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Abstract 

This paper is concerned with parameter estimation and inference in a cointegrating 

regression, where as usual endogenous regressors as well as serially correlated errors are 

considered. We propose a simple, new estimation method based on an augmented partial 

sum (integration) transformation of the regression model. The new estimator is labeled 

Integrated Modified Ordinary Least Squares (IM-OLS). IM-OLS is similar in spirit to the fully 

modified approach of Phillips and Hansen (1990) with the key difference that IM-OLS does 

not require estimation of long run variance matrices and avoids the need to choose tuning 

parameters (kernels, bandwidths, lags). Inference does require that a long run variance be 

scaled out, and we propose traditional and fixed-b methods for obtaining critical values for 

test statistics. The properties of IM-OLS are analyzed using asymptotic theory and finite 

sample simulations. IM-OLS performs well relative to other approaches in the literature. 
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1 Introduction

Cointegration methods are widely used in empirical macroeconomics and empirical finance. It
is well known that in a cointegrating regression the ordinary least squares (OLS) estimators of
the parameters are super-consistent, i.e. converge at rate equal to the sample size T . When the
regressors are endogenous, the limiting distribution of the OLS estimator is contaminated by so-
called second order bias terms, see e.g. Phillips and Hansen (1990). The presence of these bias
terms renders inference difficult. Consequently, several modifications to OLS have been proposed
that lead to zero mean Gaussian mixture limiting distributions, which in turn makes standard
asymptotic inference feasible. These methods include the fully modified OLS (FM-OLS) approach of
Phillips and Hansen (1990) and the dynamic OLS (DOLS) approach of Phillips and Loretan (1991),
Saikkonen (1991) and Stock and Watson (1993).

The FM-OLS approach uses a two-part transformation to remove the asymptotic bias terms and
requires the estimation of long run variance matrices (as discussed in detail in Section 2). The
DOLS approach augments the cointegrating regression by leads and lags of the first differences of
the regressors. Both of these methods require tuning parameter choices. For FM-OLS a kernel
function and a bandwidth have to be chosen for long run variance estimation. For DOLS the
number of leads and lags has to be chosen and if the DOLS estimates are to be used for inference,
a long run variance estimator, i.e. a choice of kernel and bandwidth, is also required.

Standard asymptotic theory does not capture the impact of kernel and bandwidth choices on the
sampling distributions of estimators and test statistics based upon them. In order to shed light on
the impact of kernel and bandwidth choice on the FM-OLS estimator, the first result of the paper
derives the so-called fixed-b limit of the FM-OLS estimator. Fixed-b asymptotic theory has been
put forward by Kiefer and Vogelsang (2005) in the context of stationary regressions to capture the
impact of kernel and bandwidth choices on the sampling distributions of HAC-type test statistics.
The benefit of this approach is that critical values that reflect kernel and bandwidth choices are
provided. The fixed-b limiting distribution of the FM-OLS estimator features highly complicated
dependence upon nuisance parameters and does not lend itself towards the development of fixed-b
inference. In deriving the fixed-b limit of the FM-OLS estimator we derive the fixed-b limit of
the half long run variance matrix, which may be of interest in itself because such results are not
available in the literature up to now.

After this detailed consideration of the FM-OLS estimator, the paper proceeds to propose a simple,
tuning parameter free new estimator of the parameters of a cointegrating regression. This estimator
leads to a zero mean Gaussian mixture limiting distribution and implementation does not require
the choice of any tuning parameters. The estimator is based on OLS estimation of a partial sum
transformation of the cointegrating regression which is augmented by the original regressors, hence
the name integrated modified OLS (IM-OLS) estimator. Inference based on this estimator still
requires the estimation of a long run variance parameter. In this respect we offer two solutions.
First, standard asymptotic inference based on a consistent estimator of the long run variance
and second, fixed-b inference. The only other paper in the literature that develops fixed-b theory
for inference in cointegration regression is Bunzel (2006), who analyzes tests based on the DOLS
estimator.

Developing useful fixed-b results for tests based on IM-OLS leads to some new challenges compared
to tests based on DOLS or tests in stationary regressions. Specifically, the residuals of the IM-
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OLS regression cannot be used to obtain asymptotically pivotal fixed-b test statistics. Fixed-b
inference instead has to be based on the residuals of a particularly further augmented regression, as
discussed in detail in Section 5. A similar complication also arises in Vogelsang and Wagner (2010),
who consider fixed-b inference for Phillips and Perron (1988) type unit root tests where the original
OLS residuals also cannot be used for fixed-b inference. Thus, unit root and cointegration analysis
necessitate different thinking about fixed-b inference compared to stationary regression settings.

The theoretical analysis of the paper is complemented by a simulation study to assess the perfor-
mance of the estimators and tests. The performance is benchmarked against results obtained with
OLS, FM-OLS and DOLS. It turns out that the new estimator performs relatively well, in terms
of having smaller bias and only moderately larger RMSE than the FM-OLS estimator. The larger
RMSE appears to be the price to be paid for partial summing the cointegrating regression, which
leads to a regression with I(2) regressors and I(1) errors. The simulations of size and power of the
tests show that the developed fixed-b limit theory well describes the test statistics’ distributions. In
particular fixed-b test statistics based on the IM-OLS estimator lead to the smallest size distortions
at the expense of only minor losses in (size-corrected) power. This finding is quite similar to the
findings of Kiefer and Vogelsang (2005) for testing in stationary regressions and thus extends one
of the major contributions of fixed-b theory to the cointegration literature.

The paper is organized as follows: In Section 2 we present a standard linear cointegrating regres-
sion and start by reviewing the OLS and FM-OLS estimators and then give the fixed-b limiting
distribution of the FM-OLS estimator. Section 3 presents the new IM-OLS estimator whose finite
sample performance is studied by means of simulations in Section 4. In Section 5 inference for the
IM-OLS parameter estimates is discussed, both with standard and fixed-b asymptotic theory, and
the finite sample performance of the resultant test statistics is assessed, again with simulations,
in Section 6. Section 7 briefly summarizes and concludes. All proofs are relegated to the ap-
pendix. Supplementary material available upon request provides tables with fixed-b critical values
for the IM-OLS based tests for up to four integrated regressors and the usual specifications of the
deterministic component (intercept, intercept and linear trend) for a variety of kernel functions.

2 FM-OLS Estimation and Inference in Cointegrating Regressions

Consider the following regression model for t = 1, 2, ..., T

yt = µ+ x′tβ + ut (1)

xt = xt−1 + vt, (2)

where yt is a scalar time series and xt is a k×1 vector of time series. For notational brevity we here
only include the intercept µ as deterministic component (this restriction is removed later when
we discuss the IM-OLS estimator in the following section). Stacking the error processes defines
ηt = [ut, v

′
t]
′. It is assumed that ηt is a vector of I(0) processes, in which case xt is a vector of

I(1) processes and there exists a cointegrating relationship among [yt, x
′
t]
′ with cointegrating vector

[1,−β′]′.
To review existing theory and to obtain the key theoretical results in the paper, assumptions about
ηt are required. It is sufficient to assume that ηt satisfies a functional central limit theorem (FCLT)
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of the form

T−1/2

[rT ]∑
t=1

ηt ⇒ B(r) = Ω1/2W (r), r ∈ [0, 1], (3)

where [rT ] denotes the integer part of rT and W (r) is a (k+ 1)-dimensional vector of independent
standard Brownian motions with

Ω =
∞∑

j=−∞
E(ηtη

′
t−j) =

[
Ωuu Ωuv

Ωvu Ωvv

]
> 0,

where clearly Ωvu = Ω′uv. Partition B(r) as

B(r) =

[
Bu(r)
Bv(r)

]
and likewise partition W (r) as W (r) = [wu·v(r),W

′
v(r)]

′, where wu·v(r) and Wv(r) are a scalar and
a k-dimensional standard Brownian motion respectively. It will be convenient to use Ω1/2 of the
Cholesky form

Ω1/2 =

[
σu·v λuv

0 Ω
1/2
vv

]
,

where σ2
u·v = Ωuu−ΩuvΩ

−1
vv Ω′uv and λuv = Ωuv(Ω

−1/2
vv )′. Using this Cholesky decomposition we can

write

B(r) =

[
Bu(r)
Bv(r)

]
=

[
σu·vwu·v(r) + λuvWv(r)

Ω
1/2
vv Wv(r)

]
.

Next define the one-sided long run covariance matrix Λ =
∑∞

j=1 E(ηtη
′
t−j), which is partitioned

according to the partitioning of Ω as

Λ =

[
Λuu Λuv
Λvu Λvv

]
.

Note that Ω = Σ + Λ + Λ′, with Σ = E(ηtη
′
t), which is partitioned as

Σ =

[
Σuu Σuv

Σvu Σvv

]
.

To discuss the OLS and FM-OLS estimators define x̃t = [1, x′t]
′ and θ = [µ, β′]′. Stacking all

observations together gives the matrix representation y = X̃θ + u with

y =

 y1
...
yT

 , X̃ =

 x̃′1
...
x̃′T

 , u =

 u1
...
uT

 .
Using this notation, the OLS estimator is defined as

θ̂ =
(
X̃ ′X̃

)−1
X̃ ′y.
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To state asymptotic results the following scaling matrix is needed:

A =

[
T−1/2 0

0 T−1Ik

]
.

For the OLS estimator is it well known from Phillips and Durlauf (1986) and Stock (1987) that(
T 1/2(µ̂− µ)

T (β̂ − β)

)
= A−1

(
θ̂ − θ

)
=
(
AX̃ ′X̃A

)−1 (
AX̃ ′u

)
⇒
(

1
∫
Bv(r)

′dr∫
Bv(r)dr

∫
Bv(r)Bv(r)

′dr

)−1( ∫
dBu(r)∫
Bv(r)dBu(r) + ∆vu

)
= Θ =

[
Θµ

Θβ

]
,

where ∆vu = Σvu + Λvu. Unless otherwise stated, the range of integration is [0, 1] throughout the
paper.

When ut is uncorrelated with vt and hence uncorrelated with xt, it follows that i) λ12 = 0, ∆vu = 0,
and ii) Bu(r) is independent of Bv(r). Because of the independence between Bu(r) and Bv(r) in this
case, one can condition on Bv(r) to show that the limiting distribution of T (β̂ − β) is a zero mean
Gaussian mixture. Therefore, one can also show that t and Wald statistics for testing hypotheses
about β have the usual N(0, 1) and chi-square limits assuming serial correlation in ut is handled
using robust standard errors.

When the regressors are endogenous, the limiting distribution of T (β̂−β) is obviously more compli-
cated because of correlation between Bu(r) and Bv(r) and the presence of the nuisance parameters
in the vector ∆vu. One can therefore no longer condition on Bv(r) to obtain an asymptotic normal
result and ∆vu introduces an asymptotic bias. Inference is very difficult in this situation because
nuisance parameters cannot be removed by simple scaling methods.

The FM-OLS estimator of Phillips and Hansen (1990) is designed to asymptotically remove ∆vu and
to deal with the correlation between Bu(r) and Bv(r). To understand how the FM-OLS estimator
works, consider the stochastic process Bu·v(r) = Bu(r) − Bv(r)′Ω−1

vv Ωvu = σu·vwu·v(r) which, by

construction, is independent of Bv(r) = Ω
1/2
vv W2(r). Using Bu·v(r), one can write∫

Bv(r)dBu(r) + ∆vu =

∫
Bv(r)dBu·v(r) +

∫
Bv(r)dBv(r)

′Ω−1
vv Ωvu + ∆vu. (4)

Because Bv(r) and Bu·v(r) are independent, conditioning on Bv(r) can be used to show that∫
Bv(r)dBu·v(r) is a zero mean Gaussian mixture.

