)

0

iy

The IAS—-SYSTEM Data Base:
A Portable Application of the Bx-Tree
(Final Report)

Harald SONNBERGER, Kurt RODLER
Klaus PLASSER arid Wilfried PHILIPP

Forschungsbericht/
Research Memorandum No. 179

November 1982

This research was supported by the Austrian Science
Foundation (Fonds zur Fdrderung der wissenschaftlichen
Forschung) by grant No. 4012. Project title:

Software Development in Econometrics (Software-Entwicklung
in der Okonometrie)



Die in diesem Forschungsbericht getroffenen Aussagen liegen
im Verantwortungsbereich der Autoren und sollen daher nicht
als Aussagen des Instituts fliir Hohere Studien wiedergegeben

werden.



™

2

Contents.

Abstract

1. Introduction
2. Requirements for the IAS-SYSTEM Data Base

3. Logical Realization of the IAS~SYSTEM Data Base
3.1 The Data Base Environment

3.1.1 The Application Routines
3.1.2 The Linking Routines

3.2 The Data Base Organization Module
3.2.1 Access Operations for Individual Data
Base Records _
3.2.1.1 The 0S~-File Handling Facilities
3.2.1.2 The IAS-File Handling Facilities

3.2.2 Access Operations for Individual Data
Base Items

3.2.2.1 Operations on Single, Fully Specified,
IAS-Items

3.2.2.2 Operations on a Set of Partially
Specified IAS-Items

3.3 The Data Base Access Module

3.3.1 The Concepts of B-Tree and BX—Tree
3.3.2 The Concept of a Modified.Bx—Tree
3.3.2.1 The Usage of System Buffers

3.3.2.2 Analysis of the Worst Case Behavior
for Insertion and Deletion

4. Physical Realization of the IAS-SYSTEM Data Base

4.1 The File on Unit 11

4.1.1 The First Record

4.1.2 The Records 2-21

4.1.3 The Record 22

4.1.4 The Records up from 23

page

11
12

13
13

14

15
15
19

23

24

24
26

27
32
35

36

39
40

41
42
43
43



- ii -

4,2 The File on Unit 12

4.3 The File on Unit 13

5. Implementation of the IAS-SYSTEM Data Base
5.1 Portability Considerations
5.2 Parameterization Considerations
5.3 The I/0 Buffers

5.3.1 The Numericail Buffer NUMSTR
5.3.2 The Character Buffer CSTR

5.4 The Interfaces to the Data Base Modules

5.4.1 The DBORG-Interface
5.4.2 The DBACC-Interface

Conclusions
References

Appendik

- The Logical Structure of the Retrieval and Printing

of Time Series including Program Listings

- The Semiportable Routines within the IAS-SYSTEM

- The Conversion Routines within the IAS-SYSTEM

page

45

46

47
47
52
53

54
57

58"

58
63

65

67

69

71
113

143



O

™

Abstract

This paper is the final report of the first project year to
the Austrian Science Foundation who has supported this pro-
ject by grant No. 4012. According to the draft from

March 18, 1981 the main topics of this year were the solution
of problems in connection with the production of a portable
software for econometrics and corporate planning, i.e. the
OS-~file handling and character set representation, syntax
analysis, data management and data handling.

Concerning the portability problems it can be stated that
recent efforts resulted in an implementation of the basis
system on a Siemens computer at GMD (Gesellschaft fiir Mathe-
matik und Datenverarbeitung) in Bonn and on a CBC computer
at TU (Technical University) in Wien; The modified syntax
analysis for the IAS-SYSTEM Level 3 will be presented in-
dependently in a forthcoming paper. This final report re-
views the data base module as it has been designed and imple-
mented during the last year. Special emphasis has been de-
voted to the logical and physical realization of the data

- base together with implementation details. In the appendix

the logical structure of the programs concerning the retrie-
val and printing of time series is given as an example, to
document the programming style and programming conventions
as described in the interim report..Adaitionally the semi-
portable routines and the conversion routines are listed
documenting the efforts and the solutions to various porta-
bility problems which resulted in a program package which is
portable to 99 %.

As this paper demonstrates the concrete solution to a given
problem within the context of software engineering it should
be of special interest for programmers and implementers of
similar large software systems. Together with the syntax
analysis, the utility functions and some twelve commands

the currently available software forms the basis of the



IAS-SYSTEM Level 3 which is currently being tested thorough-
ly by the project team.

The directions of the next year go mainly to the implementa-
tion of application routines for estimation, testing, simu-
lation, forecasting and report generation. At the end of this
second project year a portable and flexible IAS-SYSTEM which
is improved considerably with respect to Level 2 should be

at hand. |

Wien (Vienna), IAS-SYSTEM Project-Team
Novempber 1982 Institute for Advanced Studies



5

M)

1. Introduction

The Institute for Advanced Studies has a long tradition in
the development of~software. To support econometric modeling
and research at the Institute the development of an Inter-
active Simulation System called IAS-SYSTEM was started in
1974. According to the increasing number of users the IAS-
SYSTEM has been improved permanently. For efficiency reasons
the first two major releases were programmed in a special
FORTRAN dialect. This proved to be a severe restriction,
however, as soon as the Institute began to distribute the
System on license contracts: it was very laborious to imple-
ment the IAS-SYSTEM on computer series other than the one
the Institute was eQuipped.with.

Within the IAS-SYSTEM Level 1 the data were stored in a
straightforward 1linear way. This was not really a restric-
tion for the small models that were used at that time but
when people started forecasting with large econometric models

the connected execution times soon exceeded certain tolerance
limits.

With the further development to the IAS-SYSTEM Level 2

one of the main improvements was exactly this access organi-
zation. From this time on the retrieval, insertion and dele-
tion of time series, equations or models was organized wvia

a binary tree. For the maximum size of the data base consisting
of 10.000 elements one could expect that about 14 accesses to
secondary storage had to be performed. Although this was quite
a good improvement compared to sequential search it was far
from being optimal as no effort was made on balancing the
binary tree. Unbalanced trees quite frequently occurred as

the names of the items are used as primary key and many econo-
mists number their time series, e.g. CP, CP1,... Sometimes

this causéd the System to perform twenty, thirty or even more
access operations which again sTowed down the solution process.




One additional drawback of both levels was the user's depen-
dence on the Data Base Administrator in case of errors in

the data base. For the binary tree structure there were main-
ly three reasons for this, namely concurrent write accesses
of different users to the same data base area, execution
termination by the user during input or delete operations

and the occurrence of a system crash. Although the reasons
for errors were quite different the resulting errors were
very much the same: due to the buffering operations of the
executive system usually wrong pointers within the binary
tree structure were set. In this situation one solution was
£o contact the Data Base Administrator to repair the binary
tree. Another one was to copy the erroneous IAS-file out from
the data base via a sequential search and copy it back again
thus producing a new binary tree. For a data base which was
nearly full this was not possible. in this case the whole
data base had to be reorganized which aéain could be

accomplished only by the Data Base Administrator.

These were the main reasons for changing. the data base mo-
dule within the IAS-SYSTEM. When in 1979 and 1980 the
FORTRAN 77 Compiler was announced for most of the main com-
puter series it was decided that this was the best occasion
to start the conversion to a portable IAS-SYSTEM including
the improvements with respect to the 0S-file handling and
the index organization. The final implementation of the new
TAS-commands and the modified Bx—tree are discussed in this

paper.



[

-

2. Requirements for the IAS-SYSTEM Data Base

Besides the natural requests a user usually-associates with
the concept of a data base like efficient data storing and
comfortable data handling some additional functions exist
which should be cérried out by the data base management
system, e.g. security, integrity, synchronization, crash
proteétion and recovery. The objective of this chapter is
not to discuss and repeat these general ideas4— for that
purpose the reader is referred to the standard data base
literature (e.g. Ullman (1980), Date (1976)) - but to out-
line the special requirements that must be taken into account
because of the fact that the IAS~SYSTEM Level 3, a portable
program package for econometric research and corporate
planning is the main user of the data base.

The additional data base functions mentioned above will be
discussed throughout this paper with one exception - the
synchronization. Since the whole IAS-SYSTEM and so also the
data base module have to be portable, the idea of supporting
concurrent accesses for read and/or write operations had to
be dropped, as the FORTRAN 77 Compiler does not provide any
features that will allow the implementation of that concept

-(e.g. "READ and LOCK, TEST and SET). As a consequehce the

concept of the IAS-SYSTEM data base itself has changed from
Level 2 to Level 3 - it has become a personal and permanent
working area of one user, created and maintained by the user

himself.

To determine the user's requests to the IAS-SYSTEM daté
base let us first look at the hierarchical data model re-
presenting the conceptual view of the IAS-SYSTEM data base.



Figure 1:

IAS—-SYSTEM data base

IAS-file 1 IAS-file 2 .o IAS~file n
element 1 element 2 .o element 1
version 1 : .o version m
type 1 RPN type k

‘The interpretation of Figure 1 is as follows: A data base
may contain several IAS-files, one IAS-file may contain
different elements, one element may have different versions
and one element of a certain file with a certain version may
have attached to it a certain type out of the set of

{DATA, EQU, MOD, TEXT!}. The characteristics file, element.
version and type/subtype together uniquely identify a cer-
tain itemx)within the IAS—SYSTEM and are used as primary

key within the data base.

Regarding this conceptual view three different levels of data

base organization can be distinguished:

a) the handling of the data base on the level of 0S-files
b) the handling of IAS-files
c) the handling of IAS-items

%) In the following the term IAS-item is used whenever special
reference to the IAS-SYSTEM should be emphasized, other-

wise the more general term data base item is used.



£

ad a)

ad b)

ad c)

This new request is a direct consequence of the new
data base view as a personnal permanent working area
of the user: to fortify the personnal aspect it is
necessary that each user is independent from any per-
son in creating and maintaining his data base. On the
other hand the user should not know any details about
the concrete implementation of the data base, e.g.

how many Operating System files a data base consists
of, what size they have and so on. Particularly the
possibility of changing the composition and/or the
internal file names to improve the efficiency of the
index organization or to meet special hardware charac-
teristics should be provided. Therefore it was impor-
tant to hide the necessary 0S-file handling activities
from the user. A detailled description of the 0S-file
facilities is given in chapter 3.2.1.1 where the new
DB-command is introduced, tco.

The IAS-file handling is a traditional request that
has been taken over from Level 2 to Level 3 of the
System because the underlying concept proved to be
very useful. It raises data protection within a data
base by the optional use of read/write keys and faci-
litates ‘the work in connection with the default file
concept. For more details see chapter 3.2.1.2 where
also the new FILE-command comprising the old commands
%#ASG, %CAT, *FREE and #USE, is discussed.

This lowest level includes the basic data base opera-
tions like insertion, deletion, retrieval, copying and
updating (see also chapter 3.2.2). Simple examples

for such requests within the IAS-SYSTEM are:

%#SER,I  F1.ABC insert series ABC to file F1
*#DEL,E F2.XY%Z delete equation XYZ in file F2



For the syntax, semantic and description of these

commands compare the User Reference Manual: Part One.

Usually the execution of the above commands on a fully
specified IAS~item are not time critical, since they
are accessing the data base only once or twice. On the
other hand there are commands that may imply the

access to some hundred IAS-items, e.g.

%¥MOD,S F3.DEF solve model DEF of file F3

For solving a model, the model itself, each eguation
and each time series have to be read. As models con-
sisting of 200 to 400 equations are gquite frequent

this would mean that up to 1000 read operations would
have to be performed only to bring the model into

main storage. This example of a time critical situation
shows the necessity for an efficient index organization,
especially for the rapid access to IAS-item informa-
tion in the narrow sense (e.g. the values of time

series).

Besides operations on fully specified IAS-items the
IAS-SYSTEM asks for a group of operations (deleting,
copying and printing) that are working on sets of IAS-
items, e.g.

%*DEL,E F1. delete all equations of file F1
#COPY,D F1.,F2. copy all data items of F1 to F2

Obviously the operation on sets is defined by the spe-
cification of a partial key. In the first example all
equations of the specified file have to be deleted,
the specification of an element name and a version

is omitted. One solution to this partial key match
problem is a search for all matching keys through the
whole data base. In the literature this procedure is

rejected and the implementation of secondary indices



is proposed - in the above example this would imply

that there must be a set of pointers or a list direc-
ted link to all elements of a certain type - which -
improves the retrieval of :sets_of IAS~-items considerably.
The disadvantage of this secondary pointer structure

that is stored in the according records is that in

case of deletion all pointers pointing to the deleted

- IAS-item have to be reset, so that an advantage in

case of retrieval faces a disadvantage in case of de-
letion.

Chapter 3.2.2.2 deals with the operations on sets of
IAS-items in more detail and demonstrates that by

a simple rearrangement of the key the implementation

of secondary indices can be avoided and for the special
IAS-SYSTEM applications an optimal support of operations
on sets of IAS-items can be quaranteed. '






M

3. Logical Realization of the IAS=-SYSTEM Data Base

During the design of the data base one of the most important
objectives was to achieve physical and logical data inde-
pendence. While phyéical data independence would allow to
change the index organization without affecting the'logic

of the application programs the logical data independence
should provide a concept which is highly flexible with respect
to the use by other application programs than the IAS-SYSTEM.
To this end it is absolutely necessary to define unique inter-
faces between different levels of abstraction. Fig. 2 gives

a schematic view of the IAS-SYSTEM modules

Figure 2: The IAS-SYSTEM

APPLICATION PROGRAMS

A&V data base module

From Fig. 2 it can be seen that the core of this stratified

structure is the data base access module called DBACC in the
sequel. This module performs the access to one physical record,
e.g. in case of initializing a single record by the DB-command,
or to one logical record (i.e. an IAS-item), which may consist
of a number of physical records. The data base organization mo-
dule, from now on called DBORG has to organize the efficient,



possibly repeated callings of DBACC depending on the kind
of request of the application program., It is the DBORG-module
which represents the unique interface between data base en-

vironment and the data base itself.

From Figure 2 it can be seen that the application programs can
be split into two groups: the first group can have direct
access to the DBORG—module, while programs of the second group
have to call some linking routines first. This subdivision re-
sulted from the fact that the linking routines are needed to
support the transmission of the specific information of an IAS-
item to or from the data base (see chapter 3.1.2) what is
heavily dependent on the type of the IAS-item - e.g. time
series values, equation strings - but what is not necessary

for all data base requests. Therefore the idea of a further
obligatory and unique interface between application and linking
routines has been dropped because of efficiency reasons. Of
course it is not possible for any application or linking rou-
tine to access DBACC directly; for DBORG is the unique intexr-
face between the data base environment and the data base.

3.1 The Data Base Environment

Locking at Fig. 2 it can be seen that the IAS~-SYSTEM is sub-
divided into two parts, the minor one which is called the
utility routines module or utility commands module comprising
the TIME~command or the EDIT-command etc. which have no access
to the data base and the major part which consists of the
application programs, the linking routines and the data base
module.



0

[

3.1.1 The Application Routines

These routines représent the outmost stratum of the data base
concept. An application routine is a subroutine and/or a
program module requesting an access to any part of the data
base, i.e. to an IAS-item, to an IAS-file, to an OS-file

as a whole or a single record of it. Most of the IAS~-SYSTEM
commands represent program modules ih that sense, like

%#DB,C XY create, catalog and initialize a new data
' base in terms of 0S-files

®*FITE,C 2 catalog a new IAS-file

%COPY ,M Y.,Z. copy all models from file Y to file Z

3.1.2 The Linking Routines

These routines are necessary for a special group of data base
operations that can be characterized by the fact that it
transmits buffer contents to or from the data base. This
group comprises the basic data base operations insért)re—

trieve and update. The following commands represent valid
examples.

*EQU,I ABC store equation ABC to the data base
#SER XYZ print values of time series XYZ
x%UPD,A XYZ update time series XYZ in absolute differences

The problem to solve is'that the information is totally depen-
dent on the type of the IAS-item transmitted, i.e.in case of a
time series this would be an ordered set of numerical values,
in case of an equation this would be an algebraic expression
and the corresponding polish string, possibly with estimated
parameters and statistics, in case of a model this would be
a string of equation names. Therefore it was necessary to

find a universal mode of structuring the information so that
it can be processed within the data base module without regard

to the type of an actual IAS-item. These considerations resulted



in another level of abstraction, namely two generally defined
I/0-buffers which are described in chapter 5.3.

Main task of the linking routines now is the préparation or
interpretation of these two I/O-buffers - the NUMSTR-buffer
for numerical information and the CSTR-buffer for the charac-
ter information - depending on the type of the IAS~item
before accessing or after having accessed the data base mo-
dule.

3.2 The Data Base Organization Module

Among the many different features the DBORG-module has to
provide there is one which is important for consistency
checks between the IAS-SYSTEM and the accessed data base and
for a simple security concept. We shall start with this

concept first.

