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Abstract 

This paper develops a fully modified OLS estimator for cointegrating polynomial regressions, 

i.e. for regressions including deterministic variables, integrated processes and powers of 

integrated processes as explanatory variables and stationary errors. The errors are allowed 

to be serially correlated and the regressors are allowed to be endogenous. The paper thus 

extends the fully modified approach developed in Phillips and Hansen (1990). The FM-OLS 

estimator has a zero mean Gaussian mixture limiting distribution, which is the basis for 

standard asymptotic inference. In addition Wald and LM tests for specification as well as a 

KPSS-type test for cointegration are derived. The theoretical analysis is complemented by a 

simulation study which shows that the developed FM-OLS estimator and tests based upon it 

perform well in the sense that the performance advantages over OLS are by and large 

similar to the performance advantages of FM-OLS over OLS in cointegrating regressions. 
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1 Introduction

This paper develops a fully modified OLS (FM-OLS) estimator for cointegrating polynomial regres-

sions (CPRs), i.e. for regressions including deterministic variables, integrated processes and integer

powers of integrated processes as explanatory variables and stationary errors. As in the standard

cointegration literature the errors are allowed to be serially correlated and the regressors are allowed

to be endogenous.1 Thus, the paper extends the FM-OLS estimator of Phillips and Hansen (1990)

from cointegrating (linear) regressions to cointegrating polynomial regressions. A major advantage

of considering regressions of the considered form is that they are linear in parameters, which implies

that linear least squares based estimation methods can be developed and that it is not necessary to

consider nonlinear estimation techniques that require numerical optimization procedures. Clearly,

the considered class of functions is restrictive, despite the fact that polynomials can be used to

approximate more general nonlinear functions, but clearly this restriction is the price to be paid for

having a simple linear least squares based estimation technique available (see Section 2.1 for further

discussion). Additionally also specification and cointegration tests are developed. With respect to

specification testing amongst other things this paper extends the work of Hong and Phillips (2010),

who consider LM-type specification testing based on residuals of cointegrating linear relationships,

in several aspects (see Section 2.3). With respect to asymptotic theory our work relies upon im-

portant contributions of Chang, Park, and Phillips (2001), Park and Phillips (1999, 2001) and

Ibragimov and Phillips (2008).

One motivation for considering CPRs is given by the so-called environmental Kuznets curve (EKC)

hypothesis, which postulates an inverse U-shaped relationship between measures of economic ac-

tivity (typically proxied by per capita GDP) and pollution. The term EKC refers by analogy to

the inverted U-shaped relationship between the level of economic development and the degree of

income inequality postulated by Kuznets (1955) in his 1954 presidential address to the Ameri-

can Economic Association. Since the seminal work of Grossmann and Krueger (1995) more than

one-hundred refereed publications (as counted already several years ago by Yandle, Bjattarai, and

Vijayaraghavan, 2004) perform econometric analysis of EKCs.2 Many of these empirical studies

use unit root and cointegration techniques and include as regressors powers of per capita GDP (in

1The theory is developed to allow also for predetermined stationary regressors, which are neglected from the
discussion here for the sake of brevity. They are included in the discussion in Hong and Wagner (2008).

2In addition to the vast empirical literature there is also a large theoretical literature exploring different mechanisms
leading to EKC type relationships, see e.g. the survey Brock and Taylor (2005).
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order to allow to for U- or inverted U-shaped relationships). This literature neglects throughout

that powers, as special cases of nonlinear functions, of integrated processes are not themselves in-

tegrated processes, which invalidates the use of standard unit root and cointegration techniques.

Such relationships – in our terminology cointegrating polynomial relationships – necessitate the

development of appropriate estimation and inference tools, which is done in this paper. For a more

detailed discussion of the empirical EKC literature, its problems as well as a detailed analysis using

the methods developed in this paper see Hong and Wagner (2008, 2010). A second strand of the

empirical literature that can benefit from the theory developed in this paper is the so-called inten-

sity of use literature that investigates the potentially also inverted U-shaped relationship between

GDP and energy or metals use (see e.g. Labson and Crompton, 1993).

As in standard cointegrating regressions, the OLS estimator is consistent also in CPRs. Also as in

the standard case, its limiting distribution is contaminated by so-called second order bias terms in

case of error serial correlation and/or endogeneity of regressors (see the original work of Phillips

and Hansen, 1990). This renders valid inference difficult. Consequently, we develop an FM-OLS

estimator, which extends the FM-OLS estimator of Phillips and Hansen (1990) to CPRs, that has

a zero mean Gaussian mixture limiting distribution and thus allows for standard asymptotic chi-

square inference. The zero mean Gaussian mixture limiting distribution of the FM-OLS estimator

also forms the basis for specification testing based on augmented (Wald tests) respectively auxiliary

(LM tests) regressions. On top of these specification tests we also consider a KPSS-type test as

a direct test for nonlinear cointegration of the considered form. The asymptotic distribution of

this test depends on the specification of the deterministic components as well as the number and

powers of integrated regressors included. This test extends the cointegration test of Shin (1994) from

cointegrating to cointegrating polynomial regressions. We furthermore follow Choi and Saikkonen

(2010) and consider also a sub-sample test that can be used in conjunction with the Bonferroni

bound and which has a limiting distribution independent of the specification.

The theoretical analysis of the paper is complemented by a simulation study to assess the perfor-

mance of the estimator and tests, with the performance being benchmark against results obtained

by applying OLS. Many of the findings with respect to both estimator performance (measured in

terms of bias and RMSE) as well as the performance of the coefficient tests (size distortions, size

corrected power) are similar as for FM-OLS in standard cointegrating relationships. Summarized

in one sentence: the larger the extent of serial correlation and/or regressor endogeneity, the bigger

are the performance advantages of the FM-OLS estimator and test statistics based upon it. For
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sizeable serial correlation and endogeneity the bias can be reduced by about 50% when using the

FM-OLS instead of the OLS estimates and the over-rejections that occur for the FM-OLS based

tests are less than half as big as for OLS based statistics. The choice of kernel and bandwidth is of

relatively minor importance. With respect to the specification tests it turns out that the Wald tests

are outperformed by the LM tests, since the latter have essentially the same, or for small sample

sizes slightly lower, size corrected power but much smaller over-rejections under the null hypothesis

than the former. The simulations also show that using as additional regressors both higher order

deterministic trends (originally considered in a unit root and cointegration test context by Park

and Choi, 1988; Park, 1990) together with higher polynomial powers of integrated regressors leads

to highest power against the variety of alternatives considered. In the simulations the performance

of the KPSS-type tests is rather poor. As is well known for KPSS-type tests, their performance is

detrimentally affected by the presence of serial correlation, which is also confirmed by our simula-

tions. The sub-sample test suffers additionally from the conservativeness of the Bonferroni bound

and performs worse than the full sample test.

The paper is organized as follows. In Section 2 we derive the asymptotic results for the estimators

and tests. Section 3 contains a small simulation study to assess the finite sample performance of the

proposed methods and Section 4 briefly summarizes and concludes. The proofs of all propositions

are relegated to the appendix. Available supplementary material contains further results in relation

to the sub-sample KPSS-type test as well as additional simulation results.

We use the following notation: Definitional equality is signified by := and ⇒ denotes weak conver-

gence. Brownian motions, with covariance matrices specified in the context, are denoted with B(r)

or B. For integrals of the form
∫ 1
0 B(s)ds and

∫ 1
0 B(s)dB(s) we use short-hand notation

∫
B and∫

BdB. For notational simplicity we also often drop function arguments. With ⌊x⌋ we denote the

integer part of x ∈ R and diag(·) denotes a diagonal matrix with the entries specified throughout.

For a square matrix A we denote its determinant with |A|, for a vector x = (xi) we denote by

||x||2 =
∑

i x
2
i and for a matrix M we denote by ||M || = supx

||Mx||
||x|| . E denotes the expected value

and L denotes the backward-shift operator, i.e. L{xt}t∈Z = {xt−1}t∈Z.
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2 Theory

2.1 Setup and Assumptions

We consider the following equation including a constant and polynomial time trends up to power

q (see the discussion below), integer powers of integrated regressors xjt, j = 1, . . . ,m up to degrees

pj and a stationary error term ut:

yt = D′
tθD +

m∑
j=1

X ′
jtθXj + ut , for t = 1, . . . , T, (1)

with Dt := [1, t, t2, . . . , tq]′, xt := [x1t, . . . , xmt]
′, Xjt := [xjt, x

2
jt, . . . , x

pj
jt ]

′ and the parameter vectors

θD ∈ Rq+1 and θXj ∈ Rpj . Furthermore define for later use Xt := [X ′
1t, . . . , X

′
mt]

′, Zt := [D′
t, X

′
t]
′

and p :=
∑m

j=1 pj . In a more compact way we can rewrite (1) as

y = DθD +XθX + u (2)

= Zθ + u,

with y := [y1, . . . , yT ]
′, u := [u1, . . . , uT ]

′, Z := [D X] and θ = [θ′D θ′X ]′ ∈ R(q+1)+p and

D :=

 D′
1
...
D′

T

 ∈ RT×(q+1), X :=

 X ′
1
...
X ′

T

 ∈ RT×p.

Equation (1) is referred to as cointegrating polynomial regression (CPR). Clearly it is a special

case of a nonlinear cointegrating relationship as considered in the literature (for recent examples

see e.g. Karlsen, Myklebust, and Tjostheim, 2007; Wang and Phillips, 2009) where typically any

relationship of the form yt = f(xt, θ) + ut, with xt an integrated process, ut stationary and f(·, ·)

a nonlinear function, is considered to be a nonlinear cointegrating relationship between yt and xt.
3

The econometric literature has not yet provided definite answers to the problem of how to extend the

concepts of integrated and cointegrated processes, which are concepts inherently related to linear

processes, to the nonlinear world. In the formulation just given, e.g. a minimum requirement for a

useful extension of the concept clearly is to exclude cointegration in xt, since otherwise (this example

3Any such formulation by construction treats yt and xt asymmetrically, with the former being a function (up
to ut) of the latter which is assumed to be integrated in the ‘usual’ sense of the word. In the linear cointegration
framework, under the assumption that there is no cointegration between the components of xt, this implies that in a
triangular system of the form yt = x′

tθ+ut, xt = xt−1+vt also yt is integrated and thus this asymmetric formulation
is innocuous. In a nonlinear framework the stochastic properties of yt are in general unclear, when yt is generated
by yt = f(xt, θ) + ut, xt = xt−1 + vt.
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is taken from Choi and Saikkonen, 2010) a nonlinear function of the form f(xt, θ) = x′tθ + (x′tθ)
2,

with θ a cointegrating vector of xt, would lead to meaningless forms of nonlinear cointegration (some

simple examples are also discussed in Granger and Hallman, 1991). The appeal of certain types of

nonlinear functions to be used in nonlinear cointegration analysis, stems from the implied stochastic

properties of f(xt, θ) and consequently of yt. In this respect the use of integer powers of integrated

processes is appealing since due to the simplicity of this formulation the stochastic properties of

f(xt, θ) can be understood to a certain extent. Polynomial transformations of integrated processes

are (see the discussion in Ermini and Granger, 1993, Section 3) in many ways from an empirical

perspective similar to random walks with trend components. E.g. their sample autocorrelations

decay very slowly, i.e. there is high persistence, which makes it difficult to distinguish them from

unit root processes in samples typically available. However, they are not integrated processes

according to any of the usual definitions, since no difference of any order is a covariance stationary

process.4 Under the assumption that the elements of xt are not cointegrated, also
∑m

j=1X
′
jtθXj –

and thus yt as given by (1) – behaves like a polynomial transformation of an integrated process,

i.e. is empirically hard to distinguish from a random walk with a trend component.5 This ability

of CPRs to generate variables that appear very similar to random walks with trend components

makes CPRs in our view a useful and simple framework for nonlinear cointegration analysis.

