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This paper was proposed by an article by A.Rapoport [71],
wilere a new model of coalition formatiocn znd =
corresponding payoff distribution is desaribed.

The jodel i1s treated in detail, whereby the soluitions
are compared to the Shapley-valuz, and the influence
of indifferent players and dummy players is invest

ig
The model is 2xtended to gzmes with sidepayments and
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that the values of the geame Lo the
so apportioned zameng the players
his average contribution to a cosz
an zdditional member.
Starting from the definition of ¢
suggests z game in extensive form
rules [01:
1. The playsr Lo make the firs
nim in the growing coalitio
2. This player invites another
join him,
2. The player so invited can 2
U, If he accepis a ccalition o
The sezcnd player, then, se
partner frecm the remaining
5. If the player invited to jo
who invited him selects anc
and so on.
£, lo invitation from the same
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Z-person games and concludes “hat the two solutions concepts
coincide for 3Z-person games.

Rapoport expected the soluticns to he different

for games with more than 2 players. Morecver Rapcport

raises some questions concerning the difference of

expected value and Shapley-vzlue.

In the first chapter we do a more formal apprecach in order

Lo get some more insight in games in extensive form. We start
with Z-person games and give z formzal reason for :he equality
of expected value and Shapley value.

We %then investigate Y-person games where zlready some ty
features of n-person games in extensive form can be seen.
For one special case of n-person games it is possible to
give an explicit formula for the probability of ‘
cozlition formation. The general n-person

extensive game reveals some typical features influencing

the difference of expected payoff and Shapley-value.

Furthermeore we have answered the question how

dummy players can influence the outcome of the game
satisfactory. Some examples of 5-and S-person games illustrate
our results. We also give a reason why the expected value of

a T-person game may not be computed easily, even by

a ccomputer.

After the mentioned investigations we were zble to znswer

the questions raisad by Rapoport in his article[9].

(@8]



1. Expected value and Shapley-valus

1.1. Definitions [2]

Definition 1.: For an n-person game let MN={1,2,...,n}
be the set of players. A&ny nonempty subset of Y 1is
called a2 ccalition.

Definiticon 2.: By the characteristic funection of an

n-person game we mean a real-valued function, v,

defined on the subsets of N, TP():

v: PO —sR

satisfying the conditions:
2.1 v(gY = 0
2.2: v(SuT)2v(S) + v(T) if SAT = ¢ .

v(8) is the zmount of utility that the members of C

can obtain frem the game.

Frequently the [0,1]-normalization of a characteristic

function is used, that is:

‘ v: P(M)—1[0,1] satisfying
vig)y = 0 znd
v(H) = 1 .

Dzfinitions 3.: By an n-person game in characteristic

function v,

AT

n
function form is meant a real-vzlue
defined on the subsets of I, satisf

conditions 2.1 and 2.2 .
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Pefinition 4.: A\ game is said %o be constant sum,
if, for a1l ce¥,
v(S) + v(i=3) = v()

Celinition 5.: An imputation for the n-person game,
s o)

ff vector x = (x_,....x ) satisfyina
17 n =1

(L z::xi = v(1)

iel
(1i) X, 2 v({ih for 211 i in ¥ .
Cefinition 5.: A carrier for 2 game v is 2
coalition, T, such that, for any 3,
v{3) = v(SAT) .

leuristically, Definition 5. states that any player

Vi,

who does not belong to a carrier is a dummy, that is,

czn contribute nothing to any ccalition.

Cefinition 7.: Let v be an n-person game, and let

T be any permutaticn of the set M. Then, by

Tv, we mezn the game u such that, for any

o s . .
~o= (11’12,.."15)

’ . . . - «
U\{I(l“),-ﬂ-(lz),o.., Tr(ls)}) = V(-—‘)-

Cefinition 7 simply states, that the game Tv is nothin
other than the game v, with the roles of the players
interchanged by the permutation .

“otice, as games are essenti
1t is possible to ¢

or of a number times 2 gzame.

ally real-valuzsd functions,
o}

r mere games,

wi



1.2. The Shapley-value

In his work "A Value fcor n-Person Cames" [121],
L.S.Shapley ccnceptually started from the
von Meumann - Morgenstern theory. He thereby made some
important underlying assumptions:

a) utility is objective and transf{erable

b) gemes are cooperative affairs

¢) games granting a) and b) are adequately

represented by their characteristic function.

Shapley did his value-approach axicmatically. By the

value of a2 game v is meant an n-vector

Plv) = (f1(v),,,,,fn(v)), satisfying

A1: If S is any carrier of £, then

S (v) = v(s)
5

ar

For any permutationil, and i in &

\Pmi)(ﬂ'v) z \f’i(v) .

A3: If u and v are any games,

?i(u+v) =‘?i(u) + ?i(v) .

e
(NS ]

These are Chapley's axioms.

It is a remarkable fact that these axioms dectermine
a unique value, &, for all games. For the proof

see [2] pp.18EC.

The following formula gives the Chapley-velue

explicitely:
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S; (V) = E (£=1)1(n=t)1/nt[v(T) =v(T={i}]

ieT
where t=1T] and n=|Y}.

The Chapley-value may be given the following
heuristic interpretation:

Suppose the zim of the game is to form the
all-player coalition. Suppose, players arrive
randomly, Jjecin the coalition that has formed
until now, and get their marginal contribution
to that cozlition, that is v(T) - v(T-{i}l).
Under this scheme every order of coalition
formation is possible and occurs with equal
probability 1/n!. The Shapley-value assigns to
each player i his expected value under this

randomization scheme.

In the sequel z coalition in brackets [S] denotes

an ordered coalition.

1.3. Probability of coalition formation zand

expected value in 3-person games

Let 5={1,2,3} be the set of players.

Let Pz(i) dencte the probability that player i for i=1,2,3
is chosen at random to start the game. Obviously p (i)=1/2.
' z

[ - . . »
Let p(] r;7 ) denote the probability that player i mak
bid to piayer J. If player i is indifferent with respe



whizh player will enter the ccalition in the next place he
will choose th2 next player a2t randem. We will write
n o2 A [ T 3 Tpar “ha
2 (3..,) instead of pl{i., ). It 1is clear that
z Y01l “eLid
P (3 Y=1/2 for i=1,2,Z.
z (i)
Let P+(Jri]) and p (3,11) denote the prcbebilities
- L1l . .
that playsr j accepts or refuses to join coalition [il
respectively. Of course
P (3 )y + P_ (3 Yy = 1.
“[i] (1]

Let us assume that if players j and k for j,k in {1,2,2} -{i}
1

both accept (refuse) to join the coalition [i] for i=1,2,32,
N
when B (3pyqp) = B, (kpyp)
Suppose now player 1 starts the game. Suppose player 2
prafers 2ntering the coaliticn in the third rather than in
the second place, that is

v(122) - v(12) > v(132) and therefore

{122) = v(12) > v(12).

This states, also player 2 prefers entering the cozlition
in the third rather than in the second place.
And therefore p (2

Lat [3] be any sequsnce of players in the 21l player cozlition.
Let P([S1) denote the probability that the sequence [3] will
form. Then the expected value [ for player 1 is defined

ol



Consider as an example the sequence S=[1221, The probzability

-

for the sequence £ is

P(l122D)

= 1/3{p(2 13 )p+(2t12)
+ (1=-p(2 - )
+ p [1})(1 p+(2[1],} .
If moreover p(i[T}) = pz(i[1}) =1/2 for i=22,2 then

P([123 =
(€ . ]) ' Pz(1){Pz(2[1])P+(2[13)
MR SRR IS ISR TR

=1/3 172 1= 16 .
SSCITE R ISR Y

To be clear by Ez we denote the expected value where

(i = i £ 3 3 \j .1 3 ‘.1‘— i .
p [j])'pz(l[j]) for j in N, i in N-{i}
For random choices 92(1{4]) the value P([1221) shows
: J

that the probability that a coalition forms does not
depend on that cozlition. It only depends on the chance
moves which are equal for all players. Therefore we note:
the following result:
If in a Z-person game each player maXkes his bids with
2qual probability each sequence of players in the
all-player coalition is equally likely.

llotice, the outcome of the gome does not depend on plzayers'
cecision whether to join the coszlition or not.
-

n the random case we get for the expected value E
z

)



f pleyer 1:
(1Y = ov(1)1/3 + Dv(21)+v(31)] 1/5
L

+ [v(123)-v(22)] 1/3

which is exactly the Shapley-value for a Z-person game.

it} O

So we have found z formal proof for Rapoport's result:
For every 23-person game the Shapley value equals the
u

expected value of the corresponding extensive form game.

In the general case where players do not make their bids at

random, that is P<1[33>;pz(irj3)=1/2 for j in N, i in N-{i}
the expected value E for player 1 has the form:

Z(1)

12) 173001
v(12) 1/30p (270P,. (T2

+ (1-p(1[2]))(1-p+(1£2]))]

+ v(13) 1/3£p(1[3])p+(1[3])

+ (1=pC1 0y (1-p (175 9))]

+ [v(123)-v(23)]1/3{(1-p(1[23))p+(1[2})

+ (T=-p+ (1 __ yyp(1

[ )

AV

(21

+ (=0 R () + (1-p (105100000592}

[ .}

using the formula P({3]) for the probability of coalition IZ1

and assuming tha% the payoff of 1l-player coalitions
equals zero.



el n 1 - B Fal -3 v 2 ~
L., Probability of coalition formation and
expected value in Y-person games

?z(i) that player i in ¥ is chosen at random to start
the geame squals 1/M.

C Let PG(JF:]) cdenote the probability that pleyer i
makes a bid %o player j wherc no player befcre play 3
has becen invited by player 1.
~ : . ' Ry )
Lorrespondingly p1(3[i]> denotes the probability that

& player i invites player j where already cone player has
been invited by player 1i.
fgain for the random case we will write ‘z(j[ J) and )

o) 1
) 2 (Jrlﬁ) correspondingly., It is clear that
L 4 e -

(: _a . - o~ . . | S s 5 e {4 .
N 920 [i]>"/3 and pzfjﬁij)'1/2 for i in h}cﬂd S in HN-{i}.

in the case of °, (jri]) player i chooses betwsen two
1 -

players which gives the value 1/2. 0Of course there is no
P because zt this stage of the Ud-person game there is only.
one player left who must join the coalition corresponding
0 the rules of the zzame.

WSt : s Do .
ore general P.(Jro4) denotes the probability with which
[ .
the last player of cocalition {sequence) [S] makes 2 bid to
- playe” J where already r players have rejected the

’.Jc
o}
<
._l
cr
[0
(o
l,.‘
O
:S
v
(]
a1
-3
,_l
it
]
n
b

e
h the range of r going
D

es the number of



or a 4Y-person game there exists one more velue

po<:[Q]> where |C1=2 and § in Y-S. If the only

possible value for r=20 we simply write'p(jtcj),
-~

If player J is chosen at random

PZ(J[S])-1/2 for | 21=2 and j in N=-3.

Again by p.(J, and p_(} g7) we denote the
in

'S
probabilities N-S accepts or

declines the invitation of the last player of coszlition [Z].

]
—

Of course p+(j[S])+p_(j[S])
Suppose v{12M)=v(12) > v(1l)

therefore v{(124)-v(14) > v(13) .

This states that if player 1 starts the game players 2 and 4
have competing interests in the third place. But this does
not say anything about the interest of players 2 and 23 cr
players 2 and % in the second and third place.

One can only be sure that if there are 2 players left Qho
have not yet joined the coalition, then these two players
will be competing either in the third or in the forth place.
For example if v(1234)-v(123)>v(124)-v(12) then
v(1234)-v(124)>v{122)=-v(12), that is, both players 2 and U
prefer entering the coalition in the forth place.

In other words: If in a Y-person game IS1=2, then

p+(j[S]) and therefore

()

n

[}
~r

i

p+(i[s]) + p‘(j[S]) = 1 for i,j in N-S .

Let P(i[S ) denote the probability that player i
joins coafition {8] with £ in N, 1 in N-=S.

The probzbility that coalition [1234] forms
P([1234]) = 2 )

where pz(1)=1/N .

12



o

" £5 player 1 z

Q,(2£13)-p+(2[1])

~
—3
(W]
A
!

PR ey e (2 ) e (2
n . . )
TR e Gy e (2 D R 2y )
~ i - 14
TRy B Gy ey iy oGy )

TR e Gy Gy a3y )

P+(2[1]){p°(2[1])+po(3[13)-9_(3[1])'p1(2[13)
4 : :
TR e Gy e 2y )

2 . ] !
+ p"(“(1]) p_(4[13){g3(3[1])p1(”[1])+po(”[1])p1(3[13)}

It can be seen easily that in 2z Y4-person game the probability
that a2 player jcins 2 2=-person cozlition in 2 Y-person game is
equal the probability that a player in a 2-person gzme

joins a l1-person coaliticn. Therefore

P(3 } L
( (1237 = P29 3459

* pwmzl)'p-“’mz])

s the starting player has 2 possibilities o
choose the next play

[0}

r

P0(2[1}) + pO(B[‘l]) + po(l%“:') = 1,

and for the same reason

: p1(i[1]) + pT(j[13) = 1 for i,J in N-{1}, i4j



- 1l

p<i[S]> + p(jtsj) = 1 for i,j in ¥=S, 1Si=2 , 1#] .

Assuming that 1-player coalitions get a zero payoff

the expected value E for player 1 is:

v(12){P([2134]) + P([2143])}

v(21){P([3124]) + P([3182])}

v(81){P([8122]) + P ([¥122])

+ [v(231)-v(22)2(P([2214]) + P([32714])}

+ [v(281)-v(28)1{P([2412]) + P(L[¥2123])}

+ [v(381)=v(28)I{P([3812]) + P(L4312])}

+ [v(2341)-v(234)1{P([22411) + P([2431]) ~ P(L3281])

+ P(L34211) + P(L4321]) + P([222101)1].

E(1)

+

+



>

™

Y-person games with random choices

Yow suppose that players choose their successors at random.
Then

P(2[1]) =z p+(2[1}){1/3+(1/3)(1/Z)P-(3 )

[11

1 . 4
+ (1/3)0172). p_¢( [13)}

+ (1/3)‘P—(3[1])-p_

(4 )

(1]

= p+(:[13){1/3 + 1/3!(p_(3[1]) + p_(4[1])}

+ (2!/3!)[3_(3[1])';3_(11[13)
L 4
= 2 31y p.(d "ll '
Pr(2. 00173 + 1/,!§_Qp-(1£1333 + 1/3 i_g-(l£13)

and

PC3[123) = 1/2[p+(3t121) + p_(u[TZJ) 1=1/72 .

The probability that coalition [1234] forms is

P(L12347)

Dz(1).P(2£1].P(3[12]).1

(1/743P (2
| [13)(1/2)

172 P(2

11’
stating that in a2 dY4-person game with random choices the
probability that a certain coalition forms only depends
on the player in the second position. Therefore it is
clear that P([1234]) = P([1242]) .