In our view a data base is a set of random access OS-files.
As the user should be able to create, initialize, assign,
increase and change the data base within the IAS-SYSTEM it
is obvious from consistency reasons that some specific
characteristic of the underlying data base like size, record
length, next free record etc. has to be part of the infor-
mation stored in the data base. This information is gathered
in the data base status array (IDBST) - which will be de-
scribed in detail in the implementation chapter. Two diffe-

rent types of variables of IDBST can be distinguished

- implementation dependent variables, e.g.
- record length of OS-files
- number of records per file

and

- the data base maintenance variables, e.g.
- number of IAS-items stored

- pointer to next free record



4t

The first record of the index file (the file on unit 11, see
chapter 4.1.1) was decided to contain this data base speci-
fic information maintained in the array IDBST. Whenever a
data base is assigned this array is copied from mass-storage
to main-storage thus allowing the use of different data bases
with one and the same IAS-SYSTEM.

Additionally the array IDBST can be used to Support security
concepts. Whenever one of the data base maintenance variab-
les has changed, e. g. in case of insertion or deletlon this
variable is updated in the first record of the index flle
ensuring that no errors occur even in case of a system inter-
rupt or a break down of +he system. To reduce the resulting
overhead the concept of security points has been introduced,

€.g. in case of a COPY-operation of one IAS-file to another the

first record of the index file is updated only once namely
at the end of the whole COPY-operation, before leaving the
data base module.

3.2.1 Access Operations for Individual Data Base Records

These requests cover the features for

= the 0S-file handling facilities
- the IAS-file handling facilities

3.2.1.1 The 0S-File Handling Facilities

In Level 3 of the IAS-SYSTEM the user should be independent
as far as possible of any Data Base Administrator. In the
former levels of the System the Data Base Administrator had
the following tasks:

= cataloging the required 0S-files

- prepéring an OS-procedure for the assignment of the 0sS-
files, so that the user need not have detailed knowledge
of the 0OS-files and their units




- initializing the data base within the IAS-SYSTEM
- reorganizing full data bases
- correcting the data base after system crashes by restoring

the binary tree.

For all these tasks of the Data Base Administrator except
the data base reorganization that is done automatically by

the new index organization a new command has been introduced.

%DB,option dbname :readkey:writekey, size
Options:
c catalog a new data base

delete -the assigned data base
free the assigned data base

assign an existing data base read-only

n 9 = 0O

save a data base (recovery)
assign an existing data base write—-enabled
SPACE like W

The data base name is a user specified name with a maximum

of 18 characters, that has to match the syntactical require-

ments of a file name of the underlying Operating System. Read
and write keys are names in the sense of the IAS terminology

(see PﬁILIPP et al. 1982).

By the last parameter of the command the user can specify:

the size of thé;aéta base he intends to catalog. Enlarging

an existing data base is also provided for (only in connec-

tion with option W or SPACE, when the data base is assigned
write~enabled). The size specifier corresponds to the number of
TAS-items the user wants to store. The possible range covers

the default value 1000 to the maximum value of 10000 IAS-items -
if the size specifier is no multiple of 100 it 1is automatical-
ly rounded to the next higher multiple of 100.



Cataloging a new data base implies the following steps

calculate the implementation dependent variables of the data
base status array with respect to the size specification

initialize the data base maintenance variables

catalog and assign the 0S-files using the implementation
dependent variables and connect them to the appropriate

units

initialize the data base by writing the free record indi-
cation pointer and the free record concatenation pointer
to each record

store the data base status array and further information
like data base name, read/write keys and some statistical
information to the 0S-files.

The procedures for the assignment of an existing data base

is very similar to the one described above. The main diffe-

rence is that the data base status must be read from the

data base files first and the data base specification has
to be checked.

Assigning an existing data base implies the following steps

assign the 0S-files and connect them to the appropriate
units

copy the data base status array from the index file to

main storage

update the data base status array in case of data base
enlargement by recalculating the implementation dependent

variables
in case of enlargement initialize the new records

update the statistical data base information



Freeing a data base implies the following steps

suspend the connection between the 0S-files and the units
close and keep the Os-files

reset the IAS-file control table and the use control table
o its initial stage

Deleting a data pbase implies the following steps

suspend the connection petween the 0S-files and the units
close and delete the Os-files

reset the IAS-file control table and the use control table
to its initial stage

The data base recovery module allows the user to start a

recovery procedure in case of errors in his data base.

As soon as inconsistencies are discovered within the data

base he is automatically informed by the data base module

indicating the necessity of a data base recovery. Here the

System creates a new correct data base by trying to read

sequentially the records of the erroneous data base and in-

serting correct IAS—-items to the new data base.

Saving a data base implies the following steps

catalog and assign a new set of 0S-files, using the imple-
mentation dependent variables of the erroneous data base
and connect them to the appropriate units

jnitialize the data base by writing the free record indi-
cation pointer and the free record concatenation pointer

to each record

read sequentially record by record of the erroneous main
files (see chapters 4.2, 4.3) and gather all records that
belong to one IAS-item using forward and backward concatena-
tion pointers



- 19 -

- insert correct IAS-items to the new data base rebuilding

the Bx-tree

= Print messages for erroneous IAS~items that they get lost

3.2.1.2 The IAS-File Handling Facilities

The main objectives of the introduction of the IAS-file con-

cept are

- raising data protection

- facilitating work by the use of internal files.

The data protection is realized by the possibility to attach

read and/or write keys to an IAS-file to prohibit unallowed

access to data or models within this file. The internal

file concept is realized by the default file feature inclu-

ding the following arrangements (see User Reference Manual:

Part One)

- base file

- data file

- equation file
- model file
- text file

- solution file

the connected file is used as base file

for comparison in reports, lists and

tables

all data
name are

as abaqve

as above

~as above

items not provided with a file-
taken from this file

for equations
for models

for text

when solving models the results of the

endogenous variables are updated in the

solution

file.



Within the Level 2 of the IAS-SYSTEM the file handling was

scattered over several commands

%#CAT for cataloging an IAS-file

#ASG for assigning an IAS-file

#%*FREE for freeing an IAS-file

%#USE for using,i.e. connecting an IAS-file to an inter-
nal file

According to the syntax concept of Level 3 of the IAS~-SYSTEM
all operations for one conceptual element should be handled
with one command, e.g. the MOD-command handles the input, out-
put, solving, updating etc. of models. For that reason the
FILE-command covers all IAS-file handling operations within
IAS-SYSTEM Level 3.

#*FILE,option IAS~filename :readkey:writekey

Options:

C catalog and assign an IAS-file write-enabled
F free an assigned IAS-file

R assign an IAS-file read-only

W assign an IAS-file write-enabled

SPACE like W

Tn addition to these basic IAS-file handling routines, the
following options are available, representing the former
USE-command of Level 2.

use IAS-file as base file

use TIAS-file as data file

use IAS-file as edquation file
use IAS-file as model file
use IAS-file as solution file
use IAS-file as text file

H®n 2 HUOW



-

- 21 -

These six options may also be combined in one FILE-command,
e.g. ®*FILE,CCT AB means catalog the IAS-file AB assign it
read/write enabled and use it as data and text default file.

Cataloging a new IAS-file implies the following steps

- if not already cataloged then catalog the specified IAS~
file by initializing the next free IAS-file info block with

- reset free block indicator

- IAS-file name \

= read key

- write key

- numper of assignments

- date and time of last assignment

Assigning an existing IAS-file implies the following steps
- check if the IAS-file is not already assigned, if it is
already cataloged and if the keys match; if all three

conditions are fulfilled then

- update the statistics in the info block of the IAS-file
(number of assignments, date/time of last assignment)

- add (the encoded representation of) the IAS-file name
to the internal file control table and the code of the
read/write permission to the internal read/write per-
mission table.

Freeing on IAS~file implies the following steps

~ check if the IAS~file is assiéned, then

-~ delete the IAS-file name from the internal file control
table, its read/write permission from the read/write
permission table and update the use control table.



- 22 -

Using or connecting an IAS-file to an internal file, implies

- check if the IAS-file is already assigned, if not assign it
- update the use control table

The deletion of an IAS-file is not part of the FILE-command.
To increase data base security by avoiding unintentiocnal
deletions by wrong option specification, this has to be done
by the DEL=-command.

As soon as the data base is assigned, the file control table
contains at least one IAS~file namely the internal system
file @8YS, It is cataloged and assigned together with the
data base and contains specific IAS-items that are

provided for all users of the data base. These IAS-items are
assigned to that special IAS~file because of their type,
examples are user-defined functions of the CALC-command.



D

48]

O

3.2.2 Access Operations for Individual Data Baée Items

The basic data base access operations for individual IAS-
items (or groups of IAS~items) are

- finding an IAS-item

- reading an IAS-item

- inserting an IAS-item

- updating an IAS-item

- printing (a table of) an IAS-item (group)
- deleting an IAS-item (group)

- copying an IAS-item (group)

For all these operations, the data base organization stratum
has to check the IAS-file status before performing the
access. The IAS-file concept should guarantee data protection
as well as simplify work with the application program, the
latter fact results from the default file concept. The IAS-
file check contains the following activities

- insertion of the default IAS-file to the identifier if
none is specified; i.e. if an access to a time series is
requested and the user has not specified the IAS-file

"name explicitly then the identifier is accomplished with
the name of the default data file

- checking if a user specified IAS-file is assigned at all

- checking if the read/write permission of the IAS-file -
(specified or default) matches the requirements of the
data base operation.



3.2.2.1 Operations on Single, Fully Specified, IAS-Items

The first four basic operations finding, reading, insertion
and updating of an IAS~item are evidently included in that
group. The other three operations printing, deleting and
copying can either be operations on single, fully specified
IAS-items (1 IAS-item) or a set of partially specified IAS-
items. Examples for the request of a single IAS~item are the

following:
#*DEL,E XY.E1 delete equation XY.E1
#COPY,D A.X1,B.X1(1) copy data item A.X1 to B.X1(1)

Whenever a command works on a fully specified IAS-item,
then there are no further tasks for the data base organi-
zation module than to transfer the control to the data
'base access stratum by calling the interface DBACC (see
chapter 5.4).

3.2.2.2 Operations on a Set of Partially Specified IAS-Items

For three operations = printing, deletion, and copying -
it is possible to work on sets of IAS-items, e.g.

*PRT,D AB. print information about all data
items of IAsS-file AB

#*DEL ,DEMX AB. delete all data items, egquations,
models and text items of IAS-file AB

#*DEL AB. delete all IAS-items plus. IAS-file-
info block

*®*COPY,E K1.,K2. copy all equations from IAS-file K1

to IAS-file K2

The problem here was the organization of efficient repeated
callings of the DBACC routine. Usually the printing of all
time series of an IAS~-file would require a search through
the whole data base or the implementation of secondary indi-
ces to improve the search process. The index organization



™

il

based on a Bx

-tree together with the effective composition
of the key in the order filename-type/subtype-elementname-—
version make an expensive inversion routine for the data base

unnecessary.

With these keys and the Bx—tree organization all IAS-items are
already in the ordered sequence, first ordered by file,

then by type/subtype and then by element and version. There-
fore a sequential search on the leaves of the Bx-tree simu-
lates an inversion routine perfectly. (On B*—trees see
chapter 3.3, on the composition of the keys see chapter 5.1).

Now the task of the data base organization stratum is to per-
form the necessary loops over the specified set of IAS-items and
call the data base access module. The following scheme shows

the processing sequence:

- check hierarchy/operation code (see chapter 5.4.1)

- check status of IAS-file

- initiate address vector for searching process

- search IAS-item matching the partial key starting
at the specified addresses

- perform the data base operation for that IAS-item

- update the address vector and repeat searching.

The stop-condition in this loop is'easily explained by a
simple example. The command #%DEL,D AB. specifies the request
for deletion of all data items of IAS-file AB. The System
searches for the first key, if any, with IAS-filename AB and
type D(ATA). Whén one is found it proceeds sequentially
until the type changes to E(QU) or the IAS-filename changes.



3.3 The Data Base Access Module

The main tasks of the DBACC~module are

- access to one physical data base item

- access to one logical data base item

A physical data base item is a single record of one of the
data base 0S-files. A logical data base item is a time
series, an equation, a model or a text element which may
consist of one or more physical items (records) of the main
files. While the access to physical data base items is
easily accomplished by specifying the appropriate record
number of one of the direct access 0S-files, access to a
logical data base item is more complicated.

Here the DBACC-module a priori has no information which of

the records of the 0S-files have to be read. The necessity

of an efficient index organization is evident. An index

is defined to be an ordered set of pairs (x,a) where x

is called a key and o is some associated information. The

key x identifies a unique element in the index, the associated
information is typically a pointer to a record or a collec-
tion of records in a random access file containing the infor-

mation specified by the key.

Generally it must be assumed that the index is so voluminous
that only rather small parts of it can be kept in main
storage at one time. Thus the index must be kept on mass
stgrage. As the adcess to secondary storage takes 104 to

10

an efficient index organization is to minimize the number

times longer than access to main storage the goal of
of accesses to the mass storage.

Some of the main objectives for the index organization of

the IAS-SYSTEM are repeated below from previous chapters:



D

i)

N

- fast access to an IAS-item via the specified key

- self-reorganization to dissolve the dependency from the
Data Base Administrator

- support of sequential access

- good storage utilization

Within the traditional data base literature (see XKNUTH 1973,
ULLMAN 1980, WEDEKIND 1974/76) some different index-organi-
zations like heapfile organization, hashed files, indexed
files, binary trees, multilevel trees (B~-trees) and dense
index flles (B -trees) are proposed. For the above require-
ments the B* -tree seemed to be a good index organization
because it behaves very well in view of all reguirements.
One important advantage of Bx?tree organization over hashing
files e.g. is that it supports not only random access but
also séquential access - in collating sequence by key value.

In the fbllowing chapters a brief review and discussion of
the concepts of B-tree and Bx—tree organization is giwven.

3.3.1 The Concepts of B-Tree and Bx—Tree

The definition of a B-tree as pointed out in BAYER and
McCREIGHT (1971) is discussed in this chapter, The following
characteristics describe a B-tree,

1) Each path from the root to‘the leaf has the same length h,
also called the height of the B-~tree.

2) Each node except the root and the leaves has at least
K+1 sons. The root is a leaf or has at least two sons.

3) Each node has at most 2K+1 sons.

To explain the process of retrieval,insertion and deletion
a simple example of a B-tree is used where K=2, i.e. each
node contains at least 2 and at most 4 keys (the associated
information is omitted as this is of no interest for this

explanation) .



- 28 -

Figure 3:
1
L “12736°50" +
| ~
*8°9°10 *13°14°17°18 37741745’ 47 .°52'60'68;7O

To retrieve the information associated with key 9 we look at
the root: as 9 is less than 12 we follow the pointer to re-
cord 2 where we find the key 9 and the corresponding infor~

mation.

To insert a key we first perform a retrieval to locate the
corresponding leaf. If there is place for one additional
key then the new key is inserted.

The interesting problem is what happens when the leaf is -
already full. In our example this will be the case when we
try to insert the key 20. Here the leaf has to be split into

two leaves. Fig, 4 shows the resulting B-tree

Figure 4:
1
'12 17° 36 SO'
*8°9°10 13714 18720 *37°41°45°48 "52°60°68°70

A similar situation can occur for the root,too, In this situ-
ation the root must be split, and a new root has to be created.
Obviously this adds another level to the B-tree, Fig. 5
shows the resulting index when the key 78 is inserted in the
above example.



D

I

- 29 -
Figure 5:
1
.360

. u/// \ \\\\\\& .

{.12[17x\ ;50.6§f \\\\\\\\\\5i |
2 ‘L \15 \/4 \ 5 7

*8°9°10 13714 “18°20 *37°41°45°48||"52'60{{ 7078

The result is again a balanced tree, i.e. every path from
the root to a leaf has the same length.

If we wish to delete the information associated with a certain
key we use the retrieval procedure to find the path from the
root to a node containing this key. If this key is contained
in a leaf the key is deleted. If after deletion the leaf
still has k or more keys we are done,_If the key is contained
in a node the process is more complicated. To delete this key
on that node without replacing it by another key would mean
that the connection to the corresponding subtree is lost, for
instance deletion . of key 17 in Fig. 5 means that the leaf

6 containing the keys 18 and 20 gets lost. In this situation
the key 17 has to be replaced by the smallest key of the leaf
6 , namely by the key 18.

In general that means that we have to retrieve the nodes down
along the right pointers to the leaf and replace‘the key by
the smallest key of that leaf. If necessary concatenations of
two adjacent leaves have to be performed as in the case of
deletion of the key 17, The resulting index is shown in

Fig. 6.



