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Abstract 

In this paper we propose a simple extension to the panel case of the covariate-augmented 

Dickey Fuller (CADF) test for unit roots developed in Hansen (1995). The extension we 

propose is based on a p-values combination approach that takes into account cross-section 

dependence. We show that the test is easy to compute, has good size properties and gives 

power gains with respect to other popular panel approaches. A procedure to compute the 

asymptotic p-values of Hansen’s CADF test is also a side-contribution of the paper. We also 

complement Hansen (1995) and Caporale and Pittis (1999) with some new theoretical 

results. Two empirical applications are carried out for illustration purposes on international 

data to test the PPP hypothesis and the presence of a unit root in international industrial 

production indices. 
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1 Introduction

It is well known that standard unit root tests suffer from low power (see e.g. Campbell
and Perron, 1991; DeJong et al., 1992; Phillips and Xiao, 1998). Starting from the mid-
nineties, it has been suggested that a viable way to increase power in unit root testing is to
exploit cross-section variation together with univariate time series dynamics (see Quah,
1994; Levin et al., 2002, among others). Panel unit root tests have become increasingly
popular ever since. Of course, potential power gains are not the only reason for using
panel tests. A commonly neglected advantage of the panel unit root approach is that it
can be useful in avoiding some complications arising from multiple testing, as we will
show in this paper. Furthermore, some specific cross-country macroeconomic analyses
may fit naturally in the panel framework, in particular when the focus is on testing for
the presence of a unit root as an interesting economically interpretable common feature
in a whole set of time series. However, the power gain motivation has probably been
the dominating one in the majority of theoretical and applied papers and it has been
questioned only recently (see e.g. Banerjee et al., 2004, 2005).

In order to obtain more powerful unit root tests, Hansen (1995) adopted a different
approach to exploit cross-sectional correlation. Rather than using panel data on a single
variable, Hansen (1995) suggested using stationary covariates in an otherwise standard
Dickey-Fuller framework, in this way proposing his covariate augmented Dickey-Fuller
test (CADF). Indeed, Hansen (1995) and Caporale and Pittis (1999) showed that sub-
stantial power gains can be achieved using the CADF test, without incurring severe size
distortions.

In this paper we couple the two approaches, extending Hansen’s CADF test to small
panels. Although Hansen (1995) is the seminal paper concerning covariate-augmented
unit root tests, other tests might have been considered. In fact, Elliott and Jansson (2003)
show that Hansen’s CADF test is not the point optimal test in general, and that feasible
point optimal tests based on VAR models can be derived. However, we prefer to use the
test proposed in Hansen (1995) for three main reasons. First, simulations reported in El-
liott and Jansson (2003) show that the feasible point optimal tests can give power gains at
the cost of inferior size performances: this is important in our framework, because Hanck
(2008) shows that size distortions tend to cumulate in panel tests of the kind proposed
here. Second, Hansen’s CADF test is based on the familiar ADF framework, so that it can
be more appealing to practitioners once the computational burden related to the compu-
tation of the test p-values is eased. Finally, we show that under conditions considered
as especially relevant for the panel unit root hypothesis, the CADF test is based on the
correct conditional model.

The extension we propose is based on a p-value combination approach advocated
independently in Maddala and Wu (1999) and Choi (2001). In this paper we refer mainly
to Choi’s Z-test, that combines the p-values computed from unit root tests applied to
each time series in the panel using an inverse-normal formulation. The method is well
grounded in the meta-analytic tradition and its choice is supported by several reasons.
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First, provided that we can compute the p-values of the CADF test, the extension to the
panel case is straightforward: the panel test is very easy to compute and intuitive and
practitioners can track without difficulty what is going on step-by-step in the analysis,
from the univariate to the panel case. Second, the asymptotics carries through for the
temporal size T → ∞, without requiring also the number of cross-section units N → ∞ as
other approaches instead do: in our view, given that allowing N → ∞ in typical macro-
panel applications is an implausible hypothesis, this is an extremely important feature
of the tests based on Choi (2001). In fact, the test we propose here is especially well
suited for small to moderate values of N. Third, we don’t need balanced panel data sets,
so that individual time series may come in different lengths and span different sample
periods: this can be very useful in practice for example when data from many different
countries have to be utilized. However, when data come from a balanced macro panel,
quite natural stationary covariates can be used for each equation, as suggested in Pesaran
(2007) and Chang and Song (2009). Fourth, the test allows for heterogeneous panels: the
stochastic as well as the non stochastic components can be different across individual
time series. Last, the alternative hypothesis doesn’t have to be that all the individual
time series are stationary: the alternative that considers that some individual time series
have a unit root and others do not can be dealt with by using the tests built upon Choi
(2001). Indeed, we deliberately deal with the null hypothesis that all of the series in the
panel are I(1) against the alternative that at least one of the series is I(0). In fact, this
hypothesis is common to most tests for a unit root in panels. Some authors consider this
as a disadvantage (see Taylor and Sarno, 1998, among others), but we believe that the
extent to which this is a real limitation depends on the specific goal of the analysis.

On the other hand, a potentially serious drawback of the methodology advocated in
Choi (2001) is that it is based on the hypothesis that the individual time series are cross-
sectionally independent. Indeed, this is a common assumption of many papers dealing
with panel unit roots and panel cointegration (see Banerjee, 1999; Baltagi and Kao, 2000;
Choi, 2006, for comprehensive surveys). However, it is well known (see e.g. O’Connell,
1998; Maddala and Wu, 1999; Banerjee et al., 2004, 2005; Gengenbach et al., 2006; Lyha-
gen, 2008; Wagner, 2008) that both short-term and long-run cross-section dependence
adversely affects the performance of these panel unit roots tests. Therefore, we extend
the approach to cross-sectionally dependent panel units by using the p-value correction
method advocated in Hartung (1999) and Demetrescu et al. (2006).1

Although developed independently, the results reported in the present paper are re-
lated to other recent research. Despite some similarities, even in the name, the panel-
CADF (pCADF) test presented here should not be confused with the cross-sectionally
augmented ADF (CADF) test advocated in Pesaran (2007).2 The CADF-CIPS test devel-
oped by Pesaran is explicitly derived with the aim of addressing directly the problem of

1Hartung’s correction has been utilized in other recent papers: see, among others, Hassler and Tarcolea
(2005) and Westerlund and Costantini (2009).

2Notwithstanding the similarity of the names with Pesaran’s test, we think that it is fair to refer to the
original Hansen’s test using the original acronym CADF proposed by Hansen himself. In order to minimize
confusion with Pesaran’s test, we label our panel extension as pCADF.
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cross-sectional dependence. Also Pesaran’s test is related to Hansen (1995), but model
augmentation takes place using non-stationary covariates. Furthermore, differently from
the pCADF test we propose here, in Pesaran (2007) the asymptotic results are derived
under N → ∞, either with a fixed T or with T → ∞ sequentially or jointly with N.3

Chang and Song (2009) also start from the observation that using stationary covariates
can greatly improve the power of unit root tests. However, the approach developed in
Chang and Song (2009) is rather different from ours: while we use a simple p-value com-
bination approach, Chang and Song (2009) propose a method based on non-linear IV
estimation of the autoregressive coefficient, the suggested instruments being non-linear
transformations of the lagged levels: this procedure should allow coping with cross-
sectional dependencies of unknown form. In fact, Chang and Song (2009) show that
the IV-based t-ratios associated with the autoregressive parameters are asymptotically
independent even in the presence of cross-sectionally dependent time series. The test is
proposed in three variants based on the average, the min, or the max t-ratio, depending
on the specific null and alternative hypothesis.4

The rest of the paper is organized as follows. Section 2 is devoted to a brief discussion
of the test proposed in Hansen (1995). We also illustrate the method we use to obtain
the necessary p-values.5 Indeed, this is a subsidiary, but we believe important, contri-
bution of this paper. In fact, while critical values of Hansen’s test are readily available
from Hansen (1995), to the best of our knowledge, no other procedure has been proposed
so far for the numerical computation of the test p-values. Section 3 is devoted to a brief
account of the inverse normal combination method and its modifications to deal with
dependent time series. In Section 4 an extensive Monte Carlo analysis of the pCADF test
is carried out. The Data Generating Process (DGP) we propose in the paper encompasses
other DGPs that are commonly used in the panel unit root literature and it is also related
to the DGP used in Hansen (1995). Beside giving us more flexibility in the design of the
experiments, our DGP allows us to complement Hansen (1995) and Caporale and Pittis
(1999) with new theoretical results and interpretations of the simulations outcomes. The
performance of the pCADF test is compared to that of other important panel unit root
tests, namely those advocated in Chang and Song (2009), Demetrescu et al. (2006) and
Moon and Perron (2004). All these tests allow for cross-dependence and share the same
null and alternative hypothesis. In Section 5 we show that when the null hypothesis is
H0 : “all of the series are I(1)” and the alternative is H1 : “at least one series is I(0)”,
repeated application of individual unit root tests generates huge size distortions. This is
an often neglected reason to prefer panel tests in such circumstances. For the purpose of
illustration, in Section 6 we apply our pCADF test to the PPP hypothesis and to interna-

3However, Pesaran (2007) shows that satisfactory size and power properties can be obtained even for
rather small values of N.

