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Abstract 

This study develops new rank tests for panels that include panel unit root tests as a special 

case. The tests are unusual in that they can accommodate very general forms of both serial 

and cross-sectional dependence, including cross-unit cointegration, without the need to 

specify the form of dependence or estimate nuisance parameters associated with the 

dependence. The tests retain high power in small samples, and in contrast to other tests that 

accommodate cross-sectional dependence, the limiting distributions are valid for panels with 

finite cross-sectional dimensions. 
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1 Introduction

This paper develops new rank1 tests for panels which include panel unit root tests as a

special case. The tests are unusual in that they can accommodate very general forms of se-

rial and cross-sectional dependence in panels, including cross-unit cointegration, without

the need to either specify the form of dependence or to estimate nuisance parameters as-

sociated with the dependence. This is in contrast to approaches in the earlier literature on

non-stationary panels, which typically attempt to accommodate the dependence by estima-

tion, either parametrically or nonparametrically, so that the limiting distributions of the test

statistics are purged of nuisance parameters. A potential disadvantage of this more conven-

tional approach is that one must make choices in the process of estimation which can have

a substantial impact on subsequent inference. More to the point, in small samples the best

choices are not easily apparent, and poor choices may further aggravate problems of size

distortion and loss of power.

Examples of the conventional approach to treating dependence in non-stationary panels

include both the so-called first- and second-generation panel unit tests. To give some exam-

ples, among the early first-generation panel unit root tests, Levin et al. (2002), Im et al. (2003)

and numerous others used an augmented Dickey–Fuller (ADF) approach to accommodate

serial dependence, where the order of the augmentation was treated as being unknown and

likely heterogeneous among the units of the panel. This order was then chosen by any one

of a number of criteria. Nonparametric treatments of the serial dependence analogous to the

Phillips–Perron approach are also possible for panels, in which case a bandwidth parameter

and a kernel function must be chosen for estimation of the long-run variance.

For cross-sectional dependence, researchers who employed the first-generation tests ei-

ther assumed it was absent, or assumed that the dependence could be adequately captured

by time effects. In the latter case, time effects were estimated and then extracted prior to es-

timating the individual ADF regressions for each cross-sectional unit. However, time effects

presume a specialized form of cross-sectional dependence. Accordingly, second-generation

panel unit root tests sought to generalize the forms of permissible cross-sectional depen-

dence by assuming an unobserved common factor structure, see for example Bai and Ng

(2004), and Moon and Perron (2004). The basic approach required one to first choose or

1With rank we refer to the rank of the long-run covariance matrix, i.e. to the number of non-cointegrated I(1)
series (common trends) in the panel of time series.
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estimate the number of common factors using some criterion. Next, conditional on hav-

ing chosen the number of factors, these common factors were estimated by principle com-

ponents and then extracted prior to treating the serial dependence either parametrically or

nonparametrically. Whether the dependence is serial or cross-sectional, the underlying strat-

egy shared by both the first- and second-generation tests is to estimate the source of the

dependence and eliminate its effect on the limiting distribution of the test statistics.

Another important issue that pertains to most first- and second-generation tests is that

the form of the null and alternative hypotheses is somewhat restricted. Specifically, these

tests typically take the null hypothesis to be that all series in the panel are unit root non-

stationary and the alternative hypothesis to be that at least some series are trend-stationary.

This leaves a rejection of the null somewhat uninformative, because the rejection does not in-

dicate how many series are stationary (or more generally, when cross-sectional dependence

is allowed how many cointegrating relationships there are). A notable exception on this is-

sue is the work of Ng (2008), which allows one to test the fraction of the panel with a unit

root. However, the extent of cross-sectional dependence is highly restricted in that paper

since cross-unit cointegration, defined below in Section 2, is not permitted.

Motivated by these issues, the current paper uses an entirely different approach to ac-

commodate general serial and cross-sectional dependence of unknown form. In contrast to

existing panel unit root tests, the tests developed in this paper are based on the rank of the

long-run variance matrix of the first differences of the N-dimensional vector of stacked ob-

servations of the observed panel data, where N denotes the cross-section sample size. This

makes the tests suitable both as conventional panel unit root tests with the corresponding

null and alternative hypotheses, or, more generally, as flexible rank tests that allow one to

determine the number of common trends in the panel.

An additional practical feature of the new tests is that they are constructed such that

one does not have to make any choices regarding the treatment of the underlying serial or

cross-sectional dependencies. Thus, with these tests one does not need to make any choices

regarding lag augmentation, kernel, bandwidth or the number of common factors. Specif-

ically, the tests are constructed as simple variance ratios whose limiting distributions are

already invariant to both serial and cross-sectional dependence, so that there is no need to

estimate these dependencies or make choices associated with their estimation. Our approach

is closely related to the univariate unit root and cointegration tests of Breitung (2002), which
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also avoid choices of this kind.

Despite their simplicity, the new tests are remarkably general. In fact, except for some

mild regulatory conditions, there are virtually no restrictions on the forms of serial and cross-

sectional dependence. Accordingly, the techniques are applicable under assumptions typi-

cally made for first- and second-generation tests, but can also accommodate more general

form of dependencies. Furthermore, in contrast to most first- and second-generation ap-

proaches, the tests developed in this paper do not require letting N go to infinity, and in

fact perform well even when N is relatively small. We believe that these various features

make our tests some of the most widely applicable.2 It has to be noted that the new tests are

also very powerful, compared to first-generation tests, in case of cross-sectionally indepen-

dent data, suggesting that the cost of not requiring any prior knowledge regarding possible

cross-sectional dependence is very low.

The remainder of the paper is organized as follows. Section 2 presents the assumptions

and discusses the setup, based upon which in Section 3 the asymptotic distributions of our

rank test statistics are derived. Section 4 then discusses some of the distinctive features of

the new tests, and compares them to some second-generation factor-based tests. The small-

sample properties are studied by Monte Carlo simulations in Section 5. Section 6 provides

two brief empirical illustrations taken from the exchange rate and growth and convergence

literatures, and Section 7 briefly concludes the paper.

2 Assumptions and Setup

We consider an N-dimensional vector yt = [y1t, . . . , yNt]
′ given by

yt = αpdp
t + ut, (1)

where dp
t = [1, t, . . . , tp]′ with p ≥ 0 is a polynomial trend function satisfying d0

t = 1, with

αp being the associated matrix of trend coefficients. The typical specifications considered

for dp
t include a constant or a constant and a linear time trend, corresponding to p = 0 and

p = 1, respectively, and these are also the specifications considered in the simulation and

application sections of this paper.

2It has to be noted here that the tests developed in Palm et al. (2009) are also applicable to panel data with
quite unrestricted cross-sectional dependencies. Their tests are, however, more computationally intensive as
they resort to bootstrap techniques.
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The main variable of interest is ut = [u1t, . . . , uNt]
′, which represents the stochastic part

of yt. In order to describe its unit root and cointegration properties, we introduce an N × N

orthogonal matrix C = [C1, C2], which is such that C′C = CC′ = IN and whose component

matrices C1 and C2 are of dimensions N × N1 and N × N2 with N2 = N − N1, respectively.

The matrix C1 is chosen to give a basis for the cointegrating space of ut, while C2, which is

such that C′
2C1 = 0 and C′

1C2 = 0, gives the common (unit root or stochastic) trends. The

matrix C allows us to rotate ut into stationary and unit root subsystems as

wt = C′ut =

[
C′

1ut

C′
2ut

]
=

[
w1t

w2t

]
, (2)

where the first N1 series w1t are stationary, while the remaining N2 series w2t are non-

stationary and non-cointegrated. The corresponding vector of stationary errors is given by

vt =

[
w1t

∆w2t

]
=

[
v1t

v2t

]
, (3)

whose long-run covariance matrix will be fundamental to the testing approach used in this

paper. For weakly stationary stochastic processes at and bt with mean zero and absolutely

summable covariance function we define the long-run covariance matrix as

Ωab =
∞

∑
s=−∞

E(atb′
t−s) = Σab + Γab + Γ′

ab,

where Σab = E(atb′
t) and Γab = ∑∞

s=1 E(atb′
t−s) are the contemporaneous and one-sided

long-run covariance matrices, respectively. The long-run covariance matrix of vt is parti-

tioned in the following way:

Ωvv =

[
Ωv1v1 Ωv1v2

Ωv2v1 Ωv2v2

]
=


ω2

v1
ωv1v2 . . . ωv1vN

ωv2v1 ω2
v2

. . . ωv2vN
...

...
. . .

...
ωvNv1 ωvNv2 . . . ω2

vN

 .

Assumption 1 is enough to obtain our main results.

