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Abstract 

We explore convenient analytic properties of distributions constructed as mixtures of scaled 
and shifted t-distributions. A feature that makes this family particularly desirable for 
econometric applications is that it possesses closed-form expressions for its anti-derivatives 
(e.g., the cumulative density function). We illustrate the usefulness of these distributions in 
two applications. In the first application, we use a scaled and shifted t-distribution to produce 
density forecasts of U.S. inflation and show that these forecasts are more accurate, out-of-
sample, than density forecasts obtained using normal or standard t-distributions. In the 
second application, we replicate the option-pricing exercise of Abadir and Rockinger (2003) 
using a mixture of scaled and shifted t-distributions and obtain comparably good results, 
while gaining analytical tractability. 
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1 Introduction

Integrals of particular functions play a central role in economics, econometrics, and

finance. For example, the price of a European call option can be expressed in terms

of an integral of the cumulative distribution function (cdf) of risk neutralized asset

returns. As another example, the notion of Value at Risk used to assess portfolio

risk exposure is defined in terms of an integral of the probability density function

(pdf) of portfolio returns. In duration analysis, unobserved variables are integrated

out to avoid spurious duration dependence. For reasons of familiarity and theoreti-

cal convenience, the normal distribution (or distributions derived from the normal,

such as the log-normal) plays a central role in such analyses. Nevertheless, the

normal distribution does not provide an empirically plausible basis for describing

asset or portfolio returns, nor is it analytically tractable; neither the normal proba-

bility density nor the normal cdf have closed form integrals.

This paper calls attention to the very convenient properties of Student’s t-distribution

in yielding closed form1 expressions for the cdf and its integrals for particular sub-

sets of parameter values. Even when the expressions for these integrals are not in

closed form, they are still analytically quite convenient. In special cases, the inverse

cdf (quantile function) also has a closed form expression, which is especially con-

venient for analyzing Value at Risk. Although a closed form for the t-distribution

cdf has been long known (see e.g. Moran (1968, pp 326 – 328)) this convenient

property and the convenient expression for the integral of the cdf that we provide

have not previously been recognized for their usefulness in economic and financial

applications.

Significant flexibility is achieved by considering mixtures of scaled and shifted

t-distributions, which inherit all the convenient properties of the t-distribution with

respect to cdf’s and their integrals. Moreover, these mixtures have the structure

of a single hidden layer artificial neural network (ANN). This ANN structure en-

sures that with sufficiently many terms in the mixture and under suitable regular-

ity conditions, these mixtures are capable of approximating any function and its

derivatives to any desired degree of accuracy. This further suggests that mixtures

of t-densities may be useful as a substitute for quadrature methods in numerical

integration.

Two separate empirical applications illustrate the advantages of using t-distributions

1 The definition of “closed form” is not universally agreed upon. Here, by “closed form” we mean

an expression containing only a finite number of symbols, and including only the operators +,-,*,/,

and a small list of trigonometric functions, inverse trigonometric functions, factorial and gamma

functions, and so forth.
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and their mixtures to model economic and financial time series. In the first applica-

tion, we use a shifted, rescaled t-distribution to produce density forecasts of U.S. in-

flation and establish whether the new distribution can provide any improvements

in the out-of-sample performance of density forecasts relative to the use of the nor-

mal or the standard t-distributions. We evaluate the forecasts using the framework

suggested by Diebold, Gunther and Tay (1998), which makes use of the antideriva-

tive of the density, thus highlighting the usefulness of the t-distribution in such

applications. In the second application, we use a mixture of scaled and shifted t-

distributions to estimate risk-neutral densities associated with financial options. In

particular, we consider the same option-pricing application as that in Abadir and

Rockinger (2003), and obtain comparably good results, while gaining in analytical

tractability.

The outline of the paper is as follows. Section 2 sets forth the convenient proper-

ties of the t-distribution that are our focus here. Section 3 provides a brief discussion

of artificial neural networks and extends the integrability results using mixtures

and artificial neural networks. This has the further benefit of bringing conditional

densities into our framework. Section 4 presents our application to U.S. inflation

forecasts. Section 5 presents the application to option prices. Section 6 concludes.

The appendices contain mathematical details and the proofs.

2 A Flexible Family of Density Functions

Student’s (1908) t-distribution with ν degrees of freedom has the familiar density

tν(x) = =
Γ

(ν+1
2

)

√
νπΓ

(ν
2

)

(

1+
x2

ν

)− ν+1
2

, (1)

where Γ(·) is the standard gamma function. It is a standard result that for all 0 <

m< ν−1
Z ∞

−∞
|x|mtν(x)dx< ∞

and that the integer moments are given by:

Z ∞

−∞
xmtν(x)dx=







0 m odd

ν
m
2

Γ( ν−m
2 )Γ(m+1

2 )
Γ( ν

2)
√

π
m even.

Now we consider the antiderivatives2 of tν. For a scalar function f of x, we write

the first derivative as D f = d f
dx . The antiderivative D−1 f is such that D(D−1 f ) = f .

2 In writing the antiderivatives, the “constant of integration” is here always taken to be zero. In

particular applications, other values may be appropriate.
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In giving the antiderivative of tν, we make use of the hypergeometric function 2F1.

This function is defined for complex a,b,c, and zas the analytic continuation in zof

the hypergeometric series

2F1(a,b;c;z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a+k)Γ(b+k)
Γ(c+k)

zk

k!
. (2)

The series converges absolutely for |z| < 1, as a ratio test verifies. In our applica-

tions, we are interested in the hypergeometric function for any real x. For this, we

make use of the transformation z= x2

x2+ν which yields |z| < 1 (see e.g. equation (89)

in Abadir (1999)). Additional useful background can be found in Bailey (1962) and

Slater (1966). More recently, Abadir (1999) has carefully summarized several re-

sults about hypergeometric functions relevant for econometricians and economists.