4In fact Chang and Song (2009) consider three different formulations of the unit root hypothesis: (A) H0 :
all of the series are I(1) against H1 : all of the series are I(0); (B) H0 : all of the series are I(1) against H1 : at
least one of the series is I(0); (C) H0 : some of the series are I(1) against H1 : all of the series are I(0).

5The algorithm to derive the p-values is described in detail in Appendix A. The R (?) package CADFtest
(Lupi, 2009) that computes Hansen’s test and its p-values can be freely downloaded from the Comprehensive
R Archive Network (CRAN) at www.cran.r-project.org/package=CADFtest. GAUSS procedures to compute
Hansen’s test p-values are available from the authors upon request.
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tional industrial production indices. The last Section concludes. An Appendix describes
the algorithm used to compute the p-values of Hansen’s test.

2 The CADF test and the p-values approximation

The CADF test proposed in Hansen (1995) starts from the idea that real economic phe-
nomena are not univariate in general. Therefore, using extra information in unit root
testing can make test regressions more efficient, allowing more precise inferences.

Formally, Hansen (1995) assumes that the series yt to be tested for a unit root can be
written as

yt = dt + st (1)

a(L)∆st = δst−1 + vt (2)

vt = b(L)′ (∆xt −µx) + et (3)

where dt is a deterministic term (usually a constant or a constant and a linear trend),
a(L) := (1− a1L− a2L2 − . . .− apLp) is a polynomial in the lag operator L, xt is an m-
vector, µx := E(∆x), b(L) := (bq2 L−q2 + . . . + bq1 Lq1) is a polynomial where both leads
and lags are allowed. Furthermore, consider the long-run covariance matrix

Ω :=
∞

∑
k=−∞

E

[(
vt

et

)(
vt−k et−k

)]
=

(
ω2

v ωve

ωve ω2
e

)
(4)

and define the long-run squared correlation between vt and et as

ρ2 :=
ω2

ve
ω2

v ω2
e

. (5)

When ∆xt explains nearly all the zero-frequency variability of vt, then ρ2 ≈ 0. On the
contrary, when ∆xt has no explicative power on the long-run movement of vt, then ρ2 ≈
1. Furthermore, as emphasized by Hansen (1995, p. 1151), when et is uncorrelated with
∆xt−k ∀k, then ρ2 = ω2

e /ω2
v. The case ρ2 = 0 is ruled out (Hansen, 1995, p. 1151), which

implies that yt and xt cannot be cointegrated.
Similarly to the conventional ADF test, the CADF test is based on three different mod-

els representing the “no-constant”, “with constant”, and “with constant and trend” case,
respectively

a(L)∆yt = δyt−1 + b(L)′∆xt + et (6)

a(L)∆yt = µ + δµyt−1 + b(L)′∆xt + et (7)

a(L)∆yt = µ∗ + θ t + δτyt−1 + b(L)′∆xt + et (8)

and is computed as the t-statistic for δ, t̂(δ). Hansen (1995, p. 1154) proves that under the
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unit-root null, the asymptotic distribution of t̂(δ) in (6) is

t̂(δ) w−→ ρ

∫ 1
0 W dW(∫ 1
0 W2

)1/2 +
(
1− ρ2)1/2

N(0, 1) (9)

where W is a standard Wiener process and N(0, 1) is a standard normal independent of
W. Therefore, the asymptotic distribution is a weighted sum of a Dickey-Fuller and a
standard normal distribution. As a consequence, if ρ2 6= 1, conventional ADF critical
values would lead to a conservative test.

The asymptotic distribution of the test statistic depends on the nuisance parameter
ρ2 but, provided ρ2 is given, it can be simulated using standard techniques. The mathe-
matical expression remains unchanged if a model with constant (t̂(δµ)) or a model with

constant and trend (t̂(δτ)) are considered, except that demeaned and detrended Wiener
processes are used instead of the standard Wiener process W.

In order to extend Hansen’s CADF unit root test to the panel case using the approach
outlined in Choi (2001), we need to compute the p-values of the CADF unit root distribu-
tion.

We derive the quantiles of the asymptotic distribution for different values of ρ2. Given
that our goal is the computation of p-values, we simulate the distributions for 40 values
of ρ2 (ρ2 = 0.025, 0.05, 0.0725, . . . , 1) using 100, 000 replications for each value of ρ2 and
T = 5, 000 as far as the Wiener functionals are concerned.6 From the simulated values we
derive 1, 005 estimated asymptotic quantiles, (0.00025, 0.00050, 0.00075, 0.001, 0.002, . . . ,
0.998, 0.999, 0.99925, 0.99950, 0.99975).

Figure 1 reports the estimated asymptotic quantiles for the model with constant, with-
out any smoothing. The surface is extremely regular.7 Similar considerations carry over
for the “no constant” and the “constant plus trend” cases. Therefore we expect that the
simulated values can be successfully used to derive asymptotic p-values along lines sim-
ilar to MacKinnon (1996).

In order to derive p-values from tabulated quantiles of a given distribution, MacKin-
non (1996, p. 610) proposed using a local approximation of the kind

Φ−1(p) = γ0 + γ1 q̂(p) + γ2 q̂(p)
2
+ γ3 q̂(p)

3
+ νp (10)

where Φ−1(p) is the inverse of the cumulative standard normal distribution function
evaluated at p and q̂(p) is the estimated quantile.8 Equation (10) is not estimated glob-
ally (as one would do with a standard response surface). Rather, it is estimated only
over a relatively small number of points, in order to obtain a local approximation (see
MacKinnon, 1996, p. 610, for details).

With respect to MacKinnon (1996), we have the extra difficulty that we have to deal

6Simulations have been carried out using R (see ?).
7Figure 1 reports the estimated asymptotic quantiles using a coarser resolution than the one used in the

computations.
8In MacKinnon (1996) approximate finite sample quantiles are used, instead of the asymptotic ones.
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Figure 2 – Interpolation of the quantiles q̂ρ(p). From upper-left clockwise: α = 5%,
α = 10%, α = 95%, α = 90%. The thick solid lines are the simulated quantiles. The
thin lines are the interpolated values.
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Standard Demeaned Detrended
ρ2 1% 5% 10% 1% 5% 10% 1% 5% 10%
0.05 -2.426 -1.740 -1.380 -2.661 -1.987 -1.626 -2.794 -2.125 -1.767
0.10 -2.450 -1.770 -1.410 -2.760 -2.091 -1.733 -2.937 -2.274 -1.921
0.15 -2.470 -1.795 -1.436 -2.847 -2.183 -1.829 -3.063 -2.408 -2.058
0.20 -2.488 -1.818 -1.460 -2.924 -2.266 -1.915 -3.175 -2.527 -2.181
0.25 -2.503 -1.837 -1.481 -2.990 -2.339 -1.991 -3.274 -2.633 -2.291
0.30 -2.515 -1.854 -1.500 -3.049 -2.403 -2.060 -3.360 -2.727 -2.389
0.35 -2.525 -1.868 -1.517 -3.099 -2.460 -2.121 -3.436 -2.810 -2.476
0.40 -2.534 -1.880 -1.531 -3.142 -2.510 -2.174 -3.502 -2.883 -2.553
0.45 -2.540 -1.890 -1.544 -3.179 -2.554 -2.222 -3.560 -2.947 -2.622
0.50 -2.545 -1.898 -1.555 -3.211 -2.593 -2.265 -3.610 -3.005 -2.683
0.55 -2.550 -1.905 -1.565 -3.239 -2.628 -2.303 -3.654 -3.055 -2.738
0.60 -2.553 -1.911 -1.573 -3.264 -2.658 -2.338 -3.693 -3.101 -2.788
0.65 -2.555 -1.916 -1.581 -3.286 -2.686 -2.369 -3.729 -3.143 -2.834
0.70 -2.558 -1.921 -1.587 -3.307 -2.712 -2.399 -3.762 -3.183 -2.877
0.75 -2.560 -1.925 -1.593 -3.327 -2.737 -2.428 -3.794 -3.220 -2.919
0.80 -2.563 -1.929 -1.598 -3.348 -2.762 -2.456 -3.825 -3.258 -2.960
0.85 -2.566 -1.933 -1.603 -3.371 -2.787 -2.484 -3.858 -3.296 -3.002
0.90 -2.569 -1.938 -1.608 -3.395 -2.814 -2.514 -3.893 -3.336 -3.046
0.95 -2.574 -1.944 -1.613 -3.423 -2.843 -2.545 -3.932 -3.379 -3.093
1.00 -2.580 -1.950 -1.618 -3.455 -2.874 -2.580 -3.975 -3.427 -3.144

Table 1 – Asymptotic critical values of the CADF test.

with the nuisance parameter ρ2, so that the local approximation must be obtained along
two dimensions. However, given that quantiles change fairly smoothly by varying ρ2,
we adopt a rather straightforward two-step procedure. In the first step we interpolate
the quantiles q̂(p) to obtain an approximation for the relevant value of ρ2. In practice we
use

q̂ρ(p) = β0 + β1 ρ2 + β2 ρ4 + β3 ρ6 + ερ (11)

where we have used the subscript ρ in q̂ρ(p) to indicate the dependence of the quantiles
on ρ2. Interpolation is always very good, as can be gathered from Figure 2.