Assumption 1. As T → ∞,

1√
T

⌊sT⌋

∑
t=1

vt →w B(s) = Ω1/2
vv W(s) =

[
Ω1/2

v1.v2
Ωv1v2 Ω−1/2

v2v2

0 Ω1/2
v2v2

] [
W1(s)
W2(s)

]
,

where Ωvv is positive definite, →w and ⌊x⌋ signify weak convergence and integer part of x, respec-

tively, Ωv1.v2 = Ωv1v1 − Ωv1v2 Ω−1
v2v2

Ωv2v1 and W(s) = [W1(s), . . . , WN(s)]′ is an N-dimensional

vector of independent standard Brownian motions that is partitioned conformably with vt.
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Assumption 1 is stated directly in terms of the required invariance principle rather than

primitive regularity conditions. This is convenient because it is this result that drives the dis-

tribution theory and we are not specifically interested here in the various sets of regularity

conditions under which it holds. It may be noted, however, that there are a variety of more

primitive conditions that lead to Assumption 1. For example, Phillips and Durlauf (1986)

give conditions requiring that vt be weakly stationary with finite moment greater than sec-

ond order and that it satisfies well-known α-mixing conditions. Phillips and Solo (1992) give

other sets of conditions based on linear processes. Our approach allows for general forms of

cross-sectional dependence as well as series specific patterns of serial correlation.3

The unit root and cointegration behavior of ut is governed by Ω∆u∆u, the long-run covari-

ance matrix of ∆ut, whose rank is henceforth going to be denoted as r = rk(Ω∆u∆u). This

matrix can be directly related to the long-run covariance matrix of the corresponding rotated

vector ∆wt. In particular, by using (2) and (3), and the fact that ∆v1t is over-differenced with

zero long-run variance, we obtain

Ω∆u∆u = CΩ∆w∆wC′ = C

[
Ω∆v1∆v1 Ω∆v1v2

Ωv2∆v1 Ωv2v2

]
C′ = C

[
0 0
0 Ωv2v2

]
C′ = C2Ωv2v2 C′

2,

showing again that r = N2. If r = N, so that the rank is full, then C = C2 = IN , meaning that

now all the elements of ut are unit root non-stationary and non-cointegrated. If, in addition,

the series are cross-sectionally independent and hence Ω∆u∆u is diagonal, then we have the

scenario for which the first-generation unit root tests were developed. If, on the other hand,

the rank is reduced such that r < N, then there are only N2 < N unit roots, which can be

due to either unit-specific stationarity, or cross-unit cointegration, or a combination of the

two. The extreme case occurs when r = 0, in which C = C1 = IN , suggesting that now all

the elements of ut are stationary. This discussion shows that as soon as one abolishes the

cross-sectional independence assumption the relevant quantity to understand the dynamic

behavior of the panel of time series is not the number of unit roots in the individual series

but rather the number of common trends, which equals the rank of Ω∆u∆u.

Let us next formally define the concept of cross-unit cointegration, already alluded to

above. A more complete discussion of this concept, which becomes more relevant for pan-

els of multivariate time series is given in Wagner and Hlouskova (2010). Denote by H an

3In principle even the assumption of weak stationarity could be abandoned. It is sufficient that the long-run
covariance matrix, more generally defined via Ωvv = limT→∞ E 1

T (∑
T
t=1 vt)(∑T

t=1 vt)
′, exists.
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N × n1 diagonal selection matrix comprised of zeros and ones that picks the individually

stationary units of ut. For example, if uit is stationary, then H has as one of its columns the

vector [0, . . . , 0, 1, 0, . . . , 0]′ with the one located at the ith position. Note also that n1 ≤ N1.

The cross-unit cointegrating space of ut is given by the space spanned by D = (IN −

H(H′H)−1H′)C1. That is, the cross-unit cointegrating space is the span of the projection

of the cointegrating space C1 of ut on the orthogonal complement of H, which includes all

cointegrating relationships that are not made up of linear combinations of unit-specific pro-

cesses that are already stationary. The cross-unit cointegrating rank is the dimension of the

space spanned by D. Altogether we thus have r = N − n1 − rk(D).

3 The Tests

The quantity of interest is r, the rank of Ω∆u∆u. In this section we develop tests that are

designed to test H0 : r = r0 versus H1 : r = r1 < r0. That is, the rank being r0 is tested

against a rank smaller than r0. Obviously, the smallest value of r0 that can be considered is

r0 = 1.

3.1 The Rank Statistics and Their Limiting Distributions

The rank tests that we consider are based on two ingredients. One is an extension of regres-

sions involving superfluous deterministic trend terms (see Park, 1990 and Park and Choi,

1988) from the time series to the panel case, and the other is long-run variance estimation

based on untruncated kernels (see Kiefer and Vogelsang, 2002a).

We begin by discussing the variance components of the test statistics. In particular, con-

sider the least squares residual

ûp
t = yt −

T

∑
t=1

ytd
p′
t

(
T

∑
t=1

dp
t dp′

t

)−1

dp
t .

In case of stationarity of ut, the estimated long-run variance based on ûp
t is given by

Ω̂p =
1
T

M

∑
j=−M

k(j/M)
T

∑
t=j+1

ûp
t ûp′

t−j =


ω̂2

1p ω̂12p . . . ω̂1Np

ω̂21p ω̂2
2p . . . ω̂2Np

...
...

. . .
...

ω̂N1p ω̂N2p . . . ω̂2
Np

 ,

where k(x) is a kernel function and M is the bandwidth. Kiefer and Vogelsang (2002a) have

shown that if untruncated such that M = T, the estimator Ω̂p converges to a random variable
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that is proportional to Ω, and whose precise shape depends on the choice of k(x). In case

of the Bartlett kernel k(x) = 1 − |x|
T , Kiefer and Vogelsang (2002b) show that the formula for

Ω̂p reduces to

Ω̂p =
2

T2

T

∑
t=1

Ŝp
t Ŝp′

t ,

where Ŝp
t = ∑t

s=1 ûp
s .

Clearly, in our situation ûp
t will not be asymptotically stationary, at least under the null

hypothesis. Thus, let us partition ŵp
t = C′ûp

t = [ŵp′
1t , ŵp′

2t ]
′ such that the first N1 series ŵp

1t are

asymptotically stationary, while the remaining N2 series ŵp
2t are unit root non-stationary and

non-cointegrated. The required normalization matrix to take into account the different con-

vergence rates for the stationary and integrated components is given by DT = diag(IN1 ,
√

TIN2).

By using Assumption 1, rotation by C and standard results for least squares detrended vari-

ables it follows that as T → ∞

1
T

D−1
T Ω̂pD−1

T = 2C
1

T3

T

∑
t=1

[
R̂p

1tR̂
p′
1t T−1/2R̂p

1tR̂
p′
2t

T−1/2R̂p
2tR̂

p′
1t T−1R̂p

2tR̂
p′
2t

]
C′

→w 2C

[
0 0
0
∫ 1

0 Rp
2(s)R

p
2(s)

′ds

]
C′, (4)

where R̂p
t = ∑t

s=1 ŵp
s , Rp(s) =

∫ s
0 Bp(r)dr and Bp(s) = Ω1/2

vv Wp(s) with

Wp(s) = W(s)−
∫ 1

0
W(r)dp(r)′dr

(∫ 1

0
dp(r)dp(r)′dr

)−1

dp(s)

denoting the residual from projecting W(s) onto dp(s) = [1, s, . . . , sp]′ with d0(s) = 1. All

vectors are partitioned conformably with C. Similarly, the contemporaneous variance esti-

mator,

Σ̂p =
1
T

T

∑
t=1

ûp
t ûp′

t =


σ̂2

1p σ̂12p . . . σ̂1Np

σ̂21p σ̂2
2p . . . σ̂2Np

...
...

. . .
...

σ̂N1p σ̂N2p . . . σ̂2
Np

 ,

must also be normalized accordingly in the presence of unit root non-stationarity in order to

achieve convergence:

D−1
T Σ̂pD−1

T = C
1
T

T

∑
t=1

[
ŵp

1tŵ
p′
1t T−1/2ŵp

1tŵ
p′
2t

T−1/2ŵp
2tŵ

p′
1t T−1ŵp

2tŵ
p′
2t

]
C′

→w C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)B

p
2(s)

′ds

]
C′. (5)
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The convergence results in (4) and (5) imply that test statistics with nuisance parameter

free limiting distributions can be constructed by simply using appropriately normalized ma-

trix ratios of Σ̂p and Ω̂p. The first test statistic of this type that we will consider can be seen

as a multivariate version of the ϱ̂T statistic introduced by Breitung (2002) in the time series

context. It is given by

MB =
1

2T
tr(Ω̂pΣ̂−1

p ).