Analogous to Amos (1964, Eqn. 15) we obtain the cdf of tν in closed form making

use of the hypergeometric function 2F1:

Proposition 1 Let tν,σ be a scale-generalized version of (1) such that

tν,σ(x),=
1

κν,σ

(

1+
x2

σ2ν

)− ν+1
2

, (3)

where κν,σ denotes the normalization factor:

κν,σ =

Z ∞

−∞

(

1+
x2

σ2ν

)− ν+1
2

dx = σ
√

νπ
Γ

(ν
2

)

Γ
(ν+1

2

)

.
(4)

Then for all x∈ R, σ > 0, and 1 < ν < ∞:

D−1tν(x) =
1
2

+
x

κν,σ

√

(1+ x2

σ2ν)
· 2F1

(

1
2
,1− ν

2
;
3
2

;
x2

x2 + σ2ν

)

. (5) 2

For nonnegative integers n such that

n =
ν
2
−1 (6)

the infinite sum in 2F1 terminates after n terms.

The second antiderivative, D−2tν, is also of interest. For example, the price of

a European call option with strike K and risk neutral cdf F (·) can be expressed in

terms of an integral of the cumulative distribution function (cdf) of risk neutralized

asset returns: C (K) =
R ∞

K [1−F (S)]dS. The second antiderivative is given by our

next result.

Theorem 1 Let tν,σ be as in 3 and κν,σ as in Equation 4. Then for all x∈ R, σ > 0, and

1 < ν < ∞:

D−2tν,σ(x) =
x
2

+
ν
√

(1+ x2

σ2ν)

(ν−1)κν,σ
2F1

(−1
2

,1− ν
2

;
1
2

;
x2

x2 + σ2ν

)

.

These expressions also terminate after n terms for all ν = 2(n+1). 2

3



3 Mixture Distributions and Artificial Neural Networks

Further flexibility can be achieved by considering mixtures of t-distributions, that

is, by taking a convex combination of densities of scaled and shifted standard t-

distributions. Just as with mixtures of normals, these mixtures can deliver skewed

distributions, distributions with tail properties unachievable by a single t-distribution

or distributions with two or more modes. In fact, under suitable conditions, such

mixtures can approximate any distribution in large classes of probability distribu-

tion functions. In addition to analytic tractability, another potential advantage of

using the t-distribution instead of the normal to form a mixture is that, because of

its greater flexibility, one may require fewer terms (mixing densities) in the convex

combination to achieve a given accuracy of approximation to the true density.

We establish our result for mixtures of t-distributions by exploiting available

results for artificial neural networks (ANNs). As we shall see next, this not only

delivers results directly, but also permits us to accommodate the approximation

of conditional distributions. Over the last two decades ANNs have emerged as a

prominent class of flexible functional forms for function approximation. A leading

case is the single hidden layer feedforward neural network, written as:

ψ(x,β,γ) =
q

∑
j=1

β j ·g
(

x̃Tγ j
)

, (7)

where x̃ = (1,x1,x2, . . . ,xr), γ =
(

γT
1 ,γT

2 , . . . ,γT
q

)T
,γ j ∈ Rr+1, β =

(

βT
1 , . . . ,βT

q

)T
and g :

R→ R is the hidden unit “activation” function. See Kuan and White (1994) for ad-

ditional background.

In our discussion of desirable approximation properties, the notion of ℓ-finiteness

will be useful:

Definition 1 Let ℓ be a non-negative integer. A function g is ℓ-finite if g is continu-

ously differentiable of order ℓ and has Lebesgue integrable ℓth derivative. 2

Mixtures of the form (7) are able to approximate large classes of functions (and

their derivatives) arbitrarily well, for ℓ-finite activation functions g (Hornik, Stinchcombe and White,

1990, HSW). A common choice for g is that it be a given cdf; the logistic cdf is the

leading choice. We shall pay particular attention to the case in which g is a pdf, so

that its integral is a cdf. Imposing the constraint ∑q
j=1β j = 1,β j ≥ 0 when g is a den-

sity delivers the mixture density with weights β j . Such mixtures can approximate

arbitrary densities (White, 1996, e.g. Theorem 19.1). The form of (7) delivers not

only flexibility, but it also provides the basis for analytic tractability: the properties

of the integral of ψ depend solely on the properties of the integral of g.
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Note that we view g as a univariate pdf, but that its argument is the linear

combination x̃Tγ j . For the moment, suppose that r = 1, so x̃Tγ j = γ j0 + γ j1 · x1. We

therefore allow x1 to be scaled and shifted inside g so that ψ(x,β,γ) can be viewed

as a mixture of univariate pdf’s in the usual way. On the other hand, if r > 1 we can

view ψ(x,β,γ) as a conditional density for one of the elements of x, say x1, given the

rest: x2, . . . ,xr . The use of the linear transformation x̃Tγ j can be seen as permitting

scaling and shifting as before, but with the shift now incorporating conditioning

effects of the form γ j0 + ∑r
i=2xiγ ji . Thus, we view g and ψ as pdf’s for a particular

random variable, though possibly conditional on other random variables. Treat-

ment of multivariate densities in a framework analogous to that proposed here is

possible but is beyond our present scope and is accordingly deferred.

We now turn our attention to choosing g in a way that delivers flexible closed

form expressions for the integral of ψ. We do this by putting g = tν. Our next result

shows that these mixtures can deliver arbitrarily accurate approximations to a large

class of densities under suitable conditions.

