963 | 1.9996 | 1.6764 | 1.9319 | 2.7318 | 4.1391
0.8 9.6054 | 6.9745 [ 4.9366 | 3.5011 | 2.5884 | 2.2341 | 2.4856 | 3.2388 | 4.5929

Table 3 shows the estimates and approximations for Theorem 4. Here we see
that W; produces results to the approximations not as good as W5 does. This
shows that even slight deviations in the neighborhood matrices can have a
large effect on the quality of the approximations.

Table 3. The AMSE, of estimates and approximations for Theorem 4 (N=10)

8= Bots + Szop

D1, Wy |31, Wa |2y, Wy |21, Wy
2.2003 | 2.7545 | 3.8691 | 3.8524
3o, Wi | X, Wa | Zg, Wy | X, W2
2.6051 | 2.3779 | 3.964 3.3368

Table 4 shows that the approximations for Theorem 4 do not perform well if it
comes to the extremes of the correlation space: The largest deviations can be
seen for the spatial correlation £0.8. These results are in line with univariate
results for p, where we have found that the approximations will give good
results in terms of MSE, only in the interval £0.3.
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Table 4. The AMSEyx y of estimates and approximations for Theorem 4 (N=10)

P1| —0.8 | —0.6 | —0.4 | 70A2| 0 | 0.2 | 0.4 | 0.6 | 0.8
B=
—-0.8 2.6509 | 2.584 [2.8292 | 2.521 |2.0233
—0.6 2.9014 (2.8403 | 3.0877|2.7941 | 2.2898
—-0.4 2.801 7403 |2.9724 | 2.678 |2.1696
—0.2 2.5299 (2.4818 (2.7423 [2.4282|1.9354
1.
1.

7562 |1.9179
.027312.1756

2.5616 | 3.7564

2. 2.8317(4.0263

2. 9183 |2.0656 | 2.7104 | 3.8949

2. 6424 1.8248 |2.4606 | 3.6578

0 2.3078(2.2607 | 2.4902 | 2.2044 7122]1.4295|1.5803 |2.2395 | 3.4319
0.2 2.2214(2.1574(2.3926 (2.1104 5922 3393|1.4898 |2.1286 | 3.3271
2. .4182]1.5638 |2.2385 | 3.4284

2. 7382|1.8951|2.5518 | 3.7422

3. 3

3201 |2.4646 | 3.1293 [ 4.3072

0.4 2.2966 2362 (2.5021 (2.1936|1.7008
0.6 2.6067 5543 2.8154 |2.5205|2.0144
0.8 3.192 1484 (3.3613 [3.0733|2.5852
Bois + Szop

[ N e e L

—-0.8 4.1846 | 3.164 [2.5525(2.3278| 2.548 |3.2104|4.2653|5.7536 | 7.6613
—0.6 3.6843 [2.6376 [ 2.0294 [ 1.8367 | 2.045 |2.7077|3.7463 | 5.2249 | 7.1559
—0.4 3.3968(2.3392|1.7267|1.5174|1.7278|2.3895 | 3.4686 | 4.9634 | 6.8299
—0.2 3.2666 | 2.194 [1.5985(1.3909|1.6318|2.2505 | 3.3363 |4.8279 |6.7409

0 3.3198(2.3026 | 1.6658 | 1.4702 | 1.7122|2.3534 | 3.3954 | 4.8896 | 6.768

0.2 3.5818(2.5962 [1.9576 [1.7701 | 1.9563 | 2.6151 | 3.6924 | 5.1753 | 7.092
0.4 4.0684 [ 3.0651 | 2.4356 | 2.2245|2.4475|3.0784 [ 4.1366 | 5.6087 | 7.5192
0.6 4.74 13.6903| 3.074 (2.8873| 3.117 [3.7653|4.8177|6.2966 | 8.1996
0.8 5.5896 [4.5524 3.9354 | 3.755 | 3.9505|4.6121|5.6943 | 7.2045 | 9.0915

Tables 5 and 6 show the quality of the approximations for Theorem 7. In
terms of MSE, the difference between the estimates and approximations are
the smallest if we compare them with the previous simulation results. This
shows that the approximations work better for the SUR-SEM model.

Table 5. The AMSEj of estimates and approximations for Theorem 7 (N=10)

Bsem Bsur + Ssurq
D1, Wi |31, Wa |51, W) |51, W,
2.3737 2.058 1.7048 | 1.5203
3o, Wi | X, Wa | Zg, Wy | X, W2
3.2821 | 3.7147 | 1.7609 | 2.9549

Table 6. The AMSEy y of estimates and approximates for Theorem 7 (N=10)
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> %] —08] —06] —0a]-02] o Jo2] o4 ] o6 ] os