- 30 -

Figure 6:

L "127 183 subindex
LN
13714 *20
*123 subindex
Y
'13'14'18’26(

1

- "12°36°50°68" -
£ N S~

LT N,

‘8°9°10 *13°14°18°20 *37°41745°48 52760 *70°78

These examples show that the B-trees grow and contract in

only one way, namely nodes split off a brother or two brothers
are merged or catenated into a single node. The splitting

and catenation processes are initiated at the leaves only

and are propagated towards the root. If the root node splits

a new root must be introduced and this is the only way the

height of the tree can increase.

Up to this point the information associated with a certain
key was omitted. It should be apparent that by storing the
information together with the keys and the pointers, the
height of the B-tree would be greater than necessary. As the
length of the information usually is a multiple of the
length of a key, (see chapter 5.3 for the structure of
NUMSTR and CSTR), a lot of space will be wasted due to the
fact that many nodes contain less than 2K keys. These ideas



- 31 -

led to the concept of the Bx—tree'or a dense index, compare
KNUTH (1973), WEDEKIND (1974/76)

In the B*-tree concept a strict separation between the (key,
pointer)-pairs and the corresponding information is observed.
One file, the index file contains these pairs while the main-
file contains the information. The pointers of the leaves are
interpreted as pointers to records of the mainfile where the
information belonging to a Specified key starts. With this
scheme pointers have two different meanings depending on
‘their occurrence, The pointers in the root and the nodes
which are not leaves together with their keys are only used
to direct the search algorithm whereas the pointers in the
leaves actually specify record addresses where the correspond-
ing information can be found. Due to this amblgulty the

keys have to be repeated in the leaves. The B~tree of Fig. 5
is equivalent to the following B* ~tree.

Figure 7:

L, "36° Index File

T12°\177 : "45\50°68"

NN

(87971012 1°13°14°17|] "18°20" 36 "37°41°45(1 148°30(({"52°60"68|[*70°78

Main File




If the information associated with a key is of variable
length and sometimes very long - as this is the case for the
IAS-SYSTEM, e.g. for time series, equations or models - the
Bx—tree is a more efficient index organization than a B-tree.
The additional access is highly compensated by the diminished
height-of the Bx-tree.

3.3.2 The Concept of a Modified'Bx—Tree

During the last years the data base philosophy within the
IAS-SYSTEM has changed considerably. At the beginning of
Level 2 usually one large data base containing up to 10.000
IAS-items was accessed by one or more users. The resulting
problems of concurrent access led to the concept that the

data base was considered to be a working and storage area
belonging to only one user. For that reason the generation

of smaller data bases like MINI (up to 500 IAS-items), MIDI
(up to 1500 IAS~items) or MEZZO -{(up to 3000 IAS-items) for

one user was accomplished. To extend that concept within the
Level 3 an user himself should be able to create a data base
of variable size between 1000 and 10.000 IAS-items. In addition
o that he should have the possibility to increase an existing
data base up to the maximum of 10.000 IAS—ltems if necessary
without the necessity of rebuilding the whole B*-tree index
organization.

Since it is one of the main goals of this project to reduce
mass-storage accesses to a minimum to gain a maximum of pro-
cessing speed it was decided to consider a B -tree with only
two levels, i.e. in the worst case there are only two acces-—
ses to the data base to find the pointers to the numerical
and character contents of a certain IAS-item. A data base en-
largement would then entail an increase in the number of re-
cords of the index file as well as a raise of the re-

cord length. Because of the waste of mass-storage the solu-=

tion of assigning the records with a maximum length from the



- 33 -

beginning was discarded. However, records with variable
length lead to serious problems, too

- the maintenance algorithms have a higher complexity
- in case of data base enlargement it would be necessary
to reorganlze the B -tree organization on the index file

The question that arises is: "Ts it possible to modify the
B —tree organization for our application so that it has
minimal height of two and is general enough to support the
variable data base size described above?"

Our proposal to a solution of this problem is the following.
It was decided to use a fixed record length and to fill the
leaves of the tree always up to the maximum number of keys
and pointers. To maintain size variability only the allowed
number of keys for the root is changed and the necessary leaf
records on the index file and the necessaryv numerical and
character records on the main files are initialized.

According to sizes of current econometric models 10,000
IAS-items seem to be a reasonable upper limit for the

data base size. Fig. 8 outlines the situation of this maximal
data base. For the two-level Bx-tree this number leads to a
maximal number of 100 keys per record, Here a data base is
created with a root containing 99 keys directing the search
algorithms and 100 leaves containing up to 100 keys.

Figure 8:

key 1 : key 99

root . . Pty

100 keys . 100 keys



- 34 -

If a data base of say 2000 IAS-items is created a root
containing up to 19 keys and 20 leaves containing up to
100 keys are needed. Here the record length of the index
file does not depend on the size of the data base that is
requested as long as the data base size lies between 1000
and 10.000 IAS-items. The only difference is the number of
records which have to be initialized. For 10.000 IAS-items
101 records are used (and have to be initialized), for
2.000 IAS-items the number is 21 records, to give two

examples.

As soon as the root record is full and one additional leaf
has to be split the data base is considered to be full. The
limits for the data base sizes are theoretical ones, in
practice it will not be possible to store exactly 2000 IAS-
items in a data base which is initialized for 2000 IAS-items.

Because of the maintenance algorithms some of the key posi-
tions will probably remain empty.

With respect to storage utilization it can be guaranteed

that the leaves are at least 50 % full, To improve this
storage utilization a simple overflow and underflow techniqgue
is implemented within the data base, additionally.

In case of insertion the standard algorithm would split a
leaf when this leaf is full. Now instead of splitting in any
case the improved algorithm looks for the possibility to move
keys to the left or right neighbours of the full leaf. The
leaf is only split if both neighbours are full, If one of

the neighbours is not full the keys of the full leaf and the
partially empty leaf are equally distributed among these two
leafs. This process is called overflow technique.,

In case of deletions the standard algorithm would concatenate
two leaves when the leaf contains less than k keys after a
deletion. Again the improved algorithm investigates the



i

- 35 =~

left and right neighbours whether it is possible to move
keys from one of them to the respective leaf, Only when
both neighbours conﬁain less than K+2 keys the underflow

is not possible and the'concatenation process will be initi-
ated. Otherwise the keys of the two adjacent leaves will be
distributed equally among them.

With these two methods, the overflow and underflow technique,
a storage utilization of at least 66 % can be guaranteed
(see KNUTH 1973).

3.3.2.1 The Usage of System Buffers

Within the IAS~-SYSTEM a key consists of the filename, element-
name, version name and type/subtype. By an internal coding
routine (see chapter 5.1) it is possible to store this
information into four numeric storage units. The correspon-
ding pointer value and a few words for record specific in-
formation - used/free record flag, number of keys per re=
cord, free record concatenation pointer etc. - would mean
that records with a length of 510 numeric storage units

are needed to implement the Bx-tree with K=50. This record
length should also be a good compromise between the two
conflicting objectives to minimize the number of mass
storage access operations and to minimize buffer size.

Now if we try to keep the root always in main storage actual-

ly only one access is needed to find out that a specified key

is or is not in the data base, If the recently used leaf is

also kept in main storage many IAS-items (in the best case exact-
ly’100) can be processed without additional access to the

index, This covers the situation of sequential processing

like a list of all time series of an IAS-file or the like.
Consequently with a buffer of about 1K words an optimal

support of séquential access 1s gained,



This gain of processing speed however will be reduced to some
extent in case of write operations. Here it is necessary for
security reasons to copy each record whether root or leaf from
main storage to mass storage whenever it has changed. Other-
wise it could happen that in case of a system crash whole
leaves get lost, e.g. when the system crash occurs after

a preceding splitting or concatenation action. For one very
time critical class of write operations, namely the updating
of the endogenous variables of models after simulation however,
the gain of processing speed again is considerably as this

action does not change the Bx—tree organization,

3.3.2.2 Analysis of the Worst Case Behavior for Insertion

and Deletion

The worst case behavior for insertion is easily outlined by
Fig. 9 and Fig. 10

Figure 9:

-
-+

full full full

We try to insert a key to record (3). As it is full we try
to overflow to record (2) and then to record (4) - as both
trials are unsuccessful we split record (3) and get the

. *
following B —tree.



%]

O

- 37 -
Figure 10:
1
'; e}, <
2 k///////,///;::::::::/// \\;;\\\\\\\\\\\\\‘4.
full half-full half-full full

For this worst case of insertion the following number of

accesses has to be performed

Read~accesses to records (2) and (4)
Read—~access to record (5)
Write-access to record (5)°

Write—-access to record (3)

—_ o e N

Write-access to record (1) (updating of the root)

Obviously this situation seldom occurs. Only in case that a
data base area is almost full - both the left as well as the
right neighbour are likely to contain exactly 99 keys.

In case of deletion the worst case analysis gives the same
result, Here we try an underflow from the left or right neigh-
bour. If one of them has more than 51 keys the underflow is
possible. If both have exactly 50 keys then concatenation

of two leaves requesting 6 basic accesses to mass storage

is necessary.

The analysis shows that even in the worst case the number of
accesses to mass storage are far less than the average number
of accesses for the simple binary tree organization of IAS-
SYSTEM Level 2, For the simulation of large econometric models
this should result in a substantial improvement of the time .

behavior of the data base maintenance algorithms.






0

—
i

4. Physical Realization of the TAS-SYSTEM Data Base

It was specified in the previous chapters that three diffe-
rent types of contents and information have to be stored,

name ly

- control information of the data base
- numerical information of data base items

- character information of data base items

It is obvious that a data base may consist of a numerical
part, e.g. the single data values of a time series or the
estimated parameters of an equation and a character part, e.g.
the arithmetic string of the equation including the header

or title that can be attached by the user. The decomposition
into these two parts. is a consequence of the FORTRAN 77
Standard (ANSI 1978, ISO 1980) that does not define the ratio
of characterxstorage units and arithmetic storage units.

So mixing these two types of data is often forbidden, e.g.

in common blocks. The decomposition into these two parts is
absolutely necessary to avoid portability problems.

The control information of the data base itself can be divided
into three parts

- information concerning the data base and its realization,
the array IDBST (data base status array, see 4.1.1) as well
as further data base specific information like read and
write keys belong to this part

- information concerning the IAS-files, i.e. the IAS-file
info blocks (see 4.1.2); '

- information about the access path to the data base items,
namely the modified Bx-tree, containing all keys, the
appropriate pointers and further information.



- 40 -

As the control information is the most important part for
maintaining the IAS~data base, all three different types are
gathered on one 0S—-file (index file) with the internal unit
specifier 11. For the numeric and character information two
additional 0OS~files (main files) with internal units 12

and 13 are initialized. The structure of these three files
is discussed within the next pages.

4.1 The File on Unit 11

Fig. 11 gives a general view of the structure of the file.

Figure 11
Rec #
1. Data base Control Information
2. | Info 1. Info 2. Info 10.
IAS-file IAS-file . . . IAS~file
Info 11.
IaS-file .
21. . . . Info 200.
- IAS-~-file
*
22. Root of BT -tree
. | N
23. 1. Leaf of B =tree
. %
. 2. Leaf of B™=tree
. ' i
|




M

O

Ty

- 41 -

4.1.1 The First Record

This record contains the data base specific centrol informa-
tion, i.e. the array IDBST in the first 40 words and another
data base information block of 40 words starting in word 51.
As mentioned in chapter 3.2 the array IDBST is divided into
static information (words 1 to 20) which is necessary for
the correct initialization of the data base and dynamic in-
formation (words 21 to 40) which changes during the inser-
tion/deletion process.

In the following the whole list of these variables is given.

IDBST(1)i.....i. Record length of file 11

IDBST(2) cvvvv... Number of records of file 11
IDBST(3)..+..... Pointer to root record of Bx-tree in file 11
IDBST(4)........ Pointer to first leaf in B®-tree in file 11
IDBST(5).cceu.un.

IDBST(6)........ Max.number of keys in root

IDBST(7) veuen.. . Max.number of keys in leaf
IDBST(8) ...... .. Middle key in leaf
IDBST(9) vevernn. Position of middle key in leaf

IDBST(10) ....... _
IDBST(11)....... Factor for computing size of file 12 and 13

IDBST(12)....... Record length of file 12

IDBST(13) eevenn. Number or records of file 12
IDBST(14).......

IDBST(15) vewuu..

IDBST(16)....... Record length of file 13

IDBST(17)....... Number of records of file 13
IDBST(18)....... Length of integer info of one record
IDBST(19) cucenn.. Length of character info of one record
IDBST(20) v veu.w.

IDBST(21) ...... . Pointer to next free record of B¥-tree in file 11
IDBST(22)....... Number of keys stored in file 11 (BZX-tree)

IDBST(23)....... Number of records used in file 11 for BX-tree
IDBST(24) v0ve. ..

IDBST(25) vevensna

IDBST(26) c.cvev.. Number of catalogued IAS-files in file 11
IDBST(27) vee e

IDBST(28) ¢ v vewuwu.

IDBST(29) . ee v

IDBST(30) voveen.
IDBST(31)...u.e.. Pointer to next free record of ' file 12
IDBST(32) ceuven.. Number of elements stored in file 12

IDBST(33)eev.vn.. Number of records used in file 12



- 42 -

IDBST(34) s v vunns

IDBST(35) ., .04 .

IDBST(36).,..... Pointer to next free record of file 13
IDBST(37) «se.... Number of elements stored in file 13
IDBST(38),...... Number of records used in file 13
IDBST(39) enuenss

IDBST(40) vvvvnw

Starting at word 51 of the first record the following in-

formation is stored

word(s)

51-55 integer-4-coded data base name, (see chapter 5.1)
56=-57 integer-5-coded read key, (see chapter 5.1)
58-59 integer-5-coded write key, (see chapter 5.17)

60 . date/time of cataloging of data base
61 date/time of current assignment

62 date/time of last assignment

63 number of assignments

64 number of enlargements

65-510 rest of the record not used

4.1.2 The Records 2-21

Each record in that range contains up to 10 IAS-file infor-
mation blocks as pointed out by Fig. 11. Since the number
of records used for this purpose is limited to 20 the maxi-
mum number of IAS~-files for a data base is 200. The first
10 words of each IAS-file info block contain the following

information:

word(s)

1-2 integer-5-coded IAS-file name

3~4 integer-5-coded read key of IAS-file

5-6 integer-5-coded write key of IAS-file
validity pointer
date/time of cataloging IAS-file
date/time of last assignment of IAS-file

10 _ number of assignments



[

N

- 43 =

4.1,3 The Record. 22

Independent from the size of the underlying data base, this
record contains the root of the B*-tree. This root is filled
with keys to the maximum value as it is specified in IDBST(6).
The structure is the following:: |

IROOT (1) eienn.. Number of keys in data base root
IROOT(2) civuinn Free record concatenation pointer
IROOT(3)....... Not used

IROOT(4)....... Not used

IROOT(5) vevuwunn

IROOT(6) cvivnans

IROOT(7) eevennn For further statistical use
IROOT(8) cvveunne .

TROOT(9) veevenn

IROOT(10) ...... 1st pointer (less than 1st kev)
IROOT(171) vewuos

IROOT(12) veuewn.

IROOT(13)......{ 1st key

IROOT(14) ve e

IROOT(13) ...... 2nd pointer (greater than 1st key)
IROCOT(16) e :
IROOT(17) e e

IROOT(18) ......] 2nd key

IROCOT (19} ......

IROOT(20) ...... 3rd pointer (greater than 2nd key)

.
.
.

4.1.4 The Records up from 23

Starting at record number 23 each record contains one leaf of
the Bx?tree. The maximum number of leaves is dependent on

the size that has been specified when catalocing and initializ-
ing the data base. For the smallest possible data base 10

leaves would suffice, for the largest possible data base,

100 leaves are necessary. The following structure is valid

for all leaves.



- 44 -

ILEAF (1) ...... Number of keys in data base leaf
ILEAF(2) uiv v Free record concatenation pointer
ILEAF(3)...... Pointer to left neighbour
ILEAF(4) ...... Pointer to right neighbour
ILEAF(5) cvveeo ’

ILEAF(6) ccc...

ILEAF(7)......f For further statistical use
ILEAF(8) «.....

ILEAF(9) cv.n

ILEAF (10) ..... 1st pointer (less than 1st key)
ILEAF(11) .cv..

ILEAF(12).....

ILEAF(13)..... 1st key

ILEAF (14).....

ILEAF(15)..... 2nd point (greater than 1st key)
ILEAF(16).....

ILEAF(17) ee.. .

ILEAF(18).....|2nd key

ILEAF(19).....

ILEAF(20)..... 2rd pointer (greater than 2nd key)

There are two important differences to the root-structure.
The first is the interpretation of the pointer values. Whereas

within the root structure the pointers specify leaf records
the meaning of pointers within leaf records is totally
different. Here each pointer value is a composition of two
addresses, one where the numerical information and one where
the character information starts. The second difference are
the concatenation pointers to the left and right neighbours

of each leaf supporting sequential access as well as over-
flow and underflow technigues. Whenever two leaves are con-
catenated or one leaf is split then the corresponding concate-
nation pointers have to be updated; otherwise important infor-

mation would be lost.