Theorem 2 Let f belong to the Sobolev space Sm
∞(χ) where χ is an open, bounded subset

of Rr . Elements of this space are functions with continuous derivatives of order m on the

domain χ which satisfy

|| f ||m,∞,χ ≡ maxn≤msupx∈χ |Dn f (x)| < ∞ (8)

for some integer m≥ 0 (for further background see Gallant and White (1992)). For integer

ℓ < ν−1, tν is ℓ - finite. Then for all m≤ ℓ, f can be approximated as closely as desired in

Sm
∞(χ) equipped with metric (8) using a single hidden layer feedforward network of the form

ψν (x,θ) =
q

∑
j=1

β j · tν
(

x̃Tγ j
)

, (9)

where x̃ = (1,x), and q is sufficiently large. 2

Observe that tν is always 0-finite by construction.

Corollary 1 Let Tν = D−ei tν denote the antiderivative of tν with respect to the i-th variable,

and let l ≤ u be real numbers. Then the integral of the neural net (9) has the form

Z u

l
ψν(x,θ)dxi = Ψν(x(i)(u);θ)−Ψν(x(i)(l);θ),

where x(i)(a) is the vector obtained by replacing the ith element xi from the vector x with a,

and

Ψν(x(i)(a);θ) =
q

∑
j=1

β j ·Tν(ai j (x(i)(a),γi j )),

5



where

ai j (x(i)(a),γi j ) = aγi j +
r+1

∑
k=1,k6=i

x̃kγk j.

Furthermore, Ψν(x(i)(a);θ) has a closed form expression (i.e. terminates after n terms) for

all ν of the form ν = 2n+2, n = 0,1,2, . . .. 2

Note that the transformed integration boundaries are different for each hidden

unit because they depend on γi j .

The networks Ψν of Corollary 1 have desirable approximation properties:

Theorem 3 Let f and tν be as in Theorem 2, and let Tν be as in Corollary 1. Then for

integer ℓ < ν, Tν is ℓ-finite and for all m≤ ℓ, f can be approximated as closely as desired in

Sm
∞(χ) equipped with metric (8) using a single hidden layer feedforward network of the form

Ψν(·) given in Corollary 1. 2

When f is a cdf, Ψν can approximate it, and its derivative – the associated pdf –

is approximated by the derivative ψν of Ψν, due to the denseness in Sobolev norm

and the fact that Ψν is always 1-finite by construction.

We also have analogs of Corollary 1 and Theorem 3 for the integral of Ψν.

Corollary 2 Let Ξi,ν = D−2ei tν denote the second antiderivative of tν with respect to the

i-th variable. Let l ≤ u be real numbers. Then the integral

Z u

l
Ψν

(

x(i)(a);θ
)

da

has the form
Z u

l
Ψν

(

x(i)(a);θ
)

da = Λi,ν(x(i)(u);θ)−Λi,ν(x(i)(l);θ),

where Λi,ν(x(i)(b);θ) =
q

∑
j=1

Ξi,ν(bi j (x(i)(b);γi j )

with bi j (x(i)(b);γi j ) = bγi j +
r+1

∑
k=1,k6=i

x̃kγk j.

In addition, in Λi,ν the series terminates after n+ 1 terms for all ν of the form ν = 2n+ 2,

n = 0,1,2, . . .. 2

A similar result for D−(ei+ej )tν can be obtained, but as our focus here is on the

univariate case, we omit that result.
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Corollary 3 Let f and tν be as in Theorem 1, and let Ξi,ν be as in Corollary 2. Then for

integer ℓ < ν + 1, Ξi,1ν is ℓ-finite and for all m≤ ℓ, f can be approximated as closely as

desired in Sm
∞(χ) equipped with metric (8) using a single hidden layer feedforward network

of the form Λi,ν given in Corollary 2. 2

When f is the antiderivative of a cdf, Λi,ν can approximate it. Its derivatives (the

cdf and pdf) can be approximated by the derivatives of Λi,ν due to the denseness

in Sobolev norm and the fact that the associated activation function is always 2-

finite. This property is useful in option pricing contexts, for example, as risk neutral

densities can be well approximated by fitting networks involving our Ξ’s to the

option price and then differentiating twice.

4 An Application to Inflation Density Forecasting

In this section, we investigate the potential usefulness of the scaled and shifted

t-distributions in producing density forecasts of U.S. inflation. Our goal is to estab-

lish whether we can achieve any improvements in the out-of-sample performance

of density forecasts relative to the use of more common but restrictive distribu-

tional assumptions for the conditional density of inflation, such as the normal or

the standard t-distributions.

The evaluation of the forecasts is based on the framework suggested by Diebold, Gunther and Tay

(1998) which utilizes the c.d.f. of the variable of interest. The c.d.f. for the t-

distribution is computed easily, which makes this evaluation method particularly

suitable for our application.

4.1 Generating time-varying density forecasts

We consider competing one-month-ahead density forecasts of U.S. inflation ob-

tained from conditional parametric models. We use monthly, seasonally unadusted

U.S. Consumer Price Index (CPI) data from 1959:1 to 2006:12 available through the

St. Louis Fed website. We calculate inflation as the log-12th difference of CPI over

the sample period, multiplied by a factor of 100.3

We conduct a specification search for the appropriate model of the conditional

mean and variance of inflation on the subsample 1959:2-1985:12, which consti-

tutes the in-sample portion. We consider models within the classes ARMA(p,q),

ARMA(p,q)-GARCH(1,1), ARMA(p,q)-ARCH(1) and ARMA(p,q)-EGARCH(1,1) with

3The Augmented Dickey-Fuller unit root test, using 6 lags of the change in the dependent variable,

rejects the unit root hypothesis at the 5% level.
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0≤ p≤ 6 and 0≤ q≤ 2 and select the specification which minimizes the Schwarz

BIC information criterion, which is an ARMA(1,1)-ARCH(1) model.