Thus we get for the expected value of player 1:



v(21) 2P ([2124])
+ v(31) 2p([21241)
+ v(u41) 22 (fu12:=21)
s [v(221)=v(23)1(P([2314]) + P([3214]))
s [v(281)=v(24)1{P([2812]) + 2([2212]))
s [v(381)=v(38)1(P([2812]) + P([43121))
v [v(D)=v(234)T{P([22811) + P([2431])

+ PCL32181) + P([34217])

+ P([4221]) + P(LU3211)}
=Y tu(s) - v(E=11DT PIISTUN-5)

C\Y

(1)

1esS

The probability that coalition [123H] forms can also be

written as:

P(L12241)

1/4 2 3 )
/% {py( r1 0173+ 1731 (p- (3, )+ p- ( [11)1

4

+ 21/20-p.(3 ) p_ (4

ek ) 11/2

(1]

= 1/41 p (2 p1) o+ (AN /2) pr(2e ) (pe Y + p_{4_. )

(2
A 11 “[1] (11

+ 1/41 p_(3[1])g_(q )

£1]

This expression shows that the probability for a certain
sequence of playasrs in the great coslition is determined
by the probabilities of acceptance or rejection of the
players, or in other words by the characteristic function
which determines the payoffs pleayers can hepe for in
certain pozitions.

Yotice that therefore in general the probabilities

for different sequences of players in the great

coalition will nct be equal.



licwever gscme restri

cti
+
for j ian M, i in N={j}. In the following table we

£)
‘-—-‘
[

possible combinasions for the values of p (i . )
122,324, '

L)
O
3

N R L A S I R
1 1 1
1 $) C
o 0 e
W W W 0<=wl=1
W 0 Q 0<=w<l=1
0 C W Q<=w<=1
W 1 1 0< w<d=1
1 1 W 0< w1

Table I.1.4.1: probabilities of acceptance p4(i

1=

of player i for i=2,3,

able shows 8 different combinations. Cf course the

e b
first three rows need not be mentioned separztely.

Let Q+(2’3:u)[1 denste the vector of acceptance
probabilities for players 2,3,4% invited by player 1.

For each vector p+(2,3,4)[1] it is possible to

Aamnairh |= N @] . .
compuce ‘(“[11> which determines

234 = P{ 431y = 1/8.2(2
(1234 ) P(l12 ) / (4[1]).

-
-3



The expressions for ?(2r11) are given in “he next table.
S -
2 (2,3,8) o P2,
(W,W,W) 173 C<=w<=1
(w,C,C) 1/3 + w2/ C<=w<=1
(0,0,w) 1/73(1=w) 2<=zwi=1
(wy1, 1) 173 (W) 2< wi=1
(1,1,w) 1/3+1/53(1-w) 0<K w&=1
table I.1.4,.2: Probabilities P(2£11) that player 2
joins ccalition [1] for the different
1 !
values of p+(2,,,4)[1].
lctice the second rcw cof table 1.2.2. For w=1
?<2{1])= 1/3+2/3 = 1, which states that for
P+(2,2,%) . = (1,0,0) player 2 will certainly join

ccalition [f] in the second place. There is no

possibility for players 3 and 4 to join coaliticn [1].
That is P([13241) = P([1342]) = P({1423]) = P([1432]) = Q.
Moreover, notice the first row ¢of the table where

p,. (1

) is equal for 1i=2,2,4. In this special case

the value P(2 ;) is independent of p_ (i 110 for 1=2,2,4,
and therafore the probabilities P(S) for eizch saquence S
in the great coalition are equiprobasble, thus suggesting
that the expacted value migzht be equal the Zhapley value,.
Hotice that in the general case where the vector p+(2,3,u)
has different values. for players 2,2 and 4, P(2[11)

will depend on the acceptance probebilities, whicﬁ states
that for different sequances [J] of players in the

great coaliticns P(I[S]) will have diffarant values.

Y
[
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ity of coalition formation and
c u

ue in n-person games

As in the case of 2- and 4-~persen Zames we dencte hy [31]

o

the ordered ccalition S. P([S]) denotes the grobability

n
that ccalition [3] forms.

probability that player i in ¥-3 accepts

9+(i[33) denotes the
(s], corresponcdingly p_(i

te join ecoalition [Q]).
Moreover s=13| and n=i¥l. ~
For the generzl case suppose MN={1,2,2, ... ,n}.
Suppose all choices are made zt random.

Then the probability P(kf” ) that player k

joins coalition [8] cazn b

—d

written in the following way:

P(k = 1 - - - ‘s
rsy) = p+(xcsl)[1/(n s) + 1/{(n=-s) (n=-s 1))§éqp_\l[s
14k

J)

+ 1/((n-s)(n-s-1)(n-s—2)). p_<i[5])EéQP-(j[3])

igs
14k iik
J#1i
+ 1/((n-s)(n-s—1)(n-s-2)(n-s-3))§ p‘(i[S])z p°(j[83)
igs 3¢S
1k J#k
i#i
p-{m o)
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Suppose

m=1
i m
Bm ] wE (1-w)" + (1-w) = 1 <does hold
) i=0

If m becomes m+1 we get

m
i m+1
n - - -
oot © JE 0(1 W) o+ (1=w) .
i=

This expression can 2lsc be written as

M-

5 - wg =)™+ w(1=0™ + (120" = w(1=)™
m+ 1 3
1=

by our assumption this term obsiously equals 1.

We have thus shown:

If in an n-person game in extensive form a2t some
stage of the game 211 players behave equally, any
player in N-3 may enter coaliticn [S] in place s+1
Wwith equal probability.

Therefore: If at every stage of the game, 23ll players
behave equally, then every order of coalition
formation is pcssible and equally likely.

But this is exactly the assumption that is made
by the solution concept of the Shapley-value.
We notice the following result for n-person
games that are played corresponding to the rules
proposed by A.Rapoport:
If in an n-perscn game at every stage of the
game zll players behave.equally, then the

expected value equals the Zhapley-value.



Some exemples (section 2.) will show tha
situations where all players behave equally,
ocecur easily.

Interpretation

The assumption that in a certain game-situation all players
behave equally with respect to invitations is certainly
true for symmetric games. But notice that 2 game need

not necessarily be symmetric for the players to behave

all equally. As an example consider game (%) of the

A-percson games in section 3.4,

1.6. Cn the equiprobzbility of orders of coalitions

Consider once more the expression for the expected
value E(1) in a four-person game. For the expected
value to be equal the Shapley value, P(S) nced not
necessarily be equal for all sequences £ in the great
¢oalition. Assuming that the probability for a ceoalition &£
where player 1 is in the second place equals 1/2%,
thare seems to be some kind of cyclic relation
hetween the coalitions where player 1 is in the

third or fourth place. For example, esquality of
expected value and Shapiey-valuc is assured

by P([2214]) = P([nz12]) = P([2812])

or eguivalently

i

A0}
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which may be read as

probability of players (2 behind 2) equals

(2 behind U4) equals (4 behind 2) .

If in a Y%-person game the cyclic relation is true
for any permutation of players 2,3 and 4 then
expected value and cthapley-value are equal.

we cannot be sure about the relations between the
values P(S) for some coalitions & in an n-person
game. However our considerations suggest that for
the expected valus to be equal the Shapley value
P{[S]) need not necessarily be equal for all
sequences [S] in the great coalition. Or in octher
words, we would expsct equality of expected value
and Shapley-value 2lso in some games where

Pﬁ(i[q]) is not equal for all i in M-S, for some S in V.

Before going on to some examples illustrating the
difference or equality of Shapley-value and
expected value let us do some considerations
concerning dummy players and indifferent players.



2.1. Dummy players

Consider a game &s it was proposed by A.Rapoport in £ol.
Remember one player is chosen to start the game. At
any stage of the game a player makes a bid to another
player. The invited player may accept or decline, Each
time a coalition has formed the last player is payed
his marginal contribution to that coslition. & player i
is called & dummy player if

v(Su{il) = v(38) for all S in XN.
Cur question is: Can a dummy player ecver influence the
outcome of the game? .
Cne might expect that z dummy player by
accepting or declining an invitation could influence

the payoff for other players.

r
()
cr
=

]

'{31,32,...,3'1 } be the set of players.

G(ai)/n! be the payoff for player za,.

[
D
ct

i

Suppose coalition K = [a_,a_,...,a ] has
172 n
formed. Corresponding to the definition a dummy
player d may join the sequence in any place without
changing the payoff C(a )/n! of player a, in X.
i

Add cone dummy player d to the game. Then starting
from the given sequance player d has the following

possibilities to enter coalition X:



m

M

[N
o

1 25 . e 2,
a ¢ 2 o . e a
1 “2 “n
a a. ¢ . . a
1 2 n
a L * . d
1 az °n
a a . e . a d
1 2 n
We get (n+1) possibilities out of one given sequence.
Denote by Gq(ai) the new gain of player a,
r .
if dummy player d is added to the game. Then

C (a.) = Gla, Y(n+1)/(n'{n+1)) = G(a.)/n!
n 1 1 . 1

This shows for general n-person games that cdummy players
dc not have any influence on the outcome of the game.

2.2, Indifferent player

Let ¢ denote some constant real number. »
A player i is called indifferent with respect to
2 coalition S, if
v(S'w{il) = v(S') = ¢ for all £'28 and idS' .

In simple games ¢ equals 1 or 2.

If v(sS'w{il) = v{3') for all coalitions S' then i
is a dummy player.

A player may become indifferent up from =z certain
stage of the game. If for example in a simple game
a2 winning coalition has formed, there is no zzin
left and zll remaining players will be indifferent.

n
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TT] has formed.

ct
H-
(o]
3

Zr think of & gzame where one coalil

Let N-T = {a
~ M a ~y soe e g3 } .
E+17 70427 "n

i

there is only one prospective winner. So al

[

pose
yers not yet in the coalition will be indifferent.
this case the expected value E(a ) for any

a_ in N-T depends on

P([Ta [ h) - P 1 P a v e s 3
£41 Fpan c an]/ ([T1) P( . " )

As all players a_ in {a, 1
i 5+
behave equally we know that
P(a = -t

1/(n-t-2) etec.

herefore, if coalition [T] has formed 211 sequences

n the great coslition are equally likely, that is

he probabilities of coalition formation are independent
of the probsbilities of acceptance of players in MN-T.

In other words, players in N-T do not have the power

to influence the paycf{ of any other player.

More general:

Indifferent plzayers cannct influence the cutcome

of the game.

Think of a game wWwhere a ccalition [T3] has formed. Up
r

g
from this stage the ocne player i who now is
S o

s
players in YN-T-{i} zare not

indifferent. Cuppose
indifferent but want all tc join coalition T next.
T L .
~et a_ be in ¥-T-{1i}.

R o
If coalition [T] has formed the possibilities for
player i to join the ccozlition zre:



o

T 1 13 « + . =
- t+1 n
8 i+« . « a
t+1 n
T a .1 a
t+1 :

a o . a |1

t+1 T

Leaving out player i the payoff G(s ) for player

t+
fpaq s
G(a = T ‘ - > e
t+1) [v( u{at+1}) v(T)YIP(IT 3,1 Fp,o an])
where |{T,a LG, a H = n;1

t+1?
Reintroducing player i to the game

T .
1{"at+1,oc’l,o.an}| = n and

G(

{v([Tia, ,1) = v([Ti1)}P([Tia a_1)

t+1 s o e n

a
t+1) t+1

+

{v([Ta+ 1) - v(ITH12([Ta,
£+ 1 :

e TR an])(n-t-1).

In the sequence [Tiat g ce 2 1 all playeré
+ n :
behave equally after player i1 has joined the cozlition.

In [Ta i +-i.. a1 all players behave eqgually

£+
after player at+1 has joined coalition [TJ], that is

D N
‘({atﬂ”,"l""an}[Ta ]) =

t+

"P({a )

ge17 30T
1

Therefore

the probabilities P([Tia

bel oo anj) and

)
-1



P(a ) znd P(i_) .
c1(T] nd Plin

Frem the formula in section 1.5. and assuming that all
[~

e

players in ¥-T-{i} behave equally and player

accepts an invitation with probability w we get:

101/(n=t) + 1/{{a=-t)(n=-t=1)) (1=w) + 2] + O
1/(n=t) + 1/((n=£)(n=t=1))(1=w)

P(i Y = w(1/{(n=-t)) .

For the gezin of player at G(a ), we get:

J
+1, =177

11}
.

o([T}
- ([;1at+1...an]) +

+ {n=-t-1).P([Ta ; .
t+1lat+2...3n])

as 1 may enter the cozlition after player a_ 1
[V
in any place.

Gl ) = AT PUppy) Plag yheey2 Dippy )

}

-t=1). . 3 i
+ (n=-t=-1).P ([T P(?t+1[T]).P({1,at+2,..,an

)
[Tat+1]

= ([T .P({a }

o
ge17 30 P ey +

n-t-13.P(z
+ (n-t-1).P( t+1[T?]
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P(i ~£=13D
CTE) + (n=-t=1) (at+1[T})

wWw/(n=-t) + (nft-W)(T/(n-t) + 1/({n=£) (n=t=1))(1=w))
w/(n=t) + (n=-t)/(n-t) = 1/{n=%) + (1-w)/{(n=-t) = 1

’

and therefore

G(a 1) = PUITD) . 1/ (n=-t=1)1 |

stating that the payoff of player a_ ; cannot be
+

influenced by an indifferent player?

If there are more than one indifferent player,
apply the described procedure as often as there
are still i

ndifferent players, and the payoff for
some prospective winner remains unchanged.

[

So we have shown:

If there are only interested playars, that is, players

who want to join the coalition in the next step,

indifferent players cannoct influence the payoff

for the prospective winners.

If in a certain situation of the game there zre only

indifferent players and players who do not want ¢t

jein the coalition in the next step, i%t is even

more simple. As for any of the 'non interestad’

players the payoff is zero if he must anter
A

the coalition the outcome does not depend on

the P(k[S]) for all indifferent players k in V-3,

1

a

s}
1
"3

As a dummy player is also an indifferent

e

y
dummy playsrs too cannot influence the t

(9]
D
[e N

b4

[#]

e

value for any playsr in M.



‘s an example consider the game with characteristic
function v(12485) = v{1245) = v{(1225) = 1
and v{S) = 0 octherwiss

Whenever the coalition [124] has formed players S
and 5 are prospective winners. EBut player 2 will
be indifferent as there is no chance for him to
get any positive payoff.

Consider the S-person game:

v(1285) = v(1245) = 1

v(S) = 0 otherwise.

If coalition [124] has formed a possible gzin for
player 5 will be:

G(5) = (v(1245) - v(124))P([124561])

' = P(L124]1) 172

Reintrcducing player 3 to the game results in
G
1(5)

+ (v(12425) - v{1282))P (124281

= PULI2ADIP(5, L, 3 (1/2)2 + P(11281)2(2 550 1/2
= 172 2([121]
/ (C Y (2P (S [12u]) + P(3[12u})))
= 1/2 p((1241){2p. (5 Y173 + 1731 (p_(3 Y+p_ (5
, [124]

[124]

+ (2/3)p_ (3

\

r1207°P-rqayy’

(v(1245) - v(128))(P(L124535]) + °(E12”5”]))

3 b c ~
+ P+(..[12u])(1/J + 1/3!(p_()[12u]) + y_(6[1231)))

1/3)- 5 5
+ (1/2) p-(3£12u])p_(3[1241)}

“{12u])

)
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(1/2)p([1241) .

This example shows that thz indifferent
cannot influence the payoff of player 5.

Until now we have only considered games where all but
the indifferent players behave equally. Now la%t us
consider the more generzl case where some players

want to join the coalition next and some do not.