[

4.2 The File on Unit 12

Because of portability reasons it is necessary to divide

" each data base item into a numerical and a character part.

The flle on unit 12 is provided for receiving the numerical
contents. This information is highly type dependent; it is
obvious that it will look different for a time series or a
model. Only the first eight words of each record are kept

constant to have the possibilities for some kinds of
consistency checks.

numeric
storage
units -
L Continuation pointer to the next record, if mére_than
onevrecord is needed for storing the data base item
2 backward concatenation pointer to ease the data
base recovery
3 free record concatenation pointer; points to the
next unused record - the value is negative if
the record is in use '
4 not used (for'further statistical use)
5-8 key (integer-5-coded identifier)

The rest of the record and possibly some continuation records
contain the numerical contents of the data base item. The anproo—

riate constant 8 word block is repeated‘ln each contlnuatlon
record, of course.

It was decided to use a record length of 108 numeric storage
units; 8 numeric storage units are needed for the fixed
record specific part and 100 numeric storage units are
available for the contents of the data base item.

The number of records available is depending on the data
base size; it is the maximum possible number of keys multi-
plied by a constant factor (in the current implementation



this factor has the value 2) taking long numerical and/or
characterstrings into account, The resultant number of re-

cords is initialized for unit 12 as well as unit 13,

4.3 The File on Unit 13

The records of unit 13 have in principle the same structure
as the records of unit 12. Each of them starts with a fixed
record part, followed by some additional numerical informa-
tion describing the final character contents of the data
base item. It should be remarked that although this unit is
reserved for the character information it is unavoidable to
include numerical values. The first fixed part is identical
to that of unit 12 and allows consistency checks. Additional-
ly a description part for the characterstring is needed,
e.g. in case that the characterstring has to be subdivided
into several blocks - this part is limited to the fixed
length of 12 numeric storage units. So each record totals
up to 20 numeric storage units. The léngth of the character
information is limited to 120 character storage units per
record; continuation records are possible as for unit 12,

of course.



™

Ty
i

- 47 -

5. Implementation of the(IAS—SZSTEM‘Data Base

The main objectives from the implementation point of

view was to write a portable and flexible ~ with respect

to future changes - program system (see PLASSER et al. 1982).
To achieve this goal certain considerations had to be made
with respect.tb portability, parameterization, I/O-buffers
and interfaces. |

5.1 Portability Considerations

The arguments which led to the selection of FORTRAN 77

as. the programming language are summarized within the in-
termin report (see PLASSER et al. 1982). Although the
FORTRAN 77 supports portability to a high degree there still
remain two problem areas which have to be solved, namely

- the 0S~file handling, and
- the character set representation

' On account of the new DB-command programs had to be written

for opening and closing 0S-~files. Both of them hawve to call
semiportable routines

- YOPEN for cataloging and opening
-~ YCLOSE for closing and deletion

of the respective 0S-files; for the naming conventions of
subroutines see again PLASSER et al. (1982), These nonporta-
ble "standard modules" which are used in other parts of the
IAS-SYSTEM as well, e.g. for the input logfile, output log-
file and message file were introduced because the 0S-file



handling features within the FORTRAN 77 Standard (ANSI 1978,
ISO 1980) are not as powerful as necessary. Problems arise
from the fact that there is no parameter provided for the
specification of the desired maximum number of records for

a direct access file in the OPEN statement - on UNIVAC for
example the files would always be cataloged with standard
size that is too small for maintaining the data base. Another
weakness of FORTRAN 77 is the INQUIRE statement which again
is not as powerful as it should be for our application. To
avoid problems of concurrent access it would be very useful
to know if another program uses a file or uses a file exclu-~
sively, if it employs the file only for READ~-operations or if
it also WRITES onto the file etc..

One minor problem is the data base name, Since the IAS~SYSTEM
should offer as much canfort as possible it is not desirable
to restrict the user more than the Operating System when
choosing a data base name, Checking a data base name for its
conformity with the syntax of the Operating System is a task
of the respective application program. High flexibility is
achieved by concentrating this and similar checks to special
semiportable routines which can'be,changed easily,

With respect to the character set and its representation it
is well known that it is machine dependent although an ANSI/
ISO standardized character set exists (ANSI 1977). For that
reason all special characters (e.g. separators) are stored
in a special common block and can be changed if a character
is not available on a certain machine.

To avoid mixing of numeric and character variables it was
decided that only numeric variables should be processed
within the IAS~SYSTEM and the character representation should
be used for communication purposes between the user and the
System only. The consequence of this concept is that nearly
each character specification entered by the user must be



M

™y

L

transformed into a numeric, mostly integer wvalue. Depen-
ding on the specific semantics of the input or output there
are a few conversion routines for encoding and decoding
character strings, e.g. encoding/decoding an identifier
into/from its integer representation or encoding/decoding

a time definition into/from periodicity, start periode and
end periode, The encoding is done at interpretation time of a
specific subfield or parameter by the syntax analyzer so

that within the subroutines of the TAS~SYSTEM the usage of
numeric representation is forced and guaranteed. The decoding
is also done by a standard routine whenever necessary, in
case of a communication between the System and the user.

In connection with the data base the conversion of identifiers
is of main interest. .

Since the user should not be too restricted,iﬁ choosing'
his/her names for identifiers the character set contains

" lI"—r"A" s e e ,"Zv" ’llg‘ll*, .e'e '"9“ ,llg_ll ’ll&ll ,Il%"

With 39 of these 40 characters - the blank must be omitted,
it must not be part of an identifier or name - the user may
assemble a valid identifier, e.g. an IAS—-item identifier (see
PHILIPP et al. 1982) |

filename up to 8 characters
type 1 character
subtype 1 character

element name "up to 8 characters

- version name up to 2 characters



- 50 -

For the representation of any of these 40 characters at
least 6 bits are necessary. Assuming that the IAS-SYSTEM will
run on computers with a minimum word length of 32 bits,

5 characters can be converted into a single computer word.

The standard conversion routines for encoding (character to
integer) and decoding (integer to character) strings of arbi~
trary length according to the following collating segquence,
are the subroutines STSENC and STSDEC (see appendix) .

" ” > ¢

"A" - 1

” le - 26
1I¢ll > 27
AL 3!' - 36
"Sl; > 37
I'&" - 38
" %ll -> 39

As an example the two representations of a time series of an
IAS-file ECON with the element name A1 and a blank version
are explained.

Character representation:

1.word 2.word 3.word 4 .word
|E|Cc|o|N]| | | Iols|{alr] | | N
LS N - - g
fiiename _ element name version
type "DATA"

subtype "SER"



)

- 51 =
Numeric representation

Y S D B
1.word 84734848 = 5°64°+3'64°+15°64%°+14°64
2.word 275 = 4°64+19°64°
3.word 24117248 = 1°64%+28°64°3
4 .word @

Similar conversion problems arise for the handling of speci-
fic character strings like data base names, where the user
is not restricted to this basic character set. Here addi-
tional symbols may appear like ".", ",", ... etc. Ideally a
full ASCII-character set (ANSI 1977) should be available.
To convert these character strings the routines ST4ENC and
ST4DEC have been written (see appendix). These two routines
encode/decode four characters into/from a computer word.
Both of them are using the standard intrinsic functions
ICHAR (for encoding). and CHAR (for decoding) of the FORTRAN
processor. It should be noted that the result of calling
the ICHAR or CHAR function is processor dependent.



- 52 -

5.2 Parameterization Considerations

With respect to the second goal ~ the flexibility and adapta-
bility of the program system with respect to future changes =~
parameterization seems to be a powerful solution. The pro-
gramming language FORTRAN 77 offers a PARAMETER~-statement
which is heavily used not only within the data base comp lex
but whenever it is possible and necessary throughout the
whole IAS-SYSTEM.

"The PARAMETER statement allows constants to be referenced

by symbolic names.This facilitates the updating of programs
in which the only changes between compilations are in the
values of certain constants especially array dimension decla-
rators. The PARAMETER statement can be revised instead of
changing the constants throughout the program.” (ASCII 1982)

From the static part of the array IDBST (see thapter 4.71.1)

it is obvious that the following constants should be para-

meterized.

IDBST(1) record length of file 11

IDBST(3) pointer to root record

IDBST (4) pointer to first leaf

IDBST(6) maximal number of keys in root

IDBST(7) maximal number of keys in leaf.

IDBST(11) . factor for computing size of file 12 and 13
IDBST(12) record length of file 12

IDBST(16) record length of file 13

IDBST(18) length of integer information of one record
IDBST (19) length of character information of one record

All other words of the array IDBST are either variables, which
are data base maintenance variables, e.g. the number of re-
cords of file 11 or the number of cataloged IAS-files -

or they are not yet used.



- 53 =

By employing an appropriate PARAMETER-statement within the
BLOCK DATA program where the parameter values are assigned
to the different numeric storage units of the array IDBST

it is possible to change the Physical realization of the
data base easily by only changing this PARAMETER statement
accordingly, e.g. for very large data bases with up to
20.000 IAS-items it is only necessary to change the value of
IDBST (1), IDBST(g) and IDBST(7) by changing the PARAMETER
statement and recompiling the whole System.

5.3 The I/0 Buffers

As mentioned above the information transmitted to or from

the data base can be divided into numerical values and
characters. Because the FORTRAN 77 standard does explicitely
not specify the relation between numeric and character
storage units, it is necessary to separate these two kinds
of information. The strict separation into a numerical string
and a characterstring avoids. portability problems,

From an efficiency point of view it was necessary to dis-
tinguish two types of character strings further. The first'
restricted type are the possible combinations of filename,
elementfname, version name and type/subtype where only 40
signs are valid, namely A,...,Z, @,...,9 and the special
signs g, &, % and blank. For these character strings IAS-
SYSTEM conversxon routines described in the portability
chapter are used to convert them character bv character to
an integer value. The second full type are possible 0S-file
names, executable text elements like macros and general
headers, using a processor dependent character set. It was
decided to store this kind of information on a special
character file (unit 13).



5.3.1 The Numerical Buffer NUMSTR

The structure of the I/O-buffer NUMSTR
Fig. 12

Figure 12:

4

LNSTR

LISTR
LDINF
NDIBLK

LDIBK1 DINF
1.block

LDSTR
NDSBLK
LDSBK1

»

LDSBK2

-

LCINF

NCIBLK

LCIBK1
LCSTR

-
}

.1.block ?

DSTR
1.block ‘

2.block

CINF

ISTR

Length
Length
Length
Number
Lenéth

Length
Number
Length

Length

Length
Number
Length
Length

The following rules are obligatory for

the numerical string consists of the

is

of
of
of
of
of

of
of
of

of

of
of
of
of

explained by

numerical string
integer string
data info:

data info blacks
1.data info block

data string
data string blocks
1. - data string block

2.,data string block

character info
character info blocks
1.character info block

character string

the NUMSTR-~-buffer:

integer string ISTR

and the character string information CINF

the integer string ISTR consists of the data information
DINF and data string DSTR

each string or substring starts with its own length

each of the three substrings - data information, data

string and character information - may consist of several

blocks



m

- ‘55 -

- each block starts with its own length and the number of
its subblocks

- the length of the character information is restricted to
12 words

With these rules an existing but empty data base item, that means
data information, data string as well as character informa-

tion containing no information would lead to a twelve word
minimal string
T LNSTR
LISTR
LDINF
NDIBLK
LDIBK1'
LDSTR ~/
NDSBLK‘} DSTR
LDSBK1

LCINF

NCIBLK

LCIBK1

LCSTR

DINF

\{

CINF

——tn

-+

The numerical string for a time series containing three
values for the time period 1975 to 1977 may have the follow-
ing form.



- 56 -

1 32 LNSTR
26 LISTR
T 19 LDINF
T 2 NDIBLK
1 16 ) LDIBK1
T 1 vValidity pointer
T 160363764 Date/Time of first input (coded)
T 160363764 Date/Time of last update (coded)
1 ? } not used
@
1 @ Input from terminal
T 1 Number of walues per year
T 1975 Start time
T 1977 End time
1 @ Start time
1 6 End time }of forecasted walues -
-+ ¢ '
@ not used
1 2
1 @ Aggregation mode
T 1 LDIBK2
T 6 LDSTR
[ 1 NDSBLK
4 LDSBK1
17381195776

17515413504 Real values of time series printed as integers
17548967936

5 LCINF
[ 1 NCIBLK
[ 3 LCIBK1
T 76 LCSTR
T 160363764 Date/Time of last header update (coded)

1

For all other IAS-items like equations, models and text similar
modes for structuring the NUMSTR-buffer exist. This general
procedure has proved to be very flexible for all applications.



s

5.3.2 The Character Buffer CSTR

In most cases the CSTR-buffer will contain the header of the
respective IAS-item, where the full processor dependent
character set is allowed. It can happen that the character
string has to be subdivided into blocks, e.g. for executable
text elements like macros. For these situations a similar
structure will be used for constructing the CSTR where

the necessary information is stored in the CINF of the
NUMSTR-buffer.



- 58 =

5.4 The Interfaces to the Data Base Modules

As pointed out in chapter 3 there are two data base modules

namely

the data base organization module DBORG and the data

base access module DBACC, both having unigue interfaces.
While the DBORG-module can - at least theoretically - be

called

by any application program, the DBACC-module must only

be called by the DBORG-module.

5.4.1 The DBORG~Interface

The data base organization module communicates with the - rou-

tines of the data base environment and the application nro-

grams by its interface routine DBORG with the following call-

ing sequence.

*
IERRCD

ITHIRCD

IOPTCD
ICUR
IADR

KIDNTFE
NUMSTR

CSTR

Within
IOPTCD

... Error return

... Error code designating the occurred error condit;on
... Hierarchy code

... Operation code

... Currency indicator

... Address vector for data base access

... Integer coded identifier

... I/0-Buffer for numerical contents of an IAS-item
... I/0-Buffer for character contents of an IAS-item

the next pages the possible combinations of THIRCD and
and all other parameters are described in detatl. For

the I/0O-buffers refer to chapter 5.3.



m

- 59 -

The Error Code

The following error codes can occur when leaving DBORG

Code Error condition

5020 illegal hierarchy and/or operation code
5051 no IAS-file assigned at all

5160 specified IAS-file not assigned

5280 read/write permission of IAS-file does

not match

The Hierarchy Code

This parameter is a bit combination indicating which parts
of the identifier (key) have been specified by the user:

Bit Corresponding identifier part
@ version

1 element

2 subtype

3 type

4 file

If the user specified the filename only, e.g. in case of
#PRT,T F. then the 4 bit is set and IHIRCD has the value
2x%4, which is 16. If the user specified filename and type,
e.g. in case of #COPY,D F1.,F2. then the 3% bit and 4%P pit
are set and the value of IHIRCD is 2%#3+2#%%4, which is 24.

Notice that within the IAS-SYSTEM no commands are possible
which specify for example only the 15t bit and the 3%9 bit.
If one bit is set then all other bits greater than that must
be set, too. It is not possible to print all elements of a
certain name over all cataloged IAS-files - this would
violate the security requirements and it is not possible

to get all types of a certain element name either.



The values of this bit combination defines the level (hier-

archy) of the data base request

Value Affected data base level
@ 0s-file no identifier is specified
16 IAS-file the requested operation has to be

performed for all IAS-items of an
IAS-file ‘either or concerns the
handling of an IAS-file
24 type. perform the data base operation
' for all IAS-items of a special

type

28 subtype

30 element perform the data base operation
for all versions of a certain
IAS-item

31  version fully specified identifier

4

These hierarchy codes can be combined with certain operation

codes to uniquely identify the requested operation.

The Operation Code

This parameter does make sense only in connection with the
hierarchy code. The most important combinations are listed

below.