The asymptotic distribution of this statistic under the null hypothesis 0 ≤ r0 ≤ N is easily

derived from the above results. Indeed, by using the cyclical property of the trace,

MB = tr
(

1
2T

D−1
T Ω̂pD−1

T (D−1
T Σ̂pD−1

T )−1
)

→w tr

C

[
0 0
0
∫ 1

0 Rp
2(s)R

p
2(s)

′ds

]
C′
(

C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)B

p
2(s)

′ds

]
C′
)−1


= tr

(∫ 1

0
Rp

2(s)R
p
2(s)

′ds
(∫ 1

0
Bp

2(s)B
p
2(s)

′ds
)−1

)

= tr

(∫ 1

0
Qp

2(s)Q
p
2(s)

′ds
(∫ 1

0
Wp

2(s)W
p
2(s)

′ds
)−1

)
, (6)

where Qp(s) =
∫ s

0 Wp(r)dr is again partitioned conformably with C.

The second test statistic that we consider is based on the properties of regressions that

include superfluous deterministic trend regressors. Towards this end, suppose that the data

are generated as before via (1) but that the trend polynomial used in the least squares de-

trending is now of degree q > p. If ut is stationary, then the coefficients corresponding to the

superfluous trends tp+1, . . . , tq are estimated consistently to be zero as T → ∞. Therefore, a

coefficient restriction test such the Wald test will have a well-defined limiting distribution in

this case, although it will not necessarily be free of nuisance parameters. On the other hand,

if ut is non-stationary, then (1) becomes spurious and the coefficients corresponding to the

superfluous regressors will not go to zero asymptotically. This in turn implies that the Wald

statistic becomes Op(T). This led Park and Choi (1988) to consider the Wald statistic divided

by T as a unit root test statistic. Our test statistic can be seen as a multivariate analog to this

statistic, and is given by

MJ = tr(Σ̂pΣ̂−1
q − IN),

where Σ̂q is the estimated residual variance from (1) when the fitted trend polynomial is of

degree q > p. Vogelsang (1998) studied the Wald statistic of Park and Choi (1988) and found
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that it has strongly rising power up until q = 9, after which the power increments drop off.

In the simulations and applications contained in this paper we only report results for this

test constructed for the value of q = 9. Similarly to before, under the null hypothesis of rank

equal to r0,

MJ = tr
(

D−1
T Σ̂pD−1

T (D−1
T Σ̂qD−1

T )−1 − IN

)
→w tr

(
C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)B

p
2(s)

′ds

]
C′

×
(

C

[
Σv1v1 0

0
∫ 1

0 Bq
2(s)B

q
2(s)

′ds

]
C′
)−1

− IN

)

= tr

([
IN1 0
0

∫ 1
0 Bp

2(s)B
p
2(s)

′ds(
∫ 1

0 Bq
2(s)B

q
2(s)

′−1

]
− IN

)

= tr

(∫ 1

0
Wp

2(s)W
p
2(s)

′ds
(∫ 1

0
Wq

2(s)W
q
2(s)

′ds
)−1

− IN2

)
(7)

as T → ∞, with obvious definitions of Bq(s) and Wq(s).

Let us now consider the behavior of the test statistics under the alternative that the

rank r1 = 0, which corresponds to the conventional stationary alternative hypothesis con-

sidered for example by Levin et al. (2002) for cross-sectionally independent panel data.

Given that 1√
T

R̂p
1t →w Bp

1(s) and because C = C1 = IN under this alternative, we obtain

Ω̂p = 2
T2 ∑T

t=1 R̂p
1tR̂

p′
1t →w 2

∫ 1
0 Bp

1(s)B
p
1(s)

′ds and Σ̂p = 1
T ∑T

t=1 ŵp
1tŵ

p′
1t →p Σv1v1 , and there-

fore

T MB →w tr
(∫ 1

0
Bp

1(s)B
p
1(s)

′ds Σ−1
v1v1

)
,

so that MB = Op(T−1), while

MJ →w tr(Σv1v1 Σ−1
v1v1

− IN) = 0.

Hence, in this case both statistics degenerate to zero under the alternative. For any other

alternative 0 < r1 < r0, the statistics converge to the trace of similar random matrices as

under the null, but with dimensions corresponding to the rank under the alternative. Ac-

cordingly, these test statistics can be used flexibly to test any value for the rank. It should be

noted, however, that it is only when the alternative is taken to be r1 = 0 that MB and MJ are

consistent. For all other alternatives, while the tests retain power, the tests are not consistent

in the sense that power does not go to one asymptotically.
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These observations in turn lead us to consider a variant of the MB statistic, that is a

consistent test of the null hypothesis of full rank against any alternative 0 ≤ r1 < N. Specif-

ically, the following multivariate analog of the inverse of the Breitung (2002) statistic will be

considered:

MIB = 2T tr(Σ̂pΩ̂−1
p ).

Under the full rank null hypothesis it follows directly from our previous results that

MIB →w tr

(∫ 1

0
Wp

2(s)W
p
2(s)

′ds
(∫ 1

0
Qp

2(s)Q
p
2(s)

′ds
)−1

)
.

Unlike the MB statistic, the MIB statistic diverges should the rank be less then full. To show

this property, we first rewrite MIB equivalently as

MIB = 2T
N

∑
i=1

λ̂i,

where λ̂1 ≥ . . . ≥ λ̂N are the eigenvalues of the matrix Σ̂pΩ̂−1
p arranged in descending

order. Suppose that the rank is less than full in which case N1 > 0. Then, the eigenvalues

λ̂1, λ̂2, ..., λ̂N1 correspond to the stationary components and it follows that

1
T

MIB = 2
N1

∑
i=1

λ̂i + op(1) →w 2
N1

∑
i=1

λi = tr

(
Σv1v1

(∫ 1

0
Bp

1(s)B
p
1(s)

′ds
)−1

)
,

where λi is an eigenvalue of the matrix Σv1v1(
∫ 1

0 Bp
1(s)B

p
1(s)

′)−1. Thus, MIB = Op(T), sug-

gesting that, unlike the other tests, MIB is consistent against all alternatives r1 < N, and not

just against r1 = 0, which we can exploit.

A further modification is required in case that the null rank tested is less than N, since

in this case the first N1 eigenvalues diverge and so will the MIB statistic. To circumvent this

problem we modify the statistic to

MMIB = 2T
N

∑
i=N−r0+1

λ̂i,

which in fact coincides with the Λq statistic studied by Breitung (2002). Note that MIB =

MMIB when r0 = N. Under the null hypothesis that the rank is r0, it follows that

MMIB →w tr

(∫ 1

0
Wp

2(s)W
p
2(s)

′ds
(∫ 1

0
Qp

2(s)Q
p
2(s)

′ds
)−1

)
,

whereas MMIB = Op(T) if r1 < r0.

10



The eigenvalue form of the MMIB statistic suggests a natural procedure that can be

implemented to determine the rank of Ω∆u∆u. The idea is to proceed as is commonly done in

cointegration or common trends testing, as outlined in e.g. Johansen (1995), by successively

testing down the rank of Ω∆u∆u using a sequence of MMIB statistics. Specifically, one begins

by testing the full rank null hypothesis r0 = N. If this null hypothesis is not rejected, one

concludes that all the cross-sectional units are unit root non-stationary and furthermore non-

cointegrated. On the other hand, if this initial null hypothesis is rejected, the sequential

testing proceeds by testing r0 = N − 1, this time using the MMIB statistics based on only

the N − 1 smallest eigenvalues. The testing then continues by sequentially dropping the

largest eigenvalue until the null hypothesis cannot be rejected, or until zero rank is reached.

Note that although the same sequential procedure can in principle also be applied to

the MB and MJ tests, this is generally not recommended. The reason is that the resulting

procedures will be only able to discriminate between full and zero rank with unit asymptotic

power, but will have asymptotically diminished power for intermediate cases.4

3.2 Critical Values For the Rank Tests

To incorporate the dependence of the asymptotic distributions on N2, response surface re-

gressions were used to obtain 5% critical values for each of the tests. We experimented

with a variety of specifications and opted for a linear regression model of the form q =

δ′x + η, where q is the simulated 5% critical value and η is an error term. The choice of

regressors to include was dictated by overall significance subject to the requirement that

the R2 of the regression be no smaller than 0.999. The set of regressors that we retained

for the MIB, MMIB and MJ tests is x = (1, N1/4
2 ,

√
N2, N2, N2

2 , N3
2 , N2

2
T , N3

2
T , 1

T , 1
T2 , N2

T2 , N2
2

T2 )
′,

while for the MB test, x = (1, 1
N1/4

2
, 1√

N2
, 1

N2
, 1

N2
2
, 1

N3
2
, 1

TN2
2
, 1

TN3
2
, 1

T , 1
T2 , 1

T2N2
, 1

T2 N2
2
)′. The simu-

lated critical values are based on 1, 000 draws from the limiting distribution of each of the

three test statistics with normal random walks of dimension N2 = 1, 2, . . . , 50 and length

T = max{30, 2N2}, max{30, 2N2}+ 5, . . . , 300 in place of the vector Brownian motion W(s).