As a by-product of our analysis, we compute a detailed table of asymptotic critical
values of the CADF test using equation (11) (see Table 1). Given that these critical values
are based on a larger number of replications and on a response surface approach (see e.g.
Hendry, 1984), we believe that they can be more accurate than those reported in Hansen
(1995).

Finally we apply the procedure advocated in MacKinnon (1996) on the interpolated
quantiles to obtain the p-values.9

3 The inverse normal combination test

Once computation of the p-values for the distribution (9) is solved, the extension of
Hansen’s test to the panel case is straightforward. Indeed, Choi (2001) shows that un-

9A more detailed description of the procedure is reported in Appendix A.
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der some fairly general regularity conditions, if the cross-section units i = 1, . . . , N are
independent, under the null

Z :=
1√
N

N

∑
i=1

t̂i
w−→ N(0, 1) (12)

where the t̂i’s are the probits t̂i := Φ−1( p̂i), with Φ(·) the standard normal cumulative
distribution function, and p̂i the estimated individual p-values for i = 1, . . . , N. Conver-
gence in (12) takes place as T → ∞, whereas N < ∞ is the number of individual time
series. T → ∞ is required for the relevant statistics to converge to a proper continuous
distribution, under some regularity conditions. The null hypothesis is H0 : δ = 0 ∀i,
while the alternative is H1 : δ < 0 for at least one i, with i = 1, 2, . . . , N. This is a different
alternative from H1 : δ < 0 ∀i, used in other tests (see e.g. Levin and Lin, 1993; Levin et al.,
2002; Quah, 1994). In fact, we believe that our formulation of the null and of the alterna-
tive hypothesis is an advantage, rather than a disadvantage, as some authors claim: the
null hypothesis that all of the series are I(1) against the alternative that all of the series
are I(0) is not very interesting and informative, given that it can be tested only under the
maintained hypothesis that the crucial parameter characterising the presence/absence of
the unit root is homogeneous across the individual time series in the panel (see e.g. Levin
et al., 2002). Also from the economist’s point of view there are instances in which it can
be more interesting to test for a unit root collectively over a whole panel of time series
because this can be interpreted as a stylized fact that can give stronger support in favour
(or against) a particular economic interpretation as compared to the same analysis con-
ducted separately on each single time series. Furthermore, because of the presence of
multiple testing the two approaches are not statistically equivalent.

However, the presence of cross-section dependence among the time series compli-
cates substantially the theoretical framework, and the test statistic is no longer asymptot-
ically (with T) standard normal. However, Hartung (1999) suggests that a suitably mod-
ified inverse normal combination test can be obtained. The advantage of this solution
is that under the null the test statistic has approximately standard normal distribution
even in the presence of correlated individual test outcomes. In particular, Hartung (1999)
analyses the case where the pairwise correlation across the individual test statistics is
constant and equal to $, say. If $ were known then, given a set λi, . . . , λN of real valued
weights such that ∑N

i=1 λi 6= 0, it would be possible to compute

t($) := ∑N
i=1 λi t̂i√

(1− $)∑N
i=1 λ2

i + $
(

∑N
i=1 λi

)2
(13)

which under the null would be N(0, 1). When $ = 0 (no cross-section dependence) and
λi = 1 ∀i, then (13) collapses into (12).

Of course, $ is not known, and the feasible test statistic advocated by Hartung (1999,

9



p. 851) is

t ($̂∗, κ) := ∑N
i=1 λi t̂i√

∑N
1=1 λ2

i +

[(
∑N

i=1 λi

)2
−∑N

i=1 λ2
i

] (
$̂∗ + κ

√
2

N+1 (1− $̂∗)
) (14)

where $̂∗ is a consistent estimator of $ such that $̂∗ = max{−1/(N − 1), $̂} with $̂ =

1− (N− 1)−1 ∑N
i=1(t̂i−N−1 ∑N

i=1 t̂i)
2. κ > 0 is a parameter that controls the small sample

actual significance level. Hartung (1999) shows that under the null t($̂∗, κ) is approxi-
mately distributed as N(0, 1). However, the proof offered in Hartung (1999) rests on the
assumption that the probits are not only individually N(0, 1), but are also jointly multi-
variate normal.

Demetrescu et al. (2006) generalize Hartung’s results in two directions. They first
show that the pairwise correlation of the individual test statistics need not be constant for
Hartung’s results to hold (Demetrescu et al., 2006, Proposition 1, p. 651). Furthermore,
they wonder under what conditions does the inverse normal method map the original
test statistics to a multivariate normal distribution of the probits and they conclude that
the necessary and sufficient condition for t($) to have a standard normal distribution is
that the test statistics from which the probits are derived are such to have the copula of a
multivariate normal distribution (Demetrescu et al., 2006, Proposition 2, p. 653). Despite
the fact that the augmented Dickey-Fuller test does not satisfy the condition stated in
their Proposition 2, Demetrescu et al. (2006) suggest that correcting for dependence using
(14) may still be a good practice because units cross-correlation is likely to have much
stronger adverse effects on inference than deviations from normality of the individual
test statistics can have. Indeed, they show by simulation that this is in fact the case.

In this paper we follow the approach suggested by Demetrescu et al. (2006) to com-
bine the p-values of the individual CADF unit root tests in the presence of cross-section
dependence. We argue that, if the correction proposed in Hartung (1999) works quite
nicely in the presence of Dickey-Fuller distributions, it should a fortiori work at least as
nicely in the presence of distributions that are closer to the standard normal. In other
words, given that under the null Hansen’s distribution is precisely a weighted sum of
a Dickey-Fuller and a standard normal distribution, we expect that the correction for
cross-section dependence in our case should be at least as effective as it is in the standard
Dickey-Fuller case explored by Demetrescu et al. (2006).

4 Monte Carlo simulations

In this Section we compare the performance of the pCADF test to that of three unit root
tests that are valid under cross-dependence. Specifically, we compare our test with an
ADF-based p-values combination test (Demetrescu et al., 2006), with a dynamic factor test
(Moon and Perron, 2004) and with a recent IV-based covariate-augmented test (Chang
and Song, 2009). For the latter two tests we consider in particular the t∗a statistic (Moon
and Perron, 2004, p. 92) and the minimum-t version of the test (see Chang and Song, 2009,
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pp. 905–906), respectively. All these tests share the same null H0 : “all of the series are
I(1)” and the same alternative H1 : “at least one series is I(0)”.

We verify the performances of the pCADF test and of the test proposed in Demetrescu
et al. (2006) using the versions of the tests with constant and with constant and linear
trend.10 The tests advocated in Chang and Song (2009) and Moon and Perron (2004) are
examined in both the demeaned and detrended versions.

4.1 Structure of the DGP

In our simulations we consider the following DGP:

∆yt = α+Dyt−1 + ut (15)(
ut

ξt

)
=

(
B γ

0′ λ

)(
ut−1

ξt−1

)
+

(
ηt

εt

)
(16)(

ηt

εt

)
∼ N

[(
0

0

)
,

(
Σ11 σ12

σ′12 σ22

)]
(17)

where ∆ is the usual difference operator, yt := (y1t, . . . , yNt)
′, ut := (u1t, . . . , uNt)

′, α :=
(α1, . . . , αN)

′, D := diag(δ1, . . . , δN), B := diag(β1, . . . , βN), γ := (γ1, . . . , γN)
′ and ηt :=

(η1t, . . . , ηNt)
′. Note that (16) defines a VAR(1) which is stationary as long as |βi| < 1 ∀i

and |λ| < 1.11 δi = 0 ∀i under the null, while under the alternative δi < 0 for some i.
We believe that the proposed DGP is especially interesting, because it can be viewed

as a panel extension of the DGP proposed in Hansen (1995, p. 1161) and at the same time
is also a generalization of two DGPs commonly used in the panel unit root literature (see
e.g. Chang and Song, 2009; Phillips and Sul, 2003). The two DGPs that are special cases of
ours, when α = 0 share the same equation (15) for ∆yt, but differ as far as the simulation
of the ut’s is concerned:

DGP1: uit = βiui,t−1 + νit (18)

DGP2: uit = βiui,t−1 + γiζt + νit (19)

where the N-vector νt is i.i.d. N(0,Σ11) with Σ11 6= I and ζt is a i.i.d. N(0, 1) common
factor independent of νt.