)

"

- 61 -

IHIRCD=9 All operations are requested for 0S-Files
IOPTCD - Examples
2 Delete the data basé_ #*DB,D
3 Free data base %DB,F
4 Catalog new data base *DB, C
5 '~ Assign data base read-only *DB,R
6 Assign data base write-enabled %DB ,W
11 Dump of 0OS~file 11 . *#*DUMP 11
12 Dump of 0S-file 12 #DUMP 12
13 Dump of 0S-file 13 #DUMP 13
IHIRCD=16 All operations are requested for IAS-Files
IOPTCD _ Examples
-1 Define TAS-file as BFILE *F ,B
-2 Define IAS-file as DFILE *F,D
-4 Define IAS~file as EFILE *F ,E
-8 Define IAS~file as MFTLE - %F M
-16 Define IAS~file as SFILE *F,S
-1024 Assign IAS~file write enabled *F ,W
-2048 Assign IAS~file read only #F,R
-4096 Free IAS-file *F,F
-8192 Catalog IAS-file %*F,C
IHIRCD=16 All operations are.requested.forAIASrFiles
IOPTCD .. Examples
0} Read the characteristics of all
cataloged IAS~files *PRT,C
6 Print all items of an IAS~file %PRT
7 Delete all items of an IAS~file *DEL
8 Copy TIAS—file to IAS~file #COPY
9 Copy IAS-file to 0O8-~file #COPY, 0O
10




IHIRCD=31 All operations are requested for a single
item
IOPTCD Examples
0] Find an IAS-item
1 Read both NUMSTR and CSTR #SER
2 Read only NUMSTR'® %MOD , S
3 Insert an IAS-item #SER, T
4 Update both NUMSTR and CSTR #UPD
5 Update only NumsTR (*) %MOD, S
IHIRCD=216
Print a table ®PRT
Delete a (group of) IAS—item(s) «DEL ,E
#COPY ,D

Copy a (group of) IAS—item(s)

%) This is an efficient way to accelerate the data base per-

formance in case of model solving because all important

information is stored and handled in a numerical repre-
sentation within the IAS-SYSTEM. No access to the charac-

ter file is necessary!

The Currency Indicator

This parameter specifies the access mode by defining the
state of the address wvector IADR.

Value

Operation .

during successive model solutions

The access is done by searching the watree

The access is done directly via the address

specified in the array IADR. This possibili-
ty of access by address improves the perfor-
mance considerably in case that a single

command accesses an IAS—item more than

once, e.g. when updating many time series



- 63 -

The Address Vector

This parameter vector may contain the address of a data base
item for direct data base access without searchinq the index.

The Integer-coded Identifier

Depending on IHIRCD/IOPTCD the identifier might be
- a data base identifier

- an IAS-file identifier
- an IAS~-item identifier

5.4.2 The DBACC-Interfaca

The data base access module performs the real access to a
logical or a physical data base item and can be called only
from the data base-organization module. The' calling sequence
for the unique interface routine DBACC is the same as for
DBORG,

* «.. Error return

IERRCD ... Error code designating the occurred error condition
IHIRCD ... Hierarchy code

IOPTCD ... Operation code

ICUR ««+ Currency indicator

IADR ... Address vector for data base access

KIDNTF ... Integer coded identifier

NUMSTR ... I/O-buffer for numerical contents

CSTR <+« I/O~-buffer for character contents

The only diffexence to the DBORG~-interface is that the vali-
dity ranges for a few parameters are changed,




- 64 -

The parameter IHIRCD is restricted to the values 16-31.
Only for the case of access to a single record the value 1024
is introduced. Here the record number is transmitted by IADR.

The parameter IOPTCD may have the values for the basic data
base operations, i.e. ¢-8 for IHIRCD=16-31 and the following
six additional codes in case of record access.

11 ... read a record of file on unit 11
12 ... read a record of file on unit 12
13 ... read a record of file on unit 13

21 ... write a record to file on unit 11
22 ... write a record to file on unit 12
23 ... write a record to file on unit 13

The parameter ICUR may also have the value 2. This indicates
that the address array IADR does not contain the address of
the data. base item to be handled but a starting address for
the search for the next data base item matching the specified
(partial) key. ' ;

The parameter KIDNTF must not contain the name of an IAS-file
or a data base identifier. Only data base item identifiers are

allowed.



™

Conclusions

This paper discusses the new IAS-SYSTEM data base module.
Starting with various requests of the IAS-SYSTEM a detailed
description of the logical‘and physical realization of the
data base module together with implementation details is
given. It should be the basis of discussion for programmers
and implementers of other institutions working in similar
areas as well as for the internal and external users of

the IAS-SYSTEM. This paper should give the users of the
IAS-SYSTEM a better feeling what really happens if they
employ the IAS—SYSTEM for -their data handling, estimation

simulations, report generation, .etc.

During the last year twelve commands have been implemented
among them the basic data base operations like %DB, %*FILE,
#DUMP, #SER, #COPY, #%DEL, #*UPD and a considerably improved
calculation processor, #CALC. The directions of the next
year go mainly to the implementation of application routines
for estimation, testing, simulation and repqrt generation.
At the end of this second project year a pdrtable and
flexible IAS-SYSTEM which is improved considerably with
respect to Level 2 should be at hand.






]

M

[

References

American National Standards Institute, Inc. (ANSI, ed.):
ANSTI X3.4-1977 American Standard Code for Information

Interchange. New York 1977

American National Standards Institute, Inc. (ANST, ed.):
ANST X3.9-1978 American National Standard Programming

Language FORTRAN. New York 1978 .

BAYER, R. and E. McCREIGHT: Organization and Maintainance
of Large Ordered Indices. Acta Informatica 1(3), 1972

DATE,C.J.: An Introduction to Data Base Systems. Reading,
Addison Wesley 1976 ‘

HARDER, T.: Implementierung von Datenbanksystemen. Miinchen-
Wien, Carl Hanser Verlag, 1978

KNUTH, D.E.: The Art of Computer Programming, Vol. 3: Sorting
and Searching. Reading, Addison Wesley 1972

LARMOUTH, J.: Fortran 77 Portability. Software~Practice and
Experience 11(10), 1981

PHILIPP, W., K. PLASSER, K. RODLER and H. SONNBERGER: The
Syntax Analysis of the IAS-SYSTEM. Institutsarbeit,
Tnstitute for Advanced Studies, Wien, forthcoming

PLASSER, K.: User Reference Manual - Part One. Instituts-
arbeit No. 129, Institute for Advanced Studies, Wien,

1980

PLASSER, K., H. SONNBERGER, K. RODLER and W. PHILIPP: On
Writing a 'Comprehensive', '‘Interactive', 'Portable',
'Data Base Oriented' and ‘'Reliable' Program System for
Econometric Modeling and Corporate Planning (Interim
Report, Research Memorandum No. 169, Institute for
Advanced Studies, Wien, 1982 .

ROSENBERG, A.L. and L. SNYDER: Time- and Space-Optimality in
B-Trees. ACM TODS, Vol. 6, 1, 1981

SAVORY, St. E.: CPU Times Spent Searching Bx-trees. Ange-
wandte Informatik 10, 1981

SPERRY UNIVAC Series 1100: FORTRAN (ASCII) Level 10R1,
Programmer Reference, 1982

ULLMAN, J.D.: Principles of Database Systems. London, Pitman
Publishing Limited, 1980

WEDEKIND, H.: Datenbanksysteme I.(II). Mannheim-Wien-Ziirich,
Bibliographisches Institut, 1974 (1976)






N
\ ;

- 69 -

APPENDIX







i}

C}

THE LOGICAL STRUCTURE OF THE RETRIEVAL AND PRINTING OF A
TIME SERIES, INCLUDING SELECTED PROGRAM LISTINGS

SER
SERCC
SERBTI -
SERSTO -
SERPRT
SERRD
RDEXWS -~
SEREX
DBORG
DBOPEN -
DBCLOS -
DUMPDB -
PRTCAT -
FCTS
FBRNCH -
DBACC _
DBFIND \
KEYCHK
KEYCOM
DBREAD
RDNSTR
READ12
RDCSTR
READ13
DBINP -
DBUPD -
DBLOOK -
DBDEL -
DBCOPY -
PRTDBI -
DELDBI -
COPDBI -
AGGREG
COMTM
AGGSAS
AGGDEF
SP@76
SPDATA
sp128 -

Underlined programs are listed on the following pages;

after a program name indicates a subtree, not entered
for this problem;

the remaining routines are executed, but are of minor impor-
tance.

Common utility routines (e.g. VECCOP for copying a vector of
integers) are neither mentioned nor listed.



Q

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

*

| RER

. #%% DPprogram for controlling the processing of ¥*SER-COMMAND L
. *%%¥ the universial command for the handling of time series LA
. COMMENT

The checking of the command string is done in subroutine SERCC
(see there also for the allowed options and fields/subfields
and their meaning).

Depending on the specified option for printing or storing
different time definitions are taken (see comment of SERSTO).

As a consequence of the further command requirements, this
subroutine can be divided into three parts:
- insertion of time serie(s) via batch-mode
(I0PTCD=0, INPOPT=1, subroutine SERBTI)
- interactive insertion of a single time series
(IOPTCD=0, INDPRT>1, subroutine SERSTO)
- printing of a time series
(IOPTCD><0, subroutine SERPRT)

. OUTPUT BY PARAMETERLIST

IERRCD I Error code
.. RETURN Normal exit
. RETURN?Y Error exit

SUBROUTINE ser(¥*,ierrcd)

CHARACTER*80 calstr
DIMENSION kidntf(4),kdflsr(8),iadr(5)

ierrcd = 0

. check command string

’

calstr =

CALL vecnul(kdflsr,1,8)

CALL sercc(*980,ierrcd,iopted,indprt,inpopt,kidntf,iadr,kdflsr
,iaggm,calstr)

. execute

IF(iopted.eq.0) THEN



N

store option has been specified

~ C
IF(inpopt.eq.1) THEN
C
C ... input from data deck in batch mode
C
CALL serbti(*980,ier0Oecd)
ELSE
CALL sersto(*980,ier0Ocd,inpopt,kidntf,iadr,kdflsr,iaggm
* ,calstr)
IF(ierQcd.eq.~-2) GOTO 970
ENDIF
EL3E
C
C ... print specified time series
C
CALL serprt(*980,ierQcd,iopted,indprt,kidntf)
ENDIF
C .
- RETURN
c
C ... error section
C
970 CALL msgprt(¥990,1501)
980 ierrecd = ierOcd

990  RETURN1
END



L. RN
| kR

cOccOO0OcO0O000O0 00000 aOO0a00O0O0 000000000000 aaafl OO a O

Subroutine for reading a time series from mass storage LA
. COMMENT

The time series is either read from the data base or from the
working-scratch file. The purpose of reading may either be
the destination of the time range the series is defined, or
tne evaluation (aggregation) of the data.

. INPUT BY PARAMETERLIST

KIDNTF I(4) - Integer-5~-coded time series identifier
- identifier for intrinsic variable
(1), (2) ... 0
(3) veeeeenn neg. log. address of variable

() vevennn. 0
INPOPC I Operation code
1 ... numeric part and character part is read
2 ... only numeric part is read
INPCUR I Address currency indicator
0 ... access to be done via KIDNTF
1 ... access to be done via IADR

. INPUT BY PARAMETER STATEMENT COMPUND/pardata/

LNMSTR I " Dimension of NUMSTR
LCSTR I Number of character storage units of CSTR

. INPUT BY COMMON/calec1/

INTTBL I(NUMINT) Table of intrinsic variables

. INPUT BY COMMON/status/

ISWTCH 1I(20) (4) ...Debug switch

. QUTPUT BY PARAMETERLIST

DATVEC R(¥*) Data vector containing the prepared time series
ATTENTION: DATVEC must not be equal to NUMSTR
in COMMON /DBNINF/

HEADER C*(¥) Header description of time series
MODAGG I Aggregation mode
<0 ... undefined

0 ... sum



B

-
'

r

eNeoNeETECECEsNoNoNoNsNeNsNoNcEeNoNoRsNsEeNoNeoNo NSNS NONONONONONONONEONO NGO NP N N

*

IERRCD I

CSTR C

#[CSTR

1 ... average
2 . 8tock

3 ... deflator
rror code

. OUTPUT BY COMMON/dbcinf/

Item header

. OUTPUT BY COMMON/dbninf/

NUMSTR I(LNMSTR) Numerical string containing the full item

LDATVC I

ITMDEF 1

IADR I

.. RETURN
. RETURN?

(3)

(5)

information

. TRANSPUT BY PARAMETERLIST

I: >0 ... maximum length the prepared
(aggregated) time series may have
=0 ... no data requested, only the
common time range
0: number of values in DATVEC
Time definition
I: time range desired
Q: common time range of desired range and range
the time series is defined for
Data base or external working storage access
addresses
I: in case of INPCUR=1
0: in case of INPCUR=0

Normal exit
Brror exit

SUBROUTINE serrd(*,ierrcd,kidntf,inpopc,inpcur,datvec,header
,modagg,ldatve,itmdef,iadr)

CHARACTER*(*) header
CHARACTER*21 qidedt

LOGICAL

inddb

DIMENSION kidntf(4),datvec(*),itmdef(3), 1tmser(3) iadr(s)

kagg

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

id(8)

ias-util
ilas-util
ias-util
ias-util
ias-util
ias-util
ias-util

.parcale,LIST

.pardata,LIST

.comdbninf,LIST
.deldbeinf,LIST
.comdbeinf,LIST
.comstatus,LIST
.delcommsg ,LIST



[ RS RS]

Q0N

leNeRe!

INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.delesign,LIST

INCLUDE ias-util.comesign,LIST

INCLUDE ias-util.dclealel,LIST

INCLUDE ias-util.comcalel,LIST

ierrcd = 0O

iecur = inpecur

- ioprte = inpope

. fetch time series from mass storage file (intrinsic variables)
. or from IAS-data-base

IF(kidntf(3).1t.0.or.(iadr(1).1t.0.and.inpcur.eq.1)) THEN
IF(iadr(1).ge.0) THEN

iadr(1) = =kidntf(3)

iadr(2) = 1

iadr(3) = lnmstr
ELSE

kidntf(3) = iadr(?1)
iadr(1) = =iadr(1)
ENDIF

CALL rdexws(¥980,ier0Ocd,iadr(1),iadr(2),nunstr)
CALL veccop(numstr,4,6,itmser,1)
modagg = numstr(7)
idatab = numstr(3)+4
CALL vecnul(kaggid,1,8)
iadr(1) = -iadr(1)
inddb = .FALSE.
ELSE
CALL serex(*980,ierQcd,kidntf,ioprte,icur,numstr,cstr,idatab
,itmser,modagg,kaggid,iadr)

. set error code for dummy series

IF(numstr(6).eq.0) ierrcd = -1
inddb = .TRUE.
ENDIF

. DEBUG of NUMSTR and CSTR

IF(iswtch(4).ne.0) THEN

msgnum = 7920

CALL ncdeb(*990,numstr,cstr,msgnum)
ENDIF

IF(ierred.eq.0) THEN

. no time range stored in the fetched time series

IF(itmser(1).le.0) THEN
ierrcd = 7291
GOTO 970

ENDIF



B

D

™

Q

oo

980
990

. data exists in time series (no dummy series)

IE(ldatvc.gt.O) THEN

. transfer (with aggregation) data to output vector DATVEC

CALL aggreg(*980,ier0Ocd,inddb,kidntf,itmser ,modagg,kaggid
,rstr(idatab),datvec,ldatve,itmdef)

ELSE

. only time range of time series is requested

IF(itmser(1).1t.itmdef(1)) THEN
ierrcd = 7311
GOTO 970

ENDIF

CALL comtm(itmser,itmdef)
ENDIF
ENDIF

. transfer header

IF(inddb.and.inpopc.eq.1) THEN
ihelp = LEN(header)
IF(inelp.gt.76) ihelp = 76
header(1:ihelp) = ecstr(1:ihelp)

ENDIF

RETURN

. error section

IF(inddb) THEN
msgin = gidedt(kidntf,4)
ELSE
msgin = intvtb(ABS(kidntf(3)))
ENDIF
‘msgin(22:22) = msgstp
CALL msgprt(#*990,ierrcd)

ierrcd = ierOcd
RETURN?1
END



OOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOOOOOO

., REx Jnique interface to the data base organization module ¥
k%

. COMMENT

The data base organization modul performs:

- handling of data base as a whole (0S-file handling)
. catalog
. assign
. free
. delete
. enlarge
. recover
. single record dump
- handling of IAS-files
. catalog
. assign
free
. use default file
. access permission check
- handling of IAS-items
. set access (partial key)
. delete
. print
. COpYy
. single item access (full Kkey)
.. find
. retrieve
. insert
. update

. INPUT BY PARAMETERLIST

IHIRCD I Hierarchy code (bit combination)
bit
set
| version
2 e element
K J subtype
b ... type
5 cevenonn file
NO coveenes data base
IOPRTC I Operation code,
must be seen in connection with hierarchy code
IHIRCD = 0O
T e data base recovery (save)
253 e data base close
U-7 ...... data base open (catalog)

11-13 .... dump facility



N

)

{
L

£

IHIRCD = 16 and IOPRTC = 0
print list of cataloged files
THIRCD = 16 and IOPRTC < 0
bit combination indicating the IAS-file
handling operation (see subroutine FBRNCH)
16 <= IHIRCD <= 31 (operation on item set)
...+ print item list
. delete ‘
. internal copy
.. COpYy out
. copy in
IHIRCD = 31 (operation on single items)
«.. find
. retrieve whole item
. retrieve numerical information only
.. insert item
.. update whole item
.. update numerical information only
. delete ’ :
. internal copy
«ess COPY out
0 ... copy in

O o~ o

—
O

=LY QN =W 20

. INPUT BY COMMON /status/

IDBST I(40) Data base status array
(3) pointer to root record

. INPUT BY COMMON /intctt/

IRWPRM I(0:10) Read/write permission of assigned IAS-files ‘

. INPUT BY PARAMETERCOMPOUND /parrecl/

LREC14 I Record length of file 14

. TRANSPUT BY PARAMETERLIST

ICUR I Currency indicator
if set, access is done via addresses instead
of item identifier
IADR I(%*) Address vector for direct access without search
KIDNTF 1I(¥%) Integer-coded identifier,
Integer-4-coded data base name
Integer-5-coded IAS-file or partial/full
. specified item identifier
NOMSTR I(¥*) Numerical data base I/0-buffer
in case of print-operation the coded print-size
option is transmitted in (1)
CSTR C*¥(#) Character data base I/0-buffer



Q

aQaa

SUBROUTINE dborg(#*,ierrcd,ihired,ioprte,icur,iadr,kidntf
,aumstr,cstr)

CHARACTER¥*(*) cstr

CHARACTER*21 gidedt

DIMENSION ivalid(0:10),iadr(*),iadr1(1),kidntf(¥*) ,numstr(*)
,indfet(2)

LOGICAL backi?