Let us consider a game with dummy players, interested
and non interested players.

We start with a simple n-perscn zame that has only
interested and non intereskted players, We add one
dummy player to the game and show that the expected

payoff{ for a prospective winner remains unchainged.

Let n be the number of players.
Assume some coalition [T] with |T|=t has formed.

Let {at”,...,an_z,b“b2 } be the players

Let the vector p (a

)

2]
£e17 00213, 59094,0 (T3

Py
<

have the values (1,...,1,0,0), that is, there 2re two

players 51,b2 who dc not want to join coalition [
in place t+1.
Cf course P(b; =0 f i= .

l[T]) 0 for i=1,2
Denote by P1(ai[73) the probability that player 2,
in E-T joins coalition [T] in the n-person game.
Cenote by chai[T]) the corresponding value in
the (n+1)-person game. Then



-
o=

fmq) = 1/(n=-5) + 2/{(n=-t) {n=-t=1)) + 2/((n-%) (n=-t=1){n=-t=-2)).
L

Add one dummy player 1 to the game who accepis an invitation
n

Y
2
with probability w in [0,11. The

3Z(i[T1) = wl1/(ns1=t) + 2/((n+1=t)(n=-£)) + 2/({n+1-t) (n=-t) (n=-t=-132)

The probsbility that any interested player ai joins

coaliticn [T] is

:b(ai[”]) = 1/(n+1=5) + (2+1-w)/((n+1=-t)(n-t))
e 1/((ae =) (n=8) (n=t=1))" (1 (1+1=w) + 1(1+1=w) + (1-w)2)

+ 1/((n+1=8) (n=t) (n=t=1)(n=t=2))* (5 (1-w))

1/(n+1=-t) + 2/((a+1-)(n=t)) + 2/((n+1=-t) (n-£}(n=-t=1))
£ 1/70(n+e1=t) (n=t))(1=w) + H{1=w)/{{n+1-£)(n=t)(n-t=-1))
+ 5(1-w)/((n+t=1)...(n=t=2)) .

Correspondingly denote by G (a ) and G, (a ) the

gain for player ai in the n- pnrscn and (n+1) -person game
respectively.

Denote by at+1 the interested player that joins coalition [T]
in place (t+1). He gets a positive payoff in the n-person
game only if he j

ins T in position (t+1) . Therefore

O

coq ppp) PATDA/G=E=1D)

as all other players are indifferent after player a,
U+
has joined [T1].

In the (n+1)-person game player a ] gets a positve payoff
if he joins [T] in position (t+1).+Then there are (n-t)
possible positions for player i. And player a o1

gets a positive payoff if he joins T in pOSlt*On (£+2)

after player i. Therefore
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- (n=t)P? _([Ta 1) 1/(n=-t)!
2 t+1 z £+ .

* P, UTia, 1)1/ (n=t=1)!

1/(n‘t'1)!{92([Tat+1]) + Py(lTia, D}

t+1

"

n-t=1)1 P ] P
1/(n=-t=-1) (It {( 2(at+ )

10T]

+ P _(1 ).Pz(a

2°7[T] t+1[Ti])

We still need the expression

Pt

5 = 1/(n=t) + 2/((n-t) (n-t=1)) + 2/((n=t)(n=-t=1)(n=-t=2))

10711

We want to show that

G —
1(at+])_‘ Gz(at+1) .

So we have to verify that

P(

1@y’ = P2lBeiry)

* PZ(i[T])'P2(at+1[Ti]) or

1/(n=-t) + 2/((n=t)(n=t=1)) + 2/((n=-t)(n-t=-1)(n=t=2))
= 1/(n+1=-t) + 2/((n+1=t)(n=t)) + 2/((n+1-t)(n=-t) (n=-t=-1))
(T=w)/((n+1=£)(n=£)) + B (1=w)/((n+1-£)(n=-%)(n=-t=1))
5(1=-w)/({n+1-t) (n=-t)(n=-1-£)(n=-2-t))
wl1/(n+1-t) + 2/0(n+1=8) (n=t)) + 2/((n+1-t) (n-t) ((n-t-1))1.
[1/7(n=-t) + 2/({n=-t) (n=-t=1)) + 2/((n=-t)(n=-t=1)(n-t=2))]1]

+ +

+

The terms with w cancel out. Multiplying each side with
the term (n+1-t)(n-%)(n=-t-1)(n=-t=2) we get

(ne1-t)(n=t=1)(n=t=2) + 2(n+1=-t)(n=t=-2) + 2(n+1-t)
(n=t) (n-t=1)(n=-t=2) + 3(n-t-1)(n-t-2) + 5(n-t=2) =+

(S ]



Transfer 2ll terms including varia
tha left-hand-side. Left the ri

of the zcnstant. Then
(n=-t=-1){(n=-t=2)1 + {(n=t=2)(~-n+t+5) =~ U4n + 145 + It =

[¥))

and after some transformations
{n=t=2)4 = U4n + 14 + Mt = 6
which obviously does held.
So we have shown that GT<at+1) = GZ(at+1)7
which states that also if not all pleyers behave
equally, dummy players do not have the power to -

influence the payoff of other players.

-
-
-~

. Examples

' To verify our results let us now consider scme exzamples.

The Shapley-value may be computed by hand even for games
with more than 4 players. The computation of the expected
value mzaKkes some difficulties. So wa let a computer programm
do the job.

In this section we compare the solutions {(expected value and
" Shaplye-value) for S-person and 5S-person games. The

computer did not terminate the computations of a

7-person game in a 2-days-time. The reason for these

long=-time-runs will be given in a later section.

As we consider only simple games we restrict to specify

sqry e

minimal winning coalitions (M4C).
-

Let us denote by £ the vector of the expected values
and by £ the vector of the thapley-values.
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(1
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(5)

2.1. Some S-person games

v(12) = v(13) = v(145) = 1
v(S) = 0 otherwise |
(7710, 4/20,4/30,1/50,1/50)
(7/1C,7/53,7/60,1/20,1/30)

1
]

v(12324) = v(1245) = v(12458) = 1
v(S) =2 otherwise

E = (7/20,1/10,1/10,7/20,1/10)
S = (7/29,1/10,1/10,7/20,1/10)

v(1238) = v(145) = v(245) = 1

v(3S) = 2 otherwise

E = (7/50,7/60,1/50,14/30,17/59)

S = (11/50,11/60,1/20,11/30, 12/60)

v(1234) = v(245) = 1
v(8) = 0 otherwise

E = (1/30,23/59,1/20,23/50,1/5)
S = (1/20,23/59,1/20,23/50,2/15)

v(123) = v(124) = v(124) = v{(145)
v(sS) = 0 otherwise

E = (3/15,1/10,1/1C,7/320,1/30C)

S = (8/15,7/50,7/60,1/5,1/30)

v(122) = v{124) = v(125) = v(3U5) =
v(sS) = 2 otherwise
E = (3/10,3/10,4/30,H/30,H/30)

S = (1/8,1/8,1/5,1/5,1/5)
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v{13) = v(14) = v(1%) = 1

v(S) =2 otherwise

£ = (4/5,1/20,1/29,1/20,1/2C)
(4/5,1/20,1/2C,1/2C,1/20)

(3) v(12) = v(13) =v(148) = v(235) = 1
v(S) = 0 ctherwise
T = (13/292,19/120,19/120,1/60,1/50) 1
S = (9/20,1/5,1/5,1/30,7/50Q0)

(9) v(12) = v(138) = v(135) = v(145) = 1
v(S) = 0

E = (12/20,1/%,1/30,1/30,1/30)

S = ( 12/29,32/20,1/15,1/15,1/15)

ctherwise

(1C) v(12) = v(1345) = v(2485) = v(345) = 1
v(3) = 0 otherwise

(2/19,2/5,1/20,1/8,1/2)

(1/%,1/2,1/12,1/5,1/5)

1

(8]
[9))
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3.2, Commentg_pn the solutions

of S5-person zames

The values for E and S of the investigated S-person games
show that for almost all games EfS. Notice that in some
games [(1),(%),(5),(9)] E and S give equal payoffs to
some players, but differ in the other players.

Notice that for games (2) and (7) £ and S are equal.
Denote by E(i) and S(i) the expected value and the
Shapley-value for player i in N respectively.
Consider as an example game (1) where E(1) = S(1).

If players 2 or 3 start the game player 1 will be the
only prospective winner. Therefore all players are
indifferent in the above defined sense and behave
equally. Or in other words, if players 2 or 3 start
the game any coalition formation will be possible and
moreover equally likely.

If players 4 orVS start the game the rest of the
pPlayers will not be indifferent but however have all
the same intereét, that is, not joining the cozlition
in the next place. -

If any other player but 1 joins the coalition in the
second place, player 1 again is the only prospective
winner. Again all players behave therefore equally
and 2all coalition formations are equally likely.

If player 1 joins the coalition in the second place
each of the remaining players wants to join the
coalition in the third place as each one has the
chance to win. Once again all players have equal
interests, which says, each sequence in the grand
coalition with players 4 or 5 as starting players

is equally likely.

From these considerations it is clear that player 1



hWas as well in the Shapley-value as in the =2xpectad
value exactly the same chances to win which expleins
the equality of E(1) and S(1).

If player 1 starts the game players 2 and 3 will be
competing players in the second place. Players L and S
have different interests in the second place than
players 2 and 3, that is, they do not want to join the
coalition in the second place, as they can only hope
for a positive payoff in the third place. Therefore
coalitions of the form [14...] or [15...] will not
form. In other words, the situations where players &
and 5 are prospective winners differ in the Shapley-value
and in the expected value. Therefore E(4)#S(%4) and
E(5)#3(5) and by consaquence E(2)$3(2) and E(3)#S(3).

It seems that game (2) is in some sense a symmetric game.
A reason for the equality of E and S might bYe that each
two coalitions only differ in one player. Let us

consider this game more closely to see whether in zany
game situation zll players behave equally.

411 players certainly behave equally i the formed
coalition consists of only one or two players. Thae

only difficulty may arise when a three-person coalition

has formed. But it is no difficulty to check the(§)=10
possible 2-perscn coalitions.

If for example the coalition [124] has formed, players
32 and 5 are competing and therefore behave equally.

If the coalition [122] has formed player % is the

only prospective winner. Therefore players ! and S

are indifferent and behave equally. Each time the
result is the equality of the probability for the
corﬁesponding sequances in the great coalition.

tJ
D)
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“ore general: If in game (2) of .

the S=-perscn games
a 2=-person coalition has formed %then the two

remaining players are becth

o

1.~ either competing in the forth place,
that is want to join the coalition or
2.- indifferent with respect to an invitation.

€ It is not possible that both or even one plaver
decline in the forth place, becazause
.- then only the great ccalition would be

™ winning,

¢ , 2.- if one player declines in the forth place

there must be at least one more player who
who declines as well in the forth place.

So case 2. corresponds to case 1.

o)

As in our example the minimal winning coalitions
have less than 5 players this case may not occur.

o

The given examples show:

At any stage of the game all players behave equally.
Therefore the probability of any sequence in the great
coalition is equal which is a sufficient

v condition for the expected value to be equal the
Shapley-value.

™

For game (7} the equality can be seen even more

I

easily. By a similar reasoning it is clear that
the expected value for player 1,2(1), equals his
Shapley-value 3(1). As the four remaining players
fAave the same 'power' the remaining payoff is
shared equally among them.

Hotice game 2!

In this game E(M)=E(5) but S(4)43(5).



ng the zharcteristic function it does
not seem that players 4 and 5 have the same power.
This phenomenon results from the fact that for the
expected value not all sequences in the grest
coalition are possible.
It is easy to find the situations where players &
and S5 are prospective winners for the expected vzlue.
If player 4 starts the game noone wants to be in the

second place. So it may happen that any player must

enter the coalition in the second place. It is possible

that coalition [41] forms. Then players 2,2 and 5 are
all prospective winners in the third place. The
coalition [415] is the only possible chance for
player 5 to win. As players 2 and 2 may be arranged
in any order in the forth and fifth place the
expected value for player 5 egquals 2/120.

If player 1 starts the game then player 2 or 2 will
certainly enter the cozlition in the second place.
The coalitions [145] or [154] cannot form.
Correspondingly, if players 2 or 3 start the gzame
coalition [21] or [31] will certainly form, but

not coalitions [235] and [225]. The winning cocalition
{235} is therefore of no importance for player 5.

In any game player 4 can hope for the same payoff

r~

as player 5 does. In other wcrds, the expected value

~

treats players 4 and 5 as if they had the same power.

The Shapley-value considers all secquences in the great
coalition. This is exactly the reason why player 5

is more powerful corresponding to the Chapley-value
than player 8 is.

(@]



—

2.2. Expected value for S-person gzmes

Consider as an example the ccalition [123u43].
The probability that this coalition forms is

P(l123451) = Dz(1).P(2 ).P(Y )1

Y.P(3
£11 121 (1221

We already know from our consideration of Y-person games
that

P 231) = el (172 1315 00 ) + 2 (B0 )

+ 1/3 p_(5
P-"2r1237) B-(5pq99)
USing the formula for P(i[S’) we get for the
4

probability~?(2[1]) that player 2 joins
coalition [1]:

P2 = (2 P/l 1/(3.u)§;;§_(1[1])

5 5
+ 1/4:(2;:_(1“])2 3p_<jmm
i= J=

J#i
+ 31/41.p_(2 e ) e .
P P P Gy )
Now assume for the vector p+(2,3,’4,5)[11 - that is
the probabilities that players 2,32,4 and 5 accept te join
coalition [1] = the values p+(2,3,§,5)[1] = (w,w,C,0).
Therefore
P(2 = wl{l/4 + 1/712(3=w) + 1/81((1-w)2 + (2-4)2)}

+ 1/ (1=w)
wo{l/% + 10 - w/12 + 1/12 (2=2w)} + 1/0°(1=u)
wi{9/12 = 2u/12} + 1/4(1=w)

(11



2
z 2w/8 - uT/h o+ 1/ - /8
= W/2 = WS/t e 1/

= 1/8(1 + 2w - w2

~

For w=0, 9(2[1}) = 1/%, indicating that any of

players 2,2,4,5 may enter coalition [11.

For w=1, P 2[11) = 1/2, indicating that either coalition
- . P

r12...1 or [12...] forms, but not coalitions [14...]

and [15...] .

This is exactly the situation which orrurs in game (1).
Thus we have shown the intuitive result that in game (1)
coalitions of the form [14...] and [15...] with any
permutations of players {2,2,5} or {2,2,4} in the
remaining positions are not possible.