It can be seen that, even whenα = 0, our DGP (15)–(17) is more general than both (18)
and (19): in fact, in our DGP the “common factor” ξt can be autocorrelated and non-zero
correlations between the innovations to ui,t and the innovations to ξt can be introduced.
As a result, the cross-dependence structure is stronger than in either DGP1 or DGP2.

10We do not consider the models without deterministic terms that are less relevant in practical applica-
tions.

11To see this, let’s define

Φ :=
(
B γ
0′ λ

)
and note that Φ is upper-triangular, so that the eigenvalues of Φ are given simply by the diagonal elements
of Φ, dg(Φ). Therefore, the VAR(1) is stationary as long as |βi| < 1 ∀i and |λ| < 1.
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However, DGP2 can be derived as a special case from (15)–(17) when λ = 0 and σ12 = 0,
while DGP1 is retrieved if in addition γ = 0. In both cases, in generalΣ11 6= I .

Using the DGP (15)–(17) we can determine the form of the model that should be used
to test for a unit root in each single yit. For simplicity, assume nowα = 0. Then, denoting
the “past” by Zt−1, the correct conditional model for ∆yi,t is

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi) βi∆yi,t−1

+
(σ12)i

σ22
ξt +

(
γi −

(σ12)i
σ22

λ

)
ξt−1 . (20)

with (σ12)i the i-th element of σ12. Note that (20) has the form of a CADF(1,1,0) model.
In fact, unless γ = 0 and σ12 = 0, the standard approach of using a panel combination
ADF test in a context where the DGP is supposed to be of the kind of (15)–(17) (which is a
fairly standard situation in the panel unit root literature) is bound to be at least inefficient,
because the correct models should include ξt and/or ξt−1 and the individual tests should
be CADF. Even if γi = 0 (i.e., when ξt does not Granger-cause ut), as far as (σ12)i 6= 0 the
correct model has the form of a CADF(1,1,0).

Expression (20) is very similar to an expression derived in Caporale and Pittis (1999,
p. 586, equation 11) and some special cases can be of interest. Under DGP2 (λ = 0 and
σ12 = 0) the correct conditional model becomes

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi) βi∆yi,t−1 + γiξt−1 (21)

and we should expect the pCADF test to have a better performance than the tests based
on the conventional ADF. Of course, the same conditional model (21) holds for the i-th
unit if only (σ12)i = 0, while if λ = 0 and (σ12)i 6= 0 we have

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi) βi∆yi,t−1

+
(σ12)i

σ22
ξt + γiξt−1 . (22)

On the other hand, under DGP1 (λ = 0, σ12 = 0, γ = 0), the correct conditional model is
simply

E (∆yi,t| ξt,Zt−1) = δi (1− βi) yi,t−1 + (1 + δi) βi∆yi,t−1 (23)

which has the form of an ordinary ADF(1) test equation, so that in this case the pCADF
test has no advantage on p-values combination tests based on the ADF test.

From the discussion in Section 2, we know that the power of the CADF test depends
crucially on the nuisance parameter ρ2. Therefore, the power of the pCADF tests will
depend on the values of this parameter for each unit in the panel, ρ2

i . Using the DGP
(15)–(17) we can derive analytically the theoretical value of ρ2

i under the DGP.12 This

12Hansen (1995) derives ρ2 by simulation using different models. None of the models used by Hansen
(1995, Table 3, p. 1162) correspond to the correctly specified CADF(1,1,0), so that all the models are either
over- or under-parameterized. Using the theoretical results derived below jointly with Hansen’s results, we
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Figure 3 – Values of ρ2 for varying values of 0 < λ < 1 and 0 < ri < 1, γi = 0.5,
σei = σε = 1. ρ2 is plotted on a 0− 1 scale.

result gives important insights to better investigate the performance of the test in the
Monte Carlo experiments.

Consider the residual ei,t from the correct conditional model (20)

ei,t = ∆yi,t − δi (1− βi) yi,t−1 − (1 + δi) βi∆yi,t−1

− (σ12)i
σ22

ξt −
(

γi −
(σ12)i

σ22
λ

)
ξt−1 . (24)

Given that ei,t is the residual from the correct conditional model, it must be an innovation
uncorrelated with ξt−k ∀k. As discussed in Hansen (1995, p. 1151), in this case ρ2

i =

ω2
ei

/ω2
vi

with ω2
h the long-run variance of h, that is the zero-frequency spectral density of

h (h ∈ {ei, vi}). Given that ei,t is an innovation, its long-run variance is just the variance
of ei,t, apart from the normalizing factor (2π)−1.

Now consider
vi,t =

(σ12)i
σ22

ξt +

(
γi −

(σ12)i
σ22

λ

)
ξt−1 + ei,t . (25)

In order to compute the long-run variance of vi,t, ω2
vi

, from (16) note that ξt = (1−
λL)−1εt and define ri := (σ12)i /σ22. Then, rewrite (25) as

vi,t = [ri + (γi − riλ) L] ξt + ei,t

=
ri + (γi − riλ) L

1− λL
εt + ei,t . (26)

can show that under-parameterization can result in biased estimates of ρ2, with adverse effects on inference.
This is particularly evident with respect to Hansen’s experiments 11 and 15, where the simulation-based
estimates of ρ2 from the CADF(2,0,1) model are equal to 0.87 and 0.90, respectively, while the true values
under the DGP are 0.67 and 0.50.
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Figure 4 – Values of ρ2 for varying values of 0 < λ < 1 and 0 < γi < 1, r = 0.5,
σei = σε = 1. ρ2 is plotted on a 0− 1 scale.
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Figure 5 – Values of ρ2 for varying values of 0 < r < 1 and 0 < γi < 1, λ = 0.5,
σei = σε = 1. ρ2 is plotted on a 0− 1 scale.
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The spectral density of vi,t at frequency ω is

fvi(ω) ∝

∣∣ri + (γi − riλ) e−iω
∣∣2

|1− λe−iω|2
σ2

ε + σ2
ei

(27)

so that the long-run variance of vi,t, ω2
vi

, is

ω2
vi

:= fvi(0) ∝
[γi + (1− λ) ri]

2

(1− λ)2 σ2
ε + σ2

ei
. (28)

Finally, ρ2
i is given by

ρ2
i =

ω2
ei

ω2
vi

=
σ2

ei

[γi+(1−λ)ri ]
2

(1−λ)2 σ2
ε + σ2

ei

. (29)

The value of ρ2
i is a nonlinear function of (σ12)i, σ22, γi and λ. Contrary to what is sug-

gested in Hansen (1995, p. 1161), we find that the value of λ is crucial in determining the
value of the nuisance parameter ρ2, also when the VAR(1) (16) is stationary. Of course,
when λ → 1, then ω2

vi
→ ∞ and ρ2 → 0: this is an expected result, because if λ = 1,

ξt has a unit root and is cointegrated with yi,t. Conversely, if γi = 0 and ri = 0, then
ρ2

i = 1: in this case there would be no advantage in using individual CADF tests instead
of standard ADF tests. Under DGP2, given that λ = 0 and ri = 0, ρ2

i simply varies in-
versely with γi. Under DGP1, where it is also γi = 0 ∀i, then ρ2

i = 1 ∀i and the power of
the pCADF test is substantially the same as the power of the test based on Demetrescu
et al. (2006), consistently with what already pointed out while discussing the conditional
model.

In (29) the larger are either λ, γi or ri, the smaller is ρ2
i . Given that the power of the

CADF test is higher the smaller is the value of ρ2
i , this in turn defines the regions where

the test is expected to perform better. A graphical summary of the relation between ρ2
i

and the values of λ, γi and ri is offered in Figures 3–5.

4.2 Parameters setting and experimental design

Some care must be exerted in simulating the DGP (15)–(17), especially as far as the simu-
lation of (η′t, εt)

′ is concerned. From (17), (η′t, εt)
′ ∼ N (0,Σ), with

Σ =

(
Σ11 σ12

σ′12 σ22

)
. (30)

We assume diag(Σ) := ı, with ı := (1, . . . , 1) so that the generic element of σ12, (σ12)i,
coincides with ri. However, we have to distinguish two different settings for Σ11, de-
pending on σ12 = 0 or σ12 6= 0.