The FM-OLS estimator rests upon two transformations. One transformation removes the term∫
Bv(r)dBv(r)

′Ω−1
vv Ωvu in (4), whereas the other removes the ∆vu term in (4). Because these terms

depend on Ω and ∆, the two transformations require estimates of Ω and ∆vu. Let Ω̂ denote a
nonparametric kernel estimator of Ω of the form

Ω̂ = T−1
T∑
i=1

T∑
j=1

k(
|i− j|
M

)η̂j η̂
′
i, (5)

where η̂t = [ût,∆x
′
t]
′ and ût are the OLS residuals from (1). The function k(·) is the kernel weighting

function and M is the bandwidth. Partition Ω̂ the same way as Ω and define

y+
t = yt −∆x′tΩ̂

−1
vv Ω̂vu
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and
u+
t = ut −∆x′tΩ̂

−1
vv Ω̂vu.

Under conditions such that Ω̂ is a consistent estimator of Ω (see e.g. Jansson, 2002), it follows that

AX̃ ′u+ ⇒
( ∫

dBu·v(r)∫
Bv(r)dBu·v(r) + ∆+

vu

)
,

where ∆+
vu = ∆vu − ∆vvΩ

−1
vv Ωvu. Thus, using y+

t in place of yt to estimate θ removes the∫
Bv(r)dBv(r)

′Ω−1
vv Ωvu term, but the modified vector ∆+

vu remains.

The term ∆+
vu is easy to remove as follows: Define the half long run variance ∆ = Σ + Λ and define

a nonparametric kernel estimator for this quantity as

∆̂ = T−1
T∑
i=1

T∑
j=i

k(
|i− j|
M

)η̂j η̂
′
i. (6)

Partition ∆ and ∆̂ in the same way as Ω and define ∆̂+
vu as

∆̂+
vu = ∆̂vu − ∆̂vvΩ̂

−1
vv Ω̂vu.

The FM-OLS estimator is defined as

θ̂+ = (X̃ ′X̃)−1(X̃ ′y+ −M∗)

where

M∗ = T

(
0

∆̂+
vu

)
.

It is shown in Phillips and Hansen (1990) that

A−1
(
θ̂+ − θ

)
=
(
AX̃ ′X̃A

)−1 (
AX̃ ′y+ −AM∗

)
⇒
(

1
∫
Bv(r)

′dr∫
Bv(r)dr

∫
Bv(r)Bv(r)

′dr

)−1( ∫
dBu·v(r)∫
Bv(r)dBu·v(r)

)
= σu·v

(
1

∫
Bv(r)

′dr∫
Bv(r)dr

∫
Bv(r)Bv(r)

′dr

)−1( ∫
dwu·v(r)∫
Bv(r)dwu·v(r)

)
,

provided that Ω̂ and ∆̂+
vu are consistent. The second part of the transformation usesM∗ to remove

∆+
vu, and the result for T (β̂+ − β) is such that conditional on Bv(r), a zero mean normal limit

is obtained. Asymptotically pivotal t and Wald statistics with N(0, 1) and chi-square limiting
distributions can be constructed by taking into account σ2

u·v, the long run variance of Bu·v(r). The
traditional estimator of σ2

u·v is
σ̂2
u·v = Ω̂uu − Ω̂uvΩ̂

−1
vv Ω̂vu. (7)

In practice FM-OLS requires the choice of bandwidth and kernel. While the bandwidth and kernel
play no role asymptotically when appealing to consistency results for Ω̂ and ∆̂, in finite samples
the kernel and bandwidth affect the sampling distributions of θ̂+ and of t and Wald statistics
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based on θ̂+. To obtain an approximation that reflects the choice of bandwidth and kernel, the
natural asymptotic theory to use is the fixed-b theory developed by Kiefer and Vogelsang (2005)
and further analyzed by Sun, Phillips and Jin (2008). The theory there has been developed only for
models with stationary regressions, which means that some additional work is required to obtain
analogous results for cointegrating regressions. As we shall see below a major difference is that
the first component of η̂t, i.e. ût, is the residual from a cointegrating regression, which leads to
dependence of the corresponding limit partial sum process (defined as Pη̂(r) below) on the integrated
regressors and the specification of the deterministic components.

Fixed-b theory obtains limits of nonparametric kernel estimators of long run variance matrices by
treating the bandwidth as a fixed proportion of the sample size. Specifically, it is assumed that
M = bT , where b ∈ (0, 1] remains fixed as T →∞. Under this assumption it is possible to obtain
a limiting expression for a long run variance estimator that is a random variable depending on the
kernel k(·) and b. This is in contrast to a consistency result where the limit is a constant. It might
be tempting to conclude that using fixed-b theory is equivalent to proposing a long run variance
estimator that is inconsistent. This is not the case. The long run variance estimators are given
by (5) and (6). Given a sample and a particular choice of M , the estimators given by (5) and (6)
can be imbedded in sequences that converge to the population long run variances (consistency) or
imbedded in sequences that converge to random limits that are functions of b and k(·) (fixed-b).
It becomes a question as to which limit provides a more useful approximation. If one wants to
capture the impact of kernel and bandwidth choice on the sampling behavior of (5) and (6), fixed-b
theory is informative while a consistency result is not.

Obtaining a fixed-b result for Ω̂ relies upon algebra in Hashimzade and Vogelsang (2008), extended
to a multivariate framework and taking into account the above mentioned differences (in relation
to ût in a cointegration framework). The approach pursued in Hashimzade and Vogelsang (2008) is
to rewrite Ω̂ in terms of partial sums of η̂t. Once the limit behavior of appropriately scaled partial
sums of η̂t is established, the fixed-b limit for Ω̂ follows from the continuous mapping theorem.
Obtaining a fixed-b result for ∆̂ is more challenging because the literature does not yet provide
blueprints. We derive the corresponding result, which may itself be of independent interest, in
detail in the appendix in the proof of Theorem 1.

In order to formulate the fixed-b results for Ω̂, ∆̂, and θ̂+ we need to define some additional
quantities. Define Pη̂(r) and its instantaneous change dPη̂(r) as

Pη̂(r) =

[
B̂u(r)
Bv(r)

]
, dPη̂(r) =

[
dB̂u(r)
dBv(r)

]
,

where B̂u(r) = Bu(r) − rΘµ −
∫ r

0
Bv(s)

′dsΘβ and dB̂u(r) = dBu(r) − Θµ − Bv(r)′drΘβ. As is

shown in the appendix, Pη̂(r) is the limit process of the scaled partial sum process of η̂t.

The fixed-b limits of Ω̂ and ∆̂ are expressed in terms of functionals whose forms depend on the
smoothness of the kernel. We distinguish two cases for the kernel (a third case, not examined here,
can be found in Hashimzade and Vogelsang, 2008). In the first case the kernel function k(·), with
k(0) = 1, is assumed to be twice continuously differentiable with first and second derivatives given
by k′(·) and k′′(·). Furthermore k′+(0) denotes the derivative evaluated at zero from the right. An
example of kernels of this type is given by the Quadratic Spectral kernel. Let P1(r) and P2(r)
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denote two generic stochastic processes and define the stochastic processes Qb(P1(r), P2(r)) and
Q∆
b (P1(r), P2(r)) as

Qb(P1, P2) = − 1

b2

∫ 1

0

∫ 1

0
k′′(
|r − s|
b

)P1(s)P2(r)′dsdr (8)

+
1

b

∫ 1

0
k′(
|1− s|
b

)
(
P1(1)P2(s)′ + P1(s)P2(1)′

)
ds+ P1(1)P2(1)′,

Q∆
b (P1, P2) = − 1

b2

∫ 1

0

∫ 1

r
k′′(
|r − s|
b

)P1(s)P2(r)′drds+
1

b

∫ 1

0
k′(
|1− s|
b

)P1(1)P2(s)′ds (9)

+
1

b
k′+(0)

∫ 1

0
P1(s)P2(s)′ds+ P1(1)P2(1)′ −

∫ 1

0
P1(s)dP2(s)′ − Λ′12.

The second case considered refers to the Bartlett kernel, in which case the stochastic processes
Qb(P1, P2) and Q∆

b (P1, P2) become

Qb(P1, P2) =
2

b

∫ 1

0
P1(s)P2(s)′ds− 1

b

∫ 1−b

0

(
P1(s)P2(s+ b)′ + P1(s+ b)P2(s)′

)
ds (10)

− 1

b

∫ 1

1−b

(
P1(1)P2(s)′ + P1(s)P2(1)′

)
ds+ P1(1)P2(1)′,

Q∆
b (P1, P2) =

1

b

∫ 1

0
P1(s)P2(s)′ds− 1

b

∫ 1−b

0
P1(s+ b)P2(s)′ds (11)

− 1

b

∫ 1

1−b
P1(1)P2(s)′ds+ P1(1)P2(1)′ −

∫ 1

0
P1(s)dP2(s)′ − Λ′12.

With all required quantities defined we can now state the fixed-b limit results for Ω̂ and ∆̂ which in
turn lead to the fixed-b limit of the FM-OLS estimator. In the formulation of the theorem we will
not distinguish the two discussed cases with respect to the kernel function, but just use the brief
notation Qb and Q∆

b .

Theorem 1 Assume that the FCLT (3) holds. Let M = bT , where b ∈ (0, 1] is held fixed as
T →∞, then as T →∞

Ω̂⇒ Qb(Pη̂, Pη̂), ∆̂⇒ Q∆
b (Pη̂, Pη̂) (12)

and in particular
Ω̂vv ⇒ Qb(Bv, Bv), Ω̂vu ⇒ Qb(Bv, B̂u),

∆̂vv ⇒ Q∆
b (Bv, Bv), ∆̂vu ⇒ Q∆

b (Bv, B̂u).

The fixed-b limit of the FM-OLS estimator θ̂+ is given by

A−1
(
θ̂+ − θ

)
=
(
AX̃ ′X̃A

)−1 (
AX̃ ′y+ −AM∗

)
(13)

⇒
(

1
∫
Bv(r)

′dr∫
Bv(r)dr

∫
Bv(r)Bv(r)

′dr

)−1( ∫
dBb

uv(r)∫
Bv(r)dB

b
uv(r) + B1 − B2

)
,
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with Bb
uv(r) = Bu(r)−Bv(r)′Qb(Bv, Bv)−1Qb(Bv, B̂u) and

B1 = ∆vu −Q∆
b (Bv, B̂u),

B2 =
(
∆vv −Q∆

b (Bv, Bv)
)
Qb(Bv, Bv)

−1Qb(Bv, B̂u).

Theorem 1 shows that under the fixed-b asymptotic approximation, the limit of the FM-OLS
estimator depends in a complicated fashion upon nuisance parameters. These nuisance parameters
are, by construction, related to the two transformations upon which the FM-OLS estimator relies.
The result clearly shows that the zero mean mixed normal approximation for FM-OLS will not
be satisfactory if the sampling distributions of Ω̂ and ∆̂ are not close to Ω and ∆. Consider e.g.
the orthogonalization step of FM-OLS. The term

∫
Bv(r)dB

b
uv(r) is close to a zero mean Gaussian

mixture only if in Bb
uv(r) = Bu(r) − Bv(r)′Qb(Bv, Bv)−1Qb(Bv, B̂u) the Qb terms are close to the

population quantities Ω−1
vv and Ωvu with this proximity depending upon kernel and bandwidth

choice. Similar observations hold for the second transformation, i.e. the removal of ∆+
vu. The term

B1 − B2 is close to zero when Q∆
b (Bv, B̂u) and Q∆

b (Bv, Bv) are close to ∆vu and ∆vv. If these
approximations are not accurate an additive bias is present. Thus, the result of Theorem 1 shows
that FM-OLS relies critically on the consistency approximation being accurate and the result also
shows how moving around kernel and bandwidth impacts the sampling behavior of FM-OLS.

3 The Integrated Modified OLS Estimator

In this section we present a new estimator for which a simple transformation is used to obtain an
asymptotically unbiased estimator of β with a zero mean Gaussian mixture limiting distribution.
Like FM-OLS, the transformation has two steps but neither step requires estimators of Ω or ∆+

vu

and so the choice of bandwidth and kernel is completely avoided. We consider a slightly more
general version of (1) given by

yt = f ′tδ + x′tβ + ut, (14)

where xt continues to follow (2) and where for the deterministic components ft we merely assume
that there is a p× p matrix τF and a vector of functions, f(s), such that

T−1τ−1
F

∑[rT ]

t=1
ft →

∫ r

0
f(s)ds with

∫ 1

0
f(s)f(s)′ds > 0. (15)

If e.g. ft = (1, t, t2, ..., tp−1)′, then τF is a diagonal matrix with diagonal elements 1, T, T 2, .., T p−1

and f(s) = (1, s, s2, ..., sp−1)′.