Let us now state the assumptions concerning the regressors and the error processes:

Assumption 1 The processes {∆xt}t∈Z and {ut}t∈Z are generated as

∆xt = vt = Cv(L)εt =

∞∑
j=0

cvjεt−j

ut = Cu(L)ζt =

∞∑
j=0

cujζt−j ,

with the conditions

det(Cv(1)) ̸= 0,

∞∑
j=0

j||cvj || <∞ ,

∞∑
j=0

j|cuj | <∞.

4For the simple case of the square of a random walk this is e.g. discussed in Granger (1995, Example 2). Various
attempts have been made to generalize the concept of integration beyond the usual framework that is essentially
based on sums of linear processes. One of them is the concept of extended memory processes of Granger (1995) and
another example is given by the so-called summability index of Berenguer-Rico and Gonzalez (2010), which is defined

(for our setup) as the rate of divergence of stochastic processes. It holds that T−(1+ p
2
) ∑T

t=1 x
p
t , for xt a scalar I(1)

process, converges. The summability index of xp
t , i.e. the divergence order of T−1/2 ∑

t x
p
t , is therefore

p+1
2

.
5In the words of Berenguer-Rico and Gonzalez (2010), the summability index of

∑m
j=1 X

′
jtθXj and by construction

also of yt is equal to maxj=1,...,m
pj+1

2
.
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Furthermore we assume that the process {ξ0t }t∈Z = {[ε′t, ζt]′}t∈Z is a stationary and ergodic mar-

tingale difference sequence with natural filtration Ft = σ
(
{ξs}t−∞

)
and denote the (conditional)

covariance matrix by

Σ0 =

[
Σεε Σεζ

Σζε σ2ζ

]
:= E(ξ0t (ξ0t )′|Ft−1) > 0.

In addition we assume that supt≥1 E(∥ξ0t ∥r|Ft−1) <∞ a.s. for some r > 4.

Assumptions similar to the ones used above have been used in several places in the literature

with all of these assumptions geared towards establishing an invariance principle for (in our case

of cointegrating polynomial regressions) terms like T− k+1
2
∑T

t=1 x
k
jtut. Our assumptions are most

closely related to those of Chang, Park, and Phillips (2001), Park and Phillips (1999, 2001) and Hong

and Phillips (2010).6 Alternatively we could refer to the martingale theory framework of Ibragimov

and Phillips (2008, Theorem 3.1 and Remark 3.3) to establish convergence of the cross-product

just given above. Their assumptions are cast in terms of linear processes with moment conditions

related in our context to the order of the polynomial considered. Yet a different route has been

taken by de Jong (2002, Assumptions 1 and 2) who resorts in his assumptions on the underlying

processes to the concept of near epoch dependent sequences and some moment conditions. For the

present paper essentially any set of assumptions that leads to the required invariance principle is

fine and it is not the purpose of this paper to provide a new set of conditions. The assumption

det(Cv(1)) ̸= 0 together with positive definiteness of Σεε implies that xt is an integrated but not

cointegrated process.

Clearly the stated assumption is strong enough to allow for an invariance principle to hold for

{ξt}t∈Z = {[v′t, ut]′}t∈Z using the Beveridge-Nelson decomposition (compare Phillips and Solo, 1992)

1√
T

⌊Tr⌋∑
t=1

ξt ⇒ B(r) =

[
Bv(r)
Bu(r)

]
. (3)

Note here that it holds thatB(r) = Ω1/2W (r) with the long-run covariance matrix Ω :=
∑∞

h=−∞ E (ξ0ξ
′
h).

We also define the one-sided long-run covariance ∆ :=
∑∞

h=0 E (ξ0ξ
′
h) and both covariance matrices

are partitioned according to the partitioning of ξt, i.e.:

Ω =

[
Ωvv Ωvu

Ωuv ωuu

]
, ∆ =

[
∆vv ∆vu

∆uv ∆uu

]
.

6The main difference to the assumptions of Chang, Park, and Phillips (2001) is, using the notation of this paper,
that they assume ut = ζt and they also assume that all regressors are predetermined, i.e. in our notation they assume
that {[ε′t+1, ζt]

′}t∈Z is a stationary and ergodic martingale difference sequence.
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When referring to quantities corresponding to only one of the nonstationary regressors and its

powers, e.g. Xjt, we use the according notation, e.g. Bvj (r) or ∆vju.

To study the asymptotic behavior of the estimators, we next introduce appropriate weighting

matrices, whose entries reflect the divergence rates of the corresponding variables. Thus, denote

with G(T ) = diag{GD(T ), GX(T )}, where for notational brevity we often use G := G(T ). The

two diagonal sub-matrices are given by GD(T ) := diag(T−1/2, . . . , T−(q+1/2)) ∈ R(q+1)×(q+1) and

GX(T ) := diag(GX1 , . . . , GXm) ∈ Rp×p with GXj := diag(T−1, . . . , T−
pj+1

2 ) ∈ Rpj×pj .

Using these weighting matrices, we can define the following limits of the major building blocks. For

t such that limT→∞ t/T = r the following results hold:

lim
T→∞

√
TGD(T )Dt = lim

T→∞

 1
. . .

T−q


 1

...
tq

 =

 1
...
rq

 =: D(r)

lim
T→∞

√
TGXj (T )Xjt = lim

T→∞

 T−1/2

. . .

T−pj/2


 xjt

...

x
pj
jt

 =

 Bvj
...

B
pj
vj

 =: Bvj (r),

separating here the coordinates of vt = [v1t, . . . , vmt]
′ corresponding to the different variables xjt.

The first result is immediate and the second follows e.g. from Chang, Park, and Phillips (2001,

Lemma 5). The stacked vector of the scaled polynomial transformations of the integrated processes

is denoted as Bv(r) := [Bv1(r)
′, . . . ,Bvm(r)

′]′. We are confident that D as defined in (2) is not

confused with D(r) defined above even when the latter is used in abbreviated form D in integrals.

More general deterministic components can be included with the necessary condition being that

the correspondingly defined limit quantity satisfies
∫
DD′ > 0, i.e. that the considered functions

are linearly independent in L2[0, 1]. This allows in addition to the polynomial trends on which we

focus in this paper e.g. also to include time dummies, broken trends or trigonometric functions of

time (compare the discussion in Park, 1992). As has been mentioned, the working paper Hong and

Wagner (2008) extends the considered regression model by additionally including predetermined

stationary regressors, similarly to the model considered in Chang, Park, and Phillips (2001). For

brevity we do not include these components here but refer the reader to the mentioned working

paper. Note also that the available code allows for stationary regressors.

Furthermore note that the results in this paper extend to triangular systems with multivariate
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yt, as considered in the linear case in Phillips and Hansen (1990), with the required changes to

assumptions, expressions and results being straightforward.

2.2 Fully Modified OLS Estimation

As in a (standard) linear cointegrating regression (see Phillips and Hansen, 1990) also in the consid-

ered cointegrating polynomial regression situation the usual OLS estimator θ̂ := (Z ′Z)−1Z ′y of θ is

consistent, but its limiting distribution is contaminated by second order bias terms (as shown in the

proof of Proposition 1 in the appendix). The presence of these second order bias terms invalidates

standard inference and consequently we consider an appropriate fully modified OLS (FM-OLS)

estimator. The principle is like in the linear cointegration case, i.e. the fully modified estimator is

based on two modifications to the OLS estimator: (i) the dependent variable yt is replaced by a

suitably constructed variable y+t and (ii) additive correction factors are employed.

The dependent variable is modified in the same way as in Phillips and Hansen (1990), i.e. y+t :=

yt − v′tΩ̂
−1
vv Ω̂vu and y+ := [y+1 , . . . , y

+
T ]

′.7 Note that for notational brevity in the remainder of the

paper we simply assume here that v1 is available. In an application, with x1, . . . , xT available, only

v2, . . . , vT can be actually computed. Thus, in applications FM-OLS computations are typically

performed on the sample t = 2, . . . , T .8 Assuming for the purpose of this paper that v1 is available

saves us from introducing throughout additional, cumbersome notation for data matrices comprising

observations only from t = 2, . . . , T rather than from t = 1, . . . , T .

The additive correction factors are different than in the linear case and are given by

M∗ :=

 M∗
1
...

M∗
m

 , M∗
j := ∆̂+

vju


T

2
∑
xjt
...

pj
∑
x
pj−1
jt

 , (4)

In both the definition of y+ and the correction factors we rely upon consistent estimators of the

required long-run variances, Ω̂vv, Ω̂vu, ∆̂vju and ∆̂+
vju := ∆̂vju − Ω̂uvΩ̂

−1
vv ∆̂vvj .

The OLS estimator is consistent, despite the fact that its limiting distribution is contaminated by

second order bias terms. This result is important, given that the OLS residuals are used for long-

run variance estimation. For our setup, the results of Jansson (2002, Corollary 3) apply, because

7Note that here and throughout we ignore for notational simplicity the dependence of e.g. y+ upon the specific
consistent long-run covariance estimator chosen.

8Sometimes also the assumption x0 = 0 is made, which also gives an actual sample of size T . Asymptotically none
of these choices has an effect.
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the OLS estimator converges sufficiently fast. Thus, the assumptions with respect to kernel (A3)

and bandwidth choice (A4) formulated in Jansson have to be taken into account. For more explicit

calculations with respect to long-run variance estimation in a context related to this paper see also

Hong and Phillips (2010). For the remainder of the paper we assume from now on that long-run

variance estimation is performed consistently.

With the necessary notation collected, the following Proposition 1 gives the result for the FM-OLS

estimator (where as mentioned the limiting distribution of the OLS estimator is also given in the

proof contained in the appendix).

Proposition 1 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tion 1. Define the FM-OLS estimator of θ as

θ̂+ := (Z ′Z)−1
(
Z ′y+ −A∗) ,

with

A∗ :=

[
0(q+1)×1

M∗

]
,

with M∗ as given in (4) and with consistent estimators of the required long-run (co)variances. Then

θ̂+ is consistent and its asymptotic distribution is given by

G−1
(
θ̂+ − θ

)
⇒

(∫
JJ ′
)−1 ∫

JdBu.v, (5)

with J(r) := [D(r)′ Bv(r)
′]′ and Bu.v(r) := Bu(r)−Bv(r)

′Ω−1
vv Ωvu.

This limiting distribution is free of second order bias terms and is a zero mean Gaussian mixture.

This stems from the fact that Bu.v is by construction independent of the vector Bv, being inde-

pendent of Bv. This in turn implies that conditional upon Bv, the above limiting distribution is

actually a normal distribution with (conditional) covariance matrix

VFM = ωu.v

(∫
JJ ′
)−1

. (6)

By definition of Bu.v it holds that ωu.v := ωuu − ΩuvΩ
−1
vv Ωvu. Clearly, when using a consistent

estimator ω̂u.v = ω̂uu − Ω̂uvΩ̂
−1
vv Ω̂vu, a consistent estimator of this conditional covariance matrix is

given by V̂FM = ω̂u.v(GZ
′ZG)−1.

Sometimes it is convenient to have separate explicit expressions for the coefficients corresponding

to the deterministic components on the one hand and the stochastic regressors on the other (for

9



details see the derivations in the working paper Hong and Wagner, 2008). Such an expression

obviously follows using partitioned matrix inversion of
(∫
JJ ′)−1

, and is given by

G−1
(
θ̂+ − θ

)
=

[
G−1

D (θ̂+D − θD)

G−1
X (θ̂+X − θX)

]
⇒

 [∫
D̃D̃′

]−1 ∫
D̃dBu.v[∫

B̃vB̃
′
v

]−1 ∫
B̃vdBu.v

 , (7)

with

D̃ := D −
∫
DB′

v

(∫
BvB

′
v

)−1

Bv ,

B̃v := Bv −
∫

BvD
′
(∫

DD′
)−1

D.