When σ12 = 0 (e.g. under DGP1 and DGP2), then we must generate the correla-
tion matrix Σ11 in a way that is as flexible and unrestricted as possible. At the same
time we want to introduce fairly strong dependence. Therefore, we start by generating a
symmetric matrix Σ∗ whose diagonal elements are equal to 1 and whose non-diagonal
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elements are randomly drawn from U(0,0.8). Of course, although symmetric, Σ∗ is not in
general positive definite. Therefore, we find a positive definite symmetric matrixΣ† that
is “close” to Σ∗ by computing Σ† = V ∗Λ†V ∗′ where the matrix V ∗ is derived from the
singular value decomposition of Σ∗ and Λ† is the diagonal matrix of the eigenvalues of
Σ∗, after substituting the negative eigenvalues with very small but positive values. Fi-
nally, the positive definite covariance matrix obtained in this way (the diagonal elements
are not exactly equal to one) is transformed into the required correlation matrix Σ11 by
normalization.13 The resulting symmetric positive definite matrix Σ11 is such that most
of the simulated correlations are positive, as we probably would expect in many empir-
ical macro panel settings, and the average correlation is larger than the one simulated
using the method proposed by Chang (2002) and Chang and Song (2009).14 Furthermore,
the simulatedΣ11 is likely to satisfy Proposition 1 in Demetrescu et al. (2006).

On the other hand, when σ12 6= 0 the parameters ri := (σ12)i enter the expression for
ρ2

i and are therefore important design parameters that we want to control precisely. In
this case we want to simulate a correlation matrixΣ whose last column is a given vector
(σ′12, 1)′. Furthermore, given the vector of correlations σ12, it is reasonable to consider
Σ11 6= I . However,Σ11 in this case must be consistent with the given σ12. Therefore, we
introduce a minimal structure in Σ11 by assuming that its generic off-diagonal element
is (Σ11)ij := (σ12)i (σ12)j (with i 6= j) and diag(Σ11) := ı. This structure essentially
states that the more ηit is correlated with εt and ηjt is correlated with εt, the more ηit is
correlated with ηjt, that is what we should expect in the usual case. Simulating such a Σ
is very easy: just draw the elements of σ12 from a specified distribution, U(rmin,rmax), say,
and compute S = σ12σ

′
12. Set diag(S) := ı and callΣ11 the resulting matrix. Then, build

the correlation matrix Σ as in (30). The matrix Σ simulated in this way is symmetric
positive definite.15

As already pointed out in the previous subsection, we expect the nuisance parameter
ρ2 to influence the performance of our test. Therefore, rather than embarking in a full
factorial design, we concentrate on just a few experiments carefully selected in such a
way that they differ in the underlying value of ρ2 (see Table 2).

13The proposed algorithm is essentially equivalent to the procedure advocated in Rebonato and Jäckel
(1999, Section 3).

14In a pilot simulation carried out using 50,000 replications we found that the average non-diagonal ele-
ment of a 20× 20 simulated correlation matrix was about 0.34 with the simulated correlations spanning the
interval (−0.30, 0.96). We also used the procedure outlined in Demetrescu et al. (2006, p. 659). The results
are very similar to those reported here and are available from the authors upon request.

15To see this, note that Σ is real symmetric by construction. Then there exists a matrix P such that
P ′ΣP = Λ, with Λ the diagonal matrix of the eigenvalues of Σ. P and Λ can be found using the Schur
canonical form: (

I −σ12
0′ 1

)(
Σ11 σ12
σ′12 1

)(
I 0
−σ′12 1

)
=

(
Σ11 −σ12σ

′
12 0

0′ 1

)

=


1− (σ12)

2
1 0 . . . 0 0

0 1− (σ12)
2
2 . . . 0 0

...
...

. . .
...

...
0 0 . . . 1− (σ12)

2
N 0

0 0 . . . 0 1

 = Λ .

Since all the eigenvalues ofΣ are positive,Σ is positive definite.
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Experiment λ γ r ρ2

1 0.0 0.0 0.0 1.000
2 0.0 U(0.7,0.9) 0.0 0.610
3 0.2 U(0.7,0.9) U(0.1,0.3) 0.410
4 0.5 U(0.1,0.3) U(0.7,0.9) 0.410
5 0.2 U(0.7,0.9) U(0.7,0.9) 0.236
6 0.5 U(0.7,0.9) U(0.7,0.9) 0.148

Table 2 – Parameters setting. The values of ρ2 are computed using the means of the
Uniform distributions.

The other parameters of the DGP are generated as in Chang and Song (2009): in par-
ticular, βi ∼ U(0.2,0.4) and γi ∼ U(0.5,3) (with i = 1, . . . , N). Under the null δi = 0 ∀i, under
the alternative δi ∼ U(−0.2,−0.01) for the stationary units. In order to highlight the power
of the tests when only a few series are stationary, the number of stationary units under
the alternative is limited to 2.

Given that our DGP allows for a non-zero drift αi, we run the experiments first using
αi = 0 ∀i and then using αi ∼ U(0.7,0.9).

Finally, the experiments are carried out using 2,500 replications with T ∈ {100, 300}
and N ∈ {10, 20} that are fairly typical values in macro-panel applications.

Since the use of the pCADF test implies a sequence of decisions, we use a pseudo-
real setting that aims at replicating the way these decisions might be taken in practice.
Therefore, the choice to correct or not to correct for cross-unit dependence is based on a
test for the presence of cross-unit correlation (Pesaran, 2004). When the test rejects the
absence of correlation among the cross-section units, the panel test is performed by us-
ing the modified weighted inverse normal combination (14), otherwise standard inverse
normal combination (12) is utilized. When the modified version (14) is used, consistently
with Hartung (1999) and Demetrescu et al. (2006), in our experiments we use λi = 1 ∀i
and κ = 0.2. Furthermore, the selection of the lags structure for the lagged differences
of both the dependent variable and the covariate in the pCADF test equations (6)-(8) is
based on the BIC separately for each equation. The choice of the variable to be used as the
stationary covariate in testing the unit root for the i-th series in the panel is determined
using three different criteria. First, the “true” covariate is used; second, we consider as
the stationary covariate the average of the differenced series ∆yjt (∀j 6= i) related to the
other units in the panel, as in Chang and Song (2009); third, we use the first difference of
the first principal component of the series. A word of caution is in order here. It could be
argued that selecting the stationary covariate using the average of the other ∆yjt or the
differences of the first principal component of the series may overlook the problem that
the derived covariate might be non-invertible. In fact, Hansen (1995) showed that over-
differencing the covariates raises theoretical problems and can have some adverse effects
on the size and power of the test. However, for this to be the case it would be necessary
that all the series are I(0). In this instance the test would have high power anyway.

The panel-ADF test is carried out in the version proposed by Demetrescu et al. (2006),
that exploits the correction for cross-section dependence introduced by Hartung (1999).
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The number of lags is selected also in this case by using the BIC and Hartung’s correction
is applied after pre-testing for cross-dependence as for the p-CADF test. If no cross-
dependence is detected, then the test is applied as in Choi (2001).

The test developed in Moon and Perron (2004) deals directly with cross-unit correla-
tion by using an approximate linear factor model. We set the maximum number of factors
to 4 and select the actual number of factors to be used in the test by the BIC3 criterion, as
suggested in Moon and Perron (2004, p. 94).

Finally, as far as the test proposed by Chang and Song (2009) is concerned, the pro-
cedure that we use in our Monte Carlo simulations amounts to the selection of the lag
order of the lagged differences and of the covariate for each cross-section unit using the
BIC and the selection of the appropriate covariate to be used by selecting the one that
has the highest correlations with the error process (see, on this, Chang and Song, 2009,
footnote 9).

4.3 Simulation results

The simulation results are presented using the graphical approach proposed in Davidson
and MacKinnon (1993, 1998). Let’s denote by F̂(xi) the estimated empirical distribution
of the p-values at any point xi ∈ (0, 1). Under the null, the p-values are uniformly dis-
tributed, so that it should be true that F̂(xi) ≈ xi. A useful way to investigate the size
properties of a test is therefore to plot F̂(xi)− xi against xi. This is what Davidson and
MacKinnon call a p-value discrepancy plot. The statistical significance of the discrepancies
F̂(xi) − xi can be approximately assessed by using the Kolmogorov-Smirnov distribu-
tion.16 Using the p-value discrepancy plots it is possible to investigate the size properties
of the tests not only in correspondence of a couple of selected points, but along all the
p-values distribution. However, given that we are mostly interested in the left tail of the
distribution, we confine our attention to the nominal size up to 30%.