Letting Yt denote inflation at time t and It−1 the information set available at time

t −1, the competing ARMA(1,1)-ARCH(1) forecasting models are thus the follow-

ing:

Model 1 : Yt = c+ φYt−1 +ut + θut−1,

ut =
√

htvt (10)

ht = k+ α1u2
t−1 (11)

and

vt | It−1 ∼ N(0,1). (12)

Model 2 : Same as Model 1 except

vt | It−1 ∼ tν2. (13)

Model 3 : Same as Model 2 except

vt | It−1 ∼ tν3(µ,σ), (14)

where tν(µ,σ) represents a scaled and shifted version of the standard t-distribution,

obtained by substituting x−µ to x in equation (3). Note that the effect of model 3

relative to model 2, besides introducing the scale factor σ, is to introduce a term
( µ

σ
)√

ht into the conditional mean of the model.

4.2 Estimation and out-of-sample evaluation

We generate a sample of forecast densities of inflation from these models described

in the previous section using a recursive sampling scheme, as, e.g., in Clements and Smith

(2000), to allow for the possibility of time-varying densities. We first divide the

available sample of monthly U.S. inflation data into two parts, 1959:2-1985:12 and

1986:1-2006:12, with the first part used for estimation and the second part left for

out-of-sample evaluation. We estimate the parameters of each model by maximum

likelihood over the first sample, and we then use the estimated model to gener-

ate a one-step-ahead density forecast. We then augment the estimation sample by

adding the following observation, re-estimate the model’s parameters, and pro-

duce the second density forecast. Continuing in this fashion until all observations

from the second part of the sample are utilized results in a sequence of T = 240

density forecasts for each model of inflation. Notice that we do not re-specify the

model at each iteration, but assume instead that the specification selected for the

8



first estimation remains constant over time. For models assuming normal residu-

als, the density forecast of Yt is normal with parameters depending on the chosen

specification for the conditional mean and the conditional variance. The density

forecast of Yt for models 2 and 3 will have parameters ν2 and ν3 that vary with time.

The time plots of recursively estimated parameters ν̂2 and ν̂3 are contained in Fig-

ure 1 which reveals that the estimates of ν2 and ν3 decrease over time, suggesting

that inflation has fatter tails towards the end of the sample.

In line with Clements and Smith (2000) and Diebold et al. (1998) we do not per-

form diagnostic tests on the estimated models, and we ignore parameter estimation

uncertainty. This approach is not uncommon in the forecast evaluation literature,

where the forecasts are considered to be the primitives. In essence, we are sequen-

tially conditioning on the information generating the forecasts.

To evaluate the sample of density forecasts, we utilize the method proposed by

Diebold et al. (1998), which is based on the idea that a density forecast can be con-

sidered optimal if the model for the density is correctly specified. This approach

allows one to evaluate forecasts without the need to specify a loss function, and in

this sense it represents an improvement over most standard techniques for evalu-

ating point forecasts, which typically assume quadratic loss.

The method considers the sequence of probability integral transforms of infla-

tion with respect to the density forecasts, that is

zt =
Z yt

−∞
pt(u)du, t = 1, ...,T (15)

where yt is the realization of inflation at time t and pt(yt) the estimated density fore-

cast. Diebold et al. (1998) show that, if the sequence of density forecasts is correctly

specified, the corresponding sequence of probability integral transforms zt ’s is i.i.d.

U(0,1). This result suggests evaluating the density forecasts {pt(yt)}T
t=1 by testing

the hypothesis of i.i.d. U(0,1) for the sequence {zt}T
t=1.

As Diebold et al. (1998) point out, the fact that the i.i.d. U(0,1) hypothesis on

the zt ’s is a joint hypothesis makes it difficult to sort out the causes of a possible

rejection. We therefore consider a number of tests of the i.i.d. U(0,1) hypothe-

sis, ranging from formal tests to more informal, graphical tests. To test the joint

hypothesis of U(0,1) and identical distribution, we implement the Kolmogorov-

Smirnov (KS) test; to test the i.i.d. hypothesis alone, we consider the BDS test

(Brock, Dechert, Scheinkman and LeBaron, 1996), the CK test of time reversibility

(Chen and Kuan, 2002) and the Breusch-Godfrey LM (LM) test for serial correla-

tion up to 10 lags in the series4 (zt −z)i , i = 1, ...,4.

4The LM test of serial correlation in the series (zt −z)i , i = 1, ...,4 is designed to detect misspecifica-
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To assess uniformity, we consider the histogram plot of the z’s, and evaluate its

distance from the theoretical p.d.f. of a U(0,1). We accompany the estimates of the

p.d.f. by 95% confidence intervals. The derivation of confidence intervals is made

possible by the fact that under the hypothesis of i.i.d. U(0,1) the number of obser-

vations that fall into a given bin (against all other bins combined) is distributed as

a Binomial(T, 1
N ), where T is the sample size and N the number of bins.

To further evaluate and compare the forecast performance of the three distribu-

tions we consider the sequence of time-varying 75% and 99% forecast confidence

intervals implied by the three density forecasts of inflation, along with the real-

izations of inflation over the out-of-sample period. We also formally evaluate the

performance of the three interval forecast series by conducting a test of correct cov-

erage (Kupiec, 1995), which establishes whether the realizations of inflation fall

within the confidence interval a proportion of times that equals the interval’s nom-

inal coverage (i.e., 75% and 99%).5

4.3 Results

For each model of inflation, we test the null hypothesis of i.i.d. U(0,1) for the se-

quence of probability integral transforms {zt}240
t=1 of the realizations of inflation with

respect to the density forecasts generated by each of the three models described in

section 4.1.The results for the KS test are reported in Table 1; results for the BDS

test, the CK test, and the LM test are reported in Table 2. Finally, Table 3 reports the

results of the test for correct coverage of the 75% and 99% interval forecasts of in-

flation. The empirical p.d.f. and c.d.f. are shown in Figure 2. The interval forecasts

are shown in Figure 3.

4.3.1 Model 1: Normal disturbances

Table 1 reveals that the KS test leads to rejection of the hypothesis of i.i.d. U(0,1)

for the series of z’s, at the 5% confidence level. Rejection of uniform distribution

is also confirmed by the histogram of the z’s (Figure 2), which is characterized by

some bins that fall outside the 95% confidence interval.