The zero mean Gaussian mixture limiting distribution given in (5) forms the basis for asymptotic

chi-square inference, as discussed in Phillips and Hansen (1990, Theorem 5.1 and the discussion

on p. 106). Since in the considered regression the convergence rates differ across coefficients, not

all hypothesis can be tested, as is well known (compare Phillips and Hansen, 1990; Sims, Stock

and Watson, 1990; Vogelsang and Wagner, 2010). We here merely state a sufficient condition

on the constraint matrix R ∈ Rs×q+1+p under which the Wald statistics have chi-square limiting

distributions. We assume that there exists a nonsingular scaling matrix GR ∈ Rs×s such that

lim
T→∞

GRRG = R∗, (8)

whereR∗ ∈ Rs×q+1+p has rank s. Clearly, this covers as a special case testing of multiple hypotheses,

where in none of the hypotheses coefficients with different convergence rates are mixed (e.g. t-tests

or testing the significance of several parameters jointly) but allows for more general hypotheses.

Proposition 2 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tion 1. Consider s linearly independent restrictions collected in

H0 : Rθ = r,

with R ∈ Rs×q+1+p with row full rank s and r ∈ Rs and suppose that there exists a matrix GR such

that (8) is fulfilled. Furthermore let ω̂u.v denote a consistent estimator of ωu.v. Then it holds that

the Wald statistic

W :=
(
Rθ̂+ − r

)′ [
ω̂u.vR

(
Z ′Z

)−1
R′
]−1 (

Rθ̂+ − r
)
→ χ2

s (9)

under the null hypothesis.
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The above result implies, as mentioned, that for instance the appropriate t-statistic for an individual

coefficient θi, given by tθi :=
θ̂+i√

ω̂u.v(Z′Z)−1
[i,i]

, is asymptotically standard normally distributed.

Note that analogously to the Wald test also a corresponding Lagrange Multiplier (LM) test statis-

tics can be derived. For brevity we consider the LM test only in the following subsection, when

dealing with specification testing based on an augmented respectively auxiliary regression (see

Proposition 4).

2.3 Specification Testing based on Augmented and Auxiliary Regressions

Testing the correct specification of equation (1) is clearly an important issue. In this respect

we are particularly interested in the prevalence of cointegration, i.e. stationarity of ut. Absence

of cointegration can be due to several reasons. First, there is no cointegrating relationship of any

functional form between yt and xt. Second, yt and xt are nonlinearly cointegrated but the functional

relationship is different than postulated by equation (1). This case covers the possibilities of missing

higher order deterministic components or higher order polynomial terms or of cointegration with an

entirely different functional form. Third, the absence of cointegration is due to missing explanatory

variables in equation (1).

In a general formulation all the above possibilities can be cast into a testing problem within the

augmented regression

yt = Z ′
tθ + F (D̄t, xt, qt, θF ) + ϕt, (10)

where F is such that F (D̄t, xt, qt, 0) = 0, where D̄t denotes the set of deterministic variables

considered (like e.g. higher order time trends) and qt denotes additional integrated regressors. If

cointegration prevails in (1) then θF = 0 and ϕt = ut in (10)

In many cases the researcher will not have a specific parametric formulation in mind for the function

F (·), which implies that typically the unknown F (·) is replaced by a partial sum approximation.

This approach has a long tradition in specification testing in a stationary setup, see Ramsey (1969),

Phillips (1983), Lee, White, and Granger (1993) or de Benedictis and Giles (1998). Given our FM-

OLS results it appears convenient to replace the unknown F (·) by using the additional deterministic

variables and additional powers of the integrated regressors. The latter in the most general case

include both higher order powers larger than pj for the components xjt of xt as well as powers

larger or equal than 1 for the additional integrated regressors qit.
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Of course this simple approach is also subject to the discussion in the introduction that a simple

functional form is considered. However, for specification analysis the advantage of a parsimonious

setup may outweigh the potential disadvantages of considering only univariate polynomials since a

test based on such a formulation will also have power against alternatives where e.g. products terms

are present. Clearly, the power properties of tests based on univariate polynomials depend upon

the unknown alternative F (·) and will be the more favorable the more F (·) ‘resembles’ univariate

polynomials. This trade-off is exactly the same as in the stationary case, as also discussed in Hong

and Phillips (2010).

To be concrete denote with D̄t := [tq+1, . . . , tq+n]′, X̄jt := [x
pj+1
jt , x

pj+2
jt , . . . , x

pj+rj
jt ]′ for j =

1, . . . ,m, Qit := [q1it, q
2
it, . . . , q

si
it ]

′ for i = 1, . . . , k, Ft := [D̄′
t, X̄

′
1t, . . . , X̄

′
mt, Q

′
1t, . . . , Q

′
kt]

′ and F :=

[F ′
1, . . . , F

′
T ]

′. Using this notation the augmented polynomial regression including higher order de-

terministic trends D̄t, higher order polynomial powers of the regressors xjt and polynomial powers

of additional integrated regressors qit can be written as

y = Zθ + FθF + ϕ, (11)

with ϕ := [ϕ1, . . . , ϕT ]
′. If equation (11) is well specified the parameters can be estimated consis-

tently by FM-OLS according to Proposition 1 if the additional regressors qit fulfill the necessary

assumptions stated in Section 2.1 which are now modified to accommodate the additional regressors.

Assumption 2 When considering additional regressors qit and their polynomial powers define

ṽt := [v′t, (v
∗
t )

′]′ = [∆x′t,∆q
′
t]
′, with v∗t = ∆qt and qt = [q1t, . . . , qkt]

′. Assumption 1 is extended

such that it is fulfilled for the extended process ṽt generated by Cṽ(L)ε̃t, with Cṽ(L) and ε̃t also

extended accordingly.

Note that equation (11) can be well-specified for different reasons. The first is that (1) is a cor-

rectly specified cointegrating relationship, in which case consistently estimated coefficients θ̂+F will

converge to their true value equal to 0. The second possibility is that (1) is misspecified, but the

extended equation (11) is well-specified. In this case at least some entries of θ̂+F will converge to

their non-zero true values. In case that both (11) and (1) are misspecified and ϕt is not stationary,

spurious regression results similar to the linear case that lead to non-zero limit coefficients apply.

Consequently, a specification test based on H0 : θF = 0 is consistent against the three discussed

forms of misspecification of (1) discussed in the beginning of the sub-section.
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Testing the restriction θF = 0 in (11) can be done in several ways. One is given by FM-OLS

estimation of the augmented regression (11) and performing aWald test on the estimated coefficients

using Proposition 2. Another possibility is to use the FM-OLS residuals of the original equation (2)

and to perform a Lagrange Multiplier RESET type test in an auxiliary regression. Note here that

the original RESET test of Ramsey (1969) as well as similar tests by Keenan (1985) and Tsay

(1986) use powers of the fitted values, whereas Thursby and Schmidt (1977) use polynomials of

the regressors and it is this approach that we also follow since this leads to simpler test statistics.

Before turning to the LM specification test we first discuss the Wald specification test.

Proposition 3 Let yt be generated by (1) with the regressors Zt, Qt and errors ut satisfying

Assumptions 1 and 2. Denote with θ̂+F the FM-OLS estimator of θF in equation (11), with

F̃ := F − Z(Z ′Z)−1Z ′F and let ω̂u.ṽ be a consistent estimator of ωu.ṽ. Then it holds that the

Wald test statistic for the null hypothesis H0 : θF = 0 in equation (11), given by

TW :=
θ̂+′
F (F̃ ′F̃ )θ̂+F
ω̂u.ṽ

, (12)

is under the null hypothesis asymptotically χ2
b distributed, with b := n+

∑m
j=1 rj +

∑k
j=1 sj.

Note that the used variance and covariance estimators in Proposition 3 are all based on the (m+k)-

dimensional process ṽt. The result given in Proposition 3 follows as a special case from Proposi-

tions 1 and 2 using the specific format of the corresponding restriction matrix R.

The basis of the Lagrange Multiplier (LM) test are the FM-OLS residuals û+t of (2), which are

regressed on F̃ in the auxiliary regression

û+ = F̃ θF̃ + ψt, (13)

with û+ = [û+1 , . . . , û
+
T ]

′. To allow for asymptotic standard inference the coefficients θF̃ in general

have to be estimated with a suitable FM-OLS type estimator to achieve a zero mean Gaussian

mixture limiting distribution. This is necessary becasue the limiting distribution of the OLS es-

timator of θF̃ in (13) also depends upon second order bias terms (see the proof of Proposition 4

in the appendix for details). The FM-OLS estimator as well as the test statistic for testing the

hypothesis θF̃ = 0 are presented in the following proposition for the case that (1) is well specified.

Consistency of the tests against the above-discussed forms of misspecification of (1) follows from

the same arguments as for the Wald test.
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Proposition 4 Let yt be generated by (1) with the regressors Xt, Qt and errors ut satisfying

Assumptions 1 and 2. Define the fully modified OLS estimator of θF̃ in equation (13) as

θ̂+
F̃
:=
(
F̃ ′F̃

)−1 (
F̃ ′û+ −OF∗ −AF∗ + kF∗A∗

)
, (14)

with

OF∗ := F̃ ′ṽΩ̂−1
ṽṽ Ω̂ṽu − F̃ ′vΩ̂−1

vv Ω̂vu,

where v = [v1, . . . , vT ]
′, ṽ = [ṽ1, . . . , ṽT ]

′ and AF∗ := [0′n×1,M
∗′
X̄1
, . . . ,M∗′

X̄m
,M∗′

Q1
, . . . ,M∗′

Qk
]′, where

MX̄j
= ∆̂+

vju

 (pj + 1)
∑
x
pj
jt

...

(pj + rj)
∑
x
pj+rj−1
jt

 , MQi = ∆̂+
v∗i u


T

2
∑
qit

...

si
∑
qsi−1
it

 ,
kF∗ = F ′Z(Z ′Z)−1, ∆̂+

vju and A∗ as defined above in Proposition 1 and ∆̂+
v∗i u

:= ∆̂v∗i u
−Ω̂uvΩ̂

−1
vv ∆̂vv∗i

.

Then it holds that under the null hypothesis that θF̃ = 0 the FM-OLS estimator defined in (14) has

the limiting distribution

G−1
F θ̂+

F̃
⇒
(∫

J̃F J̃F ′
)−1 ∫

J̃FdBu.ṽ, (15)

with

J̃F (r) := JF −
∫
JFJ ′

(∫
JJ ′
)−1

J(r), (16)

with Bu.ṽ(r) := Bu(r) − B̃v(r)
′Ω−1

ṽṽ Ωṽu and and JF and GF defined in the proof in the appendix.

Consequently, the LM test statistic for the null hypothesis H0 : θF̃ = 0 in (13)

TLM :=
θ̂+′
F̃
(F̃ ′F̃ )θ̂+

F̃

ω̂u.ṽ
, (17)

is under the null hypothesis asymptotically distributed as χ2
b , with b = n+

∑m
j=1 rj +

∑k
j=1 sj.

Proposition 4 can be seen as a generalization of the modified RESET test considered in Hong

and Phillips (2010, Theorem 3), who consider a related test in a bivariate linear cointegrating

relationship with only one I(1) regressor and without deterministic variables, i.e. they consider the

case q = 0, m = 1 and p = 1. A second difference to our result is that Hong and Phillips use the

OLS residuals ût of the linear cointegrating relationship in the auxiliary regression, which leads to

different bias correction terms than ours based on the FM-OLS residuals û+t . In principle also an
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extension of the Hong and Phillips (2010) test using the OLS residuals of the original regression

is possible.9 In case that for specification analysis in Ft only higher order polynomial trends are

included, we arrive at a test that extends those of Park and Choi (1988) and Park (1990). These

authors propose tests for linear cointegration based on adding superfluous higher order deterministic

trend terms. This approach is nested within ours.