Computing the partial sum of both sides of (14) gives the model

Syt = Sf ′t δ + Sx′t β + Sut , (16)

where Syt =
∑t

j=1 yj , S
f
t =

∑t
j=1 fj and Sxt and Sut are defined analogously. In vector notation,

using similar notation as in the discussion of the OLS estimator, we have

Sy = Sx̃′θ + Su, (17)
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with Sx̃ stacking Sft and Sxt . Define the OLS estimator in the partial sum regression as

θ̃ =
(
Sx̃′Sx̃

)−1 (
Sx̃′Sy

)
(18)

which leads to

θ̃ − θ =
(
Sx̃′Sx̃

)−1 (
Sx̃′Su

)
. (19)

The benefit of partial summing is that sub-matrices of the form

T∑
t=1

xtut (20)

that appear in θ̂ and θ̂+ are replaced by sub-matrices of the form

T∑
t=1

Sxt S
u
t (21)

in θ̃. Sums of the form of (20) have been well studied in the econometrics literature, see Phillips
(1988), Hansen (1992), De Jong and Davidson (2000a,b) and the references therein, and are the
source of the additive nuisance parameters, ∆vu, that show up in the limit of the OLS estimator. In
contrast, sums of the form of (21) do not have such additive terms in their limits. Partial summing
before estimating the model thus performs the same role for IM-OLS that M∗ plays for FM-OLS.

This still leaves the problem that correlation between ut and vt (xt) rules out the possibility of
conditioning on Bv(r) to obtain a conditional asymptotic normality result. The solution to this
problem is simple and only requires that xt be added as a regressor to the partial sum regression
(16):

Syt = Sf ′t δ + Sx′t β + x′tγ + Sut . (22)

Redefine Sx̃ so that it stacks Sft , S
x
t , xt and redefine θ so that it stacks δ, β, γ. With this economical

use of notation, the matrix form of (22) is still given by (17) and the OLS estimator is still formally
given by (18) and (19). Define the scaling matrix

AIM =

 T−1/2τ−1
F 0 0

0 T−1Ik 0
0 0 Ik

 .
The following theorem gives the asymptotic distribution of the OLS estimator of (22).

Theorem 2 Suppose that (3) and (15) hold. Then as T →∞ T 1/2τF (δ̃ − δ)
T (β̃ − β)
(γ̃ − Ω−1

vv Ωvu)

 = A−1
IM

(
θ̃ − θ

)
=
(
T−2AIMS

x̃′Sx̃AIM

)−1 (
T−2AIMS

x̃′Su
)

⇒ σu·v

(
Π

∫
g(s)g(s)′dsΠ′

)−1

Π

∫
g(s)wu·v(s)ds

= σu·v(Π
′)−1

(∫
g(s)g(s)′ds

)−1 ∫
[G(1)−G(s)]dwu·v(s) = Ψ, (23)

9



where

Π =

 Ip 0 0

0 Ω
1/2
vv 0

0 0 Ω
1/2
vv

 , g(r) =

 ∫ r
0 f(s)ds∫ r

0 Wv(s)ds
Wv(r)

 , G(r) =

∫ r

0
g(s)ds.

The simple endogeneity correction by just including the original regressors xt in the partial summed
regression works because both xt and Sut are I(1) processes, which implies that all correlation is
soaked up in the long run correlation matrix Ω−1

vv Ωvu. This is therefore the population parameter
vector for γ̃ that is non-zero in case of regressor endogeneity.

Conditional on Wv(r), it holds that Ψ ∼ N(0, VIM ), where VIM is given by

VIM = σ2
u·v(Π

′)−1

(∫
g(s)g(s)′ds

)−1(∫
[G(1)−G(s)][G(1)−G(s)]′ds

)
×
(∫

g(s)g(s)′ds

)−1

Π−1. (24)

This conditional asymptotic variance differs from the conditional asymptotic variance of the FM-

OLS estimator of δ and β. Denoting with m(s) = [f(s)′,Wv(s)
′]′ and with ΠFM = diag(Ip,Ω

1/2
vv )

the latter is given by

VFM = σ2
u·v
(
Π′FM

)−1
(∫

m(s)m(s)′ds

)−1

(ΠFM )−1 .

4 Finite Sample Bias and Root Mean Squared Error

In this section we compare the performance of the OLS, FM-OLS, DOLS and IM-OLS estimators
as measured by bias and root mean squared error (RMSE) with a small simulation study. The data
generating process is given by

yt = µ+ x1tβ1 + x2tβ2 + ut,

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2

where

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0,

vit = eit + 0.5ei,t−1, i = 1, 2,

where εt, e1t and e2t are i.i.d. standard normal random variables independent of each other. The
parameter values chosen are µ = 3, β1 = β2 = 1, where we note that the value of µ has no effect on
the results because the estimators of β1 and β2 are exactly invariant to the value of µ. The values
for ρ1 and ρ2 are chosen from the set {0.0, 0.3, 0.6, 0.9}. The parameter ρ1 controls serial correlation
in the regression error whereas the parameter ρ2 controls whether the regressors are endogenous or
not. The kernels chosen for FM-OLS are the Bartlett and the Quadratic Spectral kernels and the
bandwidths are reported for the grid M = bT with b ∈ {0.06, 0.10, 0.30, 0.50, 0.70, 0.90, 1.00}. We
also use the data dependent bandwidth chosen according to Andrews (1991). The DOLS estimator
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is implemented using the information criterion based lead and lag length choice as developed in
Kejrival and Perron (2008), where we use the more flexible version discussed in Choi and Kurozumi
(2008) in which the numbers of leads and lags included are not restricted to be equal. The considered
sample sizes are T = 100, 200 and the number of replications is 5,000.

In Table 1 we display for brevity only the results for T = 100 for the Bartlett kernel because the
results for the Quadratic Spectral kernel and for T = 200 are qualitatively very similar. Panel A
reports bias and Panel B reports RMSE.

When there is no endogeneity (ρ2 = 0), none of the estimators shows much bias for any value
of ρ1. When the bandwidth is relatively small, FM-OLS and OLS have similar RMSEs as would
be expected since they have the same asymptotic variance when ρ2 = 0. But, as the bandwidth
increases, the RMSE of FM-OLS tends to first increase and then decreases, indicating a hump-
shape in the RMSE. OLS and FM-OLS have smaller RMSE than IM-OLS and this holds regardless
of bandwidth for FM-OLS. This is not surprising because IM-OLS uses a regression with an I(1)
error, whereas OLS and FM-OLS are based on a regression with an I(0) error. DOLS has the
largest RMSE.

When ρ2 6= 0, in which case there is endogeneity, some interesting and different patterns emerge.
As ρ2 increases, the bias of OLS increases. FM-OLS is less biased than OLS, but FM-OLS does
show an increase in bias as ρ2 increases. This pattern of increasing bias is especially pronounced
when ρ1 is far away from zero. The bias of FM-OLS also depends on the bandwidth and is seen
to initially fall as the bandwidth increases and then tends to increase as the bandwidth becomes
large. The bias of FM-OLS can exceed the bias of OLS when very large bandwidths are used. In
contrast the biases of IM-OLS and DOLS are much less sensitive to ρ2 and are always smaller than
the biases of OLS or FM-OLS. The bias of DOLS is similar to the bias of IM-OLS when ρ1 is small
whereas for larger values of ρ1, the bias of DOLS tends to be smaller than that of IM-OLS. When
ρ1 = 0.9, the biases of IM-OLS and DOLS are much smaller than the biases of FM-OLS or OLS.
The overall picture depicted by Panel A is that DOLS has smaller bias than IM-OLS which in turn
has lower bias than both OLS and FM-OLS. The magnitude of the bias of both DOLS and IM-OLS
is less sensitive to the values of ρ1 and ρ2 than for OLS and FM-OLS.

Looking at Panel B we see that the RMSE of DOLS and IM-OLS tends to be larger than the RMSE
of OLS and FM-OLS, although when ρ1 and ρ2 are large, IM-OLS can have slightly smaller RMSE
than FM-OLS when a large bandwidth is used. In all cases, DOLS has the highest RMSE. For a
given value of ρ1, the RMSE of OLS noticeably increases as ρ2 increases. When ρ1 is small, the
RMSE of FM-OLS is not very sensitive to ρ2 unless the bandwidth is large. The RMSE of IM-OLS
does not vary with ρ2 when ρ1 is small. When ρ1 is large, the RMSE of FM-OLS increases with
ρ2. The RMSE of IM-OLS shows a similar pattern, but the RMSE of IM-OLS is less sensitive to
the value of ρ2. DOLS has a much larger RMSE than all other estimators when ρ1 = 0.9. Focusing
on the bandwidth we see that the RMSE of FM-OLS is sensitive to the bandwidth as was the case
with bias. As the bandwidth increases, the RMSE of FM-OLS tends to increase.

The simulations show that IM-OLS is more effective in reducing bias than FM-OLS and bias and
RMSE of IM-OLS are less sensitive to the nuisance parameters ρ1 and ρ2 than are the bias and
RMSE of FM-OLS. DOLS has less bias than IM-OLS but a higher RMSE. The superior bias
properties of IM-OLS and DOLS come at the cost of higher RMSE, unless ρ1 and ρ2 are both
large in which case IM-OLS has RMSE similar to OLS and FM-OLS. With respect to the FM-OLS
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estimator, the simulations reflect the predictions of Theorem 1 showing that the performance of the
FM-OLS estimator is sensitive to the bandwidth choice (due to its impact on the approximation
accuracy of the long run variance estimators).

5 Inference Using IM-OLS

This section is devoted to a discussion of hypothesis testing using the IM-OLS estimator. The basis
for doing so is the zero mean Gaussian mixture limiting distribution of the IM-OLS estimator given
in Theorem 1 and the expression for the conditional asymptotic variance matrix given by (24). In
particular we consider Wald tests for testing multiple linear hypotheses of the form

H0 : Rθ = r,

where R ∈ Rq×(p+2k) with full rank q and r ∈ Rq. Because the vector θ̃ has elements that
converge at different rates, obtaining formal results for the Wald statistics requires a condition
on R that is unnecessary when all estimated coefficients converge at the same rate. As is well
known in the literature, for a given constraint (a given row of R), the estimator with the slowest
rate of convergence dominates the asymptotic distribution of the linear combination implied by
the constraint. See, for example, the discussion in Section 4 of Sims, Stock and Watson (1990).
When there are two or more restrictions being tested, it is not necessarily the case that the slowest
converging estimator dominates a given restriction. Should another restriction involve that slowest
converging estimator, it is usually possible that the restrictions can be rotated so that i) the slowest
rate estimator only appears in one restriction and ii) the Wald statistic has the exact same value.
Because of this possibility, we do not state conditions on R related to the rates of convergence
of the estimators involved in the constraints. Rather, we state a sufficient condition for R under
which the Wald statistics have limiting chi-square distributions. We assume that there exists a
nonsingular q × q scaling matrix AR such that

lim
T→∞

A−1
R RAIM = R∗, (25)

where R∗ has rank q. Note that AR typically has elements that are positive powers of T and that
AR need not be diagonal.

The expression (24) immediately suggests estimators, V̌IM , for VIM of the form

V̌IM = σ̌2
u·v

(
T−2AIMS

x̃′Sx̃AIM

)−1
(T−4AIMC

′CAIM )
(
T−2AIMS

x̃′Sx̃AIM

)−1
,

where σ̌2
u·v is an estimator of σ2

u·v and C is the matrix formed by stacking the vector

ct = SS
x̃

T − SS
x̃

t−1,

with SS
x̃

t =
∑t

j=1 S
x̃
j .

There are several obvious candidates for σ̌2
u·v. The first is to use σ̂2

u·v as given in (6), whose
consistency properties have been studied e.g. in Phillips (1995), see also Jansson (2002). The
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second obvious idea is to use the first differences of the OLS residuals of the IM-OLS regression
(22), ∆S̃ut to directly estimate σ2

u·v by

σ̃2
u·v = T−1

T∑
i=2

T∑
j=2

k(
|i− j|
M

)∆S̃uj ∆S̃ui .