INCLUDE ias-util .dclcommsg,LIST

INCLUDE ias-util.comcommsg,LIST

INCLUDE ias-util.declcsign,LIST

INCLUDE ias-util.comesign,LIST

INCLUDE ias-util.comstatus,LIST

INCLUDE ias-util.comintctt,LIST

INCLUDE ias-util.parrecl,LIST

COMMON /idummy/ ibuff(lrecii)

DATA ivalid /3%1,2,2%0,1,2,1,2,1/

ierrecd = O

If(ihircd.eq.0)THEN

. hierarchy code 0: operation affects whole data base

IF(ioprtc.ge.l.and.ioprte.1t.7) THEN

. open data base

CALL dbopen(*9900,ierQOcd,ioprte,kidntf,iadr)
ierrcd = ierQcd
ELSE IF(ioprtc.ge.2.and.ioprtec.lt.4) THEN

. close data base

CALL dbeclos(*9900,ierQcd,ioprtc,kidntf)
ELSE IF(ioprtc.ge.il.and.ioprtec.lt.14) THEN

. dump (parts) of the data base files

CALL dumpdb(*9900,ier0Ocd,ioprte,iadr)
ELSE

. error

ierrcd = 5020
ENDIF

ELSE IF(ihired.eq.16.and.ioprtc.eq.0) THEN

. print table of cataloged IAS-SYSTEM-files

CALL prtcat(*3900,ierQOcd,nunstr(1))
ELSE

. search file-control-table for specified file



€

aaoaoaa

. get default file if none specified

IF(ioprtc.ne.9) THEN

ind = 1
ELSE
ind = 2
ENDIF )

CALL fcts(*9900,ier00d,kidntf((ind—1)*8+1),indfct(ind))
IF(ioprtc.eq.8) THEN
CALL fcts(*9900,ierOcd,kidntf(9),indfct(Z))
ELSE .
ind = MOD(ind,2)+1
indfet(ind) = 0
ENDIF

back11 = .FALSE.
IF(inircd.eq.16.and.ioprte.1t.0) THEN

- IAS-SYSTEM-file handling is requested

IF(ioprtc.le.-(2%%13)) back1l = .TRUE.
CALL fbrnch(*9900,ier00d,kidntf,indfct(1),ioprtc)

ELSE
IF(indfet(1).ge.0.and.indfet(2).ge.0) THEN
. for each data base operation remaining the specified
- IAS-SYSTEM=~file must be assigned and the appropriate read/write
- permission must satisfy the requirements of the operation

IF(irwprm(indfct(1)).ne.3.and;

L irwprm(indfet(1)).ne.ivalid(ioprte)) indfet(1) = -1
IF(irwprm(indfct(2)).ne.3.and.
® irwprm(indfet(2)).ne.ivalid(ioprte+1)) indfet(2) =

IF(indfet(1).ge.0.and.indfet(2).ge.0) THEN

. checks are ok

IF(iopftc.ge.3.and.ioprtc.le.9.and.iOprtc.ne.6)
* back11 = .TRUE.

IF(ioprte.lt.6.and.ihired.eq.31) THEN

.. access (read, write, update) to a single item

CALL dbacc(*9900,ierOcd,ihircd,ioprtc,icur,iadr
,kidntf ,numstr,cstr)

. ELSE
- Set start values for partial key search

icur = 2
iadr(1) = idbst(3)

-1



aao [eECRY!

QOO [eEKe KPR e e Xe KT KS

QOO0

iadr(2) = 0
iadr(3) = 0
iadr(4) = 10
iadr(5) = 10

IF(ioprtc.eq.6.and.(ihirced.lt.3%.and.
inircd.ge.16)) THEN

. print table of data base items

indprt = numstr(1)
CALL prtdbi(#*9900,ier0Ocd,ihired,ioprte,icur
,iadr,kidntf,indprt,numstr,cstr)

ELSE IF(ioprtc.eq.7.and.(ihircd.lt.23.and.
ihired.ge.16.or.inircd.eq.31)) THEN

. delete data base item(s)

CALL deldbi(*9900,ierQOcd,ihircd,ioprte
,indfet(1),icur,iadr,kidntf)

ELSE IF((ioprtc.ge.8.and.ioprtc.le.10).and.
(ihired.ge.16.and .ihired.lv.28.0r.
ihired.eq.31)) THEN

. copy data base item(s) to data base item(s) either
. or to/from an 0S-file

CALL copdbi(*9900,ier00d,ihircd,iOprtc,icur
,iadr,kidntf,numstr,cstr)

ELSE

. access to data base has been tried with an illegal combination
. of hierarchy code and operation code

ierrcd = 5020
ENDIF
ENDIF

ELSE

.. read/write permission of IAS-SISTEM file does not match

ierrced = 5280
ENDIF

ELSE IF(ierOcd.eq.5051) THEN

. no IAS-SYSTEM-file at all is assigned

ierrcd = ierOcd
ELSE



C the specified IAS-SYSTEM-file is not assigned
C .
ierred = 5160
ENDIF
ENDIF
C
C . rewriting of the first record of file 11 is necessary
C - to keep consistency of IDBST and the data base
c ;
IF(back11) THEN
iadri(1) = 1
CALL dbacc(*9900,ier00d,1024,11,1,iadr1,kidntf,ibuff,cstr)
CALL veccop(idbst,1,40,ibuff,1)
CALL dbacc(*9900,ier00d,1024,21,1,iadr1,kidntf,ibuff,cstr)
ENDIF
ENDIF
o
c . an error has occured
C
IF(ierrcd.ne.0) GOTO 9800
c
RETURN
C
C ... error section
C
9800 IF(ierrcd.eq.5160.0r.ierrcd.eq.5280) THEN
C
C ... file not assigned or read/write permission wrong
C

DO 9810 ic=1,2
IF(indfct(i0).1t.0) THEN
msgin = gidedt(kidntf((i0-1)*8+1),2)//msgstp
CALL msgprt(*9990, ierrcd)
ierrcd = ierrcd+’
ENDIF '
9310 CONTINUE
ELSE
C
C ... 5020 ... illegal hierarchy and/or operation code
C
IF(ierrcd.eq.5020) _
* WRITE(msgin(1:9),FMT="(216,A1)") ioprte,ihired,msgstp
CALL msgprt(*9990,ierrcd)
CALL syserr(%*9990, "DBORG”)
ENDIF

9900 ierrcd = ierQed
9990 RETURN1
END



. %%% Program to search file-control-table KFCT for a specific LA

. ¥%% TAS_system~file k%%
| R % %%
. COMMENT

IF a file name is specified the routine determines it’s
position in the file~control-table KFCT.

IF none is specified the program determines the default file
(the type requested must be specified in the 2nd word of the
file identifier according to the common definiton of a fuil
identifier) and the index of this file in KFCT.

. INPUT BY COMMON/status/

ISWTCH 1I(20) (13) Data base switch
0 ... no data base assigned
>0 ... data base assigned
ISTAT I1(20) (11) Number of files in file-control-table

. INPUT BY COMMON/intectt/

KFCT I(2,11) File-control-table,
contains the integer-5-coded names of all
assigned IAS-system~files
INDUCT 1I(0:10) Use-control-table,
each array element contains the index of
the appropriate use (or default) file in the
file-control-table KFCT
(0) .... for the IAS-system-system-file $SYS
(1) .... for the BASE-file
(2) .... for the DATA-file
(3) .... for the EQUATION-file
(4) .... for the MODEL-file
(5) .... for the SOLUTION-file
(6) .... for the TEXT-file
(7)-(10) not yet used

. OUTPUT BY PARAMETERLIST

INDFCT 1 Index of specified (or default) file in KFCT
IERRCD I Error code

. TRANSPUT BY PARAMETERLIST

KFILE I(2) Interger-5-coded file name
- if a file is specified on input, KFILE is a



M

o

[N PR OESHNOSEG NS NONI NG NG N!

aaaaaa Q

aaa

pure input parameter

- if none is specified, the default file is
returned, for this purpose it is necessary
that the desired type is stored at the
end of the second word (see common definition
of a full identifier)

. RETURN Normal exit
. RETURN1 Error exit

SUBROUTINE fcts(*,ierrcd,kfile,indfct)

CHARACTER*5 ctype
CHARACTER*1 intfil(1:6)
DIMENSION kfile(2)

INCLUDE ias-util.comstatus,LIST
INCLUDE ias-util.comintett,LIST
DATA intfil /°B",’D’,’E",’M",’S",’X"/

0
-1

ierrcd
indfect

. is a data base assigned?
. 1f a data base is assigned, is a file assigned?

IF(iswtch(13).eq.0) THEN
ierrcd = 5041
CALL msgprt(*990,ierrcd)
ELSE IF(istat(11).eq.0) THEN
ierred = 5051
GOTO 900
ENDIF

kfil2h = MOD(kfile(2),64*%#2)
IF(kfile(1).eq.0) THEN

. get default file if no file is specified

ktype = kfil2h/64
kstype = kfil2h-~-ktype*64

CALL st5dec(*980,ier0Ocd,ktype,1,ctype)

. check internal file types

i0 = 0

IF(ctype(5:5).eq.” “) THEN
indfect = 1

ELSE IF(ctype(5:5).eq.’F”) THEN
indfet = O

ELSE
DO 200 i0=1,6



IF(intfil(i0).eq.ctype(5:5)) THEN
indfet = induct(il)

GOTO 300
ENDIF
200 CONTINUE
C
C ... specified file type cannot be found
C
ierred = 5060
CALL msgprt(¥*990,ierrcd)
CALL syserr(¥*990, FCTS")
ENDIF
C
C ... determine word 1 and 2 (file,type) of full identifier
C
300 kfile(1) = kfet(1,indfet)
kfile(2) = kfet(2,indfet)
IF(i0.eq.2.0r.i0.eq.4) THEN
C v
C ... evaluate type for immidiate data base access
C
CALL addts(*980,ierQcd,’D “,kfile)
ELSE
kfile(2) = kfile(2)+ktype¥*6l
ENDIF
kfile(2) = kfile(2)+kstype
C
ierrecd = -1
ELSE
C
C ... search file-control-table (KFCT) for specified file
C
kfil2h = kfile(2)-kfil2h
DO 100 i0=0,istat(11)
IF(kfile(1).eq.kfct(1,1i0).and.kfil2h.eq.kfct(2,i0)) THEN
)
C ... found
C
indfet = 1i0
GOTO 900
ENDIF
100 CONTINUE
ENDIF
C

900 RETURN

C
980 ierred = ierOcd
990 RETURN?1

END



Y

s NeoleNeoNsNeolsNeNeoRsRoNoNoNsRoNoRsNeoNoNeoNeoRoNoNoNoNeNoNoNeNeRoNeNeNeRe N Er o NN Ne Re R e R R R R R R R R RO R T R o)

. COMMENT

.. ®#% gyuproutine for access to IAS-SYSTEM DATA BASE *E¥
T

This is the unique interface to the data base files

. INPUT BY PARAMETERLIST

IHIRCD I
IOPTICD I

data base access hierarchy code
data base access operation code

The following combinations of IHIRCD and IOPTCD are possible

IHIRCD=16=-31

IHIRCD=1024

ICUR I
IADR  I(¥)
KEY (%)

Access to elements specified by KEY
IOPTCD= 0 Find element

IOPTCD= 1 Read element

IOPTCD= 3 Insert element

IOPTCD= 4 Update element

IOPTCD= 6  Print element

IOPTCD= 7 Delete element

IOPTCD= 8 Copy element

IQOPTCD= 9 Copin element

IOPTCD=10 Copout. element

Access to records specified by IADR

IOPTCD=11 Read record from system-file 11
IOPTCD=12 Read record from system-file 12
IOPTCD=13- Read record from system-file 13
IOPTCD=21 Write record to system-file 11
-IOPTCD=22 Write record to system-file 12
IOPTCD=23 Write record to system-file 13

Currency indicator
0 No record address specified in array iadr(#%)

"1 Record address specified in array iadr(¥*)

Address array
Key of the element

. OUTPUT BY PARAMETERLIST

ICUR I

NSTR I(*)
CSTR  C¥(¥)

. RETURN

... RETURN 1

Currency indicator

0 Element not found

1 Element found (record address specified)
String of the numerical information

String of character information

normalkexit
error exit



QOO0 Q)

aaqQ

Q0

SUBROUTINE dbacc(¥,ierrcd,ihired,iopted,icur,iadr,key,nstr,cstr)

CHARACTER#21 qidedt
CHARACTER*(*) cstr

LOGICAL rchang,rfound,lfound
DIMENSION key(¥),iadr(¥),nstr(¥*)

INCLUDE ias-util.comstatus,list
INCLUDE ias-util.comdbrecs,list
INCLUDE ias-util.dclcommsg,LIST
INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.delesign,LIST
INCLUDE ias-util.comcsign,LIST

ierrcd=0

indhir=ihired
indopt=iopted

IF((indhir.GE.16.AND.indhir.LE.31).AND.indopt .LE.5)THEN

rchang=.false.

. Access to elements

IF(icur.EQ.0)THEN

. No address is specified in array iadr(¥*)

CALL dbfind(¥*990,ier0Oed,indhir,indopt,key,irkpos,ilkpos,
ipleaf,ipnstr,ipestr,rfound,lfound)

iadr(1) = ipleaf

iadr(2) = ipnstr

iadr(3) = ipestr

iadr(4) = irkpos

iadr(5) = ilkpos

IF(1lfound)THEN
icur=1

. Only find specified

IF(indopt.EQ.Q)THEN
GOTQ 900
ELSE IF(indopt.EQ.3)THEN
ierrcd=4951
CALL msgprt(¥990,ierrcd)
END IF
ELSE
IF(indopt.EQ.0Q)THEN
GOTO 900



™

s

QG

aOaQa

aQQQ

aaaaaa

(@]

ELSE IF(indopt.NE.3)THEN
ierrcd=43961
msgin=qgidedt(key,4)//msgstp
CALL msgprt(*990,ierrcd)

END IF
END IF
ELSE
ipleaf = iadr(1)
ipnstr = iadr(2)
ipestr = iadr(3)
irkpos = iadr(4)
ilkpos = iadr(s)
END IF

. Read element from data base

IF(indopt.EQ.1.0R.indopt .EQ.2)THEN
CALL dbread(*990,ier0Ocd,indopt,key,ipnstr,ipestr,nstr,cstr)

. Insert element to data base

ELSE IF(indopt.EQ.3)THEN
CALL dbinp(*990,ierQOcd,indopt,key,irkpos,ilkpos,ipleaf,
ipnstr,ipestr,nstr,cstr,rchang)

. Update element in the data base

ELSE IF(indopt.EQ.4.0R.indopt.EQ.5)THEN :
CALL dbupd(*990,ierQcd,indopt,key,ipnstr,ipestr,nstr,cstr)

END IF

ELSE IF((indhir.GE.16.AND.indhir.LE.31).AND.indopt.GT.5)THEN

. Partial key operation for ¥*PRT, *DEL and *COPY

ipleaf=iadr(1)
irkpos=iadr(4)
ilkpos=iadr(5)

IF(indopt.LT.8)THEN

CALL dblook(*990,ierOcd,indhir;indopt,key,irkpos,ilkpos,
ipleaf,ipnstr,ipestr,rfound,lfound)

IF(.NOT.1lfound)THEN
ierrcd=-1
GOTO 900
END IF
END IF

. Print element(s) of a certain kind



OO

IF(indopt .EQ.6)THEN
CALL dbread(¥990,ierQOcd,indopt,key(5),ipnstr,ipcstr,
nstr,cstr)

irkpos=irkpos+5
ilkpos=ilkpos+5

. Delete element(s) of a certain kind

ELSE IF(indopt.EQ.T7)THEN
CALL dbdel(*990,ier0Ocd,indopt,key(5),irkpos,ilkpos,ipleaf,
ipnstr,ipestr,rfound,rchang)

. Copy element(s) of a certain kind

[eRPNP!