In order to analyse the power of the tests, we plot the power against the actual size.
Although we must be careful in the presence of heavy size distortions or in the pres-
ence of biased tests, nevertheless plotting the power against the actual size makes it very
easy to compare the power of different tests even in the presence of moderate size dis-
tortions. Davidson and MacKinnon (1998) call these plots size-power curves.17 By plotting
the power on the vertical axis and the actual size on the horizontal one, we have a graph-
ical representation of the power for any desired size of the test. A 45◦ line is also plotted
that is equivalent to the size-power curve of a hypothetical test whose power is always
equal to the size. Of course, for a test to be of any value, we should expect its size-power
curve to lie always well above the 45◦ line. Ideally, the curve should be very close to 1
for any actual size. Depending on the size and power properties of each test, the cor-
responding size-power curves based on the actual size may cross each other (see e.g.

16Other statistics and distributions could in principle be used that give more weight to the left tail of the p-
values distribution (see, e.g., Delicado and Placencia, 2001) but the Kolmogorov-Smirnov statistic proposed
by Davidson and MacKinnon (1998) fits perfectly in the graphical framework adopted here.

17Size-power curves were first introduced by Wilk and Gnanadesikan (1968) as a specialized example of
the use of P-P plots .
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Figure 6 – Size discrepancy plots of the p-CADF test. The first row refers to exper-
iments 1 to 3, the second to experiments 4 to 6. DGP with no drift, model with no
trend. T = 100, N = 10. Solid line, true covariate; dashed, average ∆yjt (j 6= i) as
the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values.

Wilk and Gnanadesikan, 1968; Davidson and MacKinnon, 1998, for examples of crossing
size-power curves).

While it is customary to report simulation results only with respect to the percentage
of rejections obtained in correspondence with conventional significance levels (5% and
10%, say), we offer for the first time a detailed analysis of the whole empirical distribution
function of the p-values of different panel unit root tests under cross-dependence. We can
do this because we can compute the p-values of each test and not just the critical values.
Of course, this greater detail comes at the cost of some extra computational burden.

All the figures presented in this Section are produced using the same scale in order to
ease comparison among the tests and across the experiments.

We start the analysis by considering experiments 1–6 of Table 2 with α = 0 in the
DGP and no trend in the model. The size discrepancies of the tests are reported in Fig-
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Figure 7 – Size discrepancy plots. The first row refers to experiments 1 to 3, the second
to experiments 4 to 6. DGP with no drift, model with no trend. T = 100, N = 10.
Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dotted, Moon and
Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-Smirnov critical
values.
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ures 6 and 7. The test proposed by Demetrescu et al. (2006) has the best overall size
properties across experiments. However, the pCADF test performs quite well, with no
large size discrepancies in correspondence of the usual size levels. It tends to under-reject
especially in experiment 6, when the first principal component is used to derive the sta-
tionary covariate. On the contrary, the test advocated by Moon and Perron (2004) tends
to over-reject in experiments 1 and 2, where the factor structure is weaker. In all the other
experiments it performs remarkably well in terms of size. Finally, the test developed by
Chang and Song (2009) does not display significant discrepancies in correspondence with
the usual size levels, but shows a general tendency towards under-rejecting, especially
for experiments 5 and 6.

The size-power curves for the same experiments are reported in Figures 8 and 9. The
power of the pCADF test increases significantly with decreasing values of ρ2, as expected.
Indeed, when ρ2 < 0.5, the pCADF correctly rejects the null more often than the other
tests when the true covariate is used and, for somewhat smaller values of ρ2 also when
the estimated covariates are used as well. The covariate-augmented test proposed by
Chang and Song (2009) shows a rather stable rejection rate across experiments and per-
forms better that the p-CADF only for relatively high values of ρ2. However, it should
be reminded that the p-CADF is equivalent to the panel ADF test when ρ2 = 1. When
ρ2 < 1, the power gain obtained by using stationary covariates is substantial. The power
of Moon and Perron’s test is rather disappointing, being virtually identical to the size for
most experiments.

Let’s now turn to the analysis of the performance of the tests with trend (p-CADF and
Demetrescu et al.’s) or detrended (Chang and Song’s and Moon and Perron’s) over the
same DGP as above. The size discrepancies are plotted in Figures 10 and 11.

Demetrescu et al.’s ADF-based test ranks first, as in the previous case. The p-CADF
test has approximately correct size in the usual size ranges. It is again slightly conser-
vative in experiment 6, especially when the difference of the first principal component is
used as the stationary covariate. Under-rejection of Chang and Song’s test is now more
evident. Indeed this test tends to be conservative across all the experiments. On the other
hand, Moon and Perron’s test tends to over-reject substantially.

The size-power curves are plotted in Figures 12 and 13. The presence of the trend
in the model tends to reduce the power of all the tests. As far as the ADF test is con-
cerned, this is a known result. The p-CADF test behaves quite well also in this case,
even if the rejections do not increase monotonically when ρ2 decreases. In fact, the same
kind of behaviour is mirrored, on a different scale, by Demetrescu et al.’s test. However,
the power gain deriving from using the covariate is again substantial, especially when
the correct covariate or a good proxy for it is used, but the power of the p-CADF de-
clines together with the power of the pure ADF-based test. Despite being conservative,
Chang and Song’s test has good power and the rejections remain fairly stable across ex-
periments, as in the no-trend case. Nevertheless, the pCADF test still compares well with
Chang and Song’s, above all when the correct covariate is considered. At any rate, the
power of the pCADF test is significantly higher than Demetrescu et al.’s and Moon and
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Figure 8 – Size-power plots of the p-CADF test. The first row refers to experiments
1 to 3, the second to experiments 4 to 6. DGP with no drift, model with no trend.
T = 100, N = 10, 2 series are stationary. Solid line, true covariate; dashed, average
∆yjt (j 6= i) as the stationary covariate; dotted, first difference of the first principal
component as the stationary covariate.
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Figure 9 – Size-power plots. The first row refers to experiments 1 to 3, the second to
experiments 4 to 6. DGP with no drift, model with no trend. T = 100, N = 10, 2 series
are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009);
dotted, Moon and Perron (2004).
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Figure 10 – Size discrepancy plots of the p-CADF test. The first row refers to ex-
periments 1 to 3, the second to experiments 4 to 6. DGP with no drift, model with
trend. T = 100, N = 10. Solid line, true covariate; dashed, average ∆yjt (j 6= i) as
the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values.
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Figure 11 – Size discrepancy plots. The first row refers to experiments 1 to 3, the
second to experiments 4 to 6. DGP with no drift, model with trend. T = 100, N = 10.
Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dotted, Moon and
Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-Smirnov critical
values.
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Figure 12 – Size-power plots of the p-CADF test. The first row refers to experiments 1
to 3, the second to experiments 4 to 6. DGP with no drift, model with trend. T = 100,
N = 10, 2 series are stationary. Solid line, true covariate; dashed, average ∆yjt (j 6= i)
as the stationary covariate; dotted, first difference of the first principal component as
the stationary covariate.

Perron’s. In fact, the latter test has virtually no power at all.
We now extend our analysis also to cover the case where the DGP includes a drift term

α 6= 0. In particular, in our simulations we consider αi ∼ U(0.7,0.9) (with i = 1, . . . , N).
Given the presence of a drift, in this case we only consider the tests based on models in-
cluding the deterministic trend (or the detrended versions of the tests) and avoid carrying
out the simulations for the no-trend (or the demeanded) cases.

When we allow for a non-zero drift in the DGP, the behaviour of the p-CADF test
and of Demetrescu et al.’s test remains substantially unchanged in terms of size. The
presence of the drift adversely affects the size of Chang and Song’s test that becomes
very conservative. On the contrary, Moon and Perron’s test rejects much too often (see
Figures 14 and 15).

However, the most dramatic changes happen when the power is considered. In or-
der to show the difference with respect to the previous cases, in Figures 16 and 17 we
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Figure 13 – Size-power plots. The first row refers to experiments 1 to 3, the second to
experiments 4 to 6. DGP with no drift, model with trend. T = 100, N = 10, 2 series
are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009);
dotted, Moon and Perron (2004).
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Figure 14 – Size discrepancy plots of the p-CADF test. The first row refers to experi-
ments 1 to 3, the second to experiments 4 to 6. DGP with non-zero drift, model with
trend. T = 100, N = 10. Solid line, true covariate; dashed, average ∆yjt (j 6= i) as
the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values.
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Figure 15 – Size discrepancy plots. The first row refers to experiments 1 to 3, the
second to experiments 4 to 6. DGP with non-zero drift, model with trend. T = 100,
N = 10. Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dot-
ted, Moon and Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-
Smirnov critical values.
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Figure 16 – Power of the p-CADF test against nominal size. The first row refers to
experiments 1 to 3, the second to experiments 4 to 6. DGP with non-zero drift, model
with trend. T = 100, N = 10, 2 series are stationary. Solid line, true covariate; dashed,
average ∆yjt (j 6= i) as the stationary covariate; dotted, first difference of the first
principal component as the stationary covariate.
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Figure 17 – Power against nominal size. The first row refers to experiments 1 to 3, the
second to experiments 4 to 6. DGP with non-zero drift, model with trend. T = 100,
N = 10, 2 series are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and
Song (2009); dotted, Moon and Perron (2004).
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Figure 18 – Size discrepancy plots of the p-CADF test. The first row refers to exper-
iments 1 to 3, the second to experiments 4 to 6. DGP with no drift, model with no
trend. T = 300, N = 20. Solid line, true covariate; dashed, average ∆yjt (j 6= i) as
the stationary covariate; dotted, first difference of the first principal component as the
stationary covariate. The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values.

plot power against nominal size. While the performance of the p-CADF test improves
somewhat with respect to the trend case without drift,18 Chang and Song’s test becomes
heavily biased with rejections well below the nominal size. On the other hand, the rejec-
tions of Demetrescu et al.’s and Moon and Perron’s tests are very similar to the previous
case without drift. Given the bias in Chang and Song’s test, the comparison of the size-
power curves would be misleading in this case.