Clearly, any selection of higher order polynomial terms can be chosen as additional regressors and

one need not choose, as done for simplicity in the formulation of the test, a set of consecutive powers

ranging from e.g. pj +1 to pj + rj . Also, similarly to the discussion at the end of Section 2.1, more

general deterministic variables can be included in D̄t. The two above propositions continue to hold

with obvious modifications.

2.4 KPSS-Type Test for Cointegration

In this section we discuss a residual based ‘direct’ test for nonlinear cointegration which prevails

in (1) if the error process {ut}t∈Z is stationary. To test this null hypothesis directly we present

a Kwiatkowski, Phillips, Schmidt, and Shin (1992), in short KPSS, type test statistic based on

the FM-OLS residuals û+t of (1). The KPSS test is a variance-ratio test, comparing estimated

short- and long-run variances, that converges towards a well defined distribution under stationarity

but diverges under the unit root alternative. Note that this as well as other related tests can be

interpreted to a certain extent as specification tests as well, since persistent nonstationary errors

also prevail if e.g. relevant I(1) regressors are omitted in (1). The test statistic is given by

CT :=
1

T ω̂u.v

T∑
t=1

 1√
T

t∑
j=1

û+j

2

, (18)

with ω̂u.v a consistent estimator of the long-run variance ωu.v of û+t . The asymptotic distribution

of this test statistic is considered in the following proposition.

Proposition 5 Let yt be generated by (1) with the regressors Zt and errors ut satisfying Assump-

tion 1 and let ω̂u.v be a consistent estimator of ωu.v, then the asymptotic distribution of the test

statistic (18) defined above is

CT ⇒
∫

(W J)2,

9One can also perform the LM test using F rather than F̃ . The results are similar in structure to those given in
Proposition 4 but of course the precise form of the correction factors is different.
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with

W J(r) :=W (r)−
∫ r

0
JW ′

(∫
JWJW ′

)−1 ∫
JWdW (19)

with JW (r) := [D(r)′,W(r)′]′, where W(r) = [W1(r)
′, . . . ,Wm(r)′]′, Wi(r) = [Wi(r), . . . ,Wi(r)

pi ]′

for i = 1, . . . ,m and with W (r),W1(r), . . . ,Wm(r) independent standard Wiener processes.

The above limiting distribution (19) only depends upon the specification of the deterministic com-

ponent and the number and the polynomial degrees of the integrated regressors and therefore

critical values can be simulated (and are available upon request). Thus, the test given in Propo-

sition 5 extends the test of Shin (1994) from cointegrating regressions to cointegrating polynomial

regressions.

Parallelling Choi and Saikkonen (2010), who consider a similar testing problem in a dynamic OLS

estimation framework, we also consider a sub-sample based test statistic whose limiting distribution

does not depend upon the specification.

Proposition 6 Under the same assumptions as in Proposition 5 it holds that

CTb,i :=
1

bω̂u.v

i+b−1∑
t=i

 t∑
j=i

1√
b
û+j

2

⇒
∫
W 2,

with b such that for T → ∞ it holds that b→ ∞ and b/T → 0.

Note that for a given block size b there are M := ⌊T/b⌋ sub-samples and corresponding test

statistics, {CTb,i1 , . . . , CTb,iM}, that all lead to asymptotically valid statistics for the same null

hypothesis. Basing a test on all these statistics might lead to reduced power and increased size

(compare again Choi and Saikkonen, 2010). Therefore we consider using this set of statistics in

combination with the Bonferroni inequality to modify the critical values using

lim
T→∞

P
(
CTmax ≤ cα/M

)
≥ 1− α,

where CTmax := max(CTb,i1 , . . . , CTb,iM ), suppressing the dependence of CTmax on b for notational

brevity, and cα/M denotes the α/M -percent critical value of the distribution of
∫
W 2. For the

computation of the critical values from the distribution function, FW 2 say, of
∫
W 2 Choi and

Saikkonen (2010) obtain the interesting result that

FW 2(z) =
√
2

∞∑
n=0

Γ(n+ 1/2)

n!Γ(1/2)
(−1)n

(
1− f

(
gn
2
√
z

))
, z ≥ 0, (20)
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with f(x) = 2√
π

∫ x
0 exp(−y

2)dy and gn =
√
2/2 + 2n

√
2. Using this series representation and

truncating the series at n = 30 we obtain the critical values for the required distribution. Critical

values based on n = 30 and for comparison also for n = 10 (as used in Choi and Saikkonen, 2010)

are available in supplementary material.

Another important practical problem when using the sub-sample based test is the choice of the

block-length b. As Choi and Saikkonen (2010) we apply the so called minimum volatility rule

proposed by Romano and Wolf (2001, p. 1297). To be precise, we choose bmin = 0.5
√
T and

bmax = 2.5
√
T . For all b ∈ [bmin, bmax] we compute the standard deviations of the test statistics

over the five neighboring block sizes, i.e. for a block size b∗, we use the test statistics CTb,max for

b = b∗ − 2, b∗ − 1, b∗, b∗ + 1, b∗ + 2 to compute the standard deviation of CTb,max as a function of

b. The optimal block-length is then given by the value bopt ∈ [bmin + 2, bmax − 2] that leads to the

smallest standard deviation. We refer to the test procedure using the Bonferroni bound, i.e. when

the null hypothesis is rejected if CTmax ≥ cα/M , and with the block-length chosen as just described

as CS test in the simulations.10

3 Simulation Performance

In this section we briefly report a small selection of simulation results to investigate the finite sample

performance of the proposed estimator and tests. For assessing the performance of the estimator

and size of the tests we use data generated according to

yt = c+ δt+ β1xt + β2x
2
t + ut, (21)

where ∆xt = vt and ut are generated as

(1− ρ1L)ut = e1,t + ρ2e2,t

vt = e2,t + 0.5e2,t−1,

with (e1,t, e2,t)
′ ∼ N (0, I2). The two parameters ρ1 and ρ2 control the level of serial correlation in

the error term and the level of endogeneity of the regressor, respectively. The parameter values

10By construction a test based on the Bonferroni bound is conservative and is known to be particularly conservative
when the test statistics used are highly correlated (see Hommel, 1986). The literature has provided several less
conservative test procedures based on modified Bonferroni bounds (all of which use all M test statistics rather than
only the largest one). In supplementary available material we discuss tests based on the modifications of Hommel
(1988), Simes (1986) and Rom (1990). In general, however, using these modifications does not lead to very different
behavior of the resulting tests compared to the CS test.
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are c = δ = 1, β1 = 5 and β2 = −0.3. The values for β1, β2 are inspired by coefficient estimates

obtained when applying the developed FM-OLS estimator to GDP and emissions data (compare

Hong and Wagner, 2008).

The FM-OLS estimator and test statistics based upon it are computed for two widely used ker-

nels, the Bartlett and Quadratic Spectral (QS) kernels, and for different bandwidth choices. Two

widely used kernels are considered to assess whether the kernel choice has an important impact

on the estimator and test performance. The five bandwidth choices are T 1/5, T 1/4, T 1/3, the data

dependent rule of Andrews (1991) and the sample size dependent rule of Newey and West (1994),

i.e. ⌊4(T/100)2/9⌋. The latter choice is very common and has been suggested by Newey and West

(1994) as a simplified, feasible rule especially in conjunction with the Bartlett kernel. Compared to

the data dependent rule of Andrews (1991) it is clearly computationally simpler (as it depends only

on the sample size), but does not take into account serial correlation in the data (which is captured

by Andrews’ AR(1) based bandwidth selection rule). We use both rules to see whether the com-

putationally more intensive approach leads to better performance. The three different bandwidths

T 1/5, T 1/4, T 1/3 are chosen because Hong and Phillips (2010, Theorems 4 and 5) show that the con-

vergence respectively divergence behavior under the null and alternative of their modified RESET

test computed from the residuals of a linear cointegrating relationship depends upon the ratio of

the bandwidth to the sample size. In particular they show that in their setup smaller bandwidths

lead to slower convergence of their test statistic under the null but to faster divergence (i.e. higher

rejection probabilities) under the alternative. In their simulations they, however, find only small

effects of the bandwidth choice and we include their choices to see whether similar observations

also hold in our more general setup. All results are benchmarked against the OLS estimator, which

as discussed is also consistent. Inference is performed in two ways for the OLS estimator, none

of which is asymptotically valid in the presence of serial correlation and endogeneity (this being a

major reason for developing FM-OLS estimation theory). One way is to perform textbook OLS

inference ignoring serial correlation and endogeneity (labeled OLS later) and the other is to use

‘HAC-robust’ standard errors, as is often done in stationary regression, with the bandwidth chosen

according to Newey and West (1994) (labeled HAC later). Rejections for the OLS tests are, as

for the FM-OLS based tests, carried out using the standard normal distribution for t-tests and

chi-square distribution for Wald tests.

The full set of sample sizes that has been considered in simulations is T ∈ {50, 100, 200, 500, 1000}

and the values for ρ1 and ρ2 are taken from the set {0, 0.3, 0.6, 0.8}. Here we only report for brevity
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representative results for T ∈ {100, 200} and where ρ1 = ρ2. Full sets of results for all five sample

sizes and all combinations of ρ1 and ρ2 are available from the authors upon request.

Let us start the discussion of results by briefly considering estimator performance, measured in

terms of bias and root mean squared error (RMSE), where for brevity we here only verbally sum-

marize some findings. Bias and RMSE tables are available in supplementary material. In many

respects the results for bias and RMSE are similar to results that have been found for the FM-OLS

estimator of Phillips and Hansen (1990) in linear cointegrating relationships.11 In case of absence

of both serial correlation and endogeneity, the OLS estimator has, as expected, the best perfor-

mance in terms of both bias and RMSE. With serial correlation and/or endogeneity increasing, the

FM-OLS estimator outperforms the OLS estimator. Bias reductions can amount to about almost

50% in case of ρ1, ρ2 = 0.6. Also the RMSEs are typically smaller for the FM-OLS estimates, with

the performance advantage compared to OLS typically not as big as for bias. These results hold

qualitatively very similarly for all coefficients, i.e. for the coefficients to the stochastic as well as

deterministic regressors. In this respect it is interesting to note that the different convergence rates

for the coefficient to the integrated regressor (rate T ) on the one hand and the coefficients to the

linear trend and the squared integrated regressor (rate T 3/2 for both) on the other can be clearly

seen from the results already for the smallest sample sizes considered. On average the bias for the

former is about 1000 times as large as for the latter two for T = 100, 200.

In the simulations performed, the choice of the kernel, i.e. Bartlett or QS, has only minor influence

on the performance of the estimator and none of the two kernels leads to a clearly better performance

over a wide array of sample sizes and parameters. Similarly, also the choice of the bandwidth has

only a moderate impact on the results. Typically, the bias is slightly increasing with increasing

bandwidth for β1, but not for δ and β2, where the bias is typically decreasing with increasing

bandwidth for T = 200. RMSEs are not very much affected by bandwidth choice either. The

simple bandwidth rule of Newey and West (1994) leads to grosso modo similar performance as the

rule of Andrews (1991), with none dominating the other.

We now briefly turn to the coefficient tests, where we present in Table 1 empirical null rejection

probabilities for t-tests for H0 : β1 = 5 and H0 : β2 = −0.3 in Panels A and B, respectively, and for

the Wald test considering these two coefficients jointly (i.e. for H0 : β1 = 5, β2 = −0.3) the results

are presented in Panel C. As discussed in the beginning of the section, for OLS we include both

11See e.g. the simulation section in Vogelsang and Wagner (2010) where both OLS and FM-OLS are included in
the simulations in a linear cointegration framework.