Q

[eNeE*ETES

ELSE IF(indopt.GE.8.0R.indopt.LE.10)THEN

CALL dbcopy(¥*999,ierrcd,indhir,indopt,key,irkpos,ilkpos,
ipleaf,ipnstr,ipcstr,rfound,lfound,rchang)

. ¥COPY,I and IAS-EOF encountered ?
IF(indopt .EQ.9.AND.ierred.EQ.-1)GOTO 900

irkpos=irkpos+5
ilkpos=1ilkpos+5

ELSE
ierQed=4520
CALL msgprt(¥990,ier0Ocd)
CALL syserr(*990, ‘DBACC”)
END IF

iadr(1)=ipleaf
iadr(Y4)=irkpos
iadr(5)=zilkpos

ELSE IF(indhir.EQ.1024)THEN
. Access to address-specified records

IF (indopt .EQ.11)THEN

CALL read11(*990,ier0Ocd,indopt,iadr(1),nstr)
ELSE IF(indopt.EQ.12)THEN

CALL read12(*990,ier0Ocd,iadr(1),nstr)
ELSE IF(indopt.EQ.13)THEN

CALL read13(*990,ierQOcd,iadr(1),nstr,cstr)

ELSE IF(indopt.£Q.21)THEN

CALL writ11(%¥990,ierOcd,iadr(1),nstr)
ELSE IF(indopt.EQ.22)THEN

CALL writ12(*990,ierOcd,iadr(1),nstr)
ELSE IF(indopt.EQ.23)THEN



CALL writ13(*¥990,ier0Ocd,iadr(1),nstr,cstr)
ELSE

ierQecd=U4520

CALL msgprt(*990,ierQcd)

CALL syserr(*990, 'DBACC”)

END IF
C
ELSE
ierQed=4510
CALL msgprt(*990,ier0ecd)
CALL syserr(¥990, ‘DBACC”)
END IF
C
IF(rchang) THEN
C
C ... Backwriting of the root
C .
CALL writ11(*990,ierOcd,idbst(3),iroot)
IF(iswtch(l4).GT.0) CALL msgprt(¥390,4890)
END IF
300 RETURN
C
990 ierrcd=ierQecd
999 RETURN 1
C

END



aOQ

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

KEY (%)

. INPUT BY COMMON/STATUS/

IDBST I(40)

IRKPOS
ILKPOS
IPLEAF
IPNSTR
IPCSTR
RFOUND
FOUND

[ sl o T o B o T e B o]

... RETURN
. RETURN 1

. INPUT BY PARAMETERLIST

Specified k

»

IDBST(3)
IDBST(Y4)
IDBST(6)
IDBST(7)
IDBST(21)

. OUTPUT BY PARAMETERLIST

Position of

Position of
Pointer to

Pointer to

Pointer to
true if key
true’ if key

normal exit
error exit

2 -

.. %%% Syubroutine for finding a specified key in data base *E ¥
'Y

ey

Pointer to root of B¥-tree

Pointer to first leaf in B¥-tree
Maximal number of keys in root
Maximal number of keys in leaf
Pointer to next free record of file 11

the according pointer in root
the according pointer in leaf
leaf

numerical string

character string

is stored in root

is found in data base

SUBROUTINE dbfind(¥*,ierrcd,indhir,indopt,key,irkpos,ilkpos,
ipleaf,ipnstr,ipcstr,rfound,found)

LOGICAL found,
DIMENSION key(#*)

rfound,root

INCLUDE ias-util.comstatus,LIST
INCLUDE ias-util.comdbrecs,LIST

ierrecd=0

IF(indhir.NE.31)THEN

ier0ed=4510

CALL msgprt(*990,ierQcd)
CALL syserr(*990, ‘DBFIND")

END IF

ipleaf=0

.. Initialization of leaf-pointer



IF((idbst(21).EQ.1dbst(4).AND.iroot(1).LE.1dbst(T)).OR.
* (iroot(1).LE.idbst(6)) )THEN

o0

. Search for key in root

root:.true.
CALL keychk(*999,iroot,root,key,indhir,irkpos,ipoint,rfound)

IF(idbst(21).EQ.idbst(4))THEN

aQQ

. Only the root-record contains pointers

IF(rfound)THEN
found=.true.
CALL ptrdec(*990,ipoint,ipnstr,ipestr)
ELSE
found=.false.
ipleaf=idbst(3)
ipnstr=idbst(31)
ipestr=idbst(36)
END IF
GOTO 900
‘BLSE v
ipleaf=ipoint
END IF
ELSE
ierQed=4530
CALL msgprt(*990,ier0Ocd)
CALL syserr(*990, ‘DBFIND”)
END IF

aQn

. Read the specified leaf
CALL read11(*990,ierQOcd,indopt,ipleaf,ileaf)
IF(ileaf(1).le.idbst(7))THEN

. Search for key in leaf

Qao

root=.false.
CALL keychk(*990,ileaf,root,key,indhir,ilkpos,ipoint,found)

IF(found)THEN
CALL ptrdec(*990,ipoint,ipnstr,ipestr)
ELSE :
ipnstr=idbst(31)
ipestrzidbst(36)
END IF
ELSE
ierQecd=4540
CALL msgprt(¥990,ierOcd)
CALL syserr(#*990, ‘DBFIND”)
END IF :
3900 RETURN '
C



990
999
c

ierrcd=ierQOcd
RETURN 1

END

94 -



)

Ve
N

P

OOOOO0O0000000 000000000000 0O00000

@]

160
C

. ROQT

. KRR

_95_

. *¥% Sybroutine for checking whether a specified key ks
. ¥%% i3 in a specified record of file 11 RE*
. INPUT BY PARAMETERLIST

. ISTRNG I Record-string to be searched ‘

L is true if key is searched in root

.. KEY I Key of the element
.+ NRKEY I Maximal number of keys in ISTRNG

. INPUT BY COMMON/STATUS/

IDBST I(40) IDBST(4) Pointer to first leaf in B¥-tree
IDBST(21) Pointer to next free record of file 11

. OUTPUT BY PARAMETERLIST

. KPOS I Start position of key or right key

. IPNTR I Pointer to the next record in B¥-tree

. FOUND L is true if the specified key is in the record
.. RETURN Normal exit

. RETURN 1 Error exit

SUBROUTINE keychk(*,istrng,root,key,indhir,kpos,ipntr,found)

LOGICAL found,root
DIMENSION key(ld),istrng(*®)
INCLUDE ias-util.comstatus,LIST

found=.false.
ianf=10
iend=5*istrng(1)+6

DO 160 i=ianf,iend,5

CALL keycom(key,indhir,istrng,i,kswtch)
IF(kswtch.GT.Q)THEN
GOTO 160
ELSE
kKpos=1i
ipntr=istrng(kpos)
IF(kswtch.EQ.Q)THEN
found=.true.
CALL veccop(istrng,i+2,i+2,key,2)
END IF
GOTO 900
END IF
CONTINUE



C ... The searched key is the largest in the specified record

kpos=ziend+4
IF(root)THEN
IF(idbst(21).EQ.idbst(4))THEN
ipntr=0
ELSE
ipntr=istrng(kpos)
END IF
ELSE
ipntr=0
END IF
found=.false.
900 RETURN

990 RETURN 1
C

END



(&

M

sReEeBsEsEeNeReRoRsNoRoNoNcsRoNoNoRoRecNeoRoNoNsNoNoNoNeNeNeReNeNoNeRORO N

«Q

. ¥%%  Subroutine for comparing partial keys in data base
Y )

. COMMENT

. The bits of indhir set reflect the following comparisons

Bit 5: Filename
Bit 4: Type
Bit 3: Subtype
Bit 2: Element
Bit 1: Version

. INPUT BY PARAMETERLIST

KEY I(%) Specified key

INDHIR I Data base access hierarchy code
ISTRNG I(¥) ROOT or LEAF

ISTART Start position for Compare-Operation

. OUTPUT BY PARAMETERLIST

KSWTICH I Switch indicating the relation between
partial key and key of istrng

.. RETURN normal exit
. RETURN 1 error exit

. SUBROUTINE keycom(key,indhir,istrng,istart,kswtch)
DIMENSION key(*),istrng(¥*)

indace=MOD(indhir,16)

.. For *COPY,I file name may not be specified, e.g. *COPY,I

IF(key(1).EQ.0)GOTO 100

. Test for Filename

IF(key(1).LT.istrng(istart+1))GOTO 200
IF(key(1).GT.istrng(istart+1))GOTO 400

kchg= (key(2) /64 %%2 ) *p5) #%
ichg=(istrng(istart+2)/6L4%%2 ) %k5) €%D
IF(kchg.LT.ichg)GOTO 200
IF(kchg.GT.ichg)GOTO 400

X,

k%



000

@]

@ e

[¢R®]

200

400
900

. Test for Type ?

IF((indacc/8).EQ.1)THEN
kechg= ((key(2)-kehg)/64) %64
ichg=((istrng(istart+2)~-ichg)/64) %54
IF(kechg.LT.iehg)GOTO 200
IF(kehg.GT.1ichg)GOTO 400
indace=M0D(indacc,8)

END IF

. no test for subtypel!

indacc = MOD(indacc,#)

. Test for Element ?

IF((indacc/2) .EQ.1)THEN
IF(key(3).LT.istrng(istart+3))GOTO 200
IF(key(3).GT.istrng(istart+3))GOTO 400

kehg= (key (L) /64%%2) %6, %%2
ichg=(istrng(istart+d)/o4*¥2) %ol %%2
IF(kehg . LT.ichg)GOTO 200
_ IF(kchg.GT.ichg)GOTO 400
indace=MOD(indacc,2)
END IF

.. Test for Version ?

IF(indacec.EQ.1)THEN

kchg=key(U4)-(key(4)/04*%¥2)¥o *%2
ichg=istrng(istart+4)-(istrng(istart+l)/04**2)*oL ¥¥%2
IF(kechg.LT .1chg)GOTO 200
IF(kechg.GT.ichg)GOTO 400

END IF

kswtch=0

GOTO 900

kswtch==1

GOTO 900

kswtch=+1

RETURN

END



0

[

QA aQ Q

Q Q0

QOO

L RER
. kR

Subroutine for reading an element specified by key

. INPUT BY PARAMETERLIST

INDOPT I Data base access operation code
KEY I(4) Specified key

IPNSTR 1 Pointer to numerical string
IPCSTR I Pointer to character string

NUMSTR I(¥)

. OUTPUT BY PARAMETERLIST.

Numerical string to be read

CSTR Cc(#*) Character string to be read
... RETURN normal exit
.. RETURN 1 error»exit

£ £

SUBROUTINE dbread(*,ierrcd,indopt,key,ipnstr,ipcstr,numstr,cstr)

CHARACTER*(*) cstr
DIMENSION key(¥),numstr(¥*)
INCLUDE ias-util.comstatus,LIST

ierrcd=0

. Initialize length of numerical string and character string

numstr(1)=2
numstr(2)=1

IF(indopt.LE.2.0R.indopt.GE.6)THEN

. Read numerical-string

CALL rdnstr(*990,ierOcd,key,ipnstr,numstr)
IF(iswtch(4).GT.0) CALL msgprt(¥990,4710)°

IF(indopt .ne.2)THEN

. Read character-string

CALL rdcstr(*390,ierOcd,key,ipestr,nunstr,cstr)

IF(iswteh(4).GT.0) CALL msgprt(*990,4700)
END IF .

ELSE

ierQecd=U520
CALL msgprt(*990,ierQcd)
CALL syserr(*990, ‘DBREAD")



- 100 -

END IF
RETURN

990 ierrcd=ierQcd
RETURN 1

END



1‘(\",

M

[

cReNoNsNoNoRoNoNsNsRoNoNoNoReoNsNeNeoNoNeNeNoNoNo RS

@}

200

Q0

00

* %%

. ke

KEY

- 101 -

Subroutine for reading the numerical string of file 12

. INPUT BY PARAMETERLIST

I(W) Key of the element

IPNSTR I Pointer to the next free record in file 12

. OUTPUT TO PARAMETERLIST

NUMSTR I(¥) Numerical string

. INPUT BY COMMON/STATUS/

IDBST I(40) IDBST(12) Record length of file 12

.. RETURN normal exit

. e

.. RETURN 1 o error exit

SUBROUTINE rdnstr(*,ierrcd,key,ipnstr,numstr)

LOGICAL jkequ

DIMENSION key(*) ,numstr(¥)

INCLUDE ias-util.comstatus,LIST

COMMON/ idummy/ istack(510), lbuff(108) lnfchr(ZO) 1nfdum(20)

ierrcd=0

icon=0
ibeg=2

CALL vecnul(ibuff,1t,idbst(12))
CALL read12(%*990,ier0Ocd,ipnstr,ibuff)

Testing for right key

IF( jkequ(key,ibuff,4))THEN

. Create initial information from the first record

IF(icon.EQ.Q)THEN
listr=ibuff(9)
ires =listr
irel =idbst(12)-8

END IF

ilen=MIN(ircl,ires)
iend=ilen+8
CALL veccop(ibuff,9,iend,numstr,ibeg)

*X¥®



o0

990

- 102

. Continuation cards ?

ires=ires-ilen
IF(ires.GT.0)THEN
icon=icon+1
ibeg=ibeg+ilen
ipnstr=ibuff(1)
GOTO 200
ELSE
numstr(1)=1listr+1
RETURN
END IF
ELSE
ierrecd=U45T70
CALL msgprt(¥990,ierrcd)
CALL syserr(*990, "RDNSTR")
END IF

ierrcd=ierOcd
RETURN 1

END



-

R

OQQOGOOOGOOOOOOOOOOOOOOOOO

(o}

900

990

- 103 -

.. ¥%% Drogram for reading one record of file 12
#%% ‘

. INPUT BY PARAMETERLIST

IREC I Record rnumber to be read

.. INPUT BY COMMON/STATUS/

IDBST 1(40) IDBST(12) Record length of file 12
- IDBST(13) Number of records of file 12

. OUTPUT BY PARAMETERLIST

IERRCD I Error code
ISTR I ‘Contents of the specified record

.. RETURN Normal exit

. RETURN 1 Error exit

SUBROUTINE read12(¥*,ierrcd,irec,istr)

DIMENSION istr(¥)
INCLUDE ias-util .comstatus,LIST

ierrcd=0
lstrng=idbst(12)

IF(irec.GT.0.AND.irec.LE. 1dbst(13))THEN

€%

READ(12,REC=irec,I0STAT=ier0Ocd,ERR=900)(istr(i),i=1,1lstrng) -

ELSE
CALL syserr(*3990, "READ12")

END IF

RETURN

ierrcd=ierQecd
RETURN 1
END



OOOOOOOOOOOOOOOO\OOOOOOQOOOOQOOQOOODOOOOOOOQOOOOOOOOOOOO

- 104 -

. ENE

. ¥%¥% Sybroutine for aggregation of time series *i6*
COMMENT

This routine aggregates time series, if necessary. Four different
aggregation procedures are available:

Code <0 ... aggregation mode is not defined

Code 0 ... aggregate by summing up

Code 1 . aggregate by averaging

Code 2 ... take last value of time range as aggregate (for stocks)
Code 3 . deflator aggregation (e.g. deflator defined as

(NOMINAL SERIES)/(REAL SERIES)¥100, aggregation is
done by aggregating both series according to their
aggregation mode - accept for another aggregation
mode 3 because of recursion - and repeating the
calculation mentioned above.

This aggregation is only possible for time series
read from the data base. Evidently, also the
nominal and the real series must be items of the
data base and the needed IAS-files must be assigned.
For this reason deflator aggregation is not possible
for intrinsic variables series.