2.4, Some S5-person gemes

First we consider S-person games with only 2 minimal
winning coalitions:

(1Y wv(12) = v{(132458) =1
(8) = 0 otherwise

v
E = (3/1%5,13/20,1/120,1/120,1/120,1/12C)
3 = (2/15,1/3,1/39,1/30,1/30,1/20

(2)y v(123) = v(1455) = 1

v(sS) = 0 ctherwisa

E = (5/12,22/120,23/120,1/15,1/15,1/15)
(5/12,1/5,1/56,1/12,1/12,1/12)

-
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(%)

(3) (122) = v(1324558) = 1
() = 0 atherwisse

(11/20,13/50,11/20,1/50,1/60,1/52)
(11/20,1/5,11/20,1/30,1/20,1/30)

.
M m < <
]

() v(1234) = v(124558) = 1

v(3) = 0 otherwise
= (17/60,17/60,1/10,17/50,1/40,1/40)
S = (17/50,17/580,1/12,17/60,1/20,1/30)

Q]

(5) v(1224) = v(1256) = 1
v(S) = 0 otherwise
E = (1/3,1/3,1/12,1/12,1/12,1/12)
S = (1/3,1/3,1/12,1/12,1/12,}/12)

(6) "v(12345) = v(12356) = 1
v(3) = 0 otherwise
£ = (7/30,7/3C,7/30,1/3C,7/30,1/30)
S = (7/30,7/30,7/3C,1/30,7/30,1/20)

Sames with more than two winning coalitions:

(7) v(123) = v(124) = v(1456) = v{(2455) = 1
v(S) = 0 otherwise _
E = (13/40,13/&0,1/15,11/50,1/20,1/20)
S = (8/15,4/15,1/12,11/6C,1/19,1/10)

(3) v(1238) = v(2U56) = v(34556) = v(1256) = 1
v(S) = 0 otherwise
E = (13/120,23/120,12/120,23/120,1/5,1/5)
S = (2/15,11/60,2/15,11/50,11/50,11/690)

(9) v(12)= v(23) = v(138) = v(1355) = 1
v(3) = 0 otherwise

17/30,12/40,0,0,0)

3/52,4/15,1/2¢,1/50,1/59)

E -

—

1=
\ (u
l\) -

(12/50
5 = (415,



(10) v(12) = v(238) = v{25%) = v{12456) = 1
v(s) = 0 ctherwis |
(22/90,19/30,1/25,1/26,1/36,1/326)

(1/5,7/15,1/12,1/12,1/12,1/12)

U
1

(11) v(123) = v(145) = v(2345) = v(1248) = 1
v(S) = 0 otherwise
o (11/30,47/360,11/56C,11/50,47/260,1/180)
(17/50,2/20,1/5,1/5,2/202,1/50)

<
S

2.5, Comments on the results of f-person games

ct

ed
value and the Shapley-value. Cne might argue for the

Cames (5) and (5) give equal values for the expec

result of game (5) in the following way:

A1l cozlitions where players 1 and 2 are prospective
ulnners are possible. Moreover, players 1 and 2 do
not proflu of an impossible coalition. Therefore

E and S give the same amount to players 1 and 2.

As players 3,4,5 and 5 have all thes same power, the
remaining payoff is shared equally among them.

I% can also be seen easily that the situations where
a player wins or lcoses as a consequence of an”
impossible coalition are exactly the same for
players 2,4,5 and 4.

Cne might say that game (5) is in some sense
symmetric with respect to certain pleyers,

As long as no 3-person coalition has feormed, all
players behave equally, that is, decline to join

a coalition. The possible siktuations that may

occur in this game are the following:



i,

7

T.- A 2-person cozlition may form whizh is inelu
X

wZ

Ul

Q.
[§)]
[

cr

h

D

n

D

in one minimal winning coalition. In

Coer

step the player who is needed to form the .
minimal winning coalition will certainly enter

the coalition. For example, if coalition [122]

has formed player 4 will enter the coalition

next. Players 5 and 5 would reject an invitation

and so a coalition of the form [1225..] or

(1226..] is not possible.

Let us denote the coalition that 4as formed by Z.
Cenote by A={1238} and 3={1256}.

If IKl=3 it may happen that |XAA] = [XAB =2
and |A~B]| =z 1. That is '
|& = XAA] = [B = XAZ| = 2

stating that in each cozlition A and B two players
are needed to form a winning coalition.

In this situation still all players behave
equally, that is, reject an invitation.
Only as soon as a Y-playasr coalition has
formed one MWC will have formed up to one
player. So we will have the analogue
situation to case 1.

An example for such a situation is that
coalition [225] has formed.

The las% situation that may occur is that

[AAX] = |BAK] = 2
and AABAKX = 4
Cf course K = {3,4,5,6} .

In this case the only'prospective winners are

players 1 and 2.
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The result for game (5) seems to be reasonzble too.

fan

lo

.

3

e, as lcng as no t=-player c ition has formed

a oali

z11 players behave equally, that is reject an
invitation adressad to them. After a 4-player coalition
nas formed there are two situations that may occur

in this game:

Denote by C = {1,2,2,%,5} and

L {1,2,3,5,6%} .

1.~ Ona S-person MYC nhas formed up to onekplayer,
for exaple, [XAC| = 4 . Then either
a) |p -0~k
) D -DAK]|

2 or
1 L]

In czse a) there is conly 1 prospective winner.
Therefore the remzining players behave equally

and all further coaliticon formations are

equally likely.

An example for case a) is the coalition (122473,

In case b) CAK =DnX .,

The players that are needed to form coalition

C or D are competing and therefore behave equally.
The resulting sequences in the great coalition are
all equally likely.

The only situation where case b) applies is

when coalition [1225] has formed and players U

and 5 are competing.

2.- A U-person coalition K has formed such that
{KACl =1X%XAD1l =2 .
It is clear that C =
and |C =X/ D - X}

“oreover both players that are not yet in X

-~
"

D - XK

ol
-~ »

are needed to form a minimal winning coalition.

(@2
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The two players are ccmpeting and behave
aqually. Each ?esulting s2quence in the zrezt
coalition is equally likely.

In game (5) only situations occur where zll
players that are not yet in the cozlition

behave equally. We know that if p (i

=

{ ]
1

s equal for
all i in ¥-T then (1 ) = 1/(n-t) where t=|T).

(T1

nl“.t

[

for a coalition T in ¥ and i

Therefore all sequences in the great cozlition are
possible and moreover even equally likely, which is
a sufficient condition for the expected value to be
equal the Shapley value and the explanation for

the obtained result. '

Consider game (2). Player 1 has the same chances *o
win either for the expected value or for the
Shapley-value. Moreover he does not profit from
impossible coalitions. Therefore E(1) = S(1) .
Suppose coalition [13] has formed. Cf course

P (4,5, 6) 127 = (0,0,0) as players 4,5,8
cannot hope Sor any positive payoff by joining
coalition [13]. But player 2 can hope for a
positive payoff in this %hird position.

t
o
]

Eut notice that also player 2 may reject an
invitation to join coalition [13]. There is nc
risk for player 2 if coalition [13i] with i in
{4,5,6} forms. Cnly if his competetors have
formed their winning coalition up to two
players then it is necessary for playar 2 to

Join the ccalition [121i] where i in {4,¢5,8}
with the probzbility p (2[1? ]) = 1 in

2i
order to get a2 p051*1ve payoff.
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However it is players 2 and 3 that profit and
players 4,5 and 6 that loose as a consequence of
impossible cozlitions. Therefore their expected
values and Shapley-values are different.

similar reasoning holds for games (1),(3),(4) and (7).

Game (9) shows that if a player is pivot only in
situations which are not possible for the expected
value then his expected value becomes O.

Notice game (8) where the Shapley-value gives

equal payoff to players 2,4,5 and 5. The expected
value gives the same payoff to players 2 and 4 but
somewhat more than the Shapley-value does. The
expected value gives the same payoff to players

5 and 6 but gives more to players 5 and 6 than to
players 2 and 4. The loosing players are of course
players 1 and 3. Their expected values are equal as
their Shapley values are. But s(i) > E(i) for i=1,3 .

Considering all 3-person coalitions it turns out
that players 1 and 3 each has once the chance to
profit as a consequence of an impossible coalition.
Players 2 and 4 each twice the chance and player 5
and 6 each have 3 times the chance to win more.
This might yield an explanation at least for the
fact that players 5 and 6 earn more in-the expected
value than players 2 and 4 do.

If Wi and wj are two different MWC in

game (8) thén notice that 2<=|W, ~W,| <=3 always.

In this game one might expect séme hicer result than
the one obtained as there are situations similar to

those already discussed.



However, one may consider gazme () as a repre
of more general games. And then it shows that ex
value and Shapley-vzlue may behave very differen
For games (10) and (11) all values E(i) $ 3(i) for
all i ={1,2,..,6}. Cnly the ordinal power of
players is the same for the Shapley=-value

-and for the expected value.
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4, Cn the

d n
and Shapley-value

4,1, Predicting coalition formation in games

in extensive form

we have seen severzl examples where certain orders
£ coalition formztion were not possible. In this
section we treat this phenomenon from a general

point of view.

Let N be the set of players with IMl=n.

Let T be some subcoalition that has formed, whare =TI,
Notice, whenever there is one player i in N-T with
P+(1[T])=O there is at least one more player § in U
j#i, such that p+(JET])=o,

y

Player i to win in some position k>t+1 needs some
other player, say Jj. Cf course the needed player J
has the same interest as player 1i.

Lat N-T={at } and

IREREETL P TLPEL P

suppose P+(at+1,...,an_2,b1,b2%n = (1,1,¢..,1,0,0)
that is players b1, b, do not want to join [T1] in
position t+1. Using the formula of section 1.S5. we
get for the probability that a player b,  ywith

i

i=1,2 jcins coalition (TI:
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This states: Whensver 2t some stage ¢f the
. some cocalition [T] has formed - ther D
want to join [T] in place t+1 - call them 'interest
and 2 players who do not want *o Jei 1
call them 'non interested:! players -, then on
interested players can enter coalition [T] in place t+1.
Similarily it can be verified tha: the assertion is
also true for more than 2 non interested players

In other words, if %he vector

p+<{1\x-T})TI: (1,1,’00’1,0,07‘00’C) y

that is, contains zero and 1, only scme player i with

P+(i[,]) = 1 will enter [T] in place t+1.

o~

e

o



n.2. A Nemark on the gompubtation of
Shapley-value and expected value

Consider as an example a simple #-person game with
ocharacteristic function v(12) = v(1Z%) = 1 and
v{3S) = 0 otherwise.-

crders of coalitions in this game are:

1234 2134 2124 5123
1243 21432 2142 5122
1324 2314 3214 4212
1342 2241 3281 h2z21
1423 2413 3412 4212
1432 2431 3821 4321

Table T.4.2.1: Crders of coali
1

Underscored players in a sesquence are the correspending
winners. The ccalitions in brackets are not possible in

the extensive form game.

The Shapley-value of this game is S = (7/712,1/8,1/712,1/12),
the expected value gives [ = (7/12,1/3,1/724,1/724).

Notice that both Shapley value and expected value average
over all n! permutations. The Shapley-vzlue, per definitionem,
admits every permutation with equal probability. The expacted
valua does not admit all orders of players in the great
coalition. There are some players who win as a

consequence of 'impossible' cozlitions and some players

who loose as a consequence of impossible coalitions.

In the citad example player 2 wins what is lost by

-

nlzyers 2 and 'l
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ames with more than " players impossible coszlitiens
ery easily, it is reasonable to expect the
d value to be different from the Shapley-value.

Notice zlso wha®t the ouicome would be if the
solution only did average over possible cozlitions.

Then we would get:

S*(1) = 14/20 = 7/19
S'(2) = H/20 = 1/5
-S1'(3) = 3(48) = 1/20

where S'(1i) denotes the solution for player i. These
values obviously differ from the Shapley-values.

Such a solution concept reminds of the a-priori-unions
considered by Hart and Xurz [51].

For a more formal reasoning consider the ordcer (12347 .

We Kknow

P(l1224])

177322
[1])

188, (2, D173 + 1/31(p_(3,, ) + p_(Y

3017 )))

(1]

+ 1/3'p_(3[1]).p_(&[1])}

= i .
1/ {p+(2[1]){1 + 1/2(p_(3[1]) + p_(4[1]))]

NESLETORN I IELPONRY

= 1/ f(p+(2[1]),p+(3[1]),p+(u[1]))

where £ is some function depending on

2 }



that are not yet members of ccalition [31.
Then the 2xpected value for some player 1 in
a H-person game iIs given by:
£(i) = E [V(S)-V(S-{l})]?([S]u‘z-S) .
SeN
1e8
- !y r QLY {3 ~r -
= 1/k.§ Cv(S)-v(s-{i1)] “p_i_(as+1 ""’p+(“r V)
S =] ]

It is clear that in the general czse

E(1) = T/n!E Ev(S)-v(Sf{i})lf‘(p_!_(as.'_1 Y,..,p (2, ).
SeM =] s
iesS -

Thus the expected value E(i) averages over n!. The expressicn

under the sum may be changed (increzsed or decrezsed) only

by flpg(a
S+

from the definition for the expected vzlue that the only
difference between E(i) for i in M may arise from

( ) with k in M-S, that is the willingness
er k to join ccalition [S1].

-~
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. Characteristic function and difference

between Shapley-vzlue and expected value

In his article A.Rapoport [9] raised some questions
concerning the difference between 2xpected payoff
and Shapley-value. We now are able to zanswer these
questions. |

The first of Rapoport's questions is: '

Will the expected payoffs be more or less equally
distributed than -in the Shapley-value?

The answer to this question is not unique. We

have seen an example (game (2) of S-person games)
where the expected values are equal for more players -
than the Shapley-values are. But we have also seen
an example (game (8) of 6-person games) with more
equal Shapley-values than expected values. With
this fact in mind one might answer: Sometimes the
expected payoffs are more equally distributed than
the Shapley-values are, and sometimes they are less '
equally distributed.

But considering the fact that the expected valde
may not take into account all sequences in the
great coalition - what in the extreme case may
result in a zero-payoff for some players whereas
the Shapley-value is strictly positive (game (9)

of the S5-person games) - it seems reasonable to

say that the expected values are less equally ’
distributed than the Shapley values are.

The second of Rapoport's questions is:
Does the answer depend on the characteristic function,
if so, how?
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0f course does the answer cdepend on the charzcteristic
function. The characteristic function definez which
positions are profitable for each player. As in the

extensive-form-game not every position is a preofitable

one for a player and as a player has the choice to

join the coalition or not, it may easily happen that
there is scme sequence in the all-player-coalition
that is not possible.

Remember: If the characteristic function defines a
game where in every situation of the game
all players behave equally, all sequences
in the great coalition are equally likely.

The following two lemmata will help to get an
answer to the question how the difference of E
and S depends on the characteristic function.
Denocte by ¥ the coalition that has formed
until now, where k=|%l . Denote by A and B two
different winning coalitions.

Lemma 1: If a)lA - Xmal =1
and b)|B - XnB] >=2

then
1. coalition A will certainly form, and
2. if equality in b) holds, not all sesquences
in the all-player-coalition are possible.
proof: Let |A - XAAlz1 and |B - ¥nB| = 2, then

in the next step all the players in E-X will reject
an invitation on the (k+1)st place as they cannot
hope for a positive payoff in this position.

As a consequence the player in A-X will certainly
be invited to join the coalition in the (k+1)st
position, and moreover he can be sure to get the

maximum payoff, that is 1, in this position.



Cne might expect the playsr in L<¥X %2 be the

ct

only prosective winner and therefore to he
indifferent. If the player in A=K rejects he
runs the risk that coalition B will form and"
get the whole payoff.

Assume that the player in A-X is not the last
player to be asked and that he rejects, then
|4 =%X~Al =138 =%A3] = 1 as soon as one
player of B-X had %o join. In this situation
the players that are needed to form ccalition
A or B are competing. Whether coalition A or B
forms depends on which player is invited. So
coalition A need not necessarily form.