In order to check the performance of the tests for larger values of T and N, we repeat
the experiments of Table 2 with T = 300 and N = 20. Power is investigated again using
only 2 (out of 20) stationary series. The results essentially confirm the tendencies already
highlighted using T = 100 and N = 10; to save space we report only the results for the
models with constant (or demeaned data). Similar conclusions carry over for the other

18This is true also when the size-power curves are considered.
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Figure 19 – Size discrepancy plots. The first row refers to experiments 1 to 3, the
second to experiments 4 to 6. DGP with no drift, model with no trend. T = 300, N =
20. Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009); dotted, Moon
and Perron (2004). The horizontal dashed lines represent 5% Kolmogorov-Smirnov
critical values.
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Figure 20 – Size-power plots of the p-CADF test. The first row refers to experiments 1
to 3, the second to experiments 4 to 6. DGP with no drift, model with trend. T = 300,
N = 20, 2 series are stationary. Solid line, true covariate; dashed, average ∆yjt (j 6= i)
as the stationary covariate; dotted, first difference of the first principal component as
the stationary covariate.

cases.19

When the true covariate is used, the pCADF test has approximately correct size for all
experiments. On the other hand, it tends to be slightly conservative when estimated sta-
tionary covariates are used (see Figure 18). The ADF-based test proposed by Demetrescu
et al. (2006) has again good size. The performance of Moon and Perron’s test is also very
similar to the case with T = 100 and N = 10 and tends to over-reject in the presence of
a weak factor structure. Quite on the contrary, the tendency towards under-rejection of
the test advocated by Chang and Song (2009) is now even more pronounced than in the
T = 100, N = 10 case (Figure 19).

As far as power is concerned, the size-power curves plotted in Figure 20 show that
power of the pCADF increases with decreasing values of ρ2 and the test virtually always

19Detailed results are available upon request.
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Figure 21 – Size-power plots. The first row refers to experiments 1 to 3, the second to
experiments 4 to 6. DGP with no drift, model with trend. T = 300, N = 20, 2 series
are stationary. Solid line, Demetrescu et al. (2006); dashed, Chang and Song (2009);
dotted, Moon and Perron (2004).
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reject when ρ2 is small, despite having only 2 (out of 20) stationary series. The use of
estimated stationary covariates in this case gives excellent results, very close to those
that can be obtained using the true covariate. The comparison with the performance of
the test proposed by Demetrescu et al. (2006) (see Figure 21) gives a measure of the gain
that can be obtained by using the stationary covariates within the panel test. Moon and
Perron’s test has again virtually no power at all. On the contrary, the test advocated by
Chang and Song (2009) has the best performance for high values of ρ2, while its power is
slightly worse than the pCADF’s for small values of the nuisance parameter.

5 The size of panel vs individual tests

The fact that in some instances we are using covariates that are derived from the same
series for which we want to test the presence of a unit root may induce in the reader the
erroneous opinion that a better solution might be that of simply considering the unit root
tests on the individual time series, instead of the panel test. At first sight this procedure
uses the same data and gives more information. However, remember that our null of
interest is H0 : “all of the series are I(1)”, against the alternative H1 : “at least one series
is I(0)”.

We have already highlighted in the Introduction that a commonly neglected reason to
use the panel approach is that it avoids the complications arising from multiple testing.
In this Section we show that using individual tests to investigate our null of interest does
indeed imply strong size distortions and incorrect inference. Surprisingly, this aspect
is usually ignored in the empirical literature. In fact, when individual tests based on
the single time series are used to investigate the null hypothesis, inference is based on
a sequence of dependent tests. It is fairly well known that such a procedure is likely to
produce severe over-rejections (see e.g. Shaffer, 1995).

In order to give a flavour of the size distortions implied by the individual testing ap-
proach, it is sufficient to look at Figure 22, where the size discrepancies of the individual-
based ADF and CADF tests are plotted using the same simulations utilized to produce
Figures 6 and 7. Contrary to what happens with the panel tests where size distortions are
fairly small, using the individual tests gives rise to terrific size distortions so that we can
falsely reject the null 90% of the times for a 10% nominal size. A possible reply to this
criticism is that a Bonferroni-like method could be used to adjust the p-values. However,
these methods are in general designed to work with independent tests, while here we are
mainly interested on dependent ones. For this reason we should expect fairly large size
distortions also from the application of Bonferroni-like procedures in our setting. This
is in fact confirmed by our simulations (not reported here to save space). Furthermore,
Maddala and Wu (1999) showed that application of the Bonferroni correction leads to
tests with low power.20

Quite surprisingly, the empirical applications based on single time series approaches

20Other, more sophisticated, methods could in theory be developed to deal with dependent tests, but this
is at the moment out of the scope of the present work.
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Figure 22 – Size discrepancy plots based on the individual tests. The first row refers
to experiments 1–3, the second to experiments 4–6. DGP with no drift, model with no
trend. T = 100, N = 10. Solid line, pCADF with true covariate; dashed, pCADF with
average ∆yjt (j 6= i) as the stationary covariate; dotted, pCADF with first difference of
the first principal component as the stationary covariate; dot-dash, Demetrescu et al.
(2006). Same experiments used to produce Figures 6 and 7.
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typically do not address the multiple testing issue at all so that they are likely to overstate
substantially the importance of rejections.

6 Applications

For the sake of illustration, in this Section we offer two different applications developed
using macro-panel data. We first consider the PPP hypothesis. This is a well-known
example in many panel unit root papers. Then we consider the issue of the existence of
a unit root in the industrial production indices. In this paper we are using these topics
merely as illustrative examples of application of the pCADF test. Conclusive answers on
the validity of the underlying economic theories would require more structured empirical
analyses and are out of the scope of the present work.

In all applications we use exactly the same procedure adopted in the Monte Carlo
analysis, with automatic model selection and correction for cross-dependence based upon
the outcome of the test proposed in Pesaran (2004). Furthermore, we apply all the tests
considered in the Monte Carlo to the actual data. In addition, in carrying out the pCADF
tests we use stationary covariates chosen on theoretical grounds.

6.1 Testing the PPP hypothesis

It is well known that a necessary condition for the PPP to hold is that the real exchange
rate must be mean-reverting (for a recent survey see Taylor and Taylor, 2004). This of
course excludes the possibility that the real exchange rate can have a trending behaviour
or a unit root. For this reason, a number of influential papers on panel unit root testing, in-
cluding Choi (2001) and Chang and Song (2009), consider the same empirical application.
Other papers employ instead covariate-augmented tests in the time series framework. In
particular, Amara and Papell (2006) use the tests developed in both Hansen (1995) and El-
liott and Jansson (2003), Elliott and Pesavento (2006) employ Elliott and Jansson’s feasible
point optimal test and Lee and Tsong (2009) utilize Hansen’s CADF test with a stationary
factor-based covariate selection.

It should be noticed that we are deliberately not dealing with the (alternative) hypoth-
esis that the PPP is valid in general. Here we are interested in testing the null that the PPP
is not valid in general. This implies that, if the null is rejected, this means only that the
data are consistent with the PPP hypothesis in at least one case (country). On the other
hand, if the null is not rejected, one could seriously wonder about the validity of the PPP
hypothesis.