This implies that there are a total of 2,165 observations available for each regression. The

resulting estimated response surface coefficients are reported in the top panel of Table 1.

Unreported simulation results suggest that the fit of the response surface regressions can

4Another possibility is to consider maximum eigenvalue type statistics. However, unreported simulation
results suggest that the trace statistics perform better in small samples, and we therefore only consider these
further.
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be poor when N2 is close to the sample endpoints. To compensate for this we simulate critical

values for the values of N2 = 1, 2, . . . , 5 and T = 1, 000. These are reported in the bottom

panel of Table 1.

3.3 First-generation Analogues as a Special Case

Should it be reasonable to assume the data are cross-sectionally independent, we can impose

this restriction on our trace statistics to obtain first-generation analogs. Although circum-

stances in which this assumption is expected to be justifiable are likely to be rare, exploiting

cross-sectional independence leads to simplified test statistics.

As is typical for first-generation tests, the null and alternative hypotheses are formulated

as r0 = N versus r1 < N. Thus, because C = C2 = IN under this null, 1√
T

ûp
t →w Ω1/2

vv Wp(s)

as T → ∞, where Ωvv = Ωv2v2 = diag(ωv1 , ..., ωvN ) in case that cross-sectional dependence

is absent. The diagonal nature of Ωvv suggests that nuisance parameter free test statistics can

be constructed simply using sums of unit-specific variance ratios. Consider as an example

the MB statistic. An easy way to eliminate the dependence on ω2
vi

is to take the ratio before

summing over the cross-sectional dimension. This gives rise to the following between version

of the MB statistic:

BMB =
1

2TN

N

∑
i=1

ω̂2
ip

σ̂2
ip

.

By using similar steps as before, the limiting distribution under the null hypothesis as T →

∞ can be shown to be

BMB →w
1
N

N

∑
i=1

∫ 1
0 (Q

p
i (s))

2ds∫ 1
0 (W

p
i (s))

2ds
,

which depends on N, but where the individual limiting random variables are otherwise in-

dependent and identically distributed with constant mean and variance, written in a generic

notation as µ and σ2, respectively, with the dependence on p suppressed. This result is con-

venient because it lends itself to simple large-N asymptotics. In particular, by nontrivial

extensions of the sequential limit theory discussed in Phillips and Moon (1999), one could

formally establish that √
N(BMB − µ)

σ
→w N(0, 1)

as T → ∞ and then N → ∞. Under the alternative hypothesis the same statistic is op(1).

Another possibility is to sum over the cross-sectional dimension before taking the ratio,
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which results in the following within type MB statistic:

WMB =
1

2T
∑N

i=1 ω̂2
ip

∑N
i=1 σ̂2

ip

,

which also attains a limiting normal distribution after appropriate mean and variance nor-

malization. Similar arguments apply to the normalized within and between versions of the

MJ and MIB statistics, which are constructed in an analogous fashion. The appropriate

mean and variance adjustment terms, obtained from simulations based on 100, 000 draws of

scalar Brownian motions of length T = 1, 000, are provided in Table 2.

Note that, in contrast to the general form of our tests, because we are taking N to infinity,

the asymptotic distributions of the first-generation analogues do not depend N, suggesting

that we have only one set of critical values. However, this advantage comes at a relatively

high price. Firstly, cross-sectional independence has to be assumed, at least conditional on

time effects. Secondly, the tests can only be used to test the null hypothesis of full rank.

Thirdly, the large-N limiting normal distribution may provide a poor approximation in pan-

els where N is only small to moderately large. In Section 4 we will show that there are no

power losses when using the more robust trace statistics relative to existing first-generation

panel unit root tests even when there is no cross-sectional dependence in the data. For these

reasons, we see no real practical advantage for using the first-generation analogs of our trace

statistics.

4 Local Power

In this section we consider the local asymptotic power of our tests and compare it with

that of some popular first-generation panel unit root tests. In particular, we consider the

local alternative of N2 roots close to unity as disucssed in Phillips (1988), which amounts to

replacing ∆w2t = v2t in (2) with

∆w2t =
1
T

cw2t−1 + v2t, (8)

where c is a N2 × N2 drift parameter matrix that measures the extent of the deviation from

the null of rank N2. If c = 0, then ∆w2t = v2t and we are back in the scenario with N1

stationary and N2 non-stationary and non-cointegrated series. If, on the other hand, c =

diag(c1, . . . , cN2), then the series in w2t may be unit root non-stationary, locally stationary, or
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even locally explosive, depending on whether ci is zero, negative or positive, respectively. It

is also possible to specify c as a non-diagonal but nonzero matrix, in which case the series in

w2t may be near-integrated of different orders. By using the invariance principle for near-

integrated processes given in Phillips (1988, Lemma 3.1), we obtain

1√
T

⌊sT⌋

∑
t=1

v2t →w Ω1/2
v2v2

Jc(s)

as T → ∞, where Jc(s) =
∫ s

0 exp((s − r)c)dW2(r) is a standard vector diffusion or Ornstein-

Uhlenbeck process. This means that in order to obtain the local power functions of the rank

statistics the process W2(s) in the limiting null distributions should be replaced by Jc(s). For

example, in case of the MB statistic,

MB →w tr

(∫ 1

0
Kp

c (s)K
p
c (s)′ds

(∫ 1

0
Jp

c (s)J
p
c (s)′ds

)−1
)

(9)

as T → ∞, where Kp
c (s) =

∫ s
0 Jp

c (r)dr with Jp
c (r) being the detrended version of Jc(r).5

It is interesting to compare the power of our rank tests with the power of some of the

existing first-generation panel unit root tests for cross-sectionally independent data. In-

tuitively, because these tests impose diagonality on Ω∆u∆u we might expect them to have

higher power when this restriction is correct. To examine this, suppose therefore that Ωvv =

IN , so that the trend coefficients in αp are the only nuisance parameters. The drift parameters

are homogenous such that c = cIN . Under these assumptions it can be shown that the Im et

al. (2003) and Levin et al. (2002) statistics, henceforth denoted IPS and LL, respectively, have

the following local power functions as T → ∞:

IPS →w
1

σ
√

N

N

∑
i=1

c

√∫ 1

0
(Jp

ci(s))
2ds +

∫ 1
0 Jp

ci(s)dW2i(s)√∫ 1
0 (Jp

ci(s))
2ds

− µ

 ,

LL →w
1
σ

c

√∫ 1

0
Jp

c (s)′J
p
c (s)ds +

∫ 1
0 Jp

c (s)′dW2(s)ds√∫ 1
0 Jp

c (s)′J
p
c (s)ds

− µ

 ,

where, as before, µ and σ2 are certain mean and variance adjustment terms, and Jp
ci(s) and

dW2i(s) are the units of Jp
c (s) and dW2(s), respectively.

Given the local power functions that we have derived, the asymptotic local power can be

simulated using methods similar to those used to obtain the asymptotic critical values, that

5Note that in the scalar case the above limiting distribution coincides with the one given in Appendix B of
Breitung (2002) for his ϱ̂T test.
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is, by using simulated diffusions in place of Jc(s). The results for N = 10 and varying c are

reported in Figure 1 for the case when p = 0 and in Figure 2 for the case when p = 1.6

Figure 1: Local asymptotic power of five panel unit root tests for p = 0.
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Note: The horizontal axis displays the parameter c.

The first thing to notice is that the knowledge concerning the absence of cross-sectional

dependence does not seem to be very helpful in improving the relative power of the IPS and

LL tests. In fact, on the contrary, we see that the MJ test is uniformly more powerful than

the other tests even under cross-sectional independence, and that the difference in power

can sometimes be substantial, especially when c is close to zero. Take for example the case

when p = 0 and −3 ≤ c < 0, in which the power of MJ is almost twice as large as that of

the LL test and many times more than that of the IPS test. Of course, power gains are less

impressive for more distant alternatives, but nevertheless the MJ test continues to dominate

the others.

As for the other tests we see that while MB ends up in second place when p = 0, when

p = 1, LL is more powerful. The LL test in turn dominates the IPS test, which is to be

6The results for other values of N were very similar, and are therefore not presented.
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Figure 2: Local asymptotic power for five panel unit root tests for p = 1.