19



textbook as well as HAC inference. As for the estimators, the results for the tests are very similar

to findings in the linear cointegration case. In case of no serial correlation and/or endogeneity, the

OLS textbook statistic (in this case asymptotically valid) has the best performance, with its null

rejection probabilities being closest to the 0.05 level. With increasing values of ρ1, ρ2 the FM-OLS

based test statistics outperform the OLS test statistics, with all tests exhibiting increasing over-

rejection problems with increasing values of ρ1, ρ2. As expected, the larger are ρ1, ρ2 the bigger is

the performance advantage of the FM-OLS based test statistics. For ρ1, ρ2 = 0.8 the differences

are very large, which shows that the FM-OLS estimation approach appropriately corrects for the

second order bias terms that contaminate the OLS estimators’ distribution. Note however that for

the Wald test involving both coefficients β1 and β2 with ρ1, ρ2 = 0.8 and T = 200, the rejection

probabilities are above 45% even for the best performing FM test statistic using the Andrews

(1991) bandwidth. It is interesting to note that using (incorrect) HAC robust standard errors in

conjunction with the OLS estimator also leads to sizeable reductions in over-rejections compared to

textbook OLS inference. HAC inference has over-rejections in the vicinity of the worst performing

version of FM based inference. The bandwidth choice for HAC is given by the sample size dependent

rule of Newey and West (1994). Thus, the most direct comparison is between the columns labeled

HAC and NW. Comparing these two corresponding columns shows that – as one would guess –

asymptotically valid inference (NW) outperforms asymptotically invalid inference (HAC), already

in small samples.12 The bandwidth choice has an effect on the empirical null rejection probabilities,

and is thus a bit more consequential than it was for the performance of the estimators. Similarly

to the findings in Hong and Phillips (2010) discussed above it is seen that larger bandwidths lead

to lower null rejection probabilities.

12Similar results are obtained when the bandwidth for HAC is chosen with any of the other rules concerning
bandwidth choice.
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Table 1: Empirical Null Rejection Probabilities, 0.05 Level

Panel A: t-tests for H0 : β1 = 5
T = 100

Bartlett kernel QS Kernel
ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0594 .1060 .0754 .0826 .1020 .1058 .0932 .1222 .0842 .0972 .1246 .1234 .1136
0.3 .1542 .1424 .1128 .1092 .1138 .1162 .1092 .1462 .1034 .1038 .1168 .1164 .1118
0.6 .3706 .2678 .2146 .1896 .1662 .1604 .1716 .2498 .1788 .1604 .1474 .1488 .1514
0.8 .5876 .4612 .4270 .3998 .3622 .3108 .3774 .4286 .3940 .3680 .3282 .2984 .3408

T = 200
Bartlett kernel QS Kernel

ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0478 .0784 .0588 .0634 .0722 .0738 .0650 .0890 .0658 .0714 .0862 .0784 .0726
0.3 .1472 .1100 .0932 .0874 .0872 .0878 .0866 .1058 .0818 .0796 .0844 .0802 .0790
0.6 .3736 .2306 .1930 .1710 .1458 .1350 .1660 .2010 .1638 .1446 .1278 .1242 .1406
0.8 .6154 .4410 .4228 .3906 .3412 .2930 .3820 .3968 .3880 .3538 .3150 .2846 .3446

Panel B: t-tests for H0 : β2 = −0.3
T = 100

Bartlett kernel QS Kernel
ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0570 .1030 .0686 .0736 .0874 .0926 .0822 .1188 .0764 .0848 .1060 .1056 .0964
0.3 .1424 .1360 .1102 .1052 .1070 .1088 .1048 .1352 .1006 .0988 .1056 .1064 .1036
0.6 .2776 .1956 .1772 .1590 .1384 .1340 .1466 .1800 .1498 .1314 .1182 .1216 .1210
0.8 .4202 .2784 .2696 .2378 .1970 .1626 .2116 .2462 .2306 .2022 .1640 .1552 .1770

T = 200
Bartlett kernel QS Kernel

ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0528 .0748 .0616 .0674 .0758 .0764 .0684 .0846 .0668 .0712 .0846 .0810 .0728
0.3 .1368 .1000 .0916 .0882 .0870 .0872 .0876 .0962 .0822 .0798 .0808 .0798 .0796
0.6 .2678 .1466 .1558 .1364 .1118 .1042 .1326 .1242 .1296 .1112 .0952 .0938 .1082
0.8 .4368 .2438 .2596 .2196 .1726 .1320 .2128 .2056 .2170 .1844 .1460 .1264 .1790

Panel C: Wald tests for H0 : β1 = 5, β2 = −0.3
T = 100

Bartlett kernel QS Kernel
ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0568 .1348 .0832 .0946 .1184 .1238 .1092 .1706 .0972 .1146 .1478 .1466 .1352
0.3 .2002 .1958 .1410 .1382 .1442 .1470 .1402 .2032 .1260 .1294 .1476 .1470 .1372
0.6 .5258 .3878 .3018 .2714 .2364 .2226 .2472 .3550 .2556 .2266 .2038 .2070 .2120
0.8 .8124 .6652 .6356 .5982 .5462 .4800 .5650 .6250 .5894 .5486 .4978 .4654 .5188

T = 200
Bartlett kernel QS Kernel

ρ1, ρ2 OLS HAC T 1/5 T 1/4 T 1/3 AND NW HAC T 1/5 T 1/4 T 1/3 AND NW
0.0 .0532 .0910 .0652 .0726 .0866 .0880 .0740 .1118 .0746 .0802 .1044 .0960 .0830
0.3 .1924 .1426 .1104 .1040 .1020 .1034 .1038 .1384 .0968 .0932 .1022 .0956 .0922
0.6 .5290 .3140 .2668 .2318 .1990 .1870 .2258 .2720 .2216 .1952 .1718 .1698 .1898
0.8 .8254 .6228 .6228 .5826 .5316 .4602 .5758 .5638 .5782 .5392 .4996 .4514 .5348

Next we consider briefly the power of the coefficient tests. Given that we observe quite substantial
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null rejection probability differences across tests we focus on size corrected power. This allows to see

power differences across tests when holding the null rejection probabilities constant at 0.05. This

is useful for theoretical power comparisons, but it has to be kept in mind that such size-corrections

are not feasible in practice. In Figure 1 we display the size corrected power curves of the t-test for

β2 = −0.3 with the values for β2 ∈ (−0.3,−0.2], displayed on the horizontal axis, generated on a

grid with mesh 0.05. In Figure 2 we consider the Wald test.13 Starting from the null hypothesis

β1 = 5, β2 = −0.3 we consider under the alternative β1 ∈ (5, 6] and β2 ∈ (−0.3,−0.2] with in

total 21 values generated on a grid with mesh 0.05 for β1 and 0.005 for β2. These two figures are

for T = 100, ρ1, ρ2 = 0.8 and the Bartlett kernel. Results for other values of ρ1, ρ2, other sample

sizes and the QS kernel are qualitatively similar. The main message of the figures is twofold, given

that all size corrected power curves are very close to each other. First, the test statistics based

on the FM-OLS estimator are – and this is the main message since it clearly shows the value

of the FM-OLS estimator – strictly preferable to the (even asymptotically invalid) OLS based

test statistics. This, since they have (especially for ρ1, ρ2 = 0.8) much lower size distortions and

similar or even slightly higher size corrected power. Second, the choice of the bandwidth becomes

relatively unimportant from a size corrected power perspective. This implies that a bandwidth

choice that results in low null rejection probabilities should be chosen, since doing so does not

result in subsequent (size corrected) power losses. Typically, lowest size corrected power is found

for the HAC test statistics and the FM test statistic based on the Andrews (1991) data dependent

bandwidth choice. The choice of the bandwidth is more important than the choice of the kernel.

In fact size corrected power is virtually equal for both the Bartlett and the QS kernels for any of

the bandwidths chosen (see the supplementary material). The simple sample size dependent rule

of Newey and West (1994) performs well in terms of resulting size corrected power across a range

of parameters and sample sizes.

13Supplementary material available upon request displays similar results for β1.
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Figure 1: Size Corrected Power, t-test for β2, T = 100, ρ1 = ρ2 = 0.8, Bartlett Kernel

Figure 2: Size Corrected Power, Wald test, T = 100, ρ1 = ρ2 = 0.8, Bartlett Kernel
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We close this section by taking a brief look at the performance of the specification (Wald and LM)

and cointegration (CT and CS) tests. Data are generated according to three alternative DGPs:

(A) : yt = 1 + t+ 5xt − 0.3x2t + 0.2x3t + ut

(B) : yt = 1 + t+ 5xt − 0.3x2t + et, where et is an I(1) variable independent of xt

(C) : yt and xt are two independent I(1) variables

In case (A) the regressor xt and error ut are generated as described above (where as before we

only report the results for the cases ρ1 = ρ2). Also in case (B) xt is generated as before and

et =
∑t

j=1 εj , where εt ∼ N (0, 1), independent of xt. Finally, in case (C) both yt and xt are

independently of each other generated similarly to et in case (B). These three DGPs exemplify the

main alternatives of interest. Alternative specification (A) covers the case of missing higher order

powers of the integrated regressor, alternative (B) corresponds to the case of a missing integrated

regressor and alternative (C) corresponds to a spurious regression.

As discussed in the previous section, the performance of the Wald and LM specification tests can be

expected to depend upon the unknown alternative DGP as well as the additional regressors included

in the augmented respectively auxiliary regression. In this respect we consider four different test

specifications. The first set of additional regressors follows the idea of Park and Choi (1988) and

Park (1990) to include higher order deterministic trends, where we include Ft = [t2, t3], labeled I in

Table 2 below. The second set of regressors is given by Ft = [x3t , x
4
t qt], where qt is an independent

I(1) regressor (generated similarly to et above), labeled II below. The third choice combines the first

two by including both higher order deterministic trends and higher order powers of the integrated

regressor, i.e. Ft = [t2, t3, x3t , x
4
t ], labeled III below. The fourth choice is to only include powers

of the independent I(1) variable qt, i.e. Ft = [qt, q
2
t , q

3
t ], labeled IV below.

In Table 2 we report size corrected power for the specification and cointegration tests. We report

results for the Bartlett kernel and the bandwidth chosen according to Newey and West (1994),

since we have found before that the coefficient tests’ size corrected power is not sensitive with

respect to kernel choice and because of the good size corrected power performance resulting from

this bandwidth choice.14 The starting point of all tests is the regression equation (21). Clearly, for

the Wald tests the mentioned regressors are added, whereas for the LM tests the FM-OLS residuals

14The results are qualitatively very similar with the other bandwidth choices. Since the Bartlett kernel in conjunc-
tion with the Newey and West (1994) bandwidth choice is often used in FM estimation, we report the results for this
choice of tuning parameters.
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Table 2: Size Corrected Power of Specification Tests, 0.05 Level, Bartlett Kernel, Newey-West

Wald LM CT CS
ρ1, ρ2 I II III IV I II III IV

Panel A: T = 100
(A) 0.0 0.4306 1.0000 1.0000 0.2198 0.3972 1.0000 1.0000 0.1722 0.1388 0.0910

0.3 0.3806 1.0000 1.0000 0.1954 0.3534 1.0000 1.0000 0.1554 0.0808 0.0442
0.6 0.2420 1.0000 1.0000 0.1326 0.2666 1.0000 1.0000 0.1256 0.0148 0.0096
0.8 0.0858 0.9998 0.9996 0.0560 0.1312 1.0000 1.0000 0.0798 0.0000 0.0022

(B) – 0.7322 0.2850 0.7212 0.3778 0.7250 0.2358 0.6404 0.2936 0.5426 0.3678
(C) – 0.7236 0.2636 0.7020 0.3728 0.7100 0.2130 0.6088 0.2924 0.5482 0.3764

Panel B: T = 200
(A) 0.0 0.5918 1.0000 1.0000 0.3976 0.5628 1.0000 1.0000 0.3764 0.4156 0.3254

0.3 0.5418 1.0000 1.0000 0.3542 0.5150 1.0000 1.0000 0.3364 0.3066 0.2204
0.6 0.3948 1.0000 1.0000 0.2644 0.4138 1.0000 1.0000 0.2522 0.1478 0.0772
0.8 0.1802 1.0000 1.0000 0.1246 0.2226 1.0000 1.0000 0.1540 0.0076 0.0098

(B) – 0.8488 0.5312 0.8722 0.6196 0.8490 0.5216 0.8592 0.6092 0.8600 0.7918
(C) – 0.8508 0.5284 0.8714 0.6174 0.8498 0.5114 0.8574 0.6024 0.8618 0.7800

of this equation are the input in the test procedures and the CT and CS tests are also based on

the FM-OLS residuals from estimating (21).