The player in A-X being rational will certainly

- Join coalition X in the (k+1)st place.

Cbviously no player in B-X can join coalition X%
in the (k+1)st place.

The sequences [Xi...] where i in B-¥ are exactly
those that are not possible. So we have shown the
assertion to hold for |B - 8AK | =z 2.

IfF|B - 3AK|> 2 then the player in A-X may be
indifferent with respect to an invitation as
long as I B = BnKIl > 2, If he joins coalition X
while |B -« BAK| > 2 he wins. As players in B-X
will reject any invitation as leng as
| B = BAKXI>= 2 the player in A-X czn be sure
1.- to be invited before coalition E has
formed and therefore
2.- to win. '
It is only when [ B - BAK| = 2 +that the player
in A-K will join coalition ¥ for the above
discussed reasons.
As long as |B - BAX|> 2 any player may join

coalition X in the (k+1)st place. In other words,
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In this case it may well happen that
A | 1

a
N¥| =[3 - 3~K

o }8Y

A - .

as the playar not yet coalition ¥ is needed

81
to form a winning

o3

in
in both coalitions A and
coalition and therefore is indifferent.

Remark: If |A] #Z12] and
|A - AnK |=]B -3AK]| =1, then
A -AnK = B - 83K
is the only possibility.

as | Al £18] also 1AmX]| £ |3AK]
and therefore A nX z BAK .

Lemma 2 states that whenever two differen®t minimal
winning ccalitions of the same size have formed up
Lo one player then either they differ only in this
one player, or the player needed is a player the
two coalitions have in common.

Lemma 1 describes the situations, where the expected
value does not admit all coalition formations as
possible.

Whether such a situation may occur or not is determined
by the characteristic function. More precisesly, the
characteristic function defines for every situation

of the gzme the probability of acceptance for the
players that are not yet in the formed coalition X%,
that is, the vector p+(ak+1""’an)[K]'
If the situation deseribed in Lemma 1 cceurs, then
there is some player a in A-X, such that p+(a

and there are at least 2 players b1 and bg in Z,

(91}

0
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such that p (b, __ .) = 9 for i=1,2.
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certainly form.

Lemma 2 describes a special situaticn where 2ll

coalition formations are possible.

Cur conclusion is: Th2 characteristiz functicn
determines which situations may cccur in a game.
For twoe such situations we have shown the impact
on the probability of coalition formation and
thus on the expected value. In fact, it is the
situation described in Lemmaza 1 that accounts

for the difference of expected value and Shapley-value.

Cf course, in more general games there will be more
than two MWC. However, the situation of Lemma 1

3l

may still cccur. There may be one or more MJC i
with ’§£-K122 (see game{10) in section 2.4.), but
this is of no influence on the fact that cozlition A
Wwill form. There are only more players who loose as

a consequence of impossible coalitions.

Cr there may be a ccalition &, such that | A=%l = 1.
Lemma 2 shows under which cicumstances this situation
may occur., Butft still there will be some impossible
coalitions (see game (2) of section 2.1.).

Note the important fact: The characteristic function
determines the probability of acceptance for every
game situation, thus the probability of coalition
formation and by consequence the equality or
difference of E and Z.

The two Lemmata already give zn answer to Rapoport's
third question, namely:

hat is the relztion between :the characteristic functicn
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and the orders of cozlition formztion excluded from =he
outcome?

Whenever z characteristic function is defined to whizh
Lemma 1 appliss, it is clear which coalitions are

excluded from the cutcome.

-~

-If case 1) of Lemma 2 applies it can be seen easily

that all orders of ccalition formastion are possible.
Also in case 2) of Lemma 2 all orders of cosglition
formation may arise, and moreover are equally likely.
As long as no winning coalition has formed, all
players reject an invitation and thus behave equally.
As soon as there is only one prospective winner, all
players are indifferent.

Notice: If more than two MWC are defined, it may
easily happen, that cass 2) of Lemma 2
applies but that there zre more than 2
prospective winners. Therefore not all
players are indifferent.
As an example consider the gzame

v(1285) = v(1246) = v(122%) = 1

in section 2.2. ’

LN
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. The number of coalition formztions
n

in 2 game in extensive form

Think of an extersive game that is playsd according
to the rules proposed by Rapoport [9]1. As we have
seen, it may happen thzat scme orders of coalition
formation are excluded from the outcome. However,
the computer has to go through every order of
cozlition formation in order to decide whether it's
probability is positive or not.

The purpose of this section is to answer the
following qugstion: How much time will it take

the computer to find the expected value for some
n-person game. Of course the time needed depends

on the number of coalitions that may ferm. This
number is not just n! but much bigger, as every order

of ccalition formation may occur several times.

To fix ideas, suppose some cocalition ¥ has formed.
Then denote by S(f,m) the number of orders of
players in the all-player cozlition where each
order is counted.

f denotes the number of players that are not yet
members of coalition X.

m denotes the number of playesrs who may enter
coalition K in the next step.

Some of the f playzsrs that are not yet in X may
enter the coalition in the next step. Zut some
of the f players may already have rejected an
invitation zand therefore cannot any more enter
coaglition ¥ in the next step. That is, m<=f

must hold. The number S(f,m) is determinad by

the following recurszsion:
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(£,m)
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2.2(f=1,f=-1) + m.S(F,m=1)
and
* S(f,1) = S(f=-1,£=1) where f>m21 .

The interpretation of the formula is quite simple.
Remember how the game is played. Some cozlition ¥
may form. In the next step each of the m players
may join the cozlition and moresover, there are
(f-1) players tha% are not yet in the newly formed
coalition and that are.simultaneously all possible,
therefore the term m.S(f-1,f-1).

Cn the other hand, =2ach of tha m players may
decline, resulting in f players not in coalition X,
but only (m-1) possible players, therefore the

term m.S(f,m=-1).

If there is only one possible player out of f players

that are not in zoalition K, he joins the cozlition
and the (f-1) players not yet in coalition ¥ are
all possible in the next step,

The formula also can de written a2s

I3

S(f,m) = S(f-l,f~1).m![§ 1/k11]

This equation can be easily proved by induction to m.

For f=z2 and m=2 we have
S(3,2) = s(2,2Y.21[1/1! + 1] = 16 ,

which can be easily verified by considering the
game tree of a M-perscon game. Now suppose the

expression for S(f,m) does hold. Then

S(f,m+1) = (m+1).2(F=1,F=1) + (m+1).3(f,m)



and by our assumption

m-1

S(f,m+1)

1z=0

(me1)1.5(f=1,f=1)( 1/l .
k=0

e mention a second very similar formula for the
number of coalition formations.

Denote by Z(e,s) ths number of coalition formations
where e is the number of players in the coalition
and s is the number of players not yet in the
ccalition. Let n denote the number of all players.

Then
Z(e,s) = s.Z(e+1,n-e=1) + s.2(e,s=1)
and
Z(e,1) = Z(e+l,n-e=1)
or
s=-1
Z(e,s) = s!.Z(e+1,n-e-1)€z::}/k!]
k=0

where e+s<=n, e>=0, s>=1 .

This result too can be shown by induction.

In the saquel we refer to the first given formula
S(f,m).

((m+1)1/m?!) . S(f=-1,F=1) + (m+1).m!.3(f-1,f—1)[£ 1/7%!]

W
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Let us now consider the sequence resulting for fzm
S(1,1) =1 :
$(2,2) = 4
S(3,2) = 5¢
S(4,4) = 3840
3(5,5) = 1 248 000
S(6,€) = 2 441 028 000

.

The sequence grows very rapidly. For reasons of
simplicity denocte by S < S{n,n).
n

Cencte by £ . (s /(n+1) ) AS _/nl)
n+1 n

<

0N

Consider the following table:.
n o |1 |2 2 4 5 5
Snv o |1 |4 60 | 3eu0 |1 2u8 gc0 |2 441 022 oo0o0
S /nt o |1 1lz2 10 160 10 400 3 260 100
55 12 ] s 16 | 55 225
n ’ 8] 1 l 2 l 2 l y l 5

The sequence (S 1/(n+1)!)/(Sv’/n!) corresponds

exactly to the sequence

n n

Pn = n!é 1/rt = E n!/{n=-r)!

r=0 r=0



(compare [12], p.12. [14]).

e know
n=1
S =3 .n!é 1/%!?
n n-1
k=0
ne1
= a .S where a = n!g 1/%!
n° n-l n
k=0
T+ is clear that a =P -1
n n

and also a = n.P

In terms of Sn, P can be written as

g V)

= Sn+1/((n+1).3n)

N - a
bd - (n+1).un.Pn .

This relation shows how many coalition formations
more have to be considered when mcving from n

over to (n+1) persons.

In a 6-person game the computer has to go through

5*S  ocoalition formations. Correspendigly, in
* . .
a T-person game there are 7*3  coaslitions to 3o

through. Using the recurrence gives

[$))
(R
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and therefore

[#]
*

- *5 %
g = 326*5
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7*325%5%s,

2222%(5%s_)

Zuppose the computer needs half an hour for solving

a S5-person game, then it would need 2222 times as
much for solving a T-person game, that is 1141 hours.
Cepending on how many hours the computer is working

a day, it may take up to about 2 months fo solve

a T-person game.

As S = a .S
n n n-1 n n-1

L]
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.
V)]
L]

2]

it follows by recurrence
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n=97

el n
3 £ /n!
n+1/((n+1).sn).,

n=0

= n
S /s .t /(n+1) ! =
n+l" n

n=0

is a well known resulf th
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II. Simple n-parson gzmes with Sidapayments

In this chapter we consider simple 2-person

and UY-person games where sidepayments are allowad.
de give some rules for how the game should he
played and compare the obtained solutions to the
Shapley value and the expected payeff of the
corresponding extensive form game discussad in
chapter I. The rules for the game are similar to
those proposed by A.Rapoport in [91. -

A gazme is played until the all-player-coalition:
has formed. At each stage of the g3ame, the players
have to decide how to share the payoff. llere,

2ach time a player makes a Sid to znother player
to join the growing coalition, he makes a proposal
to the invited player now to share the payoff.

The rules for the game are:

1. The first player is zchosen at random.

2. This player invites another player to
Join him in the growing coalition.
Together with his invitation the first
player makes a proposal to the invited
player how to share the payoff.

The invited player may accept or decline,.

3

g UV ]
.

If the invited player accepts, 2 coalition
of two has formed znd the last player
makes a bid to one of the remaining
players, and so on.

5. If the invited player rejects, again the
first player makes another bid to one of
the remaining players.

6. A player can make only one bid to each of

(92



s but one have been invited
to join the coa on - they may have

ccepted or dec

[
3
o

d - the remaining

A1)

player must jcin the ccalition and the
obtained payoff - probably zero - is
shared equally.

2. The play of the game termingtes when the
grand coalition has formed.

Two assumptions are made:
1. Players that are indifferent with respect
to invitations join the cocalition.

2. Players that are indifferent with respect
to their successors choose the next player
at random.

1. 2-person games

Let us first consider the simple 2-person superadditive
game with characteristic function
v(13) = 1

v(S) =0 ctherwise .

The possible cozlitions resulting from this game as

well as the corresponding payoffs are shown in
table II.1.1.

notation:

- Tach vertex in the tree is denoted by the playsr

whose move it is.

)

- +(=) indicztes that a player accepts (decline

n
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probabilitis with which
1. prospective partners are invited,
2. invited players accept or decline.
- Zach final vertex is denoted by the order, in
which players have jcined the growing coalition.
- The vector beneath ecach coalition denotes the

corresponding payoff vector.

Suppose player 1 is chosen to start the game.

He can make a bid either to player 2 or to

player 3. Suppose he invites player 2. As

£12] is not a winning coalition, player 1

cannot offer player‘Z any positive payoff.

However, as the payoff must be shared equally

among the last two players, player 2 will get

a payoff of 1/2, no matter whether he accepts

or refuses the invitation. In this czse player 1
Wwill get a zerc payoff.

If player 1 invites piayer 3 and player 2 refuses
the invitation, -player 2 ﬁust join the ccalition

in thne second place and player 2 muss: Jjoin the
ccalition in the third place. Each one of players 2
and 3 will get 1/2 and player 1 will get C.

To make the invitation for player 2 more attractive,
Player 1 will offer player 3 more than 172, say (1+£)/2,
which leaves (1-£)/2 for himself. Player'B being a
rational player will accept the proposal and the
coalition [12] forms. The remaining player 2 must
Join the coalition and so the coalition {1227 with
the payoff vector ((1-£)/2,0,(1+£)/2) has formed.

If player 3 starts the game, the game is the same
up to a permutation of players 1 and 2.
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1/2 each. So hey are indiff

the invitation and will accept corresponding to
the rules of the game.

Think of the expected value E(i) of player 1
ss the sum over all cozlition formations, each

iime taking player i's payoff times the probabiliity
of this coalition. The probability of one coaliticn
(one end point in the tree) is of course the product
of the probabilities which lead from the roct to this
end point. ’

Motice that in the game v(13) = 1 and 2 ctherwise,
the expected payoff results of 4 possible coalition
formations: E = (1/2,0,1/2).

This vector equals the Shapley-values of the

corresponding game in extensive form.

Mow consider the simple 3-person game

v(12) = v(12) = 1

v(sS) = 0 otherwise
(see table II.1.2).
If players 2 or 2 start the game, we Wave the sane
situation as just demonstrated.
If player 1 starts, he can guarantee himself a payoff
of at least 1/2. For each of the players 2 and 3 it is
preferable to accept player 1's invitation because
otherwise he would ge:t a zero payoff. To make his
invitation attractive, nlayer 1 will make an offar of
somewhat more than zero, say 61, The invited
player will zccep® and player 1 gets a payoff of (1-61),
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Tnis game shows that player 1 is in 2 very strong position.
Hotice that also in this gazme ths expected value is
computed cn the basis of 4 possible cozlition
formations.
For the expected value we get:

E(1) = 1/3(2 + € - €

Z(2) = E(2) = 1/5(61 + 1 = &)
£ and 61 being arbitrary small it is convenient
to consider 1lim E(1) ,

6’51—-}0 .

which gives the result: E = (272,1/5,1/5) .
Notice that these values are exactly the Shapley-values

for the corresponding 3-person game.

If all two-player coalitions are winning coalitions,
all coalition formations are possible. As one might
@xpect, the expected value gives equal payeff to each
player and is equal to the Shapley=-value |
(see table II.1.2,).