0102030
40506070
8090100

0 -2 -4 -6 -8 -10 -12 -14 -16MIB MB MJ IPS LL
Note: See note to Figure 1.

expected given the homogenous specification of the alternative hypothesis used here. The

MIB test is least powerful, and only rarely rejects more than 5% of the time. We also see that

power is generally lower when there is a trend in the model, which is in agreement with the

well-known incidental trends problem, see Moon et al. (2007).7

Summarizing this section, we find that, with the exception of the MIB test, the new

rank tests generally enjoy good local asymptotic power, and that they compare favorably

against the IPS and LL tests. These results appear to be quite robust, and extend to all

values of N considered. It should also be noted that because the results are asymptotic, the

adverse effect that lag augmentation has on power is not accounted for. The rank tests are

therefore expected to compare even more favorably in small samples, especially when high

augmentation lags are needed for the IPS and LL tests.

7Strictly speaking, since N is fixed here the theory of the incidental trends problem does not apply, and there-
fore the radial order of the shrinking neighborhoods around unity for which asymptotic power is nonnegligible
should not be affected. However, there might still be small-sample effects.
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5 Comparison to Factor Model Approaches

A very popular approach to model cross-sectional dependence in time series panels is to use

approximate factor models, as put forward by Bai and Ng (2004). The underlying assump-

tion is that the process ut has the following representation

ut = Λ′ft + et, (10)

where ft is an m-dimensional vector of common factors with Λ being the associated matrix of

loading coefficients, here assumed to be non-random. Together Λ′ft represent the common

component of ut, while et represents the idiosyncratic component. By assuming that the

units of et are independent of each other and also of the common factors, it is possible to

decompose the long-run covariance matrix of ∆ut as

Ω∆u∆u = Λ′Ω∆ f ∆ f Λ + Ω∆e∆e, (11)

where Ω∆ f ∆ f is of dimension m × m and Ω∆e∆e is an N × N diagonal matrix.8 The above

decomposition (11) highlights the main difference: factor models restrict the set of feasible

long-run covariance matrices to those that can be additively decomposed into an m × m

dimensional component (pre- and post-multiplied by the loadings matrix) and a diagonal

variance covariance matrix.9 Our tests do not require to put any such constraints on the

long-run covariance matrix.

On top of the restrictive dependence structure, factor models pose the problem of consis-

tent estimation of both the factors and the loadings, which requires additional assumptions.

In classical factor analysis, ft and et are generally assumed to be serially and cross-sectionally

uncorrelated, which then allows for consistent estimation of Λ as T → ∞. However, when

N is fixed, consistent estimation of ft is not generally possible. One way to ensure consistent

estimation of both quantities is therefore to assume that N goes to infinity with T. More

precisely, because Λ and ft are not separately identifiable, the best that one can hope for

here is consistent estimation of the spaces spanned by these quantities. That is, instead of

estimating Λ and ft, one estimates (R−1)′Λ and Rft, where R is an m × m rotation matrix of

8In approximate factor models, such as the one considered by Bai and Ng (2004), the individual idiosyncratic
component does not necessarily have to be cross-sectionally independent. For simplicity, however, in this section
we keep the cross-sectional independence assumption for the idiosyncratic component.

9More generally, such a decomposition and the ensuing restrictions do not only hold for the long-run covari-
ance matrix, but is implied by factor models for the spectral density functions, with the long-run variance, as is
well-known, being proportional to the spectral density at frequency 0.
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full rank.10 Identification of the whole factor structure requires not only that N, T → ∞, but

also that 1
N Λ′Λ converges to a positive definite matrix, suggesting that if a variable has only

a finite number of nonzero loadings, then it does not qualify as a factor, but is absorbed in

the idiosyncratic component.

Hence, the factor model approach not only assumes a particular structure for the cross-

sectional dependence, but also imposes other restrictions to ensure that the structure is iden-

tified and hence estimable. The requirement that N should go to infinity is especially prob-

lematic in the sense that it puts a limit on the practical applicability of the factor-based tests.

This is especially true in applied macro and finance, where N is typically relatively small.

By contrast, the rank tests investigated in this paper are N-specific and completely nonpara-

metric, and therefore more general in this regard.

It should also be mentioned that some other factor model approaches that are available,

such as Moon and Perron (2004), Pesaran (2007), and Phillips and Sul (2003) are even more

restrictive. As Bai and Ng (2010) discuss, these other approaches assume that the common

and idiosyncratic components have the same order of integration, and are therefore some-

what more restrictive in this regard.

6 Small-sample Performance

In this section, we use Monte Carlo simulations to evaluate the small-sample properties of

the new tests, and also compare them with those of some existing tests.

6.1 Simulation Design

The data are generated according to (1)–(3). By assuming that αp = 0, i.e. we consider the

case p = 0, C1 = [IN1 , 0]′ and C2 = [0, IN2 ]
′, so that the stationary units are ordered first, we

have yt = wt. The vector of stationary innovations is assumed to be generated as[
w1t

∆w2t

]
=

[
v1t

v2t

]
=

[
ρIN1 0

0 0

] [
v1t−1

v2t−1

]
+ ηt,

with |ρ| < 1. Thus, yt is generated in a similar way as in Toda (1994). The errors ηt

are allowed to be both serially and cross-sectionally correlated through ηt = Θηt−1 + ϵt

with ϵt ∼ N(0, Σ) and Θ = diag(θ1, . . . , θN), where θi is either set to zero or drawn from

10Since R has m2 free elements, identification of Λ and ft requires m2 restrictions. A common way to accom-
plish this is to assume that 1

T ∑T
t=1 ftf′t = Ir and that Λ′Λ is diagonal.
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U(−0.3, 0.3). To ensure that Σ is a symmetric positive definite matrix, we follow Chang

(2004) and set Σ = PVP′, where V = diag(λ1, . . . , λN) is a matrix of eigenvalues such that

λ1 = 0.1, λN = 1 and λ2, . . . , λN−1 ∼ U(0.1, 1). Also, P = U(U′U)−1/2, where the elements

of the N × N matrix U are all drawn from U(0, 1). The number of replications is set to 3,000,

and for each unit of the panel we generate 100 pre-sample values, starting with an initial

value of zero. For brevity, we only reports size and power at the 5% level.11 Some results on

the sequential rank selection procedure are also reported.

6.2 Results

Consider first the size results for testing r0 = N, which are reported in Table 3. As expected,

we see that the tests perform well with good size accuracy in most experiments. The effect

of serial correlation is, however, not completely removed, and some distortions seem to

remain, especially for the MIB test. However, in most cases that we have considered there

is a significant improvement as T increases. Increasing N does not have the same effect,

though, which is to be expected given our large-T, fixed-N asymptotic theory.

Table 3 also contains some results for testing r0 = 0.5N when ρ = 0.1. The first thing to

notice is the size of the MIB test, which is grossly distorted in all experiments considered.

The reason is that because the rank under the null is no longer full, as explained in Section

3.1, the MIB statistic is now divergent. Being a right-tailed test, this causes MIB to reject

too often, which is just what we observe. The results for the other tests are, however, more

encouraging. In fact, except for the tendency to under reject when N increases, the perfor-

mance of MB and MJ remains just as good as before. The MMIB test is very conservative.

Consider next the power results when testing the full rank null against r1 = N2 < N,

which are reported in Table 4 for ρ fixed and varying values of N2, and in Table 5 for N2 fixed

and varying ρ. Because we are testing the null of full rank, the MIB and MMIB statistics are

identical. The information content of these tables may be summarized as follows:

1. The power of all three tests generally improves as T increases, as N2 departs from its

hypothesized value of N and as ρ moves away from one. We also see that although

power is generally increasing in N, this is not always the case.

11The power results are not size corrected because such a correction is generally not available in practice.
Hence, a test is useful for applied work only if it respects roughly the nominal significance level.
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2. MIB has power that is complementary to the power of MB and MJ. When N2 is close

to N and ρ is not close to one, MIB generally has higher power than MB and MJ, and in

some cases has substantially higher power. That MIB test can detect small deviations

in the rank away from the null is expected given its consistency properties. In contrast,

when N2 is close to or equal to zero, MB and MJ have substantially higher power than

MIB, an expected finding given the local power depicted in Figures 1 and 2. We see

from these patterns that MIB is good at detecting small deviations of the rank away

from the null when the stationary series in the panel are not persistent, whereas the

MB and MJ statistics are good at detecting small deviations of ρ from one when there

are a large number of series that are stationary.

3. The fact that MB and MJ have power against small deviations of ρ from one when

N2 = 0 indicates that they can be used when testing the conventional hypothesis of a

unit root versus a fully stationary alternative.

4. Power depends on whether there is a constant or a constant and trend in the model,

but power is often higher when the trend is included. This is somewhat unexpected

given the theory of the incidental trends problem, although we do see in the bottom

panel of Table 5 that power against a fully stationary alternative does fall when the

trend is added.12

5. As expected, all three tests generally have low power when N2 is close to the value

under the null and ρ is close to one.