It turns out that the null rejection probabilities (available in supplementary material) differ quite

substantially between the Wald and LM test versions for any of the chosen regressors Ft. The Wald

tests’ null rejection probabilities increase strongly with increasing serial correlation and endogeneity

in the DGP, whereas the LM tests’ null rejection probabilities are much less affected and stay closer

to the nominal level. The CS test is the by far most conservative test, which is as expected given

the conservativeness of the Bonferroni bound. The effect of sub-sampling and the Bonferroni bound

becomes evident by comparing the null rejection probabilities of the CT and CS tests. The CT test,

as expected given the performance of KPSS-type tests in standard settings, shows over-rejections

that are increasing with increasing serial correlation and endogeneity. The CS test is so conservative

that its null rejections, also increasing with increasing serial correlation and endogeneity, are slightly

above the nominal level only for the largest considered values of ρ1, ρ2 and partly severe under-

rejections occur for all other cases. These differences have to be taken into account when discussing

size corrected power next.15 Table 2 shows that test III has highest size corrected power against

all considered alternatives. For T = 100 the Wald version of this test has higher size corrected

power than the LM version, but these differences vanish for larger sample sizes. Given that the

over-rejections are much bigger for the Wald than for the LM version leads us to recommend the LM

15For completeness we also provide raw power in the supplementary material.
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version. It is interesting to compare this with the results for tests I and II. The size corrected power

of test I, including higher order deterministic trends only, is strongly deteriorating for alternative

(A) with increasing serial correlation and endogeneity. Test II has excellent performance against

alternative (A) for all values of ρ1, ρ2, which is not a surprise since the additional regressors included

when using test II lead to a correctly specified equation (with x4t and qt being superfluous). On the

other hand the inclusion of deterministic trends alone works well against alternatives (B) and (C),

which is problematic for test II. Since test III includes both deterministic higher order trends as

well as higher order powers of the integrated regressors it combines in a sense the good performance

of the first two tests. Test IV, including only powers of an independent random walk cannot be

recommended. The above discussion concerning null rejection probabilities already indicates that

also the size corrected power of the CT and CS tests is adversely affected by serial correlation and

endogeneity (with throughout the CT test outperforming the CS test). Both of these tests and

in particular the CT test, however, have size corrected power against alternatives (B) and (C) for

T = 200 (and larger sample sizes) that is comparable to the power of the best performing versions

of the Wald and LM specification tests.

Given these findings it is a good choice to use the LM version of the specification tests rather than

the Wald version and to include both deterministic trends as well as higher order powers of the

integrated regressor(s) in the auxiliary regression. Using only one or the other type of auxiliary

regressors can serve as an indication concerning how to modify the regression model in case of

rejection of the null hypothesis of correct specification. In case the sample size is large and the

alternative that the researcher has in mind is not one of including higher orders of the regressors

already included in the null model, also the CT test may serve as a useful specification respectively

cointegration test.

4 Summary and Conclusions

This paper has developed an FM-OLS estimator for cointegrating polynomial regressions (CPRs),

by which we refer to regressions with deterministic regressors, integrated regressors, regressors that

are powers of integrated regressors and stationary errors. As is common in cointegration analysis

the regressors are allowed to be endogenous and the errors are allowed to be serially correlated. The

OLS estimator is consistent in this setup, but its limiting distribution is contaminated by second

order bias terms in case of regressor endogeneity and serial correlation, which renders inference
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difficult. Consequently, a fully modified estimator leading to a zero mean Gaussian mixture lim-

iting distribution that allows for standard asymptotic inference is developed. The paper therefore

extends the FM-OLS estimator introduced by Phillips and Hansen (1990) from cointegrating re-

gressions to cointegrating polynomial regressions. The theory, as well as the code available from the

authors upon request, allows to in addition also include pre-determined stationary regressors. The

original motivation to develop estimation and inference theory for this type of relationship stems

from the analysis of environmental Kuznets curves (EKCs) that postulate an inverse U-shaped rela-

tionship between measures of economic development and measures of pollution. Hong and Wagner

(2010) contains a detailed analysis of the EKC for carbon and sulfur dioxide emissions using the

methodology developed in this paper.

The zero mean Gaussian mixture limiting distribution of the FM-OLS estimator forms the basis

not only for testing hypothesis on the coefficients but also for testing whether the equation is a

well-specified CPR using either Wald or LM tests in augmented respectively auxiliary regressions.

Asymptotically chi-square distributed Wald and LM specification tests are developed. Additionally

also a KPSS-type cointegration test using the FM-OLS residuals is discussed. The limiting dis-

tribution depends upon the specification of the equation but is otherwise nuisance parameter free

and can thus be simulated. This test is an extension of the test of Shin (1994) from cointegrating

to cointegrating polynomial regressions. Additionally, we follow Choi and Saikkonen (2010) and

discuss also a sub-sample version of the KPSS-type test that has a limiting distribution independent

of the specification. The sub-sample test statistics can be used in conjunction with the Bonferroni

bound (or some modified version of it, as discussed in supplementary material).

The theoretical analysis is complemented by a simulation study. The performance advantages of the

FM-OLS estimator and tests based on it over the OLS estimator and tests based on it are in many

ways similar to the performance advantages found for FM-OLS over OLS in linear cointegrating

relationships. In case of no regressor endogeneity and no serial correlation the OLS estimator

and tests show, as expected, the best performance. In the presence of endogeneity and/or serial

correlation in the errors the FM-OLS estimator and tests outperform the OLS estimator and tests

with the performance advantages increasing with increasing endogeneity and serial correlation.

With respect to the specification tests it turns out that the LM tests typically outperform the

Wald tests and that across the variety of alternatives considered a test using as additional regressors

superfluous higher order deterministic trends and higher powers of the integrated regressor performs

best. The KPSS-type tests’ performance is rather poor in small samples and is, as expected, very
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negatively affected by serial correlation and endogeneity. In addition the sub-sample version used

in conjunction with the Bonferroni bound is very conservative.

Future research will extend the methods developed here to systems of seemingly unrelated cointe-

grating regressions and also the potential of extending other estimators, in particular the integrated

modified OLS estimator of Vogelsang and Wagner (2010), to CPRs will be explored.
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Appendix A: Proofs

Proof of Proposition 1

We start by first establishing the asymptotic behavior of the OLS estimator θ̂,

G−1(θ̂ − θ) = (GZ ′ZG)−1GZ ′u

⇒
(∫

JJ ′
)−1(∫

JdBu +

(
0(q+1)×1

M

))
=

(∫
JJ ′
)−1(∫

JdBu.v +

∫
JdB′

vΩ
−1
vv Ωvu +

(
0(q+1)×1

M

))
.

These results follow by, calculations similar to the ones in Chang, Park, and Phillips (2001), from

Assumption 1, with the results for the limit ofGZ ′ZG being standard in the unit root and cointegra-

tion literature. The third follows from the definition of u+t = ut− v′tΩ
−1
vv Ωvu and the corresponding

limit stochastic process Bu.v = Bu −B′
vΩ

−1
vv Ωvu.

The stated result for the FM-OLS estimator θ̂+ follows from considering

G−1(θ̂+ − θ) = (GZ ′ZG)−1(GZ ′u+ −GA∗),

with u+ denoting the vector of u+t and A∗ as given in the main text. By construction it holds for

0 ≤ r ≤ 1

1√
T

⌊rT ⌋∑
t=1

u+t =
1√
T

⌊rT ⌋∑
t=1

ut −
1√
T

⌊rT ⌋∑
t=1

v′tΩ̂
−1
vv Ω̂vu

⇒ Bu(r)−Bv(r)
′Ω−1

vv Ωvu = Bu.v(r).

When considering the asymptotic behavior of GZ ′u+ it is convenient to separate the parts corre-

sponding to D and X. For the deterministic components it immediately follows that GDD
′u+ ⇒∫

DdBu.v. For a typical cross-product of some power of an integrated regressor and u+t it holds

that

T− k+1
2

T∑
t=1

xkjtu
+
t = T− k+1

2

T∑
t=1

xkjtut − Ω̂uvΩ̂
−1
vv T

− k+1
2

T∑
t=1

xkjtvt (22)

⇒
∫
Bk

vjdBu + k∆vju

∫
Bk−1

vj − ΩuvΩ
−1
vv

(∫
Bk

vjdBv + k∆vvj

∫
Bk−1

vj

)
⇒

∫
Bk

vjdBu.v + k
(
∆vju − ΩuvΩ

−1
vv ∆vvj

) ∫
Bk−1

vj ,

where the result concerning T− k+1
2
∑T

t=1 x
k
jtut has already been used in Proposition 1 and a result

for the terms of the form T− k+1
2
∑T

t=1 x
k
jtvt can be derived similarly as in the proof of Lemma 4 of
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Hong and Phillips (2010). Combining the individual terms this shows that.

GZ ′u+ ⇒
∫
JdBu +

(
0(q+1)×1

M

)
−
∫
JdB′

vΩ
−1
vv Ωvu

=

∫
JdBu.v +

(
0(q+1)×1

M

)
,

from which the result follows since by construction GA∗ ⇒
(

0(q+1)×1

M

)
.

Proof of Proposition 2

Under the null hypothesis and the assumption that limT→∞GRRG = R∗ with GR invertible and

R∗ of full rank it holds that

TW = (Rθ̂+ − r)′
(
ω̂u.vR(Z

′Z)−1R′)−1
(Rθ̂+ − r)

=
(
R(θ̂+ − θ)

)′ (
ω̂u.vR(Z

′Z)−1R′)−1
(
R(θ̂+ − θ)

)
=

(
RGG−1(θ̂+ − θ)

)′ (
ω̂u.vRG(GZ ′ZG)−1GR′)−1

(
RGG−1(θ̂+ − θ)

)
=

(
(GRRG)G−1(θ̂+ − θ)

)′ (
ω̂u.v(GRRG)(GZ

′ZG)−1(GR′G′
R)
)−1

(
(GRRG)G

−1(θ̂+ − θ)
)

⇒

[
R∗
(∫

JJ ′
)−1 ∫

JdBu.v

]′ [
ωu.vR

∗
(∫

JJ ′
)−1

R∗′

]−1 [
R∗
(∫

JJ ′
)−1 ∫

JdBu.v

]
,

It remains to show that the above limiting distribution is indeed distributed χ2
s. Note first

that
∫
JdBu.v = ω

1/2
u.v

∫
JdW , with W denoting a standard Brownian motion independent of Bv,

is conditional upon Bv (which implies that J is non-random) normally distributed with mean

zero and covariance matrix ωu.v

∫
JJ ′. This in turn implies that the conditional distribution

of
(∫
JJ ′)−1 ∫

JdBu.v is given by a normal distribution with mean zero and covariance matrix

ωu.v

(∫
JJ ′)−1

, compare also the discussion concerning VFM after Proposition 1 in the main text.

Given this, it follows that conditional upon Bv the Wald statistic TW is asymptotically distributed

χ2
s and since the conditional asymptotic distribution of TW is independent of Bv it equals the

unconditional asymptotic distribution.