BSG’V?‘L
—0.8 |5.7151|4.8568 |3.9427 [3.32493.1249|3.0734 |3.1172 | 3.3758 | 3.8706
—0.6 |5.3165|4.4214 |3.5598 [3.0534 | 2.7224 | 2.6841 | 2.7681 | 2.9402 | 3.4631
—0.4 |4.9452|4.0754 | 3.204 [2.6976|2.4362| 2.328 |2.3701 |2.5887 |3.0425
—0.2 |4.54213.6855 |2.9465 | 2.363 |2.0918|2.0057 |2.0133 |2.2216 |2.7185
0 4.3426 | 3.4556 | 2.7082 [2.1504 | 1.8392 | 1.7481 | 1.7426 | 1.9023 | 2.4046
0.2 4.1975| 3.423 [2.6121 | 2.076 |1.7572| 1.621 |1.6116 |1.7746 |2.2572
0.4 4.3257 | 3.448 [2.6807 [2.0833|1.7811(1.5967 | 1.6059 | 1.7407 | 2.2287
0.6 4.4737(3.7342 [ 2.8552 [2.2581 | 1.9114 | 1.7632 | 1.7325 | 1.8464 | 2.3199
0.8 4.8 | 4.098 | 3.226 [2.6016|2.2669 |2.0653 |2.0049 |2.1525 |2.5969
Bsur + Ssuraq
—0.8 |2.03082.0337 |2.0408 [2.0602 | 2.1427 | 2.2378 | 2.308 |2.4432 |2.5487
—0.6 |1.9652|1.9699 | 1.942 [2.0037|2.0359|2.0936 |2.1728 | 2.285 |2.3874
—0.4 |1.9785|1.9354 |1.8897 [1.9479|1.9795|1.9939 |2.0842 | 2.1769 |2.2535
—0.2 |1.9281|1.8844(1.8919 [1.8672| 1.9 |1.9487|1.9951 [2.0873[2.1724
0 1.9509 | 1.877 [1.8491|1.8537|1.8392 [1.8873 [1.9178 |1.9604 |2.0619
0.2 1.9696 | 1.9338 [ 1.8669 | 1.8505 [ 1.8397 | 1.8476 | 1.8784 | 1.9272 [ 2.0074
0.4 2.0416 | 1.9339 [ 1.8968 | 1.8499 | 1.8454 | 1.7886 | 1.8365 | 1.8772 | 1.9519
0.6 2.0872(2.0198 [ 1.9315 [ 1.8742 | 1.8622 | 1.8415 | 1.8503 | 1.8585 | 1.8917
0.8 2.1982(2.0955 | 1.992 [1.9328|1.9165|1.8894 |1.8513 [1.8799 | 1.8771

Table 7 and 8 show very good agreements between estimates and approx-
imations. The common correlation (cc) case reduces the amount of spatial
non-linearities and therefore linear approximations work quite well.

Table 7. The AMSEy, of estimates and approximations for Theorem 9 (N=10)

écc Bols + Sceof
3, Wi |21, Wo |2, Wy [Eq, Wy
2.7472 | 2.5135 | 2.8321 | 2.3878
3o, Wi | X, Wa | Zg, Wy | X, W2
2.5899 | 2.0581 | 2.4943 | 1.9629

Table 8. The AMSEy y of estimates and approximations for Theorem 9 (N=10)

Sl

—08] —0.6] —0oa] —02] o [o2] o4 ] 06 ] os
Bee
45566 3.7408 | 3.1324 [ 2.3765 [ 1.4236 | 1.388 [ 1.4277]1.7238]2.5251
Bots + Sceod
4.50213.7067 [ 3.0661 [ 2.3631 | 1.4236 | 1.3909 [ 1.4092 [ 1.7919 [ 2.0301

An alternative evaluation of the simulation study by distances can be found
in part A2 of Appendix 6.

5 Conclusions

In this paper, we have considered two system panel spatial models and we
have conducted a sensitivity analysis to study the approximation quality of
the newly derived diagnostics based on MSE, Absolute and Eelative Distance
measures. We have proposed (generalized) least squares estimators and estab-
lished their sensitivity results with respect to the spatial correlation parameter
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in a SAR or SEM panel system. Based on the sensitivity matrices of the GLS
estimators we have computed a first order Taylor approximation for two types
of simple SUR based GLS estimators. By simulation comparisons we see that
these sensitivity and approximation results perform well, at least for small
vales of spatial correlations. We have found that the approximations work
better for the SUR-SEM model than for the SUR-SAR model in terms of
MSE. Also, for certain SUR-SAR models the neighborhood matrix seems to
have more influence on the approximation than the SUR covariance matrix.
Due to the multiplicity of potential influence factors, it is difficult to come
up with an overall judgement of the approximations across all spatial system
models.

Furthermore, the new approach might be useful for a Bayesian analysis using
MCMC because it can be highly non-linear for spatial models. Generally, good
proposal distributions are needed in a Metropolis step for the spatial correla-
tion coefficients, and might avoid unnecessary long estimation time, because
the simulation chain is better mixing if the proposal distribution generates less
autocorrelations. In further research studies this new approach can be used to
develop sensitivity results for space-time panel systems, which easily gets into
high dimensions.
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