We now explore the performance of the MMIB test as a rank test. Results concerning

correct rank selection frequencies for the sequential MMIB test, starting with a rank of r0 =

N, are reported in Figure 3 for T = 100. Figure 4 gives results for T = 200. Both figures

are for the case with p = 0, θi = 0 and N = 10. Although we expect a reduction in the

accuracy of inference as the true rank becomes more distant to the full rank null, we see that

the magnitudes displayed in Figures 3 and 4 can sometimes be substantial. For example,

when T = 100 and ρ = 0.9 the correct selection frequency decreases from about 95% to 0%

as N2 decreases from 10 to 8. However, these magnitudes naturally decrease with ρ and

12The drop in power from the inclusion of the trend regressors is also apparent when looking at local asymp-
totic power depicted in Figures 1 and 2.
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Figure 3: Correct rank selection frequency of the MMIB test when T = 100.
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increase with T. Indeed, with T = 200 and ρ = 0 the correct selection frequency never falls

below 75%.

6.3 Comparisons to Some Existing Tests

We have argued that one of the distinctive features of the new tests is that they are very

flexible when it comes to the types of hypotheses that can be tested. However, there is an-

other test that shares this feature. This is the test of Ng (2008), which is designed to infer the

fraction of units with a unit root, and this makes it interesting as a comparison. However,

this test is by far not as general as ours, and cannot, e.g., accommodate cross-unit cointe-

gration. This restriction is clearly necessary, since once (cross-unit) cointegration is allowed,

it is not the fraction of series that is non-stationary that is relevant for describing the dy-

namic properties of the panel of time series but rather the rank, i.e. the number of common

trends (compare the discussion in Section 2). Furthermore, unreported simulation results

suggest that the small-sample properties of this test can be extremely poor when the test is
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Figure 4: Correct rank selection frequency of the MMIB test when T = 200.
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constructed to account for serial correlation of the first-order autoregressive type.13 In this

section we therefore only report the results for the most simple version of the Ng (2008) test

that assumes that the data are both serially and cross-sectionally independent.

The results for the case with Θ = 0 and Σ = IN are summarized in Table 6. Looking first

at the size results we see that even though ηt is serially uncorrelated with unit covariance

matrix, the Ng (2008) test is still rather distorted and tends to over-reject. The over-rejections

do tend to fall as T increases, but the rate at which this happens is very slow. The new tests

perform much better in a majority of the cases considered. When testing the null that the

rank is less than full we see that the MIB test tends to over-reject but this is to be expected

because the test is not designed for this case. In these cases, the MMIB statistic is better

suited and it has very good power relative to the other tests. The good power of MMIB

13We found that size and power is always very close to zero when the Ng (2008) test is configured to allow
serial correlation. This occurs even when the data has no serial correlation, i.e. ηt ∼ N(0, IN). While we have
carefully checked our code and cannot find an error, because we cannot rule out a programming error, we have
chosen not to report results for the Ng (2008) implemented to allow serial correlation.
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occurs even though it tends to be conservative. It is very interesting to note that the Ng

(2008) test tends to have lower power than the rank tests even though the Ng (2008) test

tends to over-reject and power is not size-adjusted.

We now explore the performance of the rank test when there is a factor structure in the

data. We compare the rank tests to the panel unit root test of Bai and Ng (2004), which

is designed explicitly for the factor case. The data generating process is similar to the one

described in Section 6.1. The only difference is that now we also allow for a non-stationary

common factor via yt = ft +wt, where ∆ ft ∼ N(0, 1) is a scalar time series. We consider con-

figurations where wt has no dependence and configurations where wt features both serial

and cross-sectional correlation.

In applying the Bai and Ng factor model approach, we treat the number of factors as

unknown. Following the recommendation of Bai and Ng (2002), the number of factors used

in the Bai and Ng (2004) test is determined using the ICp2 information criterion with the

maximum number of factors set to five. The lag length is determined using the Campbell–

Perron sequential test rule based on the t-statistic of the last ordered lag. Consistent with the

results of Ng and Perron (1995), the maximum number of lags is allowed to increase with T

at the rate 4(T/100)2/9.

Size results are reported in Table 7. We report results in three panels corresponding to the

dependence structure of the data. The first panel gives results for the case where the data

have neither common factors nor serial or cross-sectional dependence. The second panel

shows the results for the case when the data have a common factor but without serial and

cross-sectional dependence. The results in the third panel correspond to the case where the

data have a common factor as well as serial and cross-sectional dependence. As with the Ng

(2008) test, we see that the Bai and Ng (2004) test is oversized although the over-rejections

decrease as T increases. The rank tests have sizes that are close to the nominal level although

the MIB test tends to be somewhat oversized when N = 20. Table 8 reports power for case

where there is no dependence in the data. The patterns are similar for the other cases. Power

of the rank tests is comparable to the Bai and Ng (2004) test and no test dominates the others.

While the Bai and Ng (2004) test has higher power in many cases, this largely is an artifact

of the over-rejections under the null. Overall the new tests are more robust to dependence in

the data than the Bai and Ng (2004) test and have comparable power even for data generated

from a simple factor model.
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In summary, we find that the new tests show more robustness to dependence in the data

and, at the same time, maintain relatively good power in small samples relative to existing

tests. We believe that the new rank tests should be a valuable additions to the existing menu

of panel unit root tests.

7 Empirical Applications

In this section we briefly present two empirical applications of the tests developed in this

study. The first employs a multi-country panel of real exchange rate data to examine pur-

chasing power parity (PPP). The second employs a multi-country panel of log per-capita

GDP data to test whether income is converging across countries over time.

7.1 Purchasing Power Parity

In the recent panel time series literature, long run PPP is often tested by means of various

panel unit root tests applied to panels of real exchange rates data. When using conventional

time series tests, rejection of the unit root null is difficult to achieve with real exchange rate

time series, while rejections with panel unit root tests are commonly reported. The increased

rejection rate is typically attributed to the increased power of the panel tests relative to the

analogous time series tests. However, in the presence of cross-sectional dependence that is

not adequately accommodated, these reported results may alternatively be due to size dis-

tortions rather than increased power. This can occur when the researcher assumes a form

of cross-sectional dependence that differs from the true unknown nature of cross-sectional

dependence. Another difficulty may arise when the data from only a small number of coun-

tries is stationary. This will lead to a rejection in most panel unit root tests, yet it does not

imply that PPP holds pervasively in the sample that is being tested.

Both of these issues are well addressed by the panel tests developed in this study. Firstly,

in contrast to most other tests, the tests developed in this paper are robust to cross-sectional

dependence of very general forms, and do not require us to assume a particular form of

dependence. Secondly, when employed as rank test, our approach can determine whether

the number of common trends in the sample is large or small, thereby giving an upper bound

for the number of countries for which the PPP hypothesis can hold.

Finally, our tests retain power even when unit-specific deterministic trends are estimated.

This is not directly relevant for the conventional PPP hypothesis, for which trends are not
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employed. But it does become relevant if one wished to test the Balassa–Samuelson hypoth-

esis that PPP failure is likely attributable to the fact that countries with relatively higher pro-

ductivity growth in traded goods compared to non-traded goods will experience exchange

rates that appreciate gradually over time. One interpretation is that this feature should be

well captured by a country-specific trend in the real exchange rate, so that under the Balassa–

Samuelson variant, real exchange rates should become trend stationary.

The data that we use for this empirical illustration are the same as those used in Wag-

ner (2008), and comprise four panels of monthly bilateral real exchange rates, which are

constructed from consumer price indices with the United States dollar as the numeraire

currency. A brief description is provided in Table 9.14 Note that for this application N is

fairly small, especially for the Euro area and CEEC panels. This suggests that factor-based

approaches are likely to be biased, and that our finite-N approach is likely to be more appro-

priate.

The results of our tests are reported in the top panel of Table 10. The first thing to notice

is that, except when we apply the MB test to the world wide panel, there seem to be no

violations of the full rank null, suggesting that PPP fails for all countries considered. We

also see that this result is the same regardless of whether there is a constant, or a constant

and trend in the model, suggesting that, to the extent that productivity differences can be

captured by the deterministic trends, the PPP failure cannot be attributed to the Balassa–

Samuelson effect. These results are confirmed by the sequential MMIB test, which in all

four panels leads to a conclusion of full rank, implying that we cannot reject that PPP, as

well as its Balassa–Samuelson variant, fails in all countries considered.