Proof of Proposition 3

Clearly the result in this proposition is a special case of a hypothesis covered by Proposition 2

which leads due to the form of the restrictions to a particularly simple form of the test statistic.

In the augmented regression (11) the restriction θF = 0 corresponds to

[
0 Ib

] [ θ
θF

]
= 0.
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This immediately implies that

(
R

[
Z ′Z Z ′F
F ′Z F ′F

]−1

R′

)−1

= F̃ ′F̃ , with R =
[
0 Ib

]
and F̃ as

defined in the main text. Clearly, in this case we can simply take GR = G−1
F with GF (defined

below in the proof of Proposition 4) denoting the scaling matrix corresponding to F and thus the

required condition on R is fulfilled (for all T and not only asymptotically).

Proof of Proposition 4

The proof is in many respects similar to the proof of Proposition 1 in showing that the correction

terms given in the proposition (asymptotically) lead to a second order bias free limiting distribution

of the proposed FM-OLS estimator. Let us start by defining the corresponding weighting matrix

GF (T ) := diag(GD̄(T ), GX̄(T ), GQ(T )), with GD̄(T ) := diag(T−(q+ 3
2
), . . . , T−(q+n+ 1

2
)),GX̄(T ) :=

diag(GX̄1
(T ), . . . , GX̄m

(T )), GQ(T ) := diag(GQ1(T ), . . . , GQk
(T )) withGX̄j

(T ) := diag(T−
pj+2

2 , . . . ,

T−
pj+rj+1

2 ) and GQi(T ) := diag(T−1, . . . , T−
sj+1

2 ).

Next define the stacked deterministic and Brownian motion vectors corresponding to the higher

order trend terms and higher order polynomial powers of xjt and to the polynomial powers of qit.

For t such that limT→∞ t/T = r we have

lim
T→∞

√
TGD̄(T )D̄t = lim

T→∞

 T−(q+1)

. . .

T−(q+n)


 tq+1

...
tq+n

 =

 rq+1

...
rq+n

 =: D̄(r)

lim
T→∞

√
TGX̄j

(T )X̄jt = lim
T→∞


T−

pj+1

2

. . .

T−
pj+rj

2


 x

pj
jt
...

x
pj+rj
jt

 =

 B
pj
vj
...

B
pj+rj
vj

 =: BF
vj (r),

lim
T→∞

√
TGQi(T )Qit = lim

T→∞

 T− 1
2

. . .

T− si
2


 qit

...
qsiit

 =

 Bv∗i
...

Bsi
v∗i

 =: BF
v∗i
(r).

Stacking all these terms together we define JF (r) := [D̄(r)′,BF
v1(r)

′, . . . ,BF
vm(r)

′,BF
v∗1
(r)′, . . . ,BF

v∗k
(r)′]′.

The OLS estimator of θF̃ of (11) is given by

θ̂F̃ := (F̃ ′F̃ )−1F̃ ′û+

= GF (GF F̃
′F̃GF )

−1GF F̃
′û+.

Using J̃ as defined in (16) it holds that (GF F̃
′F̃GF )

−1 ⇒
(∫

J̃F J̃F ′
)−1

and it remains to consider
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the second term in some detail:

GF F̃
′û+ = GF F̃

′
(
u+ − Z(θ̂+ − θ)

)
= GF F̃

′u+

= GFF
′u+ −GFF

′ZG(GZ ′ZG)−1GZ ′u+, (23)

with the first equality following from û+ = u+−Z(θ̂+− θ), the second from F̃ ′Z = 0 and the third

from the definition of F̃ .

The first of the above two terms converges, using similar arguments as in the proof of Proposition 1

to

GFF
′u+ ⇒

∫
JFdBu.v +AF

with AF := [0′n×1,M
X̄′,MQ′]′, where M X̄ := [M X̄′

1 , . . . ,M X̄′
m ]′ and MQ := [MQ′

1 , . . . ,MQ′
k ]′. The

blocks within the latter vectors are given by M X̄
j := ∆+

vju[(pj + 1)
∫
B

pj
vj , . . . , (pj + rj)

∫
B

pj+rj−1
vj ]′,

for j = 1, . . . ,m, and MQ
j := ∆+

v∗j u
[1, 2

∫
Bv∗j

, . . . , sj
∫
B

sj−1
v∗j

]′, for j = 1, . . . , k.

For the second term in (23) we obtainGFF
′ZG(GZ ′ZG)−1GZ ′u+ ⇒

∫
JFJ ′ (∫ JJ ′)−1

(JdBu.v +A),

with A denoting the limit of A∗ as used in Proposition 1.

Putting things together we obtain

G−1
F θ̂F̃ ⇒

(∫
J̃F J̃F ′

)−1
(∫

JFdBu.v +AF −
∫
JFJ ′

(∫
JJ ′
)−1

(JdBu.v +A)

)

=

(∫
J̃F J̃F ′

)−1
(∫

J̃FdBu.v +AF −
∫
JFJ ′

(∫
JJ ′
)−1

A

)

=

(∫
J̃F J̃F ′

)−1
(∫

J̃FdBu.v +AF +OF −
∫
JFJ ′

(∫
JJ ′
)−1

A

)
, (24)

where OF :=
∫
J̃FdB′

ṽΩ
−1
ṽṽ Ωṽu −

∫
J̃FdB′

vΩ
−1
vv Ωvu. Here the second line follows from the first one

using the definition of J̃F as given in (16) and the third follows from Bu.v = Bu.ṽ + B′
ṽΩ

−1
ṽṽ Ωṽu −

B′
vΩ

−1
vv Ωu.

The correction factors OF∗, AF∗ and kF∗A∗ as defined in the formulation of the proposition are

such that when scaled by GF converge to the quantities given above. This implies that the limiting

distribution of the FM-OLS estimator of θF̃ in the auxiliary regression (13), as defined in (14), is

given by G−1
F θ̂+ ⇒

(∫
J̃F J̃F ′

)−1 ∫
J̃FdBu.ṽ. Based on this limiting distribution the result for the
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limiting distribution of the LM test statistic follows in a similar way as shown for the Wald test

statistic in Proposition 2.

Proof of Proposition 5

By definition we have û+t = u+t − Z ′
t

(
θ̂+ − θ

)
. From the proof of Proposition 1 we already know

that 1√
T

∑⌊rT ⌋
t=1 u+t ⇒ Bu.v(r) and thus we only need to investigate the second term, for which it

holds, using the result for the FM-OLS estimator derived in 1 that

1√
T

⌊rT ⌋∑
t=1

Z ′
tGG

−1
(
θ̂+ − θ

)
=

 1√
T

⌊rT ⌋∑
t=1

Z ′
tG

G−1(θ̂+ − θ)

⇒
∫ r

0
J ′
(∫

JJ ′
)−1 ∫

JdBu.v.

Combining the limits of both terms of û+t and using the quantities defined in the formulation of

the proposition then leads to

1√
T

⌊rT ⌋∑
t=1

û+t ⇒ Bu.v(r)−
∫ r

0
J ′
(∫

JJ ′
)−1 ∫

JdBu.v

= ω1/2
u.v

(
W (r)−

∫ r

0
JW ′

(∫
JWJW ′

)−1 ∫
JWdW

)
.

In the above equation the second line follows from the fact that Bu.v(r) = ω
1/2
u.vW (r) and Bv(r) =

ΩB
1/2W(r) with ΩB := diag(ΩB1 , . . . ,ΩBm) where ΩBi

:= diag(ωvivi , . . . , ω
pi
vivi) and ωvivi the i-th

diagonal element of Ωvv for i = 1, . . . ,m. This implies (that when a consistent estimator ω̂u.v is

used) that

CT ⇒
∫

(W J)2.

Proof of Proposition 6

Let 0 ≤ r ≤ 1 and i ≤ t = ⌊br⌋+ i−1 ≤ i+ b−1. Similar to the proof of Proposition 5 a functional

central limit theorem applies for the sub-sample of residuals and we obtain

1√
b

t∑
j=i

û+j =
1√
b

t∑
j=i

u+j +

 1√
b

t∑
j=i

Z ′
jG(b)

(G(b)−1G(T )
) (
G(T )−1(θ̂+ − θ)

)
(25)

Similar to the proof of Proposition 5 one can show, since b→ ∞ and b
T → 0, that limT→∞

1√
b

∑t
j=i u

+
j =

Bu.v(r). The first and the third bracketed terms composing the product on the right hand side

above, i.e.
(

1√
b

∑t
j=i Z

′
jG(b)

)
and

(
G(T )−1(θ̂+ − θ)

)
, converge in distribution. The term in
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the middle is of order O

(√
b
T

)
, which implies that the right hand side product term in (25) is

Op

(√
b
T

)
. Therefore, since by assumption b

T → 0, we have established that 1√
b

∑t
j=i û

+
j ⇒ Bu.v(r).

The result then follows from the assumption of consistency of ω̂u.v.
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Appendix B: Modified Bonferroni Bound Tests, the Minimum Vola-
tility Rule and Critical Values for CS Test (Supplementary Mate-
rial)

By construction a test based on the Bonferroni bound is conservative and is known to be particularly

conservative when the test statistics used are highly correlated (see Hommel, 1986). In the literature

several less conservative modified Bonferroni bound type test procedures have been presented. Some

of them are developed in Hommel (1988), Simes (1986) and Rom (1990). Denote the test statistics

ordered in magnitude by CT
(1)
b ≥ · · · ≥ CT

(M)
b . The modification of Hommel (1988) amounts to

rejecting the null hypothesis if at least one of the test statistics CT
(j)
b ≥ cαH(j) with α

H(j) = j
CM

α
M

and CM = 1+1/2+· · ·+1/M . The modification of Simes (1986) is very similar and almost coincides

with the procedure of Hommel with the only difference being that the additional adjustment factor

CM is not included, i.e. αS(j) = j α
M . A further modification of the computation of the levels used

in the sequential test procedure has been proposed in Rom (1990). For this modification the levels

αR(j) are computed recursively via αR(M) = α, αR(M − 1) = α
2 and for k = 3, . . . ,M they are

computed as

αR(M − k + 1) =
1

k

k−1∑
j=1

αj −
k−1∑
j=1

(
k

j

)
(αR(M − j))k−j

 .
The null hypothesis is rejected if all test statistics CT

(j)
b ≥ cαR(j).

For these modified tests that involve all M test statistics we base the block-length selection on the

following procedure. For each block-length bi ∈ [bmin, bmax] we compute the mean and stan-

dard deviation of the empirical distribution of the test statistics {CTbi,i1 , . . . , CTbi,iM}, which

we denote by mbi and sdbi . The idea of the minimum volatility principle is now implemented

by minimizing (again over five neighboring values of b) the change of the empirical distribu-

tion in terms of the first two moments. Hence we choose the block-length to minimize vmbi =

std(mbi−2,mbi−1,mbi ,mbi+1,mbi+2) + std(sdbi−2, sdbi−1, sdbi , sdbi+1, sdbi+2), with std(·) denoting

the standard deviation.