Regarding the hypothesis of independence, Table 2 reveals that both the BDS

test and the CK test fail to reject the hypothesis of independence. However, the LM

tions in the conditional mean, variance, skewness and kurtosis.
5 Let a = (1/T)∑T

t=1 1(Yt+1 ∈ CI) denote the empirical coverage and let α be the nominal cov-

erage. Then the relevant null hypothesis is H0 : a = α and the likelihood ratio test statistic is

LR= 2[log(aTa(1−a)T−Ta)− log(αTa(1−α)T−Ta)], which has an asymptotic χ2
1 distribution.
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Table 1: Kolmogorov-Smirnov test of H0 : {zt} ∼ i.i.d.U(0,1).

Model Test Statistic p-value

M1:ARMA(1,1)-ARCH(1)-nor 0.0896∗ 0.0398

M2:ARMA(1,1)-ARCH(1)-tν2 0.0923∗ 0.0313

M3:ARMA(1,1)-ARCH(1)-tν3(µ,σ) 0.0796 0.0906

Values of the test statistic and p-values for the Kolmogorov-Smirnov test of the hypothe-

sis of i.i.d.U(0,1) of the probability integral transforms from each model. A ‘∗’ indicates

rejection of the null hypothesis at the 5% confidence level.

Table 2: p-values of BDS test, CK test and LM test.

BDS test of H0 : {zt} ∼ i.i.d.

Model p-value

M1:ARMA(1,1)-ARCH(1)-nor 0.167

M2:ARMA(1,1)-ARCH(1)-tν2 0.233

M3:ARMA(1,1)-ARCH(1)-tν3(µ,σ) 0.233

CK test of time reversibility

Model p-value

M1:ARMA(1,1)-ARCH(1)-nor 0.3575

M2:ARMA(1,1)-ARCH(1)-tν2 0.3948

M3:ARMA(1,1)-ARCH(1)-tν3(µ,σ) 0.3252

LM test of no serial correlation in (zt − z̄)k, k = 1, ...,4

Series

Model (zt − z̄) (zt − z̄)2 (zt − z̄)3 (zt − z̄)4

M1:ARMA(1,1)-ARCH(1)-nor 0.0003∗ 0.0027∗ 0.0017∗ 0.0002∗

M2:ARMA(1,1)-ARCH(1)-tν2 0.0004∗ 0.0038∗ 0.0025∗ 0.0003∗

M3:ARMA(1,1)-ARCH(1)-tν3(µ,σ) 0.0004∗ 0.0058∗ 0.0011∗ 0.0003∗

p-values for: BDS test of independence implemented using the Matlab routine bds.m of

Ludwig Kanzler (1998); CK test of time reversibility up to 10 lags (setting the user-defined

constant beta equal to 0.5); Breusch-Godfrey LM test of serial correlation up to 10 lags in

the series (zt − z)k, k = 1, ...,4, with test statistic computed as the number of observations

times the (uncentered) R2 from a regression of the series on 10 of its lags. A ‘∗’ indicates

rejection of the null hypothesis at the 5% confidence level.
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Table 3: Test of correct coverage of interval forecasts.

p-value

Model 75% nominal coverage 99% nominal coverage

M1:ARMA(1,1)-ARCH(1)-nor 0.001∗ 0.708

M2:ARMA(1,1)-ARCH(1)-tν2 0.000∗ 0.304

M3:ARMA(1,1)-ARCH(1)-tν3(µ,σ) 0.047∗ 0.304

p-values for test of correct coverage (Kupiec, 1995) of 75% and 99% interval forecasts de-

rived from the three models. A ‘∗’ indicates rejection of the null hypothesis of correct cov-

erage at the 5% confidence level. See footnote 5 for details.

test detects serial correlation in all powers of (zt −z), overturning the conclusion of

the BDS and the CK test (possibly due to low power of the BDS and the CK tests).

From Table 3, we see that Model 1 fails the test of correct coverage for the 75%

interval forecast, while it does not fail the test for the 99% interval forecast, at 5%

confidence level.

Overall, Model 1 fails on all counts, poorly capturing the dynamics of inflation

and assuming a functional form which appears to be misspecified.

4.3.2 Model 2: Student’s t disturbances

As in the case of Model 1, Table 1 shows that the KS test rejects the null of i.d.

U(0,1) of the z’s derived from the model, at the 5% confidence level. The analysis

of the histogram also suggests that the assumption of standard t disturbances does

not achieve significant improvements relative to the assumption of normality. The

appearance of the p.d.f. plot for Model 2 is very similar to that for Model 1, with

some of the bins in the histogram falling outside the 95% confidence interval.

The results of the test for independence also mirror those for Model 1: the BDS

and the CK test fail to reject the hypothesis of independence, while the LM test

finds serial correlation in the first four powers of (zt −z).

From the perspective of interval forecast performance, the 75% interval fore-

casts from Model 2 fail the test of correct coverage, whereas the 99% interval fore-

cast has correct coverage, as can be seen in Table 3.

Overall, Model 2 seems not to improve on the performance of Model 1, leading

to the conclusion that the standard t-distributional assumption appears overall to

be inadequate.

12



4.3.3 Model 3: Scaled and shifted t disturbances

Unlike the case of the previous two models, the KS test fails to reject the null hy-

pothesis of i.d. U(0,1) for the sequence of probability integral transforms derived

from Model 3, at the 5% confidence level. The apparent superiority of Model 3 over

the normal and the standard t is further confirmed by an analysis of the histogram

plot in Figure 2, which displays all but one bin falling within the 95% confidence

bounds. Thus the probability integral transforms of the density forecasts generated

by Model 3 pass most tests of the U(0,1) hypothesis.

Further, the results in Table 3 suggest that the 99% interval forecasts from Model

3 display correct coverage, and for the 75% interval the hypothesis of correct cover-

age is rejected only marginally, with p-value equal to 0.047 (in contrast to p-values

equal to 0.001 and 0.000 for Models 1 and 2).

However, the results for the tests of independence are analogous to those for the

previous two models: although the BDS and CK tests fail to reject the hypothesis

of independence, the LM test lead to rejection of the null hypothesis.

In conclusion, density forecasts obtained under the assumption of scaled and

shifted t disturbances appear to provide the best approximation for the true density

of inflation over the sample considered in the paper. This suggests that the scaled

and shifted t-distribution constitutes an improvement over the more common as-

sumptions of normality or standard t-distribution, which generate forecasts that

fail all evaluation tests. Nevertheless, all three models apparently fail to adequately

capture the dynamics of inflation, as suggested by the rejection of the hypothesis

of independence for the probability integral transforms implied by the model. A

possible explanation for this failure could be the fact that we kept the specification

of the conditional mean and variance fixed throughout the out-of-sample period,

while in practice the dynamics of inflation may have changed substantially over

time, making the ARMA(1,1)-ARCH(1) model a poor approximation for the data-

generating process.6

5 An Application to Option Pricing

In this section we illustrate the flexibility of mixtures of scaled and shifted densi-

ties and the usefulness of having closed form expressions for the cdf and higher

antiderivatives of these densities.

6Given the extent of our specification search, it would not be feasible to conduct a new search for

each of the 240 out-of-sample forecast periods.
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Under standard assumptions the price of a European call option at time t is

given by

C t (K) = e−r(T−t)
Z ∞

0
max(0,ST −K) f (ST)dST (16)

where K denotes the strike price, t denotes current date, T the expiration date, r a

risk free discount rate, ST the price of the underlying asset at expiration, and f (·)
the unique risk neutral density of the underlying asset price at expiration. The first

term can be interpreted as a discount factor and the integral is just the expected pay-

off under the risk neutral probability. For background see e.g. Lamberton and Lapeyre

(1996). It is well known in the literature that this risk neutral density can be esti-

mated by estimating the option price function C t and then differentiating twice

(Breeden and Litzenberger, 1978):

f (ST) =
d2

dK2er(T−t)
C t (K)

∣

∣

∣

∣

∣

K=ST

(17)

Specifications for f (·) in the literature range from parametric (Melick and Thomas,

1997) and density functionals (Abadir and Rockinger, 2003) to fully nonparametric

estimators (Aït-Sahalia and Lo, 1998).

The goal in this section is to derive a closed form expression for the call option

price in equation (16) where we assume the risk neutral density to be one of our

proposed mixture densities. Once we have a closed form expression, we can then

readily estimate the free parameters using suitable nonlinear econometric methods.

We follow Abadir and Rockinger (2003) in extracting risk neutral densities for spe-

cific day/maturity combinations which yields a model with one endogenous and

one exogenous variable.

Integrating (16) by parts we find that the option price is the integral of the sur-

vival function from K to ∞. Solving this integral we find that the call option price

can be obtained from

C t (K) = e−r(T−t)D−1F (x)
∣

∣

∣

x=K
. (18)

Exploiting the linearity of our mixtures we can thus write the call option price as a

convex combination of second antiderivatives of the scaled and shifted t-densities:

c(K;ν,µ,σ,β) =
q

∑
j=1

β jD
−2tν j ,µj ,σ j (x)

∣

∣

∣

∣

∣

x=K

, (19)

where an expression for the second antiderivative of the scaled and shifted t, tν j ,µj ,σ j ,

is given in Theorem 1. This option price can now be approximated using nonlinear

least squares estimation by solving

min
ν,µ,σ,β

q

∑
j=1

(

er(T−t)
C t (K)−c(K;ν,µ,σ,β)

)2
.

14



Table 4: Estimation Results for one unrestricted scaled and shifted t kernel.

Maturity 46 58 98 176

Date 930503 931020 930611 930923

µ 447.522 469.363 456.649 468.274

σ 1.128 1.043 1.187 1.116

ν 2.15 2.13 2.09 2.05

Observations 15 20 17 24

R2 0.997 0.998 0.996 0.996

R̄2 0.997 0.998 0.996 0.995

BIC -5.272 12.297 5.058 39.867

Because the approximation is, under regularity conditions, consistent in Sobolev

norm (see e.g. Gallant and White (1992)), we can approximate the derivatives of

C t (K) with those of Ĉ t (K) = e−r(T−t)c(K; ν̂, µ̂, σ̂, β̂).

To illustrate the usefulness of our method, we use the data described in Aït-Sahalia and Lo

(1998) on European options for 1993. The density functionals of Abadir and Rockinger

(2003) are based on confluent hypergeometric functions and constitute a natural

and ambitious benchmark to which to compare our densities. For this reason we

pick exactly the same dates and maturities as they do.

Estimation results are reported in Tables 4– 6. Our mixtures of two scaled and

shifted t’s obtain a fit comparable to the density functionals of Abadir and Rockinger

(2003) while estimating the same number of parameters (seven) as do their density

functionals. Our results are strongly superior to those based on a lognormal den-

sity.

Aït-Sahalia and Lo (1998) have argued that estimated risk neutral densities ex-

hibit strong kurtosis. Based on our results of Sections 2 and 3, we therefore expect

the mixture approach to perform well in this application. When they exist, the

mean and the central second to fourth moments of the mixture distribution are

given by:

µ0 ≡
Z ∞

−∞
xψ(x)dx =

q

∑
j=1

β jµj

Z ∞

−∞
(x−µ0)

2 ψ(x)dx =
q

∑
j=1

β j

{

σ2
j ν j

ν j −2
+(µj −µ0)

2

}

Z ∞

−∞
(x−µ0)

3 ψ(x)dx =
q

∑
j=1

β j(µj −µ0)

{

3σ2
j ν j

ν j −2
+(µj −µ0)

2

}
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Table 5: Estimation Results for optimal mixture of scaled and shifted t kernels.

Maturity 46 58 98 176

Date 930503 931020 930611 930923

β1 0.47116 0.87635 0.48122 0.47826

β2 0.52884 0.12365 0.51878 0.52174

µ1 455.71195 463.88917 439.02152 467.40523

µ2 436.74045 -180.07235 465.97645 427.68524

σ1 1.05161 0.71091 1.13348 1.17359

σ2 1.09967 0.84172 1.08543 0.61103

ν1 2.27139 1.11081 2.06186 2.00751

ν2 2.16015 2.40935 21.94908 1.04186

Observations 15 20 17 24

R2 0.99968 0.99982 0.99959 0.99989

R̄2 0.99943 0.99973 0.99934 0.99985

BIC -25.45502 -20.35048 -22.00398 -36.21021

Table 6: Estimation Results for Alternative models.

Maturity 46 58 98

Date 930503 931020 930611

Abadir-Rockinger Density Functionals

R2 0.999922 0.999911 0.999661

R̄2 0.999864 0.999857 0.999504

Hermite

R2 0.997214 0.984918 0.993403

R̄2 0.996750 0.982764 0.992627

Jumps

R2 0.997926 0.991013 0.995244

R̄2 0.997580 0.989729 0.994685

Mixtures

R2 0.998267 0.990682 0.996039

R̄2 0.997573 0.987577 0.994983

Lognormal Density

R2 = R̄2 0.951508 0.928570 0.980671

These statistics are taken from Abadir and Rockinger (2003).
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Z ∞

−∞
(x−µ0)

4 ψ(x)dx =
q

∑
j=1

β j

{

3σ4
j ν2

j

8−6ν j + ν2
j

+
6σ2

j ν j (µj −µ0)

ν j −2
+(µj −µ0)

4

}

Our estimation results indicate that not even the second moment exists (cf. Table 5[ν j ]).

In terms of quality of fit the mixture of scaled and shifted t-distributions is com-

parable to the density functionals of Abadir and Rockinger (2003) where the R̄2 is

higher in the fourth decimal. Our mixture of scaled and shifted t densities clearly

outperforms all other methods reported in Abadir and Rockinger (2003) as can be

seen from Table 6.

6 Conclusion

We explore convenient analytic properties of mixtures of scaled and shifted t-distributions

that make these well suited for applications to the analysis of economic and finan-

cial time series. Two particularly appealing features of this family are its flexibility

and the fact that it possesses analytically convenient expressions for its antideriva-

tives. We illustrate the usefulness of such features in applications to inflation den-

sity forecasting and to option pricing. In the first application, we show that density

forecasts of inflation obtained using a scaled and shifted t-distribution are more

accurate than forecasts that use the normal or the standard t-distribution. This ap-

plication makes use of the techniques for density forecast evaluation proposed by

Diebold et. al (1998), which rely on computation of the cdf, thus highlighting the

desirability of having convenient expressions for the cdf in such cases. The sec-

ond application replicates results of Abadir and Rockinger (2003), who proposed

a flexible family of distributions and illustrated its usefulness in an application to

option-pricing. We show that the use of our mixture of distributions allows us to

obtain comparably good results, while affording analytical tractability and ease of

implementation. These results suggest that models based on mixtures of scaled

and shifted t-distributions have a useful role to play in econometrics, given their

convenience, generality, and flexibility.
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Appendix A Proofs

PROOF of Proposition 1

To establish our result, we take ν > 0. Consider the general case

f (t) = (1+ λt2)−b.

with

λ =
1

σ2ν

b =
ν+1

2
.

By symmetry and definition of the normalization factor we have

κν,σ

2
=

Z 0

−∞
(1+ λt2)−bdt ,

so that for x < 0 we can write

F(x) =
κν,σ

2
−

Z x

0
(1+ λt2)−bdt ,

and for x > 0 we can write

F(x) =
κν,σ

2
+

Z x

0
(1+ λt2)−bdt .

To evaluate the integral, substitute (1−u) = (1+ λt2)−1. Then

t = λ− 1
2 u

1
2 (1−u)−

1
2

dt =
1
2

λ− 1
2 u−

1
2 (1−u)−

3
2 du.

After this substitution the integral becomes:

Z x

0
(1+ λt2)−bdt =

1

2
√

λ

Z
λx2

1+λx2

0
(1−u)b−3/2u−1/2du .

This has the form of an incomplete beta integral which can be expressed as a hyper-

geometric function (see Erdelyi, Magnus, Oberhettinger and Tricomi, eds (1953), sec-

tion 2.5.3), and we obtain

Z x

0
(1+ λt2)−bdt =

1√
λ

(

λx2

1+ λx2

)1/2

2F1

(

1
2
,
3
2
−b;

3
2

;
λx2

1+ λx2

)

.

We can now write F(x) as

F(x) =
κν,σ

2
+ sign(x)

1√
λ

(

λx2

1+ λx2

)1/2

2F1

(

1
2
,
3
2
−b;

3
2

;
λx2

1+ λx2

)

.

18



Substituting out b and λ we obtain

F(x) =
κν,σ

2
+

x
√

(1+ x2

σ2ν)
2F1

(

1
2
,1− ν

2
;
3
2

;
x2

σ2ν+x2

)

. �

Normalizing by κν,σ now gives the desired result.

PROOF of Theorem 1

Multiplying with κν,σ and applying Euler’s transformation (Snow (1952), equation

II(2)) yields:

κν,σD−1tν,σ(x) =
κν,σ

2
+x 2F1

(

1
2
,

ν+1
2

;
3
2

;− x2

σ2ν

)

.

Direct integration gives

κλ,ζD−2tν(x) =
xκλ,ζ

2
− 1

2λ
(ν−1

2 −1
) 2F1

(−1
2

,
ν−1

2
−1;

1
2

;−λx2
)

,

and reapplying Euler’s transformation gives

D−2tν(x) =
x
2

+

ν
√

(

1+ x2

σ2ν

)

(ν−1)κν,σ
2F1

(−1
2

,1− ν
2

;
1
2

;
x2

x2 + σ2ν

)

. �

PROOF of Theorem 2

Theorem 3.1 of Gallant and White (1992) delivers the conclusion if

ψλ(x,θ) =
q

∑
j=1

β jtν(x̃
Tγ j) (20)

is ℓ-finite. Due to the finitely additive nature of Equation 20 the result is not vacu-

ous if tν is ℓ-finite for some ℓ. From the continuity of tν and κλ < ∞ we have that tν is

ℓ-finite for ℓ = 0. We proceed to verify that tν is also ℓ-finite for ℓ < ν−1. Omitting

the normalizing factor κλ for clarity, we have the following:

1. Some algebra gives Dℓtν (x) = pℓ (x)
(

1+ x2

ν

)
ν−1

2 −ℓ
where pℓ(x) is a polynomial

in x of degree ℓ. This is a continuous function in x for all ν and ℓ.
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2.
R ∞
−∞

∣

∣Dℓtν (x)
∣

∣dx< ∞ follows from

Z ∞

−∞

∣

∣Dℓtν(x)
∣

∣dx =

Z ∞

−∞

∣

∣

∣

∣

∣

pℓ(x)

(

1+
x2

ν

)

ν−1
2 −ℓ

∣

∣

∣

∣

∣

dx

≤
Z ∞

−∞
|pℓ(x)|

(

1+
x2

ν

)

ν−1
2

dx

≤
ℓ

∑
j=0

Z ∞

−∞

∣

∣p jℓ(x)
∣

∣

(

1+
x2

ν

)

ν−1
2

dx,

where p jℓ(x) is a monomial in x of order j ≤ ℓ. As
Z ∞

−∞
|x|ℓ tν(x)dx< ∞

for ℓ < ν−1, the result follows. �

PROOF of Corollary 1

By definition

Z u

l
ψλ (x,θ)dxi =

q

∑
j=1

β j

Z u

l
tν,σ

(

x̃Tγ j
)

dxi .

Let us define

x := x̃T γ

ai j (a,x(i),γi j ) = aγi j +
r+1

∑
k=1,k6=i

x̃kγk j

ui j := ai j (u,x(i),γi j )

l i j := ai j (l ,x(i),γi j )

Tν,σ(ai j (a,x(i),γi j )) := D−ei tν,σ(x),

which allows us to write

Z u

l
tν,σ

(

xTγ
)

dxi =
1

κν,σ

Z u

l

(

(x̃Tγ)2

σ2ν
+1

)− ν+1
2

dxi

=
1

βiκν,σ

Z ui

li

(

x2

σ2ν
+1

)− ν+1
2

dx.

Defining

Ψλ(x(i);a;θ) =
q

∑
j=1

β j ·Tν,σ(ai j (a,x(i),γi j )) ,

we may consequently write the desired integral as

Z u

l
ψλ(x,θ)dxi =

q

∑
j=1

β j
[

Ψ(x(i);ui j ;θ)−Ψ(x(i); l i j ;θ)
]

. �
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PROOF of Theorem 3

Theorems 3.1, 3.2 and 3.3 of Gallant and White (1992) give sufficient conditions

for uniform convergence of function approximators in Sobolev spaces. Single hid-

den layer feedforward neural networks given by (7) are sufficient for this purpose

if the activation function g is ℓ-finite. This is shown in Theorem 2 for tν,σ. Since

the ℓ-finiteness of any non-negative function implies the (ℓ+1)-finiteness of its an-

tiderivative, the result follows for Tν,σ. �

PROOF of Corollary 2

This follows directly from Corollary 1 by substituting the functions from Theorem 1.�

PROOF of Corollary 3

This result follows from Theorem 2 and Theorem 3 by applying the recursive ℓ-

finiteness argument given in the proof of Theorem 3 one more time. �

Appendix B Data Description

Data for the inflation application is the monthly consumer price index, all items,

not seasonally adjusted. It is freely available from

http://research.stlouisfed.org/fred2/series/CPIAUCSL/downloaddata . We com-

puted the inflation rate as the 12th log difference of the CPI series.

We obtained the data for the option pricing application from Michael Rockinger,

to whom we are most grateful. The data are carefully described in Aït-Sahalia and Lo

(1998).
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Appendix C Figures

Figure 1: Recursive estimates of ν̂2 and ν̂3 for the out-of-sample period.
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sample period 1/1986 – 12/2006.
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Figure 2: Histograms of probability integral transforms zt
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From top to bottom, the three models are M1 : ARMA(1,1) − ARCH(1)−normal; M2 :

ARMA(1,1)−ARCH(1)− tν2 and M3 : ARMA(1,1)−ARCH(1)− tν3(µ,σ). The dashed lines

indicate 95% confidence intervals computed under the hypothesis that zt ∼ i.i.d.U(0,1).

See text for details.
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Figure 3: Out of Sample Inflation Forecasts
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This figure plots the realizations of inflation over the out-of-sample period together with

the corresponding 75% (top panel) and 99% (bottom panel) interval forecasts implied by

the three models described in Section 4.1.
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Figure 4: Actual and fitted option prices, scaled and shifted t.
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Call prices for the mixture density estimator for various times-to-maturity as a function of

the option’s underlying asset price.

Figure 5: Estimated Risk Neutral Densities, scaled and shifted t.
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These estimates of the risk neutral densities are derived from the mixture of densities esti-

mator. The second derivative of the call pricing function is evaluated at ST and we plot the

function f (ST) for day/maturity combinations chosen by Abadir and Rockinger (2003).
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