£

£ the all player coalition is the only possible winning
coalition, the players behave indifferent as with
respect to their successors as with respect to an
invitation. The starting player always gets a zero
payoff. The other players get a payoff of 1/2 each.
Here all 6 coalitions are possible, =zach forming

twice. The expected value is FE = (173,173,172}

and equals the Shapley-vslue (see table IT.1.4,).,

Thus - we notice the following result: In a2 simple
Z-person game with the newly defined rules the axpected
value always 2quals “he Shapley-value,
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123 (0,1/2,1/2)

132 (1/2,0,1/2)

132 ((1=€)/2,0,(1+€) /2)

213 (1/2,0,1/2)
231 (1/2,0,1/2)
231 (1/2,0,1/2)
213 (1/2,0,1/2)
312 ((1+6) /2,0, (1=£) /2)
321 (1/2,1/2,0)
321 (1/2,1/2,0)
312 (1/2,0,1/2)

Table II,1.17:. 3-person game with characteristic function

v(13) = 1 and O otherwise



123

132

132

123

213

231

231

312

321

321

312

213

- 76

(1-6"7670)

(1/2,0,1/2)

(1=&,0,89

(1/2,1/2,0)

((1+€)/2,1=€)/2,0)

(1/2,0,1/2)

(1/2,0,1/2)

(1/2,0,1/2)

((1""5)/210'1‘5) /2)

(1/2,1/2,0)

(1/2,1/2,0)

(1/2,1/2,0)

Table II.1.2: 3-person game with characteristic function

v(12) =

= 1 and O otherwise
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123 (1=&,&,0)
132 (1/2,0,1/2)
132 (1=&,0,£)
123 (1/2,1/2,0)
213 (511"6.:0)
231 | (0,1/2,1/2)
231 _ (0,1=¢,€)
213 (1/2,1/2,0)
312 (E,0,1-¢)
321 (0,1/2,1/2)
321 (0,&,1=E)
312 (1/2,0,1/2)

Table II.1.3:'3-?erson game with characteristic function
v(12) = v(13) = v(23) = 1 and O otherwise

77



123

132

132

123

213

231

231

213

312

321

321

312

(0,1/2,1/2)

(0,1/2,1/2)

(0,1/2,1/2)

(0,1/2,1/2)

(1/2,0,1/2)

(1/2,0,1/42)

(1/2,0,1/2)

(1/2,0,1/2Y

(1/2,1/2,0)

(1/2,1/2,0)

(1/2,1/2,0)

(1/2,142,0)

78

Table II.1.4: 3-person game with characteristic function

v(123)

1 and O otherwise
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2. Ud-person gzmes

In the sequel we denote by E_ the expected value

of a game that is played corresponding to the newly
defined rules.

The expected value E refers to a game that is played
corresponding to the rules given by A.Rapoport.

S denotes the Shapley-value.

U-person games allow much more insight in the nature
of the game. We present in detail one "-person gzame

which has some interesting features. We then show the
structure of all the other classes of U-person zames.
Consider the simple %-person game with characteristic

function
v(12) = v(134) = 1
v(3) =0 otherwi se,.

Suppose player 2 starts the game (see table II.2.1.).
He can make a bid either to player 1, player 2 or
player 4. Suppose player 2 invites player 3. Suppose
player 3 rejects the invitation. Then the coalition
(211 or [24] will form. In any case player 2 will get
a zero payoff. On the other hand, if player 3 accepts
the invitaticn, he can next make a bid to player 1
and thus has a chance of getting a positiive payoff.
This states, that playsr 3 will certainly not reject
an invitation of player 2.

Yow suppose player 3 makes a bid to player 1 and
player 1 rejects the invitation. In this zzase tha
coalition [2241] will form and players 1 and ' ge: .
1/2 each, but player 3 gets a zero payoff.

In order to get a positive payoff playsr 2 has got to



’
If on the other hand player 2 makes a bid to player U
and player U4 rejects, player 3 can guarantee himself
a payoff of 1/2, and player 4 gets a zerc payoff.

£t is clear that player 4 will sccept an invitation
of player 2, as player 1 must join the coalition in-
the forth place and the zzain is equally distributed
between players 1 and 4.

Comparing the two possibilities of player 2 it is
clear, that it is much more profitable for him
to make a bid to player 1.

2

Players 2 and Y4 behave equally in this gzame.

We have seen that if player 2 invites player 2 or It
his payoff will be zero. The best payoff that player 1
can reach in these situations is (1+€)/2. If player 2
offers exactly this azmount to player 1, player 1 will
accept which leaves a payoff of (1-£)/2 for player 2.
So it is clear that player 2 will certainly makes a bid
to player 1.
The cocalition [21] having formed, there is no gain
left, Therefore player 1 will invite players I or Y4
with equal probability. Players 2 and Y being
indifferent will accept the invitation.
For the game where players 1 and 3 start sce
tables II.2.2. and II.2.2.
The expected values E1 for this gzzme are:

B = (17/24,5/28,1/24,1/24) .
The Shapley-value S and the expected value E for
the corresponding game in extensive form are:
(7/712,1/2,1/724,1/724)
(7/712,1/4%,1/712,1/12) .
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In the sequel we only consider Y-perscn games with no
dummy players. For every UY-person gazme we compare the
expected value 51 to the Shapley-value £ and to

the expected value E of the corresponding game in
extensive form. '

The structures of zach game are given at the and

of this chapter.

(1) v(122) = v(124) = 1
v(sS) =0 otherwise
E, = E =58 =(5/12,5/12,1/12,1/12)
(2) v(122) = v(1248) = v(124) = 1
v(sS) =0 otherwiss
5, =E =S =(1/2,1/6,1/5,1/6)
(3) v(122) = v(128) = v(124) = v(223%) = 1
v(3) = 0 otherwise
51 = 2 =3 = (1/4%,1/4,1/4,1/4)

‘(4) v(12) = v{(13) = v(14) = 1
v(3) =0 otherwise
B, =((€+5)/8,(3-£)/24,(3-€)/24,(3-€) /24)
lim E. = (5/8,1/8,1/2,1/8)
£—0
E =S = (3/4,1/12,1/12,1/12)

(5) v(12) = v(134) = 1
v(g) = 0 otherwise
E1 = (17/24,5/724,1/24,1/24)
E = (7/12,1/2,1/724,1/204)
S = (7/12,1/8,1/712,1/712)



(7)

(2)

v(12) = v(128) = v(22Z8) =1
v(3) = 2 otherwise

E = E-'.1 = (5/12,5/12,1/12,1/12)
3 = (1/3,1/2,1/5,1/5)

v(12) = v(13) = v(234) = 1
v(s) = 0 otherwise
E. = (1/3 + /8,172 = €/2,1/3 = €/2,0)

lim £ = (1/3,1/3,1/3,0)

(7/12,5/24,5/24,0)
(5/12,1/4,1/4,1/12)

w M

"

v(12) = v(12) = v(148) = v(234) =1

-v(S) =0 otherwise

E. = (174 + €/2,1/8 - /8,178 = €/5,1/% = &/3)
Lim £ = (178,174,171, 1/4)

€ =0

£ o= (2/4,1/12,1/12,1/12)
S = (1/2,1/5,1/5,1/5)

v(1224) = 1
v(3) =0 otherwise
E =E =S = (1/8,1/8,1/%,1/1)

-

3. Comments on the solutions

With the new rules only a few paths through the

zzme tree are possible.

There are two rezsons for this phenomenon:
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1.- bids are only made %o profitable partners,

P

With only one exception it is alw Ways bettar

n
L]
]

for players to accept an invitation rather
than to reject it.

To get some insight into the behaviour of the Zame,
let us look how the gzme is played.

As there are zt mcst two players with a positive
payoff in one gzame, the bes 2 player can do is to
invite a player with whom he and the preceeding
players form a winning coalition. Let us call vhoen
pPlayers 'profitable' players.

f there are more possible players to make the present
coalition a winning coalition then the last player
chooses with equal probability among the 'profitable!’
players. ,

If there are only winning coalitions with more than
two players then there is no chance for the starting
player to get a positive payoff. Therefore he is
also indifferent and chooses with ecual probablllty
among all the other player

There is only one game where the winning coalition
consists of 4 players, that is game (9). In all

.other games the winning coalitions have less than

4 players. This yields the explanation for the fact
that invitations are always accepted except in ths
game where only the all-player coalition is a
winning coalition. For the moment let us restriat
to Y-person games where the winning coalitions

have less than Y4 players.

The general Sstratagy of the game
can be described in the following way:
A player who invites a profitable partner offers,

a2
)



a

nim scmewhat, say &, more than the worse this
player can hope for to get if he rejects the

In the Y-person games it turns out that the worse
a player can get is either N ¢cr 1/2. In order to
accept an invitation proposed to him the playar
is offered & or (1+£)/2 respectively.

Consider for example game (1) with characteristic
function v(123) = v(12%) = 1, v(S)

Suppose player 1 starts the game. As he cannot

i

0 othervwise.

get any positive payoff he will invite any of the
remaining players. Suppose a bid is made to
player 2. One might expect that player 2 1is
indifferent hecause naither playar 3 nor player 4
can get any positive payoff without him. However,
it is better for player 2 to accept an invitation,
as in this case he can force either player 2 or
pléyer % to give him almest the total payoff,
that is (1=£). Cn the other hand, if coaliticn
[12] or [14] forms, the payoff for player two
will only be (1+£)/2, which for a small

is less than (1-8).

Or consider game (4) with characteristic function
v(12) = v(13) = v(14) = 1, v(3) = 0 otherwise.

If player 1 starts the game he can force any of
the other players to give him almost the total
payoff (1-£). Here it is more profitable for
players 2,2 and 4 to start the game, as they c<can
then get a payoff of (1-£)/2.

Motice that in zemes with only 2-player znd
J-player coalitions the new expected value 51,
the expected value E and the Shapley-value C are
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<
wl

T

(&3]

all equal. aras equal.

1

1,

n game (5) T and
S

1 other games have different values for tha

Al

three solutions. Moreover E1 of game (7)
behaves as if it was a symmetric 3-person game
with player Y4 as a dummy player. Similarily
game (8) behaves like a purely symmetric

game assigning equal payoff to each player.

The solutions for 4-person games suggest that
in general the 2xpected value 81 Wwill be
different from the expected value E and the
Shapley-value 3. Moreover E1 seems to be

less sensitive to -the structure of %the geame.

51 sometimes attributes the same power

to players to whom E and S give different
power-indices. It never happens that E or ¢
giVe equal payoff to some players to whom
E_ attributes different values.

We did not expect 51 to be equal S or E

as both E and S use the marginal contribution

M —

of 2ach player to the coalition whereszs
considers the minimal paycff a player can get
given he rejects the present invitation.

We do not pretend that any of the 3 solution
concepts 51,5 or S is a better one, as

each reflects different features. Notize for
eXample that it may well happen in real life
situations that, by being the first one or the
last one in the play of a game, players have a
disadvantage or an advantage. This situation
is in some way reflected by E1
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The ga

m
the following way. Suppose one player hsas
chos

(]
L
(0]
[7/]
()
3
f
o
(1
[

mizht be interpreted in

heen chosen to start the game and nas invited
ancther player. The second player now considers
zmong the possible outcomes those where no
agreement has been reached and the gain has
neen distributed equally amecng the last two
players. Given these payeff vectors the second
player now starts bargaining with one of the
remaining two players. In the proposed gane

the bargaining players are always better off

if they reach a2n agreement.
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Table

IT.2.1:

87

3 1+ 22134 ((146)/2,(1-€)/2,0,0 )
1/2 o . '
21 22143
~2 4 122143 ((1+£8)/2,(1=€)/2,0,0)
~<2134
3 - 23 —
1 4=
4 - 24 —
023 —=
4 _1EP2314 0 ((14€)/2,0,(1-£)/2,0)
. c-
23//<2341 (1/2,0,0,1/2)
o 1£-°2341  (1/2,0,0,1/2)
- =..2314 (1/2,0,1/2,0)
; 1xe21—p
1~ 2= 24—
' 24 w———
27—
2413 ((1+£)/2,0,0,(1=£)/2)
2431 (1/2,0,1/2,0)
2431 1972.0,1/2,0)
2413 (1/2,0,0,1/2)

game (5)

4-person game with charcteristic function
v(12) v(134)
where player 2 starts the game

1 and O otherwise,



5 g o 1234
2 12 S~ 1243
: g E—2 1243
- S~ 1234
1 3 + 13
1 ~—— 14
o— st 514
~— 13
.1 01324
2
1 1/2 -0
13__~ ~e 1342
+ 3 4 +_l-o1342
- =2, 1324

TAble II.2.2: game (5)
4-person game with characteristic function
v{(12) = v(134) = 1 and O otherwise,
where plaver 1 starts the game

(1-6,'610'0)

(1'61 E:o IO)

(Orsr 1'510)

(0,0,1/2,1/2)
(©,0,1=£,8)
(0,1/2,1/2,0)

(O '5,011"5)

(0,0,1/2,1/2)
(0,0,&,1-8)

(©,1/2,0,1/2)

88



Table II.2.3:

s L1 3124 (1-¢,,£,,0,0)
31 ~~ 3142 (1/2,0,0,1/2)
1/2 g 153142 (1-£,,0,0,¢,)
= Q
°©3124  (1/2,1/2,0,0)
, 2
] ~—— 34
= 4 + 2 34 )
~—— 32 K

3214 ((1+€'}/21(1'~)/2r010r)

3241 (1/2,0,0,1/2)
®3241  (1/2,0,0,1/2)
o 3274 (1/2'1/2roror)

3412 ((1+£)/210701(1_£)/2)

3427 (1/2,1/2,0,0)
3421 (1/2,1/2,0,0)

3412 (1/2,0,0,1/2)
3

32
32
31

game (5)

4-person game with characteristic function
v(12) = v(134) = 1 and O otherwise,
where player 3 starts the game



1/4

+
- O.
2
1/3
+
1/3 3
1% 3
4
+1

Table II.2.4:

3 1+ 01234 -(Or1‘£r£ro)
12 1 Q__1243 (0,1/2,0,1/2)
2 1 + 01243 (0,1-&,0,&)
O~—~1234 (0,1/2,1/2,0)
+ 513

! 014
+ .14
=513
| +.e1324 (0,146 /2,(1-£)/2,0)
13 1 ——s 01342 (0,1/2,0,1/2)
2 4 t21342
' 1324

14
012
, L1423 0,(146)/2,0,(1-6)/2)

14 *1432 (0,1/2,1/2,0)
Q 1423
01432
+ 12
1 13
- + 213
ol 2
game (1)

4-person game with characteristic function
v(123) = v(124) = 1 and O otherwise,
where player 1 starts the game



1/3

V3.