7.2 Income Convergence

In this section we pursue a simple illustration taken from the empirical growth and conver-

gence literature. Our analysis is following in large part the interpretation proposed in Evans

(1998). Specifically, suppose that yit, the income for country i at time t, is unit root non-

stationary. Then the panel is said to exhibit convergence if, for any pair of countries i ̸= j,

yit − yjt is stationary, and that yit and yjt are thereby cointegrated with cointegrating vector

[1,−1]′. Therefore, by this definition, a necessary condition for convergence is that the rank

of the income panel must be one. From the definition of Evans (1998) it furthermore follows

14See Wagner (2008) for a more detailed description of the data.
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that convergence implies that the income data for each individual country must cointegrate

with the cross-sectional average, yt =
1
N ∑N

i=1 yit, so that yit − yt is stationary for all i. Conse-

quently, by this equivalent definition a necessary and sufficient condition for convergence is

that the panel comprised of the demeaned series yit − yt has rank zero.

This definition for convergence is relatively strict, and one can consider a generaliza-

tion that allows for the possibility of different convergence clubs among the countries of the

sample. Under this interpretation, a necessary condition for a small number of convergence

clubs is a rank that is small relative to N. In all cases, a rank that is close in magnitude to N

constitutes a failure of both the strict form of convergence as well as club convergence.

Needless to say, the cross-unit cointegration associated with convergence is not the only

form of cross-sectional dependence to be expected among countries, and to avoid size dis-

tortion, these other unknown forms of dependence must be accommodated. Our tests are

well suited for this, since they allow us to test the rank of the panel without having to specify

the particular form of the cross-sectional dependence that links countries.

The specific data we use to assess the convergence hypothesis along these lines are taken

from Maddison (2007), and comprise annual observations on the log per-capita GDP for 22

countries over the period 1870–2001, see Table 8.15

The rank test results are reported in the bottom panel of Table 10. Since tests with

country-specific trends are not sensible for a convergence test, we report only values for

the case with country-specific intercepts. To begin, we test the raw data, yit. While the MIB

and MB tests are able to reject the full rank null, the MJ test does not. Thus, the MJ test

already points to a violation of a necessary condition for convergence in the sense of Evans

(1998). For completeness, we also further investigate using a variant of the MIB and MB

tests. Specifically, since they have rejected the full rank 22 null in favor of a reduced rank,

we next proceed to test the null of rank 21 against the alternative of rank less than 21. For

this, we use the MMIB test, which is specifically designed for the case in which the null

hypothesis is taken to be less than full rank. Based on sequentially stepping down the null

value for the MMIB test, we eventually find that we are unable to reject the null of rank 20

against the alternative of rank less than 20 for the panel of raw data yit.

Similarly, when we test for a sufficient condition for convergence based on the cross-

15The included countries are Australia, Austria, Belgium, Brazil, Canada, Denmark, Finland, France, Germany,
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sri Lanka, Sweden, United Kingdom, United
States, Switzerland and Uruguay.
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sectionally demeaned data, yit − yt, we find that only the MB test rejects the null hypothesis

of full rank in favor of reduced rank. The MIB and MJ tests fail to reject the null hypothesis

of full rank, which contradicts both a necessary and sufficient condition for convergence in

the sense of Evans (1998).

Consequently, based on these various tests, the rank of the panel appears to be at most

only slightly below full rank, which is a contradiction of the conditions required for conver-

gence. The evidence based on this data therefore points to at most only a slightly reduced

rank of the panel, thereby suggesting that income convergence must be rejected, and that

a small number of convergence clubs is also unlikely to be adequate in characterizing the

long-run income dynamics.

8 Conclusions

In this paper we introduce new rank tests for panel data that have a number of advantages

when compared to existing panel unit root tests. First, our tests are applicable for data with

serial and cross-sectional dependencies with only mild restrictions on the extent of these

dependencies. Second, despite this level of generality, the rank tests do not require any

treatment of nuisance parameters. Hence, with these tests there is no need for lag augmen-

tation, bandwidth and kernel selection or estimation of common factors. Implementation is

therefore very simple. Third, the tests have relatively high power, even when unit-specific

trends are included. Fourth, even in the absence of cross-sectional dependence, the tests still

retain high power as compared to tests that were designed explicitly for cross-sectionally in-

dependent panel data. Thus, there is little or no price paid paid for the generality of the tests

with respect to the treatment of cross-sectional dependence. Finally, because our asymptotic

results do not rely on N → ∞, these tests are ideally suited for typical macro and finance

applications where cross-sectional dependence is pervasive yet N is often small.
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Table 2: Mean and variance adjustment terms for the between and within tests.

Between tests Within tests
Adjustment BMIB BMB BMJ WMIB WMB WMJ

p = 0
µ 33.35913 0.05080 13.38137 14.98190 0.13349 12.33025
σ2 1358.83596 0.00074 198.41452 51.60810 0.00410 157.30748

p = 1
µ 125.32524 0.01083 4.67848 76.51020 0.02614 4.31645
σ2 7694.99507 0.00003 15.50459 1569.08434 0.00018 12.53802

Notes: p = 0 refers to the model with a constant, while p = 1 refers to the model with constant
and linear trend. The transformation to a standard normal distribution of, e.g., the BMB
statistic is given by

√
N(BMB − µ)/σ.

Table 3: Size at the 5% level.

p = 0 p = 1
θi T N MIB MMIB MB MJ MIB MMIB MB MJ

r0 = N
0 100 10 3.4 3.4 5.9 4.4 3.5 3.5 4.5 4.2

100 20 5.4 5.4 6.5 3.8 5.5 5.5 5.0 3.3
200 10 2.2 2.2 5.5 5.7 2.3 2.3 4.2 6.1
200 20 7.1 7.1 5.0 4.6 7.4 7.4 4.4 4.8

U(−0.3, 0.3) 100 10 5.6 5.6 6.3 4.8 6.8 6.8 5.1 4.5
100 20 15.5 15.5 8.1 3.9 17.4 17.4 7.1 3.7
200 10 3.1 3.1 5.3 6.3 2.9 2.9 4.7 6.7
200 20 12.9 12.9 4.9 4.9 13.4 13.4 5.2 4.9

r0 = 0.5N
0 100 10 100.0 0.5 3.0 4.5 100.0 0.1 2.2 3.7

100 20 100.0 0.0 0.8 1.3 100.0 0.0 0.2 0.6
200 10 100.0 0.0 3.0 2.9 100.0 0.1 2.8 2.4
200 20 100.0 0.0 2.0 3.1 100.0 0.0 1.2 2.6

U(−0.3, 0.3) 100 10 100.0 0.4 3.1 4.5 100.0 0.0 2.1 3.7
100 20 100.0 0.0 0.9 1.3 100.0 0.0 0.1 0.7
200 10 100.0 0.0 3.1 3.0 100.0 0.1 2.9 2.7
200 20 100.0 0.0 2.0 3.0 100.0 0.0 1.2 2.5

Notes: θi refers to the autoregressive coefficient in the errors. The block-columns p = 0 and p = 1
refer to the model with constant, and constant and linear trend, respectively.
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Table 4: Power at the 5% level when testing r0 = N versus r1 = N2 < N for varying values
of N2.

p = 0 p = 1
N2 T N MIB MB MJ MIB MB MJ

ρ = 0.9
0.1N 100 10 7.5 96.3 90.3 12.6 71.6 76.1

100 20 8.3 99.6 98.0 23.3 90.3 90.4
200 10 24.5 100.0 96.4 25.4 99.7 96.6
200 20 27.0 100.0 99.4 35.3 100.0 100.0

0.3N 100 10 6.3 69.5 58.4 6.2 40.6 44.1
100 20 7.9 86.5 74.4 8.2 61.4 59.7
200 10 18.0 95.3 73.7 15.2 82.7 73.2
200 20 21.7 99.8 88.7 20.0 97.8 91.4

0.7N 100 10 4.6 17.6 14.2 4.6 12.2 11.1
100 20 6.0 23.8 16.6 6.5 15.1 12.6
200 10 6.1 27.6 19.9 5.5 19.7 19.9
200 20 11.3 41.0 25.5 10.8 30.9 25.9

ρ = 0
0.5N 100 10 100.0 99.5 67.8 100.0 99.5 77.4

100 20 100.0 100.0 84.9 100.0 100.0 93.3
200 10 100.0 99.6 74.6 100.0 99.8 84.5
200 20 100.0 100.0 92.1 100.0 100.0 97.5

0.8N 100 10 99.9 40.6 18.7 99.9 39.5 23.1
100 20 100.0 84.6 24.5 100.0 81.3 30.2
200 10 100.0 41.2 22.9 100.0 39.4 28.6
200 20 100.0 88.4 32.4 100.0 88.4 41.6

0.9N 100 10 90.0 17.3 9.7 85.6 16.0 10.4
100 20 93.3 38.1 11.1 92.1 33.6 11.4
200 10 99.8 17.5 13.1 99.8 15.7 14.1
200 20 100.0 37.3 14.6 100.0 35.9 16.8