MATLAB code that implements the described test procedures is available from the authors upon

request.
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Table B1: Critical values c α
M

from

P
[∫

W 2 ≥ c α
M

]
= α

M for α = 5% and 10%

M 5% 10% M 5% 10% M 5% 10%

Sum in (20) truncated at 30

2 2.135 1.656 15 3.588 3.076 28 4.034 3.538

3 2.421 1.934 16 3.635 3.121 29 4.058 3.563

4 2.627 2.135 17 3.680 3.164 30 4.081 3.588

5 2.787 2.292 18 3.721 3.203 31 4.103 3.612

6 2.917 2.421 19 3.760 3.241 32 4.124 3.635

7 3.027 2.531 20 3.797 3.276 33 4.145 3.658

8 3.121 2.627 21 3.832 3.309 34 4.165 3.680

9 3.203 2.711 22 3.865 3.340 35 4.184 3.700

10 3.276 2.787 23 3.897 3.370 36 4.202 3.721

11 3.340 2.855 24 3.927 3.398 37 4.220 3.741

12 3.398 2.917 25 3.955 3.424 38 4.237 3.760

13 3.484 2.974 26 3.983 3.484 39 4.253 3.779

14 3.538 3.027 27 4.009 3.511 40 4.269 3.797

Sum in (20) truncated at 10

2 2.135 1.656 15 3.582 3.081 28 3.997 3.533

3 2.421 1.934 16 3.627 3.128 29 4.018 3.558

4 2.626 2.135 17 3.669 3.172 30 4.038 3.582

5 2.785 2.292 18 3.709 3.214 31 4.058 3.605

6 2.912 2.421 19 3.746 3.253 32 4.076 3.627

7 3.031 2.531 20 3.781 3.291 33 4.094 3.649

8 3.128 2.626 21 3.813 3.326 34 4.111 3.669

9 3.214 2.710 22 3.844 3.360 35 4.127 3.689

10 3.291 2.785 23 3.873 3.392 36 4.143 3.709

11 3.360 2.852 24 3.900 3.422 37 4.158 3.728

12 3.422 2.912 25 3.926 3.452 38 4.172 3.746

13 3.480 2.977 26 3.951 3.480 39 4.186 3.763

14 3.533 3.031 27 3.974 3.507 40 4.199 3.781
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Appendix C: Additional Simulation Results (Supplementary Ma-
terial)

Table C1: Bias for coefficients β1 and β2

Panel A: Bias for coefficient β1
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 -.0013 -.0019 -.0019 -.0018 -.0019 -.0018 -.0019 -.0018 -.0018 -.0019 -.0018
0.3 .0167 -.0034 -.0039 -.0049 -.0050 -.0044 -.0042 -.0047 -.0060 -.0057 -.0054
0.6 .0743 .0399 .0409 .0419 .0404 .0418 .0410 .0425 .0433 .0411 .0433
0.8 .1952 .1567 .1597 .1655 .1657 .1633 .1595 .1639 .1710 .1655 .1685

T = 200

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 -.0003 -.0005 -.0005 -.0006 -.0005 -.0005 -.0005 -.0005 -.0006 -.0006 -.0005
0.3 .0087 -.0012 -.0014 -.0018 -.0019 -.0014 -.0015 -.0016 -.0022 -.0020 -.0017
0.6 .0396 .0228 .0239 .0252 .0250 .0241 .0240 .0253 .0265 .0261 .0256
0.8 .1117 .0933 .0967 .1027 .1070 .0974 .0963 .1006 .1078 .1100 .1017

Panel B: Bias (×1000) for coefficient β2
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 .0841 .0895 .0877 .0841 .0852 .0860 .0878 .0842 .0810 .0825 .0832
0.3 .0868 .1162 .1132 .1057 .1067 .1096 .1140 .1086 .0996 .1049 .1046
0.6 .0970 .1611 .1604 .1545 .1425 .1583 .1616 .1600 .1505 .1311 .1571
0.8 .1576 .2340 .2371 .2399 .2197 .2400 .2369 .2421 .2433 .2031 .2459

T = 200

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 -.0021 -.0017 -.0018 -.0007 -.0005 -.0018 -.0023 -.0023 .0005 -.0015 -.0023
0.3 .0042 -.0000 -.0003 .0008 .0014 -.0003 -.0009 -.0013 .0023 -.0002 -.0015
0.6 .0354 .0245 .0229 .0220 .0271 .0226 .0224 .0202 .0219 .0255 .0197
0.8 .1356 .1213 .1173 .1112 .1150 .1165 .1176 .1122 .1066 .1164 .1108
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Table C2: RMSE for coefficients β1 and β2

Panel A: RMSE for coefficient β1
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 .0670 .0717 .0721 .0728 .0727 .0725 .0723 .0729 .0738 .0736 .0735
0.3 .0938 .0962 .0967 .0977 .0977 .0973 .0967 .0975 .0991 .0987 .0985
0.6 .1725 .1570 .1572 .1580 .1589 .1577 .1572 .1579 .1593 .1606 .1588
0.8 .3285 .3008 .3016 .3038 .3063 .3029 .3015 .3032 .3067 .3093 .3054

T = 200

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 .0325 .0336 .0337 .0339 .0339 .0337 .0337 .0339 .0341 .0341 .0339
0.3 .0470 .0464 .0465 .0468 .0468 .0465 .0465 .0467 .0471 .0469 .0468
0.6 .0915 .0812 .0816 .0821 .0823 .0817 .0816 .0822 .0829 .0830 .0823
0.8 .1919 .1752 .1770 .1806 .1846 .1775 .1769 .1794 .1842 .1879 .1801

Panel B: RMSE for coefficient β2
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 .0056 .0058 .0058 .0058 .0058 .0058 .0058 .0058 .0059 .0059 .0059
0.3 .0075 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0078 .0078 .0078
0.6 .0119 .0117 .0117 .0118 .0119 .0118 .0117 .0118 .0119 .0120 .0119
0.8 .0192 .0188 .0188 .0189 .0193 .0189 .0188 .0189 .0190 .0197 .0190

T = 200

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW

0.0 .0019 .0019 .0019 .0019 .0019 .0019 .0019 .0019 .0019 .0019 .0019
0.3 .0027 .0027 .0027 .0027 .0027 .0027 .0027 .0027 .0027 .0027 .0027
0.6 .0045 .0043 .0043 .0043 .0043 .0043 .0043 .0043 .0043 .0044 .0043
0.8 .0080 .0077 .0077 .0078 .0079 .0077 .0077 .0078 .0078 .0080 .0078
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Table C3: Bias and RMSE for coefficient δ

Panel A: Bias (×1000) for coefficient δ
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW
0.0 -0.0220 -0.0305 -0.0337 -0.0422 -0.0443 -0.0373 -0.0303 -0.0390 -0.0365 -0.0398 -0.0411
0.3 -0.1559 -0.0782 -0.0818 -0.0928 -0.0942 -0.0872 -0.0763 -0.0878 -0.0851 -0.0878 -0.0913
0.6 -0.5040 -0.3545 -0.3636 -0.3858 -0.3984 -0.3766 -0.3579 -0.3797 -0.3859 -0.4121 -0.3905
0.8 -1.1533 -0.9913 -1.0030 -1.0309 -1.0289 -1.0198 -0.9971 -1.0246 -1.0354 -0.9970 -1.0396

T = 200
Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW
0.0 -0.0344 -0.0233 -0.0220 -0.0204 -0.0187 -0.0217 -0.0214 -0.0208 -0.0186 -0.0176 -0.0207
0.3 -0.0635 -0.0417 -0.0393 -0.0359 -0.0335 -0.0389 -0.0389 -0.0373 -0.0327 -0.0318 -0.0369
0.6 -0.1542 -0.1266 -0.1249 -0.1205 -0.1130 -0.1246 -0.1255 -0.1246 -0.1169 -0.1153 -0.1238
0.8 -0.3683 -0.3363 -0.3352 -0.3330 -0.2998 -0.3350 -0.3354 -0.3355 -0.3306 -0.2866 -0.3349

Panel B: RMSE for coefficient δ
T = 100

Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW
0.0 0.0065 0.0067 0.0068 0.0069 0.0069 0.0069 0.0068 0.0069 0.0071 0.0071 0.0070
0.3 0.0097 0.0092 0.0093 0.0094 0.0095 0.0094 0.0093 0.0094 0.0097 0.0097 0.0096
0.6 0.0206 0.0167 0.0167 0.0167 0.0169 0.0167 0.0167 0.0167 0.0169 0.0171 0.0168
0.8 0.0438 0.0380 0.0381 0.0385 0.0389 0.0384 0.0381 0.0384 0.0390 0.0394 0.0387

T = 200
Bartlett kernel QS Kernel

ρ1, ρ2 OLS T 1/5 T 1/4 T 1/3 AND NW T 1/5 T 1/4 T 1/3 AND NW
0.0 0.0022 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
0.3 0.0034 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0033 0.0032 0.0032
0.6 0.0077 0.0062 0.0062 0.0063 0.0063 0.0062 0.0062 0.0063 0.0064 0.0064 0.0063
0.8 0.0179 0.0157 0.0159 0.0164 0.0168 0.0160 0.0159 0.0162 0.0169 0.0172 0.0163

Table C4: Null Rejection Probabilities of Specification Tests, 0.05 Level,
Bartlett Kernel, Newey-West

Wald LM CT CS
ρ1, ρ2 I II III IV I II III IV

Panel A: T = 100
(A) 0.0 0.1286 0.1946 0.1954 0.1904 0.0424 0.1158 0.0588 0.1158 0.0540 0.0006

0.3 0.1734 0.2178 0.2316 0.2142 0.0672 0.1296 0.0638 0.1296 0.0846 0.0034
0.6 0.2984 0.2582 0.3452 0.2750 0.1420 0.1470 0.0974 0.1470 0.2054 0.0164
0.8 0.5484 0.3642 0.5936 0.4064 0.3376 0.2028 0.2520 0.2028 0.5120 0.0676

Panel B: T = 200
(A) 0.0 0.0858 0.1154 0.1166 0.1100 0.0478 0.0784 0.0548 0.0784 0.0532 0.0016

0.3 0.1188 0.1476 0.1598 0.1424 0.0754 0.0994 0.0798 0.0994 0.0862 0.0074
0.6 0.2572 0.2226 0.3082 0.2324 0.1534 0.1504 0.1498 0.1504 0.2310 0.0372
0.8 0.5556 0.3862 0.6094 0.4170 0.3994 0.2650 0.3896 0.2650 0.6370 0.1814
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Table C5: Raw Power of Specification Tests, 0.05 Level, Bartlett Kernel, Newey-West

Wald LM CT CS
ρ1, ρ2 I II III IV I II III IV

Panel A: T = 100
(A) 0.0 0.5634 1.0000 1.0000 0.3950 0.3838 1.0000 1.0000 0.2866 0.4612 0.0328

0.3 0.5624 1.0000 1.0000 0.3944 0.3836 1.0000 1.0000 0.2866 0.4618 0.0324
0.6 0.5666 1.0000 1.0000 0.3962 0.3836 1.0000 1.0000 0.2854 0.4648 0.0332
0.8 0.5736 1.0000 1.0000 0.3952 0.3912 1.0000 1.0000 0.2882 0.4750 0.0342

(B) – 0.8128 0.4844 0.8446 0.5498 0.7122 0.3536 0.6580 0.4412 0.8346 0.1958
(C) – 0.8024 0.4622 0.8232 0.5524 0.7012 0.3306 0.6314 0.4374 0.8348 0.2000

Panel B: T = 200
(A) 0.0 0.6460 1.0000 1.0000 0.4958 0.5564 1.0000 1.0000 0.4314 0.7384 0.2366

0.3 0.6460 1.0000 1.0000 0.4958 0.5570 1.0000 1.0000 0.4306 0.7378 0.2358
0.6 0.6468 1.0000 1.0000 0.4958 0.5578 1.0000 1.0000 0.4304 0.7388 0.2356
0.8 0.6492 1.0000 1.0000 0.4982 0.5596 1.0000 1.0000 0.4314 0.7430 0.2350

(B) – 0.8728 0.6398 0.9076 0.6998 0.8456 0.5782 0.8640 0.6542 0.9690 0.7008
(C) – 0.8766 0.6342 0.9086 0.7052 0.8472 0.5610 0.8608 0.6526 0.9750 0.6860
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Figure C1: Size Corrected Power, t-test for β1, T = 100, ρ1 = ρ2 = 0.6, Bartlett Kernel
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Figure C2: Size Corrected Power, Wald test, T = 100, ρ1 = ρ2 = 0.8, Comparison of Bartlett and
Quadratic Spectral Kernels
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