R

Table II.2.5:

3214

3241
3241

3214

3 34

4

31
1 + °© 3412

1/ S s 3421
1/2 '

(V3]
S

3412
+ .~ 31
32

game (1)

3421

- 91

((1'5)/21(1+€)/2roro)
(0,1/2,0,1/2)
(0,1/2,0,1/2)

(1/2,1/2,0,0)

((1+£)/21(1'£)/21070)

(1/2,0,0,1/2)

(1/2101011/2)
(1/2,1/2,0,0)

(1/2,1/2,0,0)
(1/2,1/2,0,0)
11/2,1/2,0,0)

- (1/2,1/2,0,0)

4-person game with characteristic function
v(123) = v(124) = 1 and O otherwise, where

player 3 starts the game



ES
2 —-©
-+
1
1/3 3
4 +

Q

Table II.2.6:

+1 51234 (0,1-&,£,0)

3
15 T—a__ 1243 (0,1/2,0,1/2)
2 1+ 1243 (Or1‘£rol£)
4 .
© 1234 0,1/2,1/2,0)
+ 013
. ] 14.
‘ + .14
<13
1+ 21324 (0,¢,1-£,0)
13 ] 0 1342 0,0,1/2,1/2)
4 t,1342 (0,0,1=&,8)
501324 (0,1/2,1/2,0)
1 =214
. + 214
~12
1_t1423 (0,£,0,1-)
2/
o]
14 L = 1432 (0,0,1/2,1/2)
.l + ,
2 423 (Orol£r1-€)
1432 (0,1/2,0,1/2)
+ 212
1 »13
- + 513
—l12
game (2)

4-person game with characteristic function
v(123) = v(124) = v(134) = 1 and O otherwise,
where player 1 starts the game



. 1/%

)

- 93
2134 (1_6101610)
1/ =
2143 (1/2,0,0,1/2)
4 + - 2143 (1"610101(.[:)
- o 2134 (1/2,0,1/2,0)
o 23
g
1 X 0 24
1 /e = g , 24
> 231
1 ,— 2314 ((1+£)/2,0,(1-E)/2,0)
1 e 0
1/ 23 o | 2341 (1/2,0,0,1/2)
3 T4 2347 (1/2,0,0,1/2)
1 2314 (1/2,0,1/2,0)
_ ] s 21
3 = 24
4 " 24
© 21 :
. 0 24713 ((1+£)/2,0,0,(1=£)/2)
' 1 - ®
+ . ° 2431 (1/2,0,1/2,0)
- ® 2431 (1/2,0,1/2,0)
- s 2413 - (1/2,0,0,1/2)
. 21
2 , 23
3 23
T 21

Table II.2.7: game (2)

4-person game with characteristic function
v(123) = v(124) = v(134) = 1 and O otherwise,
where plaver 2 starts the game



1/4

1/2
12
+
1
|
1
- Q
2
175 13 1/2
. 2
1
3
(/3 1
4 1/2
14
]

Table II.2.8: game (4)

01234

01243

+ 21243

°1234

+ 013

014
+ .14

1423

1432
1423
01432

013

012

(1—£IOI{IO)

4-person game with characteristic function

v(12) =

= v(14)

where player 1 starts the game

1 and O otherwise,
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. 1/38

AN

Table II.2.9:

or 2134

1/2 0 2143

+ ® 2143
o~ 2134
o 23

0 24
24

W

° 23]
0 2314

23 © 2341
4 - 2341

" 2314
o 21
=< 24
24
C 21
2413

2431

2413
21

23
23
21

game (4)

24317

- 95

((1+€)/21(1—€)/210101)

((1+£)/2,0,(1-£)/2,0)

(1/2,0,0,1/2)

”n

((1+€)/2,0,0} (1=C) /2)

(1/2,0,1/2,0)
(1/2,0,1/2,/)

- (1/2,0,0,1/2)

4-person game with characteristic function

v(12) = v(13) = v(14) =

1 and O otherwise,

where player 2 starts the game



3 1 * 1234 (1-5151010)

1/2 A2 —T_ 1243

12
1/2 ; + 01243 (1-5,5,0{0)

)

1 ° 01234
+ + 013

- +t .14

213
-+ 01324 (01511-510)

13 01342 - (0,0,1/2,1/2)
1/4 + 4 +1342 (Olol1-£l€)

/e 3 ~1324  (0,1/2,1/2,0)

+t-214
012
2 1423 . (01510r1-£)

14 1432 {(0,0,1/2,1/2)
’ 423 (0,01611-6)

- . =~<1432 (0,1/2,0,1/2)

012

Table II.2.10: game (6)
4-person game with characteristic function
v(12) = v(134) = v(234) = 1 and O otherwise,
where player 1 starts the game



1

3124 (1-£,£,0,0)
3142 (1/2,0,0,1/2)
3142 (1-£,0,0,8)
3124 (1/2,1/2,0,0)
32

34

34

32 |
'3214 (,1-£,0,0)
3241 (0,1/2,0,1/2)
3241 (0,1_530,5)

° 3214 (1/2,1/2,0,0)
31

31 v
+ 2 3412 (£,0,0,1=&)

34 C o 3421 (0,1/2,0,1/2)
) ’ 3421 . <OI{IOI1~£)
- ° 3412
' ' +— 31

(1/2,0,0,1/2)

32
e R 3 AN

o 31

Table II.2.11: game (6)
4-person game with characteristic function
v(12) = v(134) = v(234) = 1 and O otherwise
where player 3 starts the game



31 + 1234 (1-£,&,0,0)
,1243

12 .
+ 01243 (1-¢,£,0,0)

~ °1234

513

1 4+ 01324 (1=-£,0,E,0)
1/ 1/2.-4 01342

1/4 + 2 4 t.1342  (1-£,0,4,0)

01324
v o1/2 3

012

+ 14
012

14 *1432 (0,0,1/2,1/2)
1/2 e 423 (0’0,6’.1_6)

- . - 01432  (0,1/2,0,1/2)

012

Table II.2.12: game (7)
4-person game with characteristic function
v{(12) = v(13) = v(234) = 1 and O otherwise,
where player 1 starts the game



»

- 1/%

O-
1
-+
Y o 3
O\
o
X -

Table II.2.13:

1 = 2134 ({I‘]—C-IOIO)

2143 |
1/24 1+ —° 2143 (¢,1-£,0,0)

° 2134

N

° 23
1 , o 2314 (61011-610)

2341 (0,0,1/2,1/2)
4 1 ° 2341 (0,0,1=4£,&)

23

2314 (1/2,0,1/2,0)
s 21

4 24
21 :
0 2413 (£,0,0,1=&)
w ° > 2431 (0,0,1/2,1/2)
k] 1 — ' 2431 (oro_1£r1’£)

° s 2413 (1/21010r1/2)
> 21

5 " . 23
© 21

game (7)

4-person game with- characteristic function
v(12) = v(13) = v(234) = 1 and ©O otherwise,
where player 2 starts the game



- 100

1 o 4123 (1-€I£IOIO)
2 +
1/2 "~=
41 © 4132 (1/2,0,1/2,0)
2 5 1 4132 (1-6,0,6,0)
o —~— 4123 (1/2,1/2,0,0)
+
1 . 42
4 © 43
- L 43
o 42
1 = ) 4213 (611"61010)
1/3 42 4 S ° 4231 (0,1/2,1/2,0)
1+ _ 1_» ° 4231 (0,1=¢&,&,0)
1/3 o © 4213 (1/2,1/2,0,0)
] 41
o = =
) 43
3 ~ 43
41
4312 (£,0,1=-&,0)
3 1
R_~1_ . . o > 4321 (0,1/2,1/2,0)
1 = ° 4321 (01571-&0)
4312 (1/2,0,1/2,0)
41
4 42
42
: ° 41

Table II.2.14: game (7)
4-person game with characteristic function
v(12) = v(13) = v(234) = 1 and © otherwise

where player 4 starts the game



™

-+~
1
2/ o
1/5
4 +
1/ ]
V1/3 3
/3 . s)
4 +

Table II.2.15:

= 101

3 11 1234 (1-£,£,0,0)
12 S~ 1243
A 21243 (1-&, £,0,0)
T TSq234
+ 213
;! 14
2 ‘ + .14
‘ <13
1+ 21324 (1=£,0,&,0)
13 /2" 01342
§ 2 4 + 21342
oo ~01324 (1‘5'0'5'9)
5 + 012
1 ) =014
. + 014
' ~12
, 11423 (1-£,0,0,€)
14 1 TT—Sey432 |
~ 2 P 1_T423 (1-£,0,0,£)
01432
+ 212
1 »13
: + 13
512

game (8)

4-person game with:z charcteristic function
v(12) = v(13) = v(14) = v(234) = 1 and O
otherwise, where player 1 starts the game



- 102

N 2134 (&,1-£,0,0)
0 T 2143
2 L L 2143 (&£,1-£,0,0)

° 2134
o 23

o 24
1/09 = 7 24

W

° 231
o 2314 (£,0,1=£,0)

23 8 ° 2341 (0,0,1/2,1/2)
4 1 _=—" 2341 (0,0,1-&,£)

2 °© ° 2314 (1/2,0,1/2,0)
> 21

4 24
© 21 .
g p—o 2473 (£,0,0,1-€)
. °© > 24317 (0,0,1/2,1/2)
2 _ <+ ® 2431 (0,0,¢&,1-£)

o 0o 2413 (1/2,0,0,1/2)
> 21

5 p 23
- 21 4

Table II.2.15: game (8)
4-person came with characteristic function
v{(12) = v{(13 = v(14) = v(234) = 1 and O

otherwise, where playver 2 starts the game
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- 103
3 of 21234
12 1/2 1243
Lot 21243
T 1234 +1/2_+1423 (0,1/2,1/2,0)
+ ~F 213 =
» 0 1432 (011/211/2101)
11 ] 14 1 ° 1432 (0,1/2,1/2,0)
2/ = g o —14 » ~— 1423 (0,1/2,1/2,0)
5 " _ — 1324\ (0,1/2,0,1/2)
" = 1/2 - }%2%
+ o13201/2 1 oo
13— 3 01342 ° 1324
)/ 1733 7° —o1324 , 172+ 1423)(0,1/2,1/2,0) -
- 2 o F12 1432 .
’ = aq 4 1250 1432 -
, &3 /2= 1423
; g O A4 , —> 12341 (0,0,1/2,1/2)
: ST 172~ 1243
=y 2 ]
R 1423 q:iééi:: 283 -
4, - 1234
3 14 1432
° s 1423
- 1432 + o 1324)(0,1/2,0,1/2)
1 N 12 4y s, 1342
1/2
. . 2 1/ to 1342 - n
- +13 2= _o 1324
_ 1/2 1234 (0,0,1/2,1/2)
) 2 ° 1243 .
L2243,
° 1234
Table II.2,17: game (9)

4-person game with characteristic function
v(1234) =

where player 1 starts the game

1 and O otherwise
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In this chapter we ask about relations between
Shapley-value and the set of aspirations.
For x € R denote by x(S) =E X

i

c s - n
Definition: The payoff vector xe R~ for the

game <N,v> is an aspiration if

1. %x(8) >= v(8) for every S in N and

~

2. for each i in N %there exists a coalition ¢

'

containing i such that x(2) = v(S).

The first condition states that players behave
rztional. The second condition asserts that there
xists abt least one coalition £ in M which c=
afford the amount x(S).

1. Shrinked aspirations

The Shapley-value is defined on the set cf

imputations which is different from the set

oy
D

of aspirations. As thz2 set of aspirations and t

set of imputations are two different decmains,

D]

introduce a vector x' to mzke a2 comparison of
Shapley-value and zspirations possible.
If x is an aspiration let x(H) = E X

i

ieM



be the sum of aspirations of all players.
The imputation X'=<X1',x9',...,x 1)

X ' = x. /x(N)Y .
i i

H
W
[e)
0]
]
e
jo
o
L

by

Coviously E xi' = v(N) , the amount the all-player
i -

coalition can in fazst afford.

The vector x' might he interpreted in the
following way:

Think of a game where the avzilable payoff should

. be distributed only among =211 players. In other
‘words, suppose the process of coali*ion formation

gces on until the all-player coalition has formed,
As people demand more than the all-player coalition
can afford, the players compare the fictitious
payoff vector x' to a fair payoff vector as the
Shapley-value is, which gives them the answer

how to share the expected payoff.

The question we want %o answer is the following:
Is it always possible to transform an aspiration
such that the 'shrinked® aspiration, that is

the vector of aspirations devided by v(),
equals the Shapley-value?

Consider as zan example the game with characteristic
function v(12) = v(12) v(14) = 1

v(S) = 0 otherwise.

‘The set of aspirations x for this game is

X = (o, 1-0, 1= 1-Q) where 0< X1 .

For the value x(M) we get: x(¥)

2.2,
which results in the transformed asniration x':
I
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The Shapley-value S for i
3 = (3/%,1/12,1/12,1/12)

Nbviously there exists a solution

s game

1]
L3
=
3]
k‘—J
{n

L

or the aquations

Xi/x(N) =3i , nemely ™= 9/103 ,
resulting in the aspiraton x1

X1 = (9/10,1/10,1/10,1/13) .

For many simple Y-person games there exists a
solution %o the equaton x' = S.
But consider the simple game:
v(12) = v(12%) = 1,
The set of aspirations for this game is
x = (X, 1-0,3,1-4-B)  where 2T
and O_{,pg?-d
and x(N) = 2-d. Therefore

x' = 1/(2-d)u(d,1-u,e’1—d—&).
The Shapley=-value S for this game has the form

S = (7/12,1/8,1/712,1/12).

1/% - 1/12 should be esqual 1/12, which obviously
does not hold.

Cne might argue that the aspirations of players
2 and % should be equal as their Shapley-values
are equal too., The set of aspirations would then

have the form:

A
(@]
N



!
N

X = (XK 1.0 (1=00)/2,(1-00/2) with o<,
But as 1/12 # (1/2)(1/4) there is no solution to
the equation x_ /yx(N) = 9
i

For the generzl case we state the follcwing result:

In general it is not possible to transform

an aspiration x to an imputation x' where

X' = x,/x(MN), such that x' = S.
i i ’

The set of aspirations not being convex and not
even starshaped, it does not seenm surprising that
the Shapley-value in general is not included in
the set of normalized aspirations.

Presumably the equation x v - y /x(¥) is

solvable for gaﬁes where tha exéected value esqguals
the Shapley=-value.

If for every game the transformation from ¥

to x' was possible with x! being equal the
Shapley-value, we could have combined the two
concepts of demanding 'much' as the aspirzstions

do and 'fair play' as the Shapley-value proposes.

10
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2. Shapley-value and aspiration core
i astricted games

n oL s . .
The vector x € R is in the aspiration core

if and only if x is a solution %o the linear

iel
subject %o a constraint for each cozalition S:
x(3) > v(3)
for x unrestricted in sign [1J.

<

Let Vs be the game M,v> restricted to a
subcoalition S. Let X be in the aspiration
»J

core of the restricted game vq
Let ¥(3) =Exi/< , -

ieS
that is, v assigns to coalition S the sum over
the aspirations of members in £ in the aspiration

sore.

v(s') iff 2'¢c C
9 octherwise .

-~

Moreover vs(cv)

As ¥V assigns to coalition S a value that is

rational and also feasable for the whole coalition S
(not only for some subcoalition of £) we expected
the following assertion to hold:

For every game <M,v> there exlsts a restricted

game <S,ﬂq> such that
it

Sh(V) € Asp. of v/“

~ ~
where Sh(V) denotes the Shapley-value of V.



To verify our expectation we investigate 2

Zame whose characteristic function is of 1 very -
general form, that is the Dictator-game [4], whizh
was constructed for experimental purposes. The

set of players is M = {1,2,2,4},

The characteristic function is given by:

v(i) = 0 for 211 i in N

v(12) = 50
v(13) = 50
v(14) = 1g
v(23) = 290
v(24) = 30
v(34) = 10
v(123) = 110
v(124) = 30
v(134) = 70
v(23L4) = 90
vl = 120 .

Cor.sider the subgame <WS’S> where S={1,2,32}.
The set of aspirations for this game is the set
of all vectors x = (A,50-X,50-1) where 110-23110
and therefore A =0, which states that the set of
Aspirations coincides with the aspiration core:
AC = (0,50,60) .
We define ¥(122) = 11C and

V(S') = (v(S') for every S'g {1,2,31,

{0 otherwise. -

For the Shapley-value Sh1(7) of player 1 we

(1/56311C + (1/2)90 = 145/3 4 0,
As we see readily the Shapley-valuz of ¥V,

get

2h (=
1(v)

Sh(V)¢ Aspirations.