Notes: N2 refers to the number of unit roots under the alternative, while
ρ refers to the autoregressive coefficient of the remaining stationary units.
hypothesis. The block-columns p = 0 and p = 1 refer to the model with
constant, and constant and linear trend, respectively.
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Table 5: Power at the 5% level when testing r0 = N versus r1 = N2 < N for varying values
of ρ.

p = 0 p = 1
ρ T N MIB MB MJ MIB MB MJ

N2 = 0.8N
0.9 100 10 3.9 12.1 9.0 4.1 8.7 7.7

100 20 5.9 15.2 10.0 6.2 9.7 8.3
200 10 4.7 16.0 13.0 4.2 11.4 13.4
200 20 9.8 21.6 14.9 8.9 17.5 14.9

0.7 100 10 14.9 23.4 12.4 12.9 19.0 13.8
100 20 13.0 39.6 14.6 12.9 31.0 15.0
200 10 53.0 29.9 18.0 45.3 25.7 20.6
200 20 60.3 56.8 21.6 54.0 51.0 26.2

0.5 100 10 53.1 30.9 15.3 46.7 27.8 17.8
100 20 44.9 59.4 18.2 43.3 52.2 20.3
200 10 97.4 35.4 20.7 95.9 32.6 24.2
200 20 99.7 74.1 26.4 99.2 72.1 33.1

N2 = 0
0.99 100 10 4.1 13.6 15.1 3.5 5.8 5.2

100 20 5.3 16.2 18.9 5.6 6.5 4.5
200 10 2.4 26.2 42.0 2.2 6.6 11.2
200 20 7.8 34.4 61.1 7.5 8.0 11.8

0.95 100 10 4.6 83.6 93.4 4.5 28.6 36.2
100 20 5.8 96.2 99.5 7.0 43.8 53.7
200 10 5.9 100.0 100.0 5.3 84.7 97.2
200 20 12.0 100.0 100.0 11.3 98.3 99.8

0.9 100 10 8.5 100.0 100.0 8.6 87.8 95.6
100 20 8.4 100.0 100.0 9.6 98.9 99.8
200 10 26.5 100.0 100.0 25.2 100.0 100.0
200 20 30.6 100.0 100.0 27.8 100.0 100.0

Notes: See Table 4 for explanations.
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Table 6: Size and power comparison with the Ng (2008) test at the 5% level when p = 0.

T = 100 T = 200
N N2 r0 MIB MMIB MB MJ t MIB MMIB MB MJ t

Size
10 10 10 3.8 3.8 5.8 5.2 20.1 2.6 2.6 5.6 6.0 12.5
20 20 20 4.7 4.7 6.5 4.1 18.8 7.8 7.8 5.3 5.1 12.8
10 7 7 100.0 0.4 4.4 5.1 17.4 100.0 0.1 4.0 5.6 10.0
20 14 14 100.0 0.0 1.8 2.0 18.1 100.0 1.5 3.4 4.6 12.1
10 4 4 100.0 16.1 4.1 6.8 14.2 100.0 0.2 4.4 2.7 5.6
20 8 8 100.0 0.0 1.1 1.8 16.5 100.0 0.0 2.3 3.9 9.8

Power
10 9 10 90.5 90.5 17.4 12.0 21.9 99.8 99.8 18.2 13.2 14.7
20 18 20 94.9 94.9 41.1 12.4 23.5 100.0 100.0 39.3 15.8 18.1
10 7 10 100.0 100.0 72.6 36.8 30.4 100.0 100.0 74.5 42.4 22.9
20 14 20 100.0 100.0 99.5 51.0 37.4 100.0 100.0 99.9 59.9 34.4
10 6 7 100.0 47.3 13.3 13.5 20.5 100.0 88.6 13.5 14.2 13.1
20 12 14 100.0 22.5 19.1 9.6 24.0 100.0 99.9 29.9 17.0 17.7
10 4 7 100.0 100.0 70.3 52.0 30.2 100.0 100.0 74.9 54.1 22.4
20 8 14 100.0 100.0 98.8 58.0 41.5 100.0 100.0 99.9 72.7 40.1

Notes: The values reported in the columns N2 and r0 refer to the true and hypothesized rank
under the null, respectively. t refers to the Ng (2008) t-test.
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Table 7: Size comparison with the Bai and Ng (2004) test at the 5% level when r0 = N.

p = 0 p = 1
N T MIB MB MJ Pê MIB MB MJ Pê

No common factor and no error serial or cross-sectional dependence
10 100 3.8 5.8 5.2 12.7 3.9 4.4 4.6 17.5
20 100 4.7 6.5 4.1 15.0 5.3 5.6 3.7 22.0
10 200 2.6 5.6 6.0 9.9 2.3 5.2 6.7 11.2
20 200 7.8 5.3 5.1 9.4 7.7 3.6 5.1 11.4

Common factor but no error serial or cross-sectional dependence
10 100 3.3 5.6 5.0 13.3 3.7 4.5 4.6 17.0
20 100 5.5 6.3 3.6 14.4 5.8 4.8 3.6 20.9
10 200 2.3 5.1 6.2 9.3 2.9 4.4 6.9 10.6
20 200 8.0 5.1 5.0 9.6 8.6 4.7 5.3 11.9

Common factor and error serial and cross-sectional dependence
10 100 4.7 6.0 4.6 15.7 5.2 5.0 4.7 21.0
20 100 13.4 6.7 3.7 19.7 15.8 5.9 3.5 32.8
10 200 2.6 5.5 6.6 12.9 2.7 4.5 6.5 14.4
20 200 12.0 6.2 5.0 12.0 13.0 5.3 5.3 16.4

Notes: Pê refers to the Bai and Ng (2004) test. In case of a common factor we add
to the data generating process a single unit root factor with unit loadings. The error
serial and cross-sectional dependence is generated as described in Section 6.1. See
Table 4 for an explanation of the rest of the features.
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Table 8: Power comparison with the Bai and Ng (2004) test at the 5% level when r0 = N.

p = 0 p = 1
ρ N T MIB MB MJ Pê MIB MB MJ Pê

N2 = 0.5N
0.9 10 100 6.0 49.1 46.2 67.1 6.6 29.1 33.8 54.6

20 100 6.1 67.4 58.9 92.6 7.1 44.8 43.2 80.3
10 200 12.7 74.2 60.8 96.8 10.9 59.7 62.9 93.8
20 200 18.0 93.2 75.8 100.0 16.9 85.2 79.7 100.0

0.7 10 100 52.3 90.2 62.1 99.6 46.5 82.9 68.4 99.8
20 100 40.5 99.6 76.6 100.0 40.0 98.7 84.1 100.0
10 200 98.8 96.8 70.9 99.9 98.2 95.3 80.2 100.0
20 200 99.4 100.0 86.5 100.0 98.9 100.0 94.1 100.0

N2 = 0
0.95 10 100 5.4 84.3 94.3 68.2 5.4 30.5 36.7 43.6

20 100 6.1 96.1 99.4 91.5 7.1 43.4 52.9 64.5
10 200 5.7 99.9 100.0 99.8 5.1 84.3 97.4 88.5
20 200 11.9 100.0 100.0 100.0 11.2 98.3 99.9 99.4

0.9 10 100 10.1 100.0 100.0 99.7 9.8 87.8 96.1 92.1
20 100 8.8 100.0 100.0 100.0 10.2 98.5 99.8 99.5
10 200 27.6 100.0 100.0 100.0 24.2 100.0 100.0 100.0
20 200 30.5 100.0 100.0 100.0 28.6 100.0 100.0 100.0

Notes: The data are generated with no common factor and without error serial or cross-sectional
dependence. See Table 4 for an explanation of the rest of the features.

Table 9: Data description.

Panel Start date End date T N

PPP
Euro area 1980:1 1998:12 228 11
CEEC 1993:1 2004:6 138 11
Industrial 1980:1 1998:12 228 29
World wide 1981:1 2004:4 280 57

Income convergence
Maddison 1870 2001 132 22
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Table 10: Empirical rank test results.

p = 0 p = 1
Panel MIB MB MJ MIB MB MJ

PPP
Euro area 14593.7 0.14422 143.1 16713.4 0.04997 71.2
CEEC 10553.7 0.14392 568.2 13389.2 0.04813 291.2
Industrial 202626.8 0.15799 645.6 219843.8 0.05861 350.8
World wide 1260710.9 0.16223∗ 4393.8 1307459.6 0.06252 1178.1

Income convergence
Raw data 100010.6∗ 0.15483∗ 2724.7
Cross-section demeaned data 87999.7 0.31084∗ 1210.2

Notes: A ∗ superscript denotes significance at the 5% level when testing the null hypothesis of full
rank, whereas the block-columns p = 0 and p = 1 refer to the model with constant, and constant and
linear trend, respectively.
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