For greater comparability, we use quarterly data from Chang and Song (2009) cover-
ing the period 1973q1–1998q4.21 The same countries over the same period are used also in
other papers (see e.g. Amara and Papell, 2006). Given that under the PPP hypothesis the

21We warmly thank Yoosoon Chang and Wonho Song for having provided their data. The original sources
are the International Monetary Fund’s International Financial Statistics and cover 20 countries (Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Netherlands,
New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom).
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Test test statistic p-value
Demetrescu et al. (2006) -0.383 0.351
Moon and Perron (2004) -1.134 0.128
Chang and Song (2009) -0.634 0.998
pCADF (principal component) -0.672 0.251
pCADF (nominal exchange rate) -4.210 0.000

Table 3 – Panel tests of the PPP hypothesis (T = 103, N = 20).

real exchange rate should not exhibit trends of any kind, in developing our application
of the pCADF test, we focus specifically on the test without deterministic trends. This
model specification is consistent with, e.g., Choi (2001, p. 269) and Amara and Papell
(2006, p. 32). Consistently with Elliott and Pesavento (2006, pp. 1412–1413), we apply the
pCADF test also using the first differences of the nominal exchange rate as the station-
ary covariate. Since the covariate should not cointegrate with the dependent variable, in
order to verify that the nominal exchange rate is not cointegrated with the variable of in-
terest, we apply the group mean cointegration tests proposed in Westerlund (2007). The
null hypothesis of these tests is no cointergation for all the panel units, while the alterna-
tive is that cointegration is present in at least a panel unit. The p-values of Westerlund’s
Gτ and Gα tests are equal to 0.325 and 0.757, respectively, supporting the validity of the
nominal exchange rate as a potential covariate.

The empirical results are summarized in Table 3. Here we also replicate Chang and
Song (2009), so our results are identical to theirs.

As far as the PPP hypothesis is concerned, the only test that rejects the null is the
pCADF when the differenced nominal exchange rate is used as the stationary covariate,
consistently with Elliott and Pesavento (2006) that reject the null for most countries when
the nominal exchange rate is used as the stationary covariate. The empirical results sug-
gest that the choice of the covariate can influence the outcome of the test. Indeed, this
feature of the covariate-augmented tests is already well known and documented in other
papers (see, e.g, Elliott and Pesavento, 2006; Lee and Tsong, 2009).

6.2 Unit roots in international industrial production indices

We offer a second application that deals with checking for the presence of a unit root in
industrial production indices in 9 OECD countries. As before, the pCADF test is per-
formed using the differenced first principal component as the stationary covariate. In
addition, we use the differences of real GDPs as stationary covariates. In this context we
may interpret real GDP as a measure of demand. The variable of interest is quarterly sea-
sonally adjusted industrial production index (total industry, 2005 = 100) over the period
1983q1–2008q3. The covariate is quarterly seasonally adjusted real GDP (chained volume
estimates). Both industrial production and GDP are log-transformed.22 We consider here

22The considered countries are: Australia, Canada, France, Italy, Japan, Norway, Switzerland, United
Kingdom, United States. Industrial production is from the OECD Main Economic Indicators data base. Real
GDP is from the OECD Quarterly National Accounts data base. The data sample is truncated to 2008q3 to
avoid potential complications arising from the deep fall of industrial activity after the international financial
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Test test statistic p-value
Demetrescu et al. (2006) 1.309 0.905
Moon and Perron (2004) 1.234 0.891
Chang and Song (2009) -0.089 0.996
pCADF (principal component) 2.128 0.983
pCADF (real GDP) -2.839 0.002

Table 4 – Panel unit root tests for industrial production (T = 103, N = 9).

the versions of the tests that include a constant and a deterministic trend, or the equiva-
lent versions of the tests on detrended series. In order to avoid using a covariate whose
levels are cointegrated with the variable of interest, we test again the null of lack of coin-
tegration among industrial production in all countries against the alternative that there
is cointegration in at least one country using the group mean tests proposed in Wester-
lund (2007). Indeed, there are theoretical reasons that induce to anticipate the absence
of cointegration between industrial production and real GDP and in fact the empirical
results are strongly supportive of the null (the p-values of the Gα and Gτ tests are 1.000
and 0.993, respecyively).

Indeed, the results reported in Table 4 indicate that the pCADF test is again the only
one to reject the null, while all the other tests are very far from rejecting.

7 Concluding remarks

A simple covariate augmented Dickey-Fuller (CADF) test for unbalanced heterogeneous
panels is proposed. The test, that we label panel-CADF (pCADF), is a generalization of
the CADF test proposed in Hansen (1995) and is developed along the lines suggested in
Choi (2001). This allows us to be very general in the specification of the individual unit
root tests. Thanks to the application of a correction originally due to Hartung (1999), the
proposed test can be used in the presence of cross-dependent time series and, given that
the asymptotics used in Choi (2001) does not require N → ∞, it is especially well suited
to deal with macroeconomic panels where the cross-section dimension is typically rather
small.

Given that the pCADF test is based on a (possibly modified) inverse normal p-value
combination, the p-values of the individual CADF tests have to be obtained. For this
reason, a procedure to compute the asymptotic p-values of Hansen’s CADF test is also
proposed.

The size and power properties of the pCADF test are investigated using an exten-
sive Monte Carlo with cross-dependent DGPs. Simulation results are reported using the
graphical approach suggested in Davidson and MacKinnon (1998) that allows us to ob-
tain detailed and readily interpretable results. The performance of the pCADF test is
compared with that of the panel unit-roots tests proposed in Moon and Perron (2004),
Demetrescu et al. (2006) and Chang and Song (2009). It is shown that the pCADF test in

crisis. The choice of the countries was somewhat forced by the availability of the data.
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general does not suffer from important size distortions and can offer important power
gains. In particular, it is shown that the power of the pCADF test is inversely related to
the nuisance parameter ρ2 and that, when ρ2 is small, the test can be more powerful than
the covariate augmented test proposed by Chang and Song (2009). In all the experiments
analysed in the paper, the power of the pCADF test is significantly higher than the power
of the tests advocated by Moon and Perron (2004) and Demetrescu et al. (2006). When a
drift is present in the DGP, the pCADF test has the best performance in terms of power,
among all the examined tests.

A section of the paper is also dedicated to the comparison of single equation Vs panel
tests. It is shown that panel tests offer the advantage of avoiding the complications aris-
ing in the presence of multiple testing.

In order to show that the test is viable, we consider two empirical applications dealing
with the PPP hypothesis and with industrial production indices, respectively. It is shown
that the test is easy to implement and offers advantages over other popular panel unit
root tests.
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Appendix A:
The algorithm to compute the p-values of the CADF test

This paper proposes a way to compute the p-values of the covariate augmented Dickey-
Fuller (CADF) test developed in Hansen (1995). The procedure is based on a response
surface approach (see e.g. Hendry, 1984). We believe that this is a side, but impor-
tant, original contribution of our paper. The computer routines have been developed
under both GAUSS and R. The R package CADFtest that computes Hansen’s test and
its p-values can be freely downloaded from the Comprehensive R Archive Network at
www.cran.r-project.org/package=CADFtest. The use of the package and its main fea-
tures are illustrated in detail in Lupi (2009). The GAUSS procedures are available upon
request from the authors.

In this Appendix we give a detailed account of the algorithm described in Section
2. In order to set up from scratch a procedure that computes the p-values of Hansen’s
distribution (9), the following steps can be followed:

1. Simulate the asymptotic distribution (9) over a grid of values for ρ2 ∈ (0, 1]. In the
paper we use 40 distinct values. Once ρ2 is fixed, the asymptotic distribution can be
simulated using standard techniques (see e.g. Hatanaka, 1996). In this paper we use
100, 000 replications and T = 5, 000 for the simulation of the Wiener functionals.
The asymptotic distribution must be simulated separately for the “no constant”,
“constant” and “constant plus trend” case.

2. Derive the simulated quantiles of (9) over a grid of desired probabilities. We use
a strict grid of 1, 005 probability values ranging from 0.00025 to 0.99975. Save the
results in a table. In our case we have a 1, 005× 40 table.

3. For each probability value p considered in the table (i.e., for each row of the table)
estimate

qρ(p) = β0 + β1ρ2 + β2
(
ρ2)2

+ β3
(
ρ2)3

+ ερ

and save the estimated parameters in a table. In our case we have a 1, 005× 4 table
of estimated parameters.

4. Use the estimated parameters to derive fitted values q̂ρ0(p) (∀p) of the quantiles for

any value of ρ2
0 you are interested in. q̂ρ0(p) is a vector.

5. Plug q̂ρ0(p) in (10) following the procedure proposed in MacKinnon (1994, p. 172)
and MacKinnon (1996, p.610), that is:

• Find the fitted quantile that is closest to the sample statistic;

• Interpolate locally (we used 11 observations) by means of (10);

• Derive the fitted p-value.

Note that it is not necessary to repeat steps 1-3 each time you want to compute a p-
value. Once the β’s have been estimated and saved in the relevant tables (for the three
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cases “no constant”, “constant” and “constant plus trend”), the task is reduced to solving
steps 4 and 5 above. In fact, the routines we make available read the estimated β’s and
solve only steps 4 and 5.
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