It turns out (see Theorem 3 below) that σ̃2
u·v is not consistent under standard assumptions on

bandwidth and kernel as discussed e.g. in Jansson (2002). The limit of σ̃2
u·v is shown in Theorem 3

to be larger than σ2
u·v, which implies that test statistics using σ̃2

u·v are asymptotically conservative
when standard normal or chi-square critical values are used.

Having now discussed all necessary quantities we can define the Wald statistics for different esti-
mators of σ2

u·v as

W̌ = (Rθ̃ − r)′[RAIM V̌IMAIMR′]−1(Rθ̃ − r), (26)

where V̌IM is either V̂IM using σ̂2
u·v, which defines Ŵ , or ṼIM using σ̃2

u·v, which defines W̃ . The
asymptotic null distribution of these test statistics is given in Theorem 3 below.

Clearly, appealing to a consistency result for σ̂2
u·v justifies standard inference procedures. As dis-

cussed earlier, referring to consistency properties of long run variance estimators ignores the impact
of kernel and bandwidth choices. In order to capture the effects of these choices fixed-b asymptotic
theory needs to be developed. Clearly, given the form of the test statistics and in particular the
form of V̂IM and ṼIM , what is required is that the estimator of σ2

u·v has a fixed-b limit that is
proportional to σ2

u·v (in order for the long run variance to be scaled out in the test statistics),
independent of θ̃ and does not depend upon additional nuisance parameters. In the case where a
long run variance estimator has such properties, resulting Wald statistics have pivotal asymptotic
distributions that only depend upon kernel and bandwidth (as well as the number of integrated
regressors and the specification of the deterministic component) and can thus be tabulated.

It follows from Theorem 1 that the fixed-b limit of σ̂2
u·v does not fulfill the stated requirements,

since it is not proportional to σ2
u·v and it also depends upon nuisance parameters in a rather

complicated fashion (see again the result for the fixed-b limit of Ω̂ in Theorem 1). As will be shown
in Lemma 2 below, the fixed-b limit of σ̃2

u·v is proportional to σ2
u·v and does not otherwise depend on

nuisance parameters. However, it is correlated with the limit of θ̃, with this correlation itself being
a complicated function of nuisance parameters. Thus, under fixed-b asymptotics, Wald statistics
using θ̃ and σ̂2

u·v or σ̃2
u·v do not have asymptotically pivotal distributions. This presents a new

challenge in cointegrating regressions for fixed-b theory that does not arise in stationary regression
settings.

In order to construct asymptotically pivotal test statistics under fixed-b asymptotics it turns out
that the OLS residuals of a particularly augmented version of (22) can be considered. This further
augmented regression is given by

Syt = Sf ′t δ + Sx′t β + x′tγ + z′tκ+ Su∗t , (27)

where

zt = t
T∑
j=1

ξj −
t−1∑
j=1

j∑
s=1

ξs, ξt = [Sf ′t , S
x′
t , x

′
t]
′.
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The asymptotic distribution of the OLS estimator of the parameters in (27) is given in Lemma 1
in the appendix.

Let S̃u∗t denote the OLS residuals from (27) and define

σ̃2∗
u·v = T−1

T∑
i=2

T∑
j=2

k(
|i− j|
M

)∆S̃u∗j ∆S̃u∗i ,

which is used to define a third estimator of VIM given by

Ṽ ∗IM = σ̃2∗
u·v

(
T−2AIMS

x̃′Sx̃AIM

)−1
(T−4AIMC

′CAIM )
(
T−2AIMS

x̃′Sx̃AIM

)−1
.

The following lemma characterizes the asymptotic behavior of the partial sum processes of the first
differenced OLS residuals of the IM-OLS regression (22) and of the further augmented regression
(27), which is needed to subsequently discuss fixed-b asymptotics for test statistics.

Lemma 2 Let S̃ut and S̃u∗t denote the residuals of regressions (16) and (22). The asymptotic
behavior of the corresponding partial sum processes is given by

T−1/2

[rT ]∑
t=2

∆S̃ut ⇒

σu·v

[∫ r

0
dwu·v(s)− g(r)′

(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
(G(1)−G(s)) dwu·v(s)

]
= σu·vP̃ (r), (28)

T−1/2

[rT ]∑
t=2

∆S̃u∗t ⇒

σu·v

[∫ r

0
dwu·v(s)− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
(H(1)−H(s)) dwu·v(s)

]
= σu·vP̃

∗(r), (29)

where

h(r)′ =

[
g(r)′,

∫ r

0
(G(1)−G(s))′ ds

]
, H(r) =

∫ r

0
h(s)ds.

Furthermore, it holds that Ψ, the limit of θ̃, and P̃ ∗(r) are, conditional upon Wv(r), independent.

It follows from (23) that, conditional on Wv(r), the random part of Ψ is the Gaussian random
variable

∫ 1
0 [G(1)−G(s)]dwu·v(s). Straightforward calculations show that, conditional on Wv(r), the

random process P̃ (r) as defined in (28) is correlated with this random variable, which implies that
the fixed-b limit of σ̃2

u·v is correlated with Ψ and this correlation depends on nuisance parameters
through Π. The important result of Lemma 2 is that the random process P̃ ∗(r) defined in (29)
is uncorrelated with Ψ. Given that, conditional upon Wv(r), Ψ and P̃ ∗(r) are both Gaussian, it
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follows that they are independent. This result forms the basis for pivotal test statistics using fixed-b
asymptotics, defined by

W̃ ∗ = (Rθ̃ − r)′[RAIM Ṽ ∗IMAIMR′]−1(Rθ̃ − r).

The asymptotic behavior of the Wald statistics is given by Theorem 3. Standard asymptotic results
based on traditional bandwidth and kernel assumptions (as detailed in Jansson, 2002) are given for

Ŵ and W̃ whereas a fixed-b result is given for W̃ ∗.

Theorem 3 Assume that the FCLT (3) holds, that the deterministic components satisfy (15) and
that R satisfies (25). Suppose that the bandwidth, M , and kernel, k(·), satisfy conditions such that
σ̂2
u·v is consistent. Then as T →∞

Ŵ ⇒ χ2
q ,

where χ2
q is a chi-square random variable with q degrees of freedom. When q = 1,

t̂⇒ Z,

where t̂ is the t-statistic version of Ŵ and Z is distributed standard normal.

Consider the same assumptions concerning the bandwidth and kernel as before, then as T →∞

σ̃2
u·v ⇒ σ2

u·v(1 + d′γdγ),

with dγ denoting the last k components of
(∫
g(s)g(s)′ds

)−1 ∫
[G(1)−G(s)]dwu·v. Consequently, it

follows that

W̃ ⇒
χ2
q

1 + d′γdγ
,

where χ2
q is a chi-square random variable with q degrees of freedom. When q = 1,

t̃⇒ Z√
1 + d′γdγ

,

where t̃ is the t-statistic version of W̃ and Z is distributed standard normal.

If M = bT , where b ∈ (0, 1] is held fixed as T →∞, then as T →∞

W̃ ∗ ⇒
χ2
q

Qb(P̃ ∗, P̃ ∗)
,

where χ2
q is independent of Qb(P̃

∗, P̃ ∗). When q = 1,

t̃∗ =
Rθ̃ − r√

RAIM Ṽ ∗IMAIMR
′
⇒ Z√

Qb(P̃ ∗, P̃ ∗)
, (30)

where Z is independent of Qb(P̃
∗, P̃ ∗).
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Because of consistency of σ̂2
u·v inference using Ŵ is standard. Because d′γdγ > 0, σ̃2

u·v is upwardly

biased and the critical values of W̃ are smaller than those of the χ2
q distribution. Therefore, using

χ2
q critical values for W̃ leads to a conservative test from the perspective of standard bandwidth

rule asymptotics. The fixed-b limit distribution of W̃ ∗ is similar to what is obtained for Wald tests
in stationary regression settings except that the form of Qb(P̃

∗, P̃ ∗) is more complicated in the
cointegration case. In addition to dependence upon ft, also observed in stationary regressions, the
process depends upon Wv(r), i.e. upon the number of integrated regressors included in the cointe-
grating regression (a similar finding was made by Bunzel (2006) for fixed-b inference using DOLS).
Thus, critical values need to be simulated taking into account the specification of the deterministic
components, the number of integrated regressors, the kernel function and the bandwidth choice.
In a supplementary appendix we tabulate critical values for a selection of kernels and bandwidths
for models with up to 4 integrated regressors and deterministic components consisting of intercept
only and intercept plus linear trend.

6 Finite Sample Performance of Test Statistics

In this section we provide some finite sample results using the simulation design from Section 4.
Throughout this section we only report results for cases where ρ1 = ρ2. We report results for
t-statistics for testing the null hypothesis H0 : β1 = 1 and Wald statistics for testing the joint null
hypothesis H0 : β1 = 1, β2 = 1. The OLS statistics were implemented without taking into account
serial correlation in the regression error and serve as a benchmark. The FM-OLS statistics were
implemented using σ̂2

u·v. The IM-OLS statistics were implemented in three ways: The first uses
σ̂2
u·v and is labeled IM(O), the second uses σ̃2

u·v and is labeled IM(D) and the third uses σ̃2∗
u·v and is

labeled IM(fb). We report results for both the Bartlett and the Quadratic Spectral (QS) kernels.
With respect to bandwidth choice the FM and IM statistics are implemented in two ways. The first
way uses the data dependent bandwidth rule of Andrews (1991). The second way uses a specific
bandwidth, M , over the grid M = 1, 2, ..., T . This grid is indexed by the bandwidth to sample
size ratio, b = M/T . As in Section 4, again DOLS is included with the leads and lags chosen as
described before and the bandwidth for the long run variance estimation is chosen according to
Andrews (1991). Rejections for the OLS, FM and DOLS statistics are carried out using N(0, 1)
critical values in all cases and also the rejections for IM(O) and IM(D) are carried out using N(0, 1)
critical values for all values of M . Given the results of Theorem 3 this implies that the test statistic
IM(D) is asymptotically conservative. In contrast, rejections for IM(fb) are carried out using fixed-
b asymptotic critical values. For each value of b, i.e. given M/T , asymptotic critical values were
simulated for the IM(fb) t and Wald statistics using the limiting random variable given by Theorem
3. Therefore, a different critical value is used for FM(fb) for each value of the bandwidth. The
empirical rejection probabilities were computed using 5,000 replications, and the nominal level is
0.05 in all cases.

Tables 2 and 3 report empirical null rejection probabilities using the data dependent bandwidth
choice for the Bartlett and the QS kernel. Table 2 contains the results for the t-tests and Table 3
contains the results for the Wald tests. In each of these tables Panel A corresponds to T = 100 and
Panel B to T = 200. We only briefly summarize some main findings related to both tables. When
ρ1, ρ2 = 0, as expected OLS tests work well with rejections close to 0.05 and, as also expected,
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increasing the values of ρ1, ρ2 leads to very large over-rejections. For ρ1, ρ2 = 0 the IM(fb) test has
rejections that tend to be below 0.05 whilst the other tests show some over-rejections. DOLS tests
exhibit substantial over-rejections when T = 100, even in the case of no serial correlation and no
endogeneity. For T = 200 the over-rejection problems of DOLS are closer to FM-OLS. The IM(O)
and IM(D) tests also show some over-rejections, which are however less severe than for FM-OLS.
IM(D) usually has slightly lower rejection rates than IM(O) and this is to be expected given the
conservative nature of the IM(D) test under standard asymptotics. With increasing values of ρ1, ρ2,
all tests’ over-rejection problems become more pronounced. The test least affected by the over-
rejection problem, when using the Andrews (1991) data dependent bandwidth, is the IM(fb) test,
which only suffers from large over-rejections (even larger than IM(O) and IM(D)) when ρ1, ρ2 = 0.9.

In order to obtain a better understanding of the role that the bandwidth choice plays in the over-
rejection problem we plot in Figures 1–8 null rejection probabilities as a function of b ∈ (0, 1]. The
first four figures show the results for the Bartlett kernel for T = 100 for increasing values of ρ1, ρ2.
In Figure 1, with ρ1, ρ2 = 0, for small bandwidths all tests have rejection probabilities close to
0.05. As the bandwidth increases, with the exception of IM(fb) all rejection probabilities increase
substantially. This figure shows that with ρ1, ρ2 = 0, the fixed-b approximation performs well for
all bandwidths. As the values of ρ1, ρ2 increase, we see in Figures 2–4 that the rejections take a
J-curve shape for FM, IM(O) and IM(D) and over-rejection becomes a serious problem regardless
of bandwidth for these tests whereas in contrast the rejection probabilities of the IM(fb) test stay
essentially constant as the bandwidth increases. For bandwidths larger than about 10% of the
sample size the rejection probabilities of IM(D) are typically larger than those of IM(O), whereas
they are similar for smaller bandwidths.

Only when ρ1, ρ2 = 0.9, is the IM(fb) test using the Bartlett kernel severely affected by over-
rejections. The kernel choice is important for this last finding because the severe over-rejections
for the IM(fb) tests occur to a much smaller extent when instead of the Bartlett the QS kernel is
employed. This is shown in Figures 5 (T = 100) and 6 (T = 200), where the results for ρ1, ρ2 = 0.9
are displayed. The results are similar as for the Bartlett kernel for the FM, IM(O) and IM(D) tests,
but are much better for the IM(fb) test, which now over-rejects much less severely across a wide
range of bandwidths. Looking at the results for T = 200 shows that, compared to T = 100, the
over-rejection problems of FM, IM(O) and IM(D) are somewhat reduced when small bandwidths
are used. The IM(fb) test has, for T = 200, rejections just above 0.05 as long as b is not too small.

In Figures 7 and 8 we show results for the Wald test for T = 100 for ρ1, ρ2 = 0.9. Again the kernel
choice turns out to be important, since when using the Bartlett kernel (Figure 7) all tests have
rejection probabilities of at least 0.55 regardless of the bandwidth. Using the QS kernel (Figure
8) can lead to much smaller rejection probabilities, especially when the bandwidth is large. The
discussed results make clear that in case of strong serial correlation and endogeneity, the QS kernel
is preferred over the Bartlett kernel for IM(fb).

The overall picture is that the IM(fb) test is the most robust statistic in terms of over-rejection
problems. Increasing the values of ρ1, ρ2 causes over-rejections to emerge, but the tendency to
over-reject is much smaller than for the other statistics. Larger bandwidths in conjunction with
the QS kernel lead to test statistics with the least over-rejection problems. Similar over-rejection
patterns have been observed by Kiefer and Vogelsang (2005) in stationary regression settings.

We now turn to the analysis of the power properties of the tests. For the sake of brevity we only
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display the results for the case ρ1, ρ2 = 0.6 for the Wald test for T = 100. Patterns are similar for
other values of ρ1, ρ2, for the t-tests and for other sample sizes. Starting from the null values of β1

and β2 equal to 1, we consider under the alternative β1 = β2 ∈ (1, 2], using – including the null
value – in total 21 values on a grid with mesh 0.05. We focus on size-corrected power because of the
over-rejection problems under the null hypothesis. This allows to see power differences holding null
rejection probabilities constant at 0.05. Clearly, this is useful for theoretical power comparisons,
but it has to be kept in mind that such size-corrections are not feasible in practice.

In Figures 9–12 we depict the power of the FM and IM Wald tests using the QS kernel. The figures
are ordered according to increasing bandwidth b = 0.06, 0.3, 0.7, 1.0. The first thing to note is that,
by and large, size-corrected power of the FM and the IM tests is similar. FM has highest power
for b = 0.06, whereas for the other values of b highest power is achieved by IM(O). These figures
show that partial summing before estimation (using the IM-OLS estimator) implies only minimal
power losses.

Figures 13 (Bartlett) and 14 (QS) show the impact of the bandwidth on the power of the IM(fb)
test by displaying the power curves for eight values of b = 0.02, 0.06, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. The
figures make it obvious that power depends on the bandwidth and tends to decrease with increasing
bandwidth. Again, this is an observation made in a stationary regression setting by Kiefer and
Vogelsang (2005). The most striking feature when comparing these two figures is that power when
using the QS kernel is much more sensitive to the bandwidth choice than power when using the
Bartlett kernel. With large bandwidths, power with the QS kernel is much lower than when small
bandwidths are used. This has to be seen in conjunction with the observation made earlier that
tests using the QS kernel suffer much less from over-rejection problems than those using the Bartlett
kernel especially when large bandwidths are used. Thus, the price of robustness to over-rejections
is lower power. A similar size-power trade-off with respect to kernel and bandwidth choice has been
found in Kiefer and Vogelsang (2005) for stationary regressions and it is this trade-off forms the
basis of the data dependent bandwidth rule developed by Sun et al. (2008).

Finally, Figures 15 (Bartlett) and 16 (QS) allow for power comparisons across the various tests
(OLS, FM-OLS, DOLS, IM-OLS). In these figures power of the IM(fb) test is shown for b =
0.06, 0.1, 1.0 and using the Andrews (1991) data dependent bandwidth. When using the Bartlett
kernel, OLS and FM tests have the highest size-corrected power, with the power of all IM(fb) tests
being slightly lower and the power of the DOLS test being substantially lower. For the QS kernel
the results are as expected, given the results of Figures 13 and 14, because the power of the IM(fb)
tests is sensitive to the bandwidth when using the QS kernel. In this case the power of the IM(fb)
test with b = 1 is lower than the power of the DOLS test.

7 Summary and Conclusions

The paper begins by deriving the fixed-b limit distribution of the FM-OLS estimator of Phillips and
Hansen (1990). Fixed-b asymptotic theory has been developed in Kiefer and Vogelsang (2005) to
capture the impact of kernel and bandwidth choices on tests in stationary HAC regressions, whose
effects are not captured by standard asymptotic theory. Clearly, such choices in long run variance
estimation are necessary when implementing the FM-OLS estimator. The fixed-b asymptotic dis-
tribution of the FM-OLS estimator features complicated dependencies upon kernel and bandwidth
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choices. The limiting distribution shows that the accuracy of long run variance estimation is crucial
for the properties of the FM-OLS estimator.

The derivation of the fixed-b limit distribution of the FM-OLS estimator presents some challenges
for fixed-b theory. The first challenge is that fixed-b theory has to be extended from the station-
ary regression framework to the world of unit roots and cointegration as in Bunzel (2006). In
cointegrating regressions fixed-b limits of long run variance estimators depend not only upon the
specification of the deterministic components, but also upon the number of integrated regressors.
The second challenge is the need to derive the fixed-b limit of half long run variance matrix estima-
tors which turn out to have complicated forms including additive nuisance parameters. This results
in a fixed-b limit of the FM-OLS estimator of very complicated form that does not lend itself to
the construction of test statistics that are asymptotically free of nuisance parameters. Our fixed-b
results for FM-OLS suggest that the various long run and half long run variance estimators used
to construct FM-OLS need to be close to their population values for FM-OLS to work in practice.

Consequently, we propose a new simple tuning parameter free estimator that is based on a simple
partial sum transformed regression augmented by the original integrated regressors themselves,
referred to as IM-OLS estimator. The advantage of the partial sum transformation is that it
results in a zero mean mixed Gaussian limiting distribution without the need to choose any tuning
parameter (like kernel, bandwidth or numbers of leads and lags). When the IM-OLS estimates are
to be used for inference, still a long run variance needs to be estimated. Inference can be done in two
ways. In a straightforward way one can use a consistent estimator of the required long run variance
and this leads to tests having standard asymptotic distributions. Alternatively, fixed-b inference is
possible for the IM-OLS estimator but constructing tests is more complicated than in stationary
regressions because the OLS residuals of the IM-OLS regression cannot themselves be used for
pivotal fixed-b inference. Instead the residuals of a specifically further augmented regression can
form the basis for fixed-b inference. Critical values for the resultant fixed-b t and Wald statistics
can be tabulated. Similar to what Bunzel (2006) found for DOLS tests, these critical values depend
upon the deterministic components included, the number of integrated regressors and, of course,
the kernel as well as the bandwidth chosen.

The theoretical analysis is complemented by a simulation study, in which the performance of the
new estimator and test statistics based upon it is compared with OLS, FM-OLS and DOLS. The IM-
OLS estimator shows good performance in terms of bias and RMSE. Typically, the bias is smaller
than the bias of FM-OLS and the RMSE is typically a bit larger than the RMSE of FM-OLS. The
size and power analysis of the tests shows that the fixed-b approach is very useful also in the context
of cointegrating regressions. It leads to test statistics that are more robust, in terms of having lower
size distortions than all other test statistics, at the expense of only very minor power losses provided
serial correlation/endogeneity is not too strong. When serial correlation/endogeneity is strong, the
tests based on all estimators examined have severe null over-rejection problems although IM-OLS
with the QS kernel and a large bandwidth has the least over-rejection problems in this case.

Future research will study IM-OLS type estimators for panels of cointegrated time series, for higher
order cointegrating regressions and for nonlinear cointegration relationships (that are linear in
parameters). Furthermore, we will investigate whether and how the estimated γ̃ can serve as a
basis for endogeneity testing.
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Appendix: Proofs

Proof of Theorem 1

In line with the formulation in the main text we consider here the case with the intercept as the only
deterministic component in the regression. Define the partial sum process Ŝt =

∑t
j=1 η̂j . We start

by establishing functional central limit theorems for T−1/2Ŝ[rT ]and T−1
∑T

t=2 Ŝt−1η̂
′
t. Consider first

T−1/2

[rT ]∑
t=1

ût = T−1/2

[rT ]∑
t=1

ut −
[rT ]

T
T 1/2 (µ̂− µ)− T−3/2

[rT ]∑
t=1

x′tT (β̂ − β)

⇒
∫ r

0
dBu(s)−

[
r
∫ r

0 Bv(s)
′ ] [ Θµ

Θβ

]
,

with Θ = [Θµ,Θ
′
β]′ as defined in the main text in the discussion of the OLS estimator. Using the

definition of η̂t = [ût, v
′
t]
′ and stacking now leads to

T−1/2Ŝ[rT ] = T−1/2

[rT ]∑
t=1

η̂t ⇒
[ ∫ r

0 dBu(s)−
[
r
∫ r

0 Bv(s)
′ ]Θ∫ r

0 Bv(s)
′ds

]
=

[
Bu(r)
Bv(r)

]
−
[ [

r
∫ r

0 Bv(s)
′ ]Θ

0

]
= Pη̂(r).

We define correspondingly

dPη̂(r) =

[
dBu(r)
dBv(r)

]
−
[ [

1 Bv(r)
′ ]Θ

0

]
dr.

Remark 1 For the IM-OLS estimator we consider more general deterministic components so it is
useful for clarity sake to point out the obvious changes this implies for ût and its limit processes.
In this more general case if we let Θ denote the limit of the OLS estimator in the cointegrating
regression (14), i.e. the regression including ft as deterministic components, then in the defini-
tions of Pη̂(r) and dPη̂(r) we would replace

[
r
∫ r

0 Bv(s)
′ ]with

[ ∫ r
0 f(s)′

∫ r
0 Bv(s)

′ ] and replace[
1 Bv(r)

′ ] with
[
f(r)′ Bv(r)

′ ] .
Let us now return to the specific case considered for the OLS estimator, i.e. the intercept only
case. Consider T−1

∑T
t=2 Ŝt−1η̂

′
t, using

η̂t =

[
ût
vt

]
=

[
ut
vt

]
−
[

(µ̂− µ) + x′t(β̂ − β)
0

]
= ηt − λt

and thus for the partial sums Ŝt = Sηt − Sλt . By assumption it holds that T−1/2Sη[rt] ⇒ B(r) =

Ω1/2W (r) and using the results for the limits of the OLS estimators we have

T−1/2Sλ[rt] ⇒
[ [

r
∫ r

0 Bv(s)
′ ]Θ

0

]
.

22



Now consider

T−1
T∑
t=2

Ŝt−1η̂
′
t = T−1

T∑
t=2

(
Sηt−1 − S

λ
t−1

)
(ηt − λt)′

= T−1
T∑
t=2

Sηt−1η
′
t − T−1

T∑
t=2

Sηt−1λ
′
t − T−1

T∑
t=2

Sλt−1η
′
t + T−1

T∑
t=2

Sλt−1λ
′
t. (31)

We consider each of the four terms in (31) in turn. Under the stated assumption (3) it holds that

T−1
T∑
t=2

Sηt−1η
′
t ⇒

∫
B(r)dB(r) + Λ′.

For the second term in (31) we get

T−1
T∑
t=2

Sηt−1λ
′
t = T−1

T∑
t=2

Sηt−1

[
(µ̂− µ) + x′t(β̂ − β), 0

]
=

[
T−1

T∑
t=2

T−1/2Sηt−1T
1/2 (µ̂− µ) + T−1

T∑
t=2

T−1/2Sηt−1T
−1/2x′tT (β̂ − β), 0

]

⇒
[∫

B(r)drΘµ +

∫
B(r)Bv(r)

′drΘβ, 0

]
. (32)

The third term in (31) can be rewritten as

T−1
T∑
t=2

Sηt−1λ
′
t = T−1

T−1∑
t=2

(
Sλt−1 − Sλt

)
Sη′t + T−1SλT−1S

η′
T − T

−1λ1η
′
1

= T−1SλT−1S
η′
T − T

−1
T−1∑
t=2

λtS
η′
t − T−1λ1η

′
1 (33)

For the first term in (33) it holds that

T−1SλT−1S
η′
T ⇒

[
Θµ +

∫
Bv(r)

′drΘβ

0

]
B(1)′,

for the second term in (33) it can be shown that it has up to transposition the same limit as given
in (32) and the third term converges to 0. Combining this we get

T−1
T∑
t=2

Sλt−1η
′
t ⇒

[
Θµ +

∫
Bv(r)

′drΘβ

0

]
B(1)′ −

[
Θµ

∫
B(r)′dr + Θ′β

∫
Bv(r)B(r)′dr

0

]
.

It remains to consider the fourth term in (31)

T−1
T∑
t=2

Sλt−1λ
′
t = T−1

T∑
t=2

[
(t− 1) (µ̂− µ) + Sx′t−1(β̂ − β)

0

] [
(µ̂− µ) + x′t(β̂ − β)

0

]′

=

[
T−1

∑T
t=2

[
(t− 1) (µ̂− µ) + Sx′t−1

] [
(µ̂− µ) + (β̂ − β)′xt

]
0

0 0

]
. (34)
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Upon multiplication, the non-zero term in (34) can be written as

T (µ̂− µ)2 T−2
T∑
t=2

(t− 1) + T 1/2 (µ̂− µ)T (β̂ − β)′T−5/2
T∑
t=2

(t− 1)xt+

T−5/2
T∑
t=2

Sx′t−1T (β̂ − β)T 1/2 (µ̂− µ) + T (β̂ − β)′T−3
T∑
t=2

Sxt−1x
′
tT (β̂ − β),

from which the limit can immediately be deduced

1

2
Θ2
µ + ΘµΘ′β

∫
rBv(r)dr +

∫ (∫ r

0
Bv(s)ds

)
drΘβΘµ+ Θ′β

∫ (∫ r

0
Bv(s)ds

)
Bv(r)

′drΘβ. (35)

Combining the above results leads by appropriate rearranging of the terms to

T−1
T∑
t=2

Ŝt−1η̂
′
t ⇒

∫
Pη̂(r)dPη̂(r)

′ + Λ′. (36)

We now turn to ∆̂ itself, using the shorthand notation kij = k
(
|i−j|
M

)
, suppressing the dependence

upon M , given by

∆̂ = T−1
T∑
i=1

T∑
j=i

kij η̂j η̂
′
i

= Ω̂− T−1
T∑
i=2

i−1∑
j=i

kij η̂j η̂
′
i

= Ω̂− T−1
T∑
i=2

Aiη̂
′
i − T−1

T∑
i=2

ki,i−1Ŝi−1η̂
′
i,

using
i−1∑
j=1

kij η̂j =

i−2∑
j=1

(kij − ki,j+1) Ŝj︸ ︷︷ ︸
=Ai

+ki,i−1Ŝi−1

and Ŝj =
∑j

i=1 η̂j . Continuing we get

∆̂ = Ω̂− T−1
T∑
i=2

(
Ai + ki,i−1Ŝi−1

)
η̂′i

= Ω̂− T−1
T∑
i=2

Aiη̂
′
i − T−1

T∑
i=2

ki,i−1Ŝi−1η̂
′
i

= Ω̂− T−1
T∑
i=2

(Ai −Ai+1) Ŝ′i − T−1AT Ŝ
′
T − T−1

T∑
i=2

ki,i−1Ŝi−1η̂
′
i.
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Next insert

Ai −Ai+1 =
i−2∑
j=1

(kij − ki,j+1) Ŝj −
i−1∑
j=1

(ki+1,j − ki+1,j+1) Ŝj

=
i−1∑
j=1

[(kij − ki,j+1)− (ki+1,j − ki+1,j+1)] Ŝj − (ki+1,i−1 − ki+1,i) Ŝi−1

in the above expression for ∆̂ to get

∆̂ = Ω̂− T−1
T−1∑
i=2

i−2∑
j=1

[(kij − ki,j+1)− (ki+1,j − ki+1,j+1)] ŜjŜ
′
i + T−1

T−1∑
i=2

(ki+1,i−1 − ki+1,i) Ŝi−1Ŝ
′
i

− T−1
T−2∑
j=1

(kTj − kT,j+1) ŜjŜ
′
T − T−1

T∑
i=2

ki,i−1Ŝi−1η̂
′
i

= Ω̂− T−1
T−1∑
i=2

i−2∑
j=1

[(kij − ki,j+1)− (ki+1,j − ki+1,j+1)] ŜjŜ
′
i +

[
k

(
2

M

)
− k

(
1

M

)]
T−1

T−1∑
i=2

Ŝi−1Ŝ
′
i

− T−1
T−2∑
j=1

(kTj − kT,j+1) ŜjŜ
′
T − k

(
1

M

)
T−1

T∑
i=2

Ŝi−1η̂
′
i, (37)

making the dependence upon M explicit again in the last line.

As is common in fixed-b asymptotic theory, compare Hashimzade and Vogelsang (2008), the lim-
its depend upon the properties of the kernel function used. We first derive the result for twice
differentiable kernels with k(0) = 1 and afterwards derive the result for the Bartlett kernel. The
results follow by using the above derived limits and the asymptotic properties (under fixed-b lim-
its, i.e. M = bT ) of the kernel functions as developed in a univariate setting in Hashimzade and
Vogelsang (2008). The result that Ω̂⇒ Qb

(
Pη̂, Pη̂

)
follows directly from algebraic expressions given

by Hashimzade and Vogelsang (2008), extended in obvious ways to our multivariate setting, that
allow to write Ω̂ as a continuous function of T−1/2Ŝ[rT ] and the kernel. Also note that we use, as

in the text, the same shorthand notation Qb (P1, P2) and Q∆
b (P1, P2) for both types of kernels.
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For twice continuously differentiable kernels with k(0) = 1 we thus obtain from (37)

∆̂⇒ Qb
(
Pη̂(r), Pη̂(r)

)
+

1

b2

∫ ∫ r

0
k′′
(
|r − s|
b

)
Pη̂(s)Pη̂(r)

′dsdr +
1

b
k′+(0)

∫
Pη̂(s)Pη̂(s)

′ds−

− 1

b

∫
k′
(

1− s
b

)
Pη̂(s)Pη̂(1)′ds−

∫
Pη̂(s)dPη̂(s)

′ − Λ′

= − 1

b2

∫ ∫
k′′
(
|r − s|
b

)
Pη̂(r)Pη̂(s)

′dsdr +
1

b

∫
k′
(

1− s
b

)(
Pη̂(1)Pη̂(s)

′ + Pη̂(s)Pη̂(1)′
)
ds+

+ Pη̂(1)Pη̂(1)′ +
1

b2

∫ ∫ r

0
k′′
(
|r − s|
b

)
Pη̂(s)Pη̂(r)

′dsdr +
1

b
k′+(0)

∫
Pη̂(s)Pη̂(s)

′ds−

− 1

b

∫
k′
(

1− s
b

)
Pη̂(s)Pη̂(1)′ds−

∫
Pη̂(s)dPη̂(s)

′ − Λ′

= − 1

b2

∫ ∫ 1

r
k′′
(
|r − s|
b

)
Pη̂(r)Pη̂(s)

′dsdr +
1

b

∫
k′
(

1− s
b

)
Pη̂(1)Pη̂(s)

′ds+

+
1

b
k′+(0)

∫
Pη̂(s)Pη̂(s)

′ds+ Pη̂(1)Pη̂(1)′ −
∫
Pη̂(s)dPη̂(s)

′ − Λ′ = Q∆
b

(
Pη̂, Pη̂

)
. (38)

For the Bartlett kernel we obtain similarly as above

∆̂⇒ Qb
(
Pη̂(r), Pη̂(r)

)
+

1

b

∫ 1−b

0
Pη̂(s)Pη̂(s+ b)′ds− 1

b

∫
Pη̂(s)Pη̂(s)

′ds+

+

∫ 1

1−b
Pη̂(s)Pη̂(1)′ds−

∫
Pη̂(s)dPη̂(s)

′ − Λ′

=
2

b

∫
Pη̂(s)Pη̂(s)

′ds− 1

b

∫ 1−b

0

(
Pη̂(s)Pη̂(s+ b)′ + Pη̂(s+ b)Pη̂(s)

′) ds−
− 1

b

∫ 1

1−b

(
Pη̂(1)Pη̂(s)

′ + Pη̂(s)Pη̂(1)′
)
ds+ Pη̂(1)Pη̂(1)′ +

1

b

∫ 1−b

0
Pη̂(s)Pη̂(s+ b)′ds−

− 1

b

∫
Pη̂(s)Pη̂(s)

′ds+

∫ 1

1−b
Pη̂(s)Pη̂(1)′ds−

∫
Pη̂(s)dPη̂(s)

′ − Λ′

=
1

b

∫
Pη̂(s)Pη̂(s)

′ds− 1

b

∫ 1−b

0
Pη̂(s+ b)Pη̂(s)

′ds− 1

b

∫ 1

1−b
Pη̂(1)Pη̂(s)

′ds+

+ Pη̂(1)Pη̂(1)′ −
∫
Pη̂(s)dPη̂(s)

′ − Λ′ = Q∆
b

(
Pη̂, Pη̂

)
. (39)

The results in (38) and (39) establish (12). The remaining claims of the theorem follow by simply
inserting the corresponding sub-matrices of the fixed-b limits of Ω̂ and ∆̂ in the expressions for the
FM-OLS estimator. In particular it holds that under fixed-b asymptotics

AX̃ ′u+ ⇒

( ∫
dBu(r)−

∫
dBv(r)

′Qb(Bv, Bv)
−1Qb(Bv, B̂u)∫

BvdBu(r) + ∆vu −
(∫
BvdBv(r)

′ + ∆vv

)
Qb(Bv, Bv)

−1Qb(Bv, B̂u)−Q+
b

)
,

with Q+
b = Q∆

b (Bv, B̂u) − Q∆
b (Bv, Bv)Qb(Bv, Bv)

−1Qb(Bv, B̂u) denoting the fixed-b limit of ∆̂+
vu.

The result then follows by rearranging terms and using the definition of Bb
uv(r).

26



Proof of Theorem 2

We consider the asymptotic behavior of the OLS estimator θ̃ =
(
δ̃′, β̃′, γ̃′

)′
of θ = (δ′, β′, 0)′ in

equation (22), i.e. we consider

A−1
IM

(
θ̃ − θ

)
=
(
T−2AIMS

x̃′Sx̃AIM

)−1 (
T−2AIMS

x̃′Su
)
, (40)

using the notation of the main text. We consider the two terms on the right hand side of (40)
separately and start with the first one. In order to establish the limit for T →∞ we first consider
T−1/2AIMS

x̃
[rT ],  T−1τ−1

F

∑[rT ]
t=1 ft

T−3/2
∑[rT ]

t=1 xt
T−1/2x[rT ]

⇒


∫ r
0 f(s)ds

Ω
1/2
vv

∫ r
0 Wv(s)ds

Ω
1/2
vv Wv(r)

 = Πg(r).

This immediately implies that(
T−2AIMS

x̃′Sx̃AIM

)−1
⇒ (Π′)−1

(∫
g(s)g(s)′ds

)−1

Π−1. (41)

Analogously, for a typical entry of the second term in (40) it holds that

T−1/2AIMS
x̃
[rT ]T

−1/2Su[rT ] ⇒ Πg(r)Bu(r)

and hence

T−2AIMS
x̃′Su ⇒ Π

∫
g(r)Bu(r)dr

= σu·vΠ

∫
g(r)wu·vdr + Π

∫
g(r)Wv(r)

′drλ′uv, (42)

using Bu(r) = ωu·vwu·v(r) + λuvWv(r).

Next note that Wv(r) is the last block-component in g(r), therefore

(Π)−1

(∫
g(r)g(r)′dr

)−1 ∫
g(r)Wv(r)

′drλ′uv = (Π)−1

 0
0
Ik

λ′uv

=

 0
0(

(Ω
1/2
vv )′

)−1
λ′uv

 . (43)

From the definition of the respective quantities it follows that the non-zero block at the end of (43)
is equal to Ω−1

vv Ωvu.

Altogether, upon subtracting Ω−1
vv Ωvu this establishes the asymptotic behavior of the OLS estimator

θ̃. The representation given in (23) then follows using integration by parts and the definition of
G(r).
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Lemma 1 Consider the augmented regression (27) as given in Section 5 and denote with θ̃∗ =(
δ̃∗′, β̃∗′, γ̃∗′, κ̃∗′

)′
the OLS estimator of the parameter vector θ∗ = (δ′, β′, 0, 0)′. It holds that

A−1
M

(
θ̃∗ − θ∗

)
⇒ σu·v

(
Π′M

)−1
(∫

h(s)h(s)′ds

)−1 ∫
h(r)wu·v(r)dr +


0
0

Ω−1
vv Ωvu

0

 (44)

= σu·v
(
Π′M

)−1
(∫

h(s)h(s)′ds

)−1 ∫
[H(1)−H(s)] dwu·v(s) +


0
0

Ω−1
vv Ωvu

0

 ,

where AM = diag(AIM , T
−2AIM ), ΠM = diag(Π,Π),

h(r) =

(
g(r)∫ r

0 [G(1)−G(s)]ds

)
, H(r) =

∫ r

0
h(s)ds.

Proof of Lemma 1

The proof builds on the results already obtained in Theorem 1 and essentially only the asymptotic
behavior of the additional regressors and their cross-products with the error process has to be
established. Thus, partition the additional regressors as zt = (zf ′t , z

Sx′
t , zx′t )′. The limit, when

appropriately scaled (with the appropriate scaling being T−5/2AIM ), is given by

T−3τ−1
F zf[rT ] = T−3τ−1

F [rT ]
T∑
t=1

Sft − T−3τ−1
F

[rT ]∑
t=1

t∑
j=1

Sfj

=
[rT ]

T
T−1

T∑
t=1

T−1τ−1
F Sft − T−1

[rT ]∑
t=1

T−1
t∑

j=1

T−1τ−1
F Sft

→ r

∫ (∫ s

0
f(m)dm

)
ds−

∫ r

0

(∫ s

0

(∫ n

0
f(m)dm

)
dn

)
ds,

T−7/2zS
x

[rT ] = T−7/2[rT ]
T∑
t=1

Sxt − T−7/2

[rT ]∑
t=1

t∑
j=1

Sxj

=
[rT ]

T
T−1

T∑
t=1

T−3/2Sxt − T−1

[rT ]∑
t=1

T−1
t∑

j=1

T−3/2Sxj

⇒ rΩ1/2
vv

∫ (∫ s

0
Wv(m)dm

)
ds− Ω1/2

vv

∫ r

0

(∫ s

0

(∫ n

0
Wv(m)dm

)
dn

)
ds,
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T−5/2zx[rT ] = T−5/2[rT ]
T∑
t=1

xt − T−5/2

[rT ]∑
t=1

t∑
j=1

xj

=
[rT ]

T
T−1

T∑
t=1

T−1/2xt − T−1

[rT ]∑
t=1

T−1
t∑

j=1

T−1/2xj

⇒ rΩ1/2
vv

∫
Wv(r)dr − Ω1/2

vv

∫ r

0

(∫ s

0
Wv(m)dm

)
ds.

Combined, this can be written as

T−5/2AIMz[rt] ⇒ Π

(
r

∫
g(s)ds−

∫ r

0

(∫ s

0
g(m)dm

)
ds

)
= Π

(
rG(1)−

∫ r

0
G(s)ds

)
= Π

(∫ r

0
[G(1)−G(s)]ds

)
. (45)

For the cross-product of regressors and errors it holds that

T−5/2AIMz[rT ]T
−1/2Su[rT ] ⇒ Π

(∫ r

0
[G(1)−G(s)]ds

)
Bu(r). (46)

These preliminary results, combined with the results from Theorem 1 imply that

A−1
M

(
θ̃∗ − θ

)
⇒
(
Π′M

)−1
(∫

h(s)h(s)′ds

)−1(∫
h(s)Bu(s)ds

)
(47)

= σu·v
(
Π′M

)−1
(∫

h(s)h(s)′ds

)−1(∫
h(s)wu·v(s)ds

)
+


0
0

Ω−1
vv Ωvu

0



= σu·v
(
Π′M

)−1
(∫

h(s)h(s)′ds

)−1(∫
[H(1)−H(s)]dwu·v(s)

)
+


0
0

Ω−1
vv Ωvu

0

 ,

where the second line follows from the first using the same argument as in Theorem 1 is used and
the third line follows via integration by parts and the definition of H(r).

Proof of Lemma 2

We consider the OLS residuals from (22),

S̃ut = Syt − Sx̃′t θ̃

= Sut − Sx̃′t
(
θ̃ − θ

)
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and their first differences,

∆S̃ut = ut − x̃′t
(
θ̃ − θ

)
.

Consequently,

T−1/2

[rT ]∑
t=2

∆S̃ut = T−1/2

[rT ]∑
t=2

ut − T−1/2

[rT ]∑
t=2

x̃′tAIMA
−1
IM

(
θ̃ − θ

)
⇒ σu·vwu·v(r) + λuvWv(r)− g(r)′Π′

{
σu·v

(
Π′
)−1

(∫
g(s)g(s)′ds

)−1

×

×
∫

[G(1)−G(s)]dwu·v(s) +

 0
0

Ω−1
vv Ωvu


= σu·v

[∫ r

0
dwu·v(s)− g(r)′

(∫
g(s)g(s)′ds

)−1 ∫
[G(1)−G(s)]dwu·v(s)

]
= σu·vP̃ (r),

where the limit given in the second and third line follows from results already discussed in the

proof of Theorem 2. In this respect note that T−1/2
∑[rT ]

t=2 x̃
′
tAIM = T−1/2Sx̃′[rT ]AIM −T

−1/2x̃′1AIM ,

with the last term vanishing asymptotically. The fourth line follows from the fact that λuvWv(r)−

g(r)Π′

 0
0

Ω−1
vv Ωvu

 = 0, which follows, using straightforward algebra, from the definition of the

involved quantities.

Now consider the residuals from regression (27),

S̃u∗t = Syt − Sx̃′t θ̃∗

= Sut − Sx̃′t
(
θ̃∗ − θ∗

)
,

where here Sx̃t =
(
Sf ′t , S

x′
t , x

′
t, z
′
t

)′
and θ̃∗ and θ∗ are as given in Lemma 1 above. The remaining

steps are exactly the same as before for ∆S̃ut before, i.e. we get

T−1/2

[rT ]∑
t=2

∆S̃u∗t = T−1/2

[rT ]∑
t=2

ut − T−1/2

[rT ]∑
t=2

x̃′tAMA
−1
M

(
θ̃∗ − θ∗

)
⇒ σu·v

[∫ r

0
dwu·v(s)− h(r)′

(∫
h(s)h(s)′ds

)−1 ∫
[H(1)−H(s)]dwu·v(s)

]
= σu·vP̃

∗(r),

with h(r) and H(r) as defined in the formulation of the lemma.

To finish the proof of the lemma it remains to establish (conditional) independence of P̃ ∗(r) and θ̃.
Conditional upon Wv(r) the two quantities are Gaussian processes defined in terms of the Gaussian
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process wu·v(r). Since they are conditionally Gaussian, conditional independence is established by
showing that they are conditionally uncorrelated. With respect to θ̃ the relevant quantity is given
by
∫

[G(1)−G(s)]dwu·v(s), since the other components in the limiting distribution are non-random
conditional upon Wv(r). By definition of the quantities it holds that

Cov

(∫
[G(1)−G(s)]dwu·v(s), P̃

∗(r)

)
=

∫ r

0
[G(1)−G(s)]′ds− (48)

− h(r)′
(∫

h(s)h(s)′
)−1 ∫

[H(1)−H(s)][G(1)−G(s)]′ds

The first term is equal to (the transpose of) the second block of h(r), h2(r) say, and the proof is
completed by showing that also the second term is equal to h2(r)′.

Using once again integration by parts it follows that∫
[H(1)−H(s)][G(1)−G(s)]′ds =

∫
h(s)h2(s)′ds.

This in turn implies that the product of the two integrals is equal to

[
0
I

]
, which finally shows

that the second term in (48) is indeed equal to h2(r)′.

Proof of Theorem 3

Use as in the main text as shorthand notation for the two Wald statistics considered W̌ , with
W̌ ∈ {Ŵ , W̃}. The test statistics only differ with respect to the used estimator of the long run
variance parameter, σ̂2

u·v or σ̃2
u·v. As a difference to Theorem 2 and Lemma 1 we now include

in the notation in the true parameter vector the population parameter for γ = Ω−1
vv Ωvu, thus

θ = (δ′, β′, γ′)′, with γ = Ω−1
vv Ωvu and θ̃ denotes the OLS estimator of θ discussed in Theorem 2.

Before we turn to the test statistics themselves we consider the covariance matrices. Up to the
different estimators of the scalar quantity σ2

u·v both estimators of the covariance matrix are given
by (

T−2AIMS
x̃′Sx̃AIM

)−1 (
T−4AIMC

′CAIM
) (
T−2AIMS

x̃′Sx̃AIM

)−1
, (49)

with C defined in the main text. For the outer terms (that are inverted) the limit has already been
established in the proof of Theorem 2 in equation (41) and thus it only remains to consider the
expression in the middle. Straightforward calculations show that T−3/2AIMc[rT ] ⇒ G(1)−G(r) and
this implies that the central expression converges to

∫
[G(1)−G(s)][G(1)−G(s)]′ds. Consequently,

the expression (49) converges – obviously up to the scalar σ2
u·v – to VIM as given in (24) in the

main text.

Under the null hypothesis both of the two defined statistics can be – as is usual in a linear regression
model – written as

W̌ = (Rθ̃ − r)′
[
RAIM V̌IMAIMR

′]−1
(Rθ̃ − r) (50)

=
(
R(θ̃ − θ)

)′ [
RAIM V̌IMAIMR

′]−1
(
R(θ̃ − θ)

)
=
(
A−1
R RAIMA

−1
IM (θ̃ − θ)

)′ [
A−1
R RAIM V̌IMAIMR

′ (A−1
R

)′]−1 (
A−1
R RAIMA

−1
IM (θ̃ − θ)

)
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Now, by assumption the restriction matrix asymptotically fulfills limT→∞A
−1
R RAIM = R∗, and

A−1
IM (θ̃− θ)⇒ Φ(VIM ) under the null hypothesis. Therefore, in case of consistent estimation of the

conditional long-run variance σ2
u·v using V̂IM it follows that

Ŵ ⇒ (R∗Φ(VIM ))′
(
R∗VIMR

∗′)−1
(R∗Φ(VIM )) ∼ χ2

q . (51)

We now consider the asymptotic behavior of the test statistic W̃ using σ̃2
u·v. It follows from the

definition of S̃ut that
∆S̃ut = u+

t − v′t(γ̃ − γ)− f ′t(δ̃ − δ)− v′t(β̃ − β),

with γ = Ω−1
vv Ωvu and u+

t = ut − v′tγ. As discussed in Jansson (2002), the terms f ′t(δ̃ − δ) and

v′t(β̃− β) can be neglected for long run variance estimation. Thus, the long run variance estimator
based on ∆S̃ut , σ̃2

u·v, asymptotically coincides with the long run variance estimator of u+
t −v′t(γ̃−γ).

Define η+′
t = [u+

t , v
′
t] and its long run variance

Ω+ =

[
σ2
u·v 0
0 Ωvv

]
.

An infeasible long run variance estimator, Ω̂+, using the unobserved η+
t is under the assumptions

of Jansson (2002) consistent, i.e. Ω̂+ → Ω+.

Next note that

u+
t − v′t(γ̃ − γ) = η+′

t

[
1

−(γ̃ − γ)

]
,

which implies that the HAC estimator, Ω̃ say, for u+
t − v′t(γ̃ − γ) can be written as

[1 − (γ̃ − γ)′]Ω̂+

[
1

−(γ̃ − γ)

]
.

From Theorem 2 we know that

γ̃ − γ ⇒ [0p 0p Ik]σu.v(Π
′)−1

(∫
g(s)g(s)′ds

)−1 ∫
[G(1)− (G(s)]dwu·v

= σu.v(Ω
−1/2
vv )′dγ ,

with dγ as defined in the main text. This implies that

Ω̃ = [1 − (γ̃ − γ)′]Ω̂+

[
1

−(γ̃ − γ)

]
⇒ [1 − σu·vd′γΩ−1/2

vv ]

[
σ2
u·v 0
0 Ωvv

][
1

−σu.v(Ω−1/2
vv )′dγ

]
= σ2

u·v(1 + d′γdγ).

Thus, we have shown that σ̃2
u·v ⇒ σ2

u·v(1 + d′γdγ), which in turn implies the result for W̃ as given

in the formulation of the theorem using the same arguments as for Ŵ .
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The result for the fixed-b test statistic W̃ ∗ is slightly different because the fixed-b limit of the
covariance matrix is such that Ṽ ∗ ⇒ Qb(P̃

∗, P̃ ∗)VIM . This implies that

W̃ ∗ ⇒ (R∗Φ(VIM ))′
(
Qb(P̃

∗, P̃ ∗)R∗VIMR
∗′
)−1

(R∗Φ(VIM )) ∼
χ2
q

Qb(P̃ ∗, P̃ ∗)
, (52)

with numerator and denominator independent of each other. In Lemma 2 it has been shown that Ψ
and P̃ ∗(r) are independent of each other conditional upon Wv(r). Furthermore, the numerator of
(52) – being a chi-square distribution – is independent of Wv(r), which implies that the numerator
and denominator are also independent of each other unconditionally. This in turn allows for the
simulation of fixed-b critical values.

The stated results for the t-tests follow, obviously, as special cases of the Wald test results.
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Table 1: Finite Sample Bias and RMSE of the Various Estimators of β1, T = 100

Panel A: Bias

FM-OLS, Bartlett Kernel
ρ1 ρ2 OLS IM-OLS DOLS M=6 10 30 50 70 90 100 AND

0.0 0.0 .0002 .0007 .0002 .0005 .0004 .0003 .0003 .0002 .0002 .0002 .0004
0.3 .0050 -.0001 -.0003 .0018 .0029 .0047 .0053 .0055 .0056 .0056 .0015
0.6 .0098 -.0008 -.0002 .0031 .0054 .0091 .0104 .0108 .0110 .0110 .0025
0.9 .0146 -.0015 -.0001 .0043 .0078 .0135 .0154 .0160 .0164 .0165 .0035

0.3 0.0 .0002 .0009 -.0014 .0007 .0006 .0004 .0004 .0003 .0003 .0003 .0006
0.3 .0107 .0012 -.0010 .0046 .0063 .0101 .0114 .0118 .0120 .0121 .0042
0.6 .0213 .0014 -.0010 .0085 .0120 .0198 .0224 .0233 .0238 .0239 .0079
0.9 .0318 .0016 -.0004 .0124 .0177 .0295 .0335 .0348 .0355 .0357 .0115

0.6 0.0 .0004 .0015 -.0059 .0010 .0010 .0006 .0006 .0005 .0004 .0004 .0010
0.3 .0239 .0063 -.0046 .0130 .0149 .0220 .0249 .0258 .0263 .0265 .0129
0.6 .0473 .0111 -.0036 .0250 .0287 .0435 .0492 .0512 .0522 .0526 .0248
0.9 .0708 .0160 -.0031 .0370 .0426 .0650 .0736 .0766 .0781 .0786 .0366

0.9 0.0 -.0001 .0022 -.0032 .0006 .0009 .0002 .0000 -.0006 -.0006 -.0005 .0006
0.3 .0801 .0560 .0371 .0678 .0664 .0723 .0791 .0817 .0836 .0843 .0682
0.6 .1603 .1098 .0769 .1349 .1319 .1443 .1581 .1640 .1678 .1691 .1359
0.9 .2405 .1637 .1189 .2021 .1973 .2163 .2371 .2464 .2519 .2539 .2035

Panel B: RMSE

FM-OLS, Bartlett Kernel
ρ1 ρ2 OLS IM-OLS DOLS M=6 10 30 50 70 90 100 AND

0.0 0.0 .0265 .0375 .1301 .0287 .0290 .0299 .0304 .0306 .0302 .0301 .0286
0.3 .0286 .0376 .1350 .0292 .0299 .0314 .0320 .0324 .0320 .0319 .0289
0.6 .0345 .0378 .1371 .0308 .0327 .0357 .0368 .0375 .0371 .0369 .0303
0.9 .0426 .0379 .1388 .0334 .0369 .0420 .0437 .0447 .0442 .0439 .0325

0.3 0.0 .0365 .0532 .2022 .0403 .0407 .0414 .0419 .0422 .0416 .0414 .0401
0.3 .0408 .0532 .2040 .0414 .0426 .0446 .0455 .0462 .0456 .0454 .0410
0.6 .0520 .0533 .2076 .0447 .0480 .0536 .0556 .0566 .0561 .0558 .0439
0.9 .0668 .0534 .2097 .0498 .0559 .0662 .0694 .0708 .0703 .0700 .0483

0.6 0.0 .0589 .0903 .3535 .0671 .0678 .0673 .0678 .0682 .0671 .0667 .0666
0.3 .0688 .0906 .3552 .0704 .0724 .0750 .0766 .0775 .0766 .0762 .0697
0.6 .0930 .0916 .3579 .0799 .0851 .0957 .0996 .1012 .1004 .1001 .0787
0.9 .1233 .0934 .3595 .0937 .1029 .1230 .1294 .1318 .1311 .1307 .0919

0.9 0.0 .1547 .2661 .7758 .1822 .1889 .1847 .1835 .1816 .1774 .1758 .1800
0.3 .1864 .2780 .7823 .2039 .2102 .2100 .2123 .2117 .2077 .2063 .2019
0.6 .2607 .3121 .7983 .2595 .2656 .2757 .2843 .2855 .2820 .2806 .2579
0.9 .3515 .3622 .8228 .3324 .3387 .3604 .3754 .3782 .3749 .3736 .3311
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Table 2: Empirical Null Rejection Probabilities, 0.05 Level, t-tests for H0 : β1 = 1
Data Dependent Bandwidths and Lag Lengths

Panel A: T=100

Bartlett kernel QS kernel
ρ1, ρ2 OLS DOLS FM IM(O) IM(D) IM(fb) DOLS FM IM(O) IM(D) IM(fb)

0.0 .0544 .2610 .1110 .0802 .0736 .0570 .2568 .1322 .0926 .0856 .0450
0.3 .1608 .3836 .1378 .1038 .1004 .0652 .3760 .1414 .1020 .0986 .0836
0.6 .4126 .5390 .2182 .1444 .1518 .1198 .5296 .2094 .1284 .1378 .0556
0.9 .7700 .7074 .5592 .4412 .4256 .5480 .7038 .5392 .4194 .4082 .3936

Panel B: T=200

Bartlett kernel QS Kernel
ρ1, ρ2 OLS DOLS FM IM(O) IM(D) IM(fb) DOLS FM IM(O) IM(D) IM(fb)

0.0 .0484 .0796 .0822 .0722 .0628 .0392 .0794 .0878 .0766 .0672 .0324
0.3 .1592 .1280 .0996 .0892 .0812 .0776 .1168 .0968 .0816 .0736 .0582
0.6 .4204 .2240 .1640 .1092 .1070 .0920 .2084 .1484 .0964 .0920 .0552
0.9 .7712 .4256 .4890 .3212 .2942 .4280 .4058 .4768 .3066 .2780 .4564

Table 3: Empirical Null Rejection Probabilities, 0.05 Level, Wald tests for H0 : β1 = 1, β2 = 1
Data Dependent Bandwidths and Lag Lengths

Panel A: T=100

Bartlett kernel QS kernel
ρ1, ρ2 OLS DOLS FM IM(O) IM(D) IM(fb) DOLS FM IM(O) IM(D) IM(fb)

0.0 .0578 .3442 .1340 .0972 .0890 .0612 .3394 .1668 .1172 .1074 .0426
0.3 .2158 .5180 .1786 .1330 .1258 .0692 .5054 .1868 .1300 .1256 .1024
0.6 .5772 .7250 .3002 .1970 .2070 .1538 .7126 .2840 .1702 .1900 .0568
0.9 .9372 .8990 .7624 .6378 .6114 .7498 .8948 .7322 .6080 .5856 .5418

Panel B: T=200

Bartlett kernel QS Kernel
ρ1, ρ2 OLS DOLS FM IM(O) IM(D) IM(fb) DOLS FM IM(O) IM(D) IM(fb)

0.0 .0512 .0838 .0950 .0748 .0666 .0356 .0836 .1052 .0808 .0724 .0248
0.3 .2028 .1620 .1218 .1004 .0920 .0846 .1470 .1194 .0906 .0832 .0608
0.6 .5752 .3000 .1964 .1324 .1314 .1074 .2746 .1776 .1130 .1140 .0540
0.9 .9432 .6002 .6686 .4524 .4140 .5950 .5758 .6536 .4330 .3920 .6276
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b
Figure 1: Empirical Null Rejections, t-test, T = 100, ρ1 = ρ2 = 0.0, Bartlett Kernel

b
Figure 2: Empirical Null Rejections, t-test, T = 100, ρ1 = ρ2 = 0.3, Bartlett Kernel
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b
Figure 3: Empirical Null Rejections, t-test, T = 100, ρ1 = ρ2 = 0.6, Bartlett Kernel

b
Figure 4: Empirical Null Rejections, t-test, T = 100, ρ1 = ρ2 = 0.9, Bartlett Kernel
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b
Figure 5: Empirical Null Rejections, t-test, T = 100, ρ1 = ρ2 = 0.9, QS Kernel

b
Figure 6: Empirical Null Rejections, t-test, T = 200, ρ1 = ρ2 = 0.9, QS Kernel
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b
Figure 7: Empirical Null Rejections, Wald test, T = 100, ρ1 = ρ2 = 0.9, Bartlett Kernel

b
Figure 8: Empirical Null Rejections, Wald test, T = 100, ρ1 = ρ2 = 0.9, QS Kernel
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β
Figure 9: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel, b = 0.06

β
Figure 10: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel, b = 0.3
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β
Figure 11: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel, b = 0.7

β
Figure 12: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel, b = 1.0
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β
Figure 13: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, Bartlett Kernel

β
Figure 14: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel
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β
Figure 15: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, Bartlett Kernel

β
Figure 16: Size Adjusted Power, Wald test, T = 100, ρ1 = ρ2 = 0.6, QS Kernel
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