Disaggregation of time series is not possible and therefore
inhibited. |

. INPUT BY PARAMETERLIST

INDDB L Indicator for time series origin
.T. ... series is stored in data base
.F. ... series is intrinsic variables
KIDNTF I(4) INDDB = .T. ... integer-5-coded item identifier
JINDDB = JF. ... (1)-(2) ... 0
(3) vevennn index of intrinsic
variable in intvtb
(4) oooenn. 0
ITMSER I(3) Time range for which the time series is defined
MODAGG I Aggragation mode (see above in COMMENT)
KAGGID I Contains the identifier of the nominal and the
real time series for deflator aggregation
(1)=-(4) ... integer-5=-coded identifier of
the nominal time series
(5)=(8) ... integer-5-coded identifier of
the real time series
RINPVC I(¥) Data input vector

INPUT BY COMMON/calcl/

INTVTB I(NUMINT) Table of intrinsic variables



™
e R R R RN Er Ee R EeEe R Rr R R e N s Ee R ErNoNeNeReNeRoNe e Ne Ho e Ne

-

- 105 -

. INPUT BY COMMON/comstatus/

ISWTCH 1I(20) (4) ... Debug switech
(9) ... Batch mode switch

. OQUTPUT BY PARAMETERLIST

AGGVEC I(¥) Aggregated time series
LAGGVC I Length of aggregated time series

IERRCD I Error code

. OUTPUT BY COMMON/miss/

MISSB I Number of missing values at the begin
of the aggregated time series
MISSE I Number of missing values at the end

of the aggregated time series

. TRANSPUT BY PARAMETERLIST

ITMDEF I Time definition
I: time range.requested
0: time range possible, when combining
requested time range and time range
of the time series

.+. RETURN Normal exit
.. RETURN? Error exit

SUBROUTINE aggreg(¥*,ierrcd,inddb,kidntf,itmser,modagg,kaggid
# ,rinpve,aggvec,laggve,itmdef)

CHARACTER¥21 gidedt

LOGICAL inddb

DIMENSION kidntf(4),itmser(3),itmdef(3),itmecom(3),kaggid(8)
* yrinpve(*) aggvec(¥®)

INCLUDE ias-util.parcalc,LIST

INCLUDE ias-util.comstatus,LIST

INCLUDE ias-util.dclcommsg,LIST

INCLUDE ias-util.comcommsg,LIST

INCLUDE ias~-util.dclcsign,LIST

INCLUDE ias-util.comecsign,LIST

INCLUDE ias-util.commiss,LIST

INCLUDE ias-util.declcale?l,LIST

INCLUDE ias-util.comcalec?t,LIST

ierred = 0

logadr = ABS(kidntf(3))



[eNeH?]

OO0

sNoNeNe

- 106 -

. disaggregation is not possible

IF(itmser(1).1lt.itmdef(1)) THEN
ierrcd = 7311
IF(inddb) THEN
msgin = qidedt(kidntf,4)
ELSE
msgin = intvtb(logadr)
ENDIF
msgin(22:22) = msgstp
CALL msgprt(*990,ierrecd)
ENDIF

.. evaluate common time range

CALL veccop(itmdef,1,3,itmcom,1)
CALL comtm(itmser,itmcom)

. DEBUG of time ranges

IF(iswtch(4).ne.0) THEN
CALL msgmul(*990,7410,7430)
WRITE(msgin,FMT:'(IZ,Z(iX,I10),2(2X,12,2(1X,I10)),Al)')
itmdef,itmser,itmcom,msgstp
CALL msgprt(*990,0)
ENDIF

nditem = itmcom(3)=-itmcom{2)+1
IF(nditem.gt.laggve) THEN

.. output vector AGGVEC can’t hold all values

ierrecd = 6601
CALL msgprt(*990, ierrcd)
ENDIF

. evaluate aggregation ratio, missing start and end values,
.. begin and end of desired data string in input vector RINPVC

laggve = nditem
nquot = itmser(1)/itmcom(1)

IF(itmdef(2).eq.0) THEN

missb = O
ELSE

missb = itmcom(2)=-itmdef(2)
ENDIF
IF(itmdef(3).eq.0) THEN

misse = 0
ELSE

misse = itmdef(3)=-itmcom(3)
ENDIF

idatab = itmecom(2)*nquot-itmser(2)+1



- 107 -

nditem = nditem¥*nquot
idatae = idatab+nditem-1

CALL veccop(itmcom,1,3,itmdef,1)

'IF(nquotreq.1) THEN

-+ NO aggregation necessary, time series is copied

CALL vccprr(rinpvc,idatab,idatae,aggvec,1)
ELSE '

IF(modagg.ge.0.and .modagg.1t.3) THEN

- aggregation mode is sum, average or stock

CALL aggsas(modagg,idatab,idatae,nquot,rinpvc,aggvec)
ELSE IF(modagg.eq.3) THEN

. aggregation mode is deflator

IF(.not.inddb) THEN
msgin = intvtb(logadr)//msgstp
ierrcd = 7321
CALL msgprt(%*990,ierrcd) ,

- ELSE IF(kaggid(3).eq.0.or.kaggid(7).eq.0) THEN

ierrcd = 7340
CALL msgprt(*390,ierrecd)

ELSE :
CALLYaggdef(ierrcd,kaggid,aggvec,itmcom)

ENDIF

IF(ierrcd.gt.0) THEN
msgin = qidedt(kidntf,4)//msgstp
CALL msgprt(*990,7351)

ENDIF ’

ELSE

-

. aggregation mode is not defined or not valid

IF(modagg.1t.0) THEN
- ierred = 7391
ipos = 1
ELSE
ierrecd = 7030
WRITE(msgin ,FMT="(11)") modagg

ipos = 2
ENDIF
IF(inddb) THEN

msgin(ipos:ipos+20) = qidedt(kidntf,4)
ELSE

msgin(ipos:ipos+20) = intvtb(logadr)
ENDIF -

. ipos = ipos+21
msgin(ipos:ipos) = msgstp
CALL msgprt(*990,ierrcd)



990

- 108 -~

IF(modagg.ge.0) CALL syserr(¥390, "AGGREG ")
ENDIF
ENDIF

. DEBUG of original and aggregated time series

IF(iswtch(4).ne.0) THEN
CALL msgmul(*990,7430,7450)
ncomma = 3
IF(iswteh(9).eq.0) THEN
nvalrw = 5
ELSE
nvalrw = 10
ENDIF
CALL rvcprt(*990,rinpvc,idatab,nditem,nvalrw,ncomma)
CALL msgprt(¥990,10) ‘
CALL rvcprt(*990,aggvec,1,laggvc,nvalrw,ncomma)
CALL msgprt(*390,10)
ENDIF :

RETURN

RETURN1
END



OOOOOOOOOOOOOOOOOOOOOOOO’OOOOOOOOOOOOGOOOOOOOOOOOOOOOOOO

- 109 -

. *#%  gSybroutine for printing a time series on standard output ¥##*

.. ¥*% ynit with 76 print positions per line *E%
*% %

. INPUT BY PARAMETERLIST

I0PTCD I Option code
-1 ..., only header outpuf requested
BL3SE ... also data 1s to be printed
INDPRT I Indicator for print-out size
<1 oo no header output .
>4, print full item information
DUMMY L Indicates if item is a dummy
ITMDEF I(3) Time definition for which the series
will be printed
KIDNTF I(4) Integer-5-coded item identifier
DATSTR R(¥) Vector containing the desired (aggregated)
data values to be printed
HEADER C*76 Header description

. INPUT BY PARAMETER STATEMENT COMPQUND/pardata/

LNMSTR I Dimension of NUMSTR

.. INPYT BY PARAMETER STATEMENT COMPOUND/parxdb/

LKXDB I Length of an integer-4-coded item identifier
of an external data base

. INPUT BY COMMON/miss/

MISSB I Number of missing values at the beginning
MISSE I Number of missing values at the end of the series

. INPUT BY COMMON/dbninf/

NUMSTR I(LNMSTR) Numerical string containing the full
information and the unchanged data of an item
(for further documentation see subroutine SERWRT)

OUTPUT BY PARAMETERLIST

IERRCD I Error code

.. RETURN Normal exit
. RETURN1 Error exit



QOO

O

QOQQ

- 110 -

SUBROUTINE spO76(#*,ierrcd,ioptecd,indprt,dummy,itmdef,kidntf
,datstr,header)

CHARACTER¥76 header
CHARACTER*21 qidedt
CHARACTER¥*14 qdtdec
CHARACTER*¥10 ttxt,stixt
CHARACTER*7 qtmdec
CHARACTER*5 aggmod(0:3)

LOGICAL dumm

y

DIMENSION itmdef(3),datstr(¥)

INCLUDE ias-util.dclcommsg,LIST
INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.delesign,LIST
INCLUDE ias-util.comesign,LIST
INCLUDE ias-util.pardata,LIST
INCLUDE ias-util .parxdb,LIST
INCLUDE ias-util.comdbninf,LIST
INCLUDE ias=-util.commiss,LIST
INCLUDE ias-util.dclorigin,LIST
INCLUDE ias-util.comorigin,LIST

DATA aggmod / sum’, aver.’, stock’, defl.”/

ierrcd = 0

IF(indprt.gt.0) THEN

. complete and print header line

CALL tstedt(*980,ierQed, DS’,ttxt,sttxt,indst)
msgin = sttxt//qidedt(kidntf,4)//qdtdec(numstr(8))

//msgstp

CALL yupcon(*980,ierOcd,msgin(1:1))
CALL msgprt(*¥950,7510)

msgin = header//msgstp

CALL msgprt(*990,0)

ENDIF

IF(indprt.gt.4) THEN

.. L-option is specified

CALL msgprt(*990,10)

. print time range of values in series and date/time last
. header update

IF(dummy) THEN

msgin
ELSE
msgin

-

‘dummy item’

qtmdec(numstr(12),numstr(13))//qtmdec(numstr(12)



(n

)

[oHe R e N

i

QOO

- 111 -

* younstr(14))
ENDIF ‘
msgin(15:30) = gqdtdec(numstr(numstr(2)+6))//msgstp
CALL msgprt(*¥990,7530)

. print time range of prognosted values in series and date/time
.. of storage

IF(numstr(15).eq.0.and .numstr(16).eq.0) THEN
msgin(1:14) = ~ °
ELSE
msgin = gqtmdec(numstr(12),numstr(15))//qtmdec(numstr(12)
* ,aumstr(16))
" ENDIF
msgin(15:29) = qdtdec(numstr(7))//msgstp
CALL msgprt(¥990,7540)

. print aggregation mode and generation type

IF(numstr(11).ge.0.and .numstr(11).1t.15) THEN
ind1 = numstr(11)

ELSE IF(numstr(11).ge.90.and.numstr(11).1t.100) THEN
ieven = numstr(11)/2
IF(ieven®2.eq.numstr(11)) THEN

ind1 = 16
ELSE
ind1 = 15
ENDIF
ELSE |
CALL syserr(*3990, ‘SP076 ")
ENDIF
WRITE(msgin,FMT="(11,A5,421,41)")
*® numstr(20),aggmod (numstr(20)),origin(ind1),msgstp

CALL msgprt(*990,7550)
. print nominal and real time- series if aggregation mode is deflator

IF(numstr(20).eq.3) THEN
msgin = qidedt(numstr(21),4)//qidedt(numstr(25),4)//msgstp

ind0 = 29

CALL msgprt(*990,7560)
ELSE

ind0 = 21 !
ENDIF

.. print in case of generation type “interface’ the name of the
. data item in the external data base

IF(numstr(11).ge.90) THEN
' ind1 = 1lkxdb¥lU
msgin = * °
CALL stldec(*980,ierOcd,numstr(ind0),lkxdb,msgin(1:1ind1))
msgin(65:65) = msgstp
CALL msgprt(*990,7570)
ind0 = indO+1lkxdb



- 112 -

ENDIF

. print calc-string

aaa

IF(numstr(ind0).gt.1) THEN
msgin = ~
msgin(65:65) = msgstp
CALL msgprt(¥990,7590)
CALL msgprt(*¥990,1000)

ENDIF .

ENDIF

IF(iopted.ne.-1) THEN
CALL msgprt(¥990,10)
IF(dummy) THEN
msgin = gqidedt(kidntf,4)//msgstp
CALL msgprt(*990,7650)
ELSE

aQ

. print of data

msgnum = 7610 .
CALL spdata(*980,ier0Ocd,msgnum,itmdef,datstr)
ENDIF
ENDIF

RETURN
. error section
980 ierrced = ierQcd

990 RETURN1
END



i)

N

- 113 -

THE SEMIPORTABLE ROUTINES WITHIN THE IAS-SYSTEM

YBLKDT
YCLOSE
YDATIM
YFILE
YINQU
YIOERR
YOPEN
YQMACD
YSET
ZCSFPT



QO

Q

aqQ

QQ

QO G

AOOO0O0aO0O0QaO00OO0O0aa0aQaaaaan

- 114 -

.. ¥%& piOCKDATA PROGRAM OF THE IAS-3YSTEM VERSION UNIVAC RER
*E %

BLOCK DATA yblkdt

INCLUDE ias-util.dclesign,LIST
CHARACTER*2 iaslev
CHARACTER*1 star,blank,comma,apost,sfsep,mast,pound,lbrak
,rbrak,msgvar ,msgstp,msgcon,lsgl,lsg2,1sg3,slash,pointe
* ,Syssgn,msschr

INCLUDE ias-util.comesign,LIST

. COMMON CSIGN contains special characteré

STAR. . ccevveenenn sign indicating an IAS-command
BLANK. «vevvnennnn seperator between option(command) and data string
COMMA. ....vvvennn seperator between command and option and

between two fields in input string
APOST....ccvvvvnn sign to be used for marking a comment
SFSEP....... e v seperator between two subfields
MAST...coevvennen sign starting an system command
POUND...ccoeevuse sign starting a data input
LBRAK....ovvecenn left pointed braket
RBRAK......vcovcon right pointed braket
MSGVAR........... sign to be replaced by message
MSGSTP......cuvn. sign indicating the end of a message
MSGCON........... sign indicating continuation of a message
L3G1...LSG3...... signs additicnally allowed to . be used in a name
SLASH. . vveveennnn sign used as division symbol
POINTC........... sign to mark a special position in the line above
SYSSGN .vvevrenne sign starting a SYSTEM-command
IASLEV release level of IAS-SYSTEM (C¥2)
CHRL...vivvv e latest character read in calcstring
MSSCHR........... character to indicate a missing value

COMMON /csign/ star,blank,comma,apost,sfsep,mast,pound,lbrak
% ,rbrak,msgvar ,msgstp,mnsgcon,lsgl,lsg2,1sg3,slash,pointe
* ,Syssgn,iaslev,msschr
DATA pound,lbrak,rbrak / #°,°(",")"/
DATA msgvar ,msgstp,msgeon /°~7,"~",7&"/
DATA lsgl,lsg2,lsg3,slash,pointc,syssgn/ 3", % ,7°&", /", """, "$"/
DATA iaslev,chrl,msschr/’1 *," °,".7/

1 ’

INCLUDE ias=-util.comiorde,LIST

. COMMON IORDC containing computer depending values



~

™

eEECErEsEeEsReNe NeoNe)

eNoNoNeNeoNeoNe NeNe NN

Q [eNe Re]

QQaa QN

* H* K K KR ¥ %

- 115 -

IAC. . v i ordinal number of upper code A

0 ordinal number of upper code I

IJC. i eiinn e ordinal number of upper code J

IRC.. .o iiiivnn, ordinal number of upper code R
IsCiniivneinnnnn, ordinal number of upper code S

IZC. .o iiinen. ordinal number of upper code Z
I8C....eeviiin.n. integer number representing character 9
IOC. .t i e i integer number representing character 0
IDIFC....... .. difference of lower code a to upper code A
IBLC. . iiii i, ordinal number of character blank

COMMON /iorde/ iac,iic,ijec,irec,isc,izec,i0c,i9c,idife,ible
DATA iac/65/,iic/T73/,ijc/T4/,ire/82/,is¢/83/,izc/90/
DATA i0c/48/,19¢/57/,idife/=-32/,iblc/32/

INCLUDE ias-util.dclcomand,LIST
CHARACTER¥80 striin,spestr
CHARACTER*6 option

CHARACTER*4 comand

INCLUDE ias-util.comcomand,LIST

. COMMON COMAND includes the whole input string as well as

seperated command/option and the packed specification string

STRIIN. . eevvnen.. whole input string

COMAND...... e non-encoded command
OPTION.....ccoun. non-encoded option
SPCSTR. v v v evenn.n packed specification string

COMMON /comand/ striin,comand,option,spestr

INCLUDE ias-util.declcemdtab,LIST
CHARACTER*4 cmdtbl

INCLUDE ias-util.comemdtab,LIST

. COMMON CMDTAB includes all available IAS-commands

CMDTBL....... ....table of commands - length in parameter ICTL

PARAMETER (ictl1=100)

COMMON /cmdtab/ emdtbl(ictl)

DATA emdtbl/” *,” *,’S”,’SER’,’U’, UPD’, E",
“TAB", TAB’,’C’, CALC",’M’,’MOD”, T”, TIME",
B7LBRY, W, ATTY, e, e T

AT A A S A v Yo

‘0LS”,°0", IV, "TSLS ", KL3 ", 'LIML, “2SLS ", "3SLS ", "LIVE", 'FIVE",
FIMLY CTESTY D C, sl e s

“DEL”, “EDIT ", “COPY ", "INFO’, "LINK, “PLT ", PCH’, “TAPE’, MAT ", ‘LP’

s s

I s 24 ]
DB’E‘XIT’ b) ’ ’ ’ ’ . ’ H

‘EQU”,“RPT’, "RPT’, .
‘F’,FILE",



aaa

OO0 an

[eNeNe]

OO0 0O0a