Let us consider one mcre subgame, say
C,v.> wnere S o= (1,2,41 .
The set of aspirstions is given by
x = (J,50-%,%0-2) with ©60-A > 30 and therefore
10 2A 20 .
The aspiration core has the form
AC = (10,H02,20),
and we define
T(124) = 20 and
T(S') = v(3') for S'¢{1,2,4]
=0 otherwise
The Shapley-value of player 1 equals
Sho(v) = (1/6)90 + (1/2)50 = 95/3 > 10 .
This payoff already shows that
the Shapley-value is not included in ths

set of aspirations.
Considering also the other subgames ﬁa whare
s={1,3,8} or £={2,3,%}, it turns out that the

Shapley-value never is an aspiration of any subgame.

So we state the unexpected result:

For a game V defined as above

Sh(7V)¢ Aspirations.

Consider once more the subgame V|, where S={1,2,4}.

Is it possible tc redefine the characteristic function
k3 ~ . K3
in 2 way such that Sh(V) e Aspirations?

Let v(12) = 50
v(14) = 40
v(24) = 20 as before and redefine
v(1z4) = 590 .



The set of aspirations of :his subgame is a3ll
vectors x = (L,50-A,40-2) where

9C - 2A > 20 or

XA >0 .

The aspiration core is therefore given by
AC = (20,20,10) znd
we define
v{124) = 59
T(s') = v(S'Y for every Sre{1,2,u} .

v{3")

ctherwise .

L\ . . ~ .
Rotice that this game ¥ assigns a new value to
coalition {1,2,4}.

The Shapley-values for glayers 1,2 and % in *he game V zre
Sh1(7) = 25 < 30
Sh2<7) s 20 # 50-25
Shu(V) = 15 = 40225
and
sh(V) = (25,2¢,15) .

lotice this result! The payaff feor player 1,

SHTCV), satisfies the condition X ¢ 20.
The payoff for player 3, Sh_ (V) = Bo-x,

for A=25. Therefore the condition of rationality
1s satisfied for coalition (1,83, x(11) > uo,
and for coalition (2,4}, x(2u) 2 30. The. ’
condition of rationality is also szatisfied for
coalition {1,2,4}, as x(124) = 50 2 5C. The only
coalition for which the condition of rationality
is not satisfied, is coalition {1,21, as

Xx(12) = 45 <530,



VYotice that for the Chapley-value to oe an
aspiration
50 - X = 50
should hold, as the vector of the Shapley-values always
adds up to (), here to V(124). But this indlcates that
the Shapley-value of player 1 should be equsl 220,
resulting in the payoff vector (30,20,10).
Comparing the payoff vector (30,20,10) and the
Shapley-value (25,20,13), it can be seen that
there is no big difference between the two vectors,
moreover they assign an equal payoff to player 2.
Although the Shapley-value is 'closer' to the setl
of aspirations in this example, we still have the result:
sh(¥) ¢ Aspirations.

2.1. An example of aspirations and the

Shapley-value in a restricted 2-person game

Tn this section we consider aspirations of a restricted
3-person game and compare them Lo the correspending
Chapley-value.

Let <s:ﬂ3> be the restricted game with s={1,2,21}.
Denote by v(3) = X

v(12) = y
v(13) = z
v(23) = w

Tmen the set of aspirations for this game is given by:

2 = (M,y=-2,2-A)

where (y+z-u)/2 2A >0
or {y+z=X) 2 X and therefore

-

—a
ro
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y+Z=x 212 9
Supposa y+z-x £ (y+z-w)/2
w2 make this assumption without lcss of
generzlity. Ctherwise we would have %o redefine

v(sS) > v(8) .

The aspiration core results for
A =z y+z-x and is given by
AC = (y+z-%,x-2,xX=-y) .
The game V is therefore defined as

T(122) = x .

For the Shapley-value Sh(¥) to be in the set of

aspirations, the following equations must be satisfied:

(i) Yy + 2 - A = x

(11) A = 1/6(y+2) + 1/3(x=w)
(1i1) y=-A = 1/5(y+w) +1/3(x=2)
(iv) z=-A = 1/§(z+w) + 1/3(x=-y)

Subtracting equations (iii) and (iv) we get
y =2z, that is v(12) = v{(12) .

Using equation (ii) for A in equation {(iii), we get
y = 2y/6 = (1/3)(x-w) = (1/768) (y+w) + (1/3)(x-y)
wnat can be transformed to
5y + w = 4x .
low let us make our assumption strictly, that is

Y+ 2 = x = (y+ z - w)/2 what corresponds to

Yy + 2 +w = 2x .



by + 2w = Lx .

-
i

cgether with the equation Sy + w = tx ,we get the result

3]
"
«
"
b
.

Thwis result indicates, %hat for the Shapley-value of
~ (] 03 »
a Z-person game v to be in the set of aspiration,

]
symmetry is a sufficient condition.

With the help of our consideraticons we now are zble
to construct a game <S’ﬂq>, such that

Sh(¥) € Aspirations of ﬂqt

Let S={1,2,2} . -

Let the characteristic function be defined by

U1 0O O
n n
W

W N —

v
"

The game is . symmetric, and the condition

5v{(12) + v(23) = 4v(123) is s s

50 + 10 = 4%*15,

The set of aspirations for this game is given by

x = (A,10-x,10=-2) with C {Xx <5,
and the aspirztion core

AC = (5,5,5)
which defines

T(122) = v(123)

V(S') = v(S") for 3'c {1,2,2

0] otherwises .

1]
L1}
—
(W2}

140
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The Ehapley-value of v is given by

sh(¥Y = (5,5,5) .

D

Notice the Shapley-value is both fezsable and rsztional.
As Sh(V) = AC, it is clear, that the Sh
o} o

is included in the set of aspirsastions

ct

pley-value of V

But consider the game
v(12) = v(13) = 10
v(23) = 14
v(123) = 1§ ,

that still satisfies the condition 5v{12) + v(22) =

<
Fan
—n
Ny
(W)
s
»

The set of aspirations has the form

(10=x,x, 14=X) where 0 <AL T,
and the aspiration core

AC = (3,7,7T) ,
what redefines

v(123) = 17 .

ow Sh1(;)

Sh (Y~
2(v)
and

= 13/3
Sh,(Vv) = 19/3

Cbvicusly the vector Sh{¥) is no% included in the
set of aspirations.

This simple example of reduced 2-person games already
shows that it occurs only in very special games,
that the Shapley valus of ¥V is included in the szt of

aspirations of the game (S,WL).



Conclusions

The main purpose of this paper was to get some more
insight in the difference of Shapley-value and
expected value as a sclution concept of the
extensive-form-game proposed by A.Rapoport.

The main features responsible for the difference
between expected value and Shapley-value. are
captured in our first chapter.

The difference is reflected very well by some examples
of S5-person and 5-person games, that would not
have been possible without the aid of a ccmputer

prozram.

Although not expected we succeeded in finding some
interesting relations between Shapley-value and

the set of aspirstions. The results are

surprising, considering what each of the two
solution concepts is mecdelling. The Shapley-

value is per definitionem the payoff a player

may expect if the game is played many times, whereas
The aspiration approach defines a vector of

payoff demands in one single play of the game.

To allow sidepayments in the game in extensive
form is an interesting modification of Rapoporti's
mcdel and seems to be a step toward formalization
of what bargzining situations look like in
real-life situations.

—a
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A THMAT V., ] y
APPINDIY: scurce listin

and program ocutput

G

PRCGRAM wil{input,cutput,ula);

(* main program for the computation of the
expected values

variables:
ula -

a -
ms -
ar.x -
k[(il:=zj -
ar.p -
sh -
gewlj] -
gain [i]-
sum -

3
(7 1}
[ [~
Ulwe

1

0 n
o

o
W o

f-

<
s
8]
¥
l

sh:st;

ula: te
gew:ARR
gain:AR
s,J,i,p
il,ie,
sum:rea

TUNCTION pr

(* The FUNC
which pl

variables:
anth -

Sieg -

.
y -

textfile

the results of each game are written

on file ula

number of minimal winning coalitions

number of players

coalition that has formed until now

player j is in the i-th place of ccalition k
probability with which coalition k has formed
set of all players

j=th minimal winning coalition

expected value of player i

control variable

the sum of all expected values zlways equals

er = 1..ms;

SET CF spieler;

CCRC :
k :ARRAY [spieler] CF spieler;
p:real

H

xt;

AY[1,.a] OF st;
RAY[1..ms] OF real;
layer,index:spieler;

gr:integer;

1

ob(mge:st;I2:spieler):real;

TION prob determines the probability with
ayer 1i2 accepts to join coalition mge

determines whather player 12 is included
in some minimzl winning coalltlon gewl jl
for j=1,...,2

determines whether plzysr 12 is the lass

4

*)



s,j,help~- =zuxiliary varial
VAR enth,sieg:boolean;
s:splieler;
j:Q..ms;

help:real;
3EGIN
anth:=false;
J:=20C;
REPEZAT
Je=i+1;
enth:=(i2 I¥ gewljl)
UHTIL enth CR (j=a);
IF enth THEX
BEGIV
sieg:=false;
J:=29;
REPEAT
Je=3+1; .
if (gewlil-mge=[i2]) THEXM
BEGIN
prob:=1;
help:=1;
sisg:=trus
END
EL3SE BEGIX
prob:=0;
help:=0
END
UNTIL (j=a) OR sieg
END

ELSE BEGIX
prob:=1;

plaver to Jjoin 2 ainimal winning
Wis zoceptance probebility acs
value 1, otharwice .
Indifferent players e2nter the
probebility 1.

help:=
ZND
Nl
FUNCTION pivot:spisler;
(* The FUNCTION piveot determines for each formed
coalition the corresponding winner, that is

the pivot player.

<

riables:
£ - beccmes
has hese

trus as
found

soon as the ri

~
<
ge
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woal,j,k-

=3
e
=9 }
»

FOR S
D s 0 O

Lo W € I e Y
s 3 3 ¥

[0 3 =1l ST
[ I It I ]

(02]

BECIN

kiz1:

O (3 ¢t

Do
8 T |

— o

(4]

) we s
=3

koal:=lar.k[k11;
gef:=false;
WHILE NOT zef AND (%<ms) DC

3EGIH

Kiz=k+1;

koal:=koal+[ar.k[k]]1;

FOR j:=1 TO a DO
IF (gewlj] <= koal) AND NOT gef THEZY
BEGIN

PRCCEDURE play (l:spieler;nk:spieler;sa,sp:stinp:spisler)

pivot:=zar.k(k];
gef:=ztrue

ND

(* In PRCCEDURE play the gzme is played for every order
of coalition formation; the PRCCECURE simulztes that
- players accept to jecin coalition k% in place nk+1
- players decline to join coalition k in place nk+1
- the last player must join coalition % .

variables:

1 -
n¥k -
sa -
sp -
np -

last player in the coalition

player 1 is in place nk

set of players that are not yet members of
the formed ccalition

set of possible players, that is, players
that may be invited to join the ccalition
in place nk+1

number of possible players

i,new,ph,pin,j,h - =zuxiliary variables *)

VAR i:spieler;
new : booclean;
ph,pin :real;
J: 1..ms;
hWiinteger;



™ I T A
VARG S
new:=true;
IF np>1 THEX
ZCCIY
(* there 1is more than one possible zlayer %o
enter the coalition in the next place *)
pin:=ar.p;
TCR i:=1 TQ ms DC
IECGIN
(* ezch time the loop index is increasad the

variable new is needed to determine the pivet
clzayer of the last order of coalition formation *)

IT (i I¥ sp) THEN
BEGIY
IT new N

IF (ar.p>0) THEN
BEGCIN
player:=pivot;

ta
13

-

Y

END

gain(player]:=gzainlplayerl+ar.p

=
(2 R ]
10

Il
=
W]
3
[w]
[@]

.UJ'

*)

)
(2]
0

(* player i epts to join cozlition k in place nk+1

o B[]

*E1/né);

O U NUT
S riee

TND;

play (I,nk+1,SA~-

IF (ar.p>%) THEN

3EGIY
player:=pivot;

, gainlplayerl:=gain{player] +ar.p

END;

{(11,8A-(T],ms=-nk=1);

(* player i declines to join ccalition k in place nk+1 *)

ph*(1-prob{sh-ca,i));
,nk,sa,sp-[il,np-1)

n
o
g
[
[®]



ar.xlnk+1] =i,
TF (nk<ms=-1) TUEN
play (i,nk+1,sa=-[i],sz-[i],ms-nk-1)
¥l
™ -
Ly y
(* main program *)

(* The main program reads and writes {on file ulz)
the minimal winning coalitiocns.

It

var
For
the

initializes the SET sh, the ARRAY gzin and the
iable sum.

each order of coalition formation the play of
Jame starts in the main program. For every

player i his expected value, gzinli], is written

on
val

BEGIY

file uls, as well as the sum of all expeciad
ues. %)

rewrite(ula);

wri
FCR
3EG

01 ') 1
[ M@
(RN w]

W
(@ Rerip-id
3 es O3

L)
(o}
"3

CIrawm
10C
O3

teln(' Halle, auf gehts ');

j:=1 TO a DO
P
read (s);

gewl jl:=[s];
NHILE NQOT eoln D2
BEGIN

read (s);

gewl jl:=gew( jl+[s]
™

ND

- 11

=1 TO a

o

~
~/

TGy

I .
write ( ula,'winning coalition=');
TCR index:=1 T2 ms CC
IF index IN gew[ 3} THEN write (ula,index:1);
writeln(uls)

?
=[1;
j:=1 TC ms DO
sh:=sh+[j];
J:=1 to ms do
gainljl:=0;
:=0;
j:=1 TC ms DO
I
WITH ar [O
BEGIN
'&CT]::j;
p:=1/ms
[t ol
play (j,1,sh-[31,s1=-[j],ms=-1);



{* Tach time the first
formation 1s change
srdaer of ccalition

17 (ar.p>0) THTZY
0T
jS IR SN
play =pivect
gainl playerl'
EﬂD
SUD;

TCOR i:=1 TC ms DO
- BEGIN
writeln(ula,"’
sum := sum + gal

WIMNING CCALITION=1224
HINNINu CCALITICH=245
WINNING CCALITION=13
GAIN(1)=0.36566£56557
u&IW(Z) 0.05833333233
GAIN(3)=0.0000C00C00
GAIN(4)=0.0583332233

CADN(S)= 0.51503055§?
SUM=1.C0C
WIMNMING CCALITIOM=12
WINNING CCALITIO V:13
WINMING CCALITION=1U4S
WINNING CCALITICH-Z 5

GAIN(1)=0.65000C00C2
GAIN(2)=0.1583333333
SAIN(3)=0.1583333333
GAIN(4)=C,C156666667
SAIN(5)=0.01586566667
StM=1.000

WINNING CCALITICN=123
WINNING COALITION=124
WINNING CCALITION=1Z24
WINMING COALITICM=145
GAIN(1)=0.5332333233
GAIN(2)=0.100000000C
GAIN(3)s= 0 100£CQ0000

7
iteln (ula,' sum='

nlil

gain(',1i:

'Y=
1,'1)=

,sum:5: 2

! ~

o order of zoa2l
Fad = Y, R EEN

nlayer cf the 1z

e 7, .

st be determined

',gainlil:12:1C)

o (N b+

b ¢F

o
o]
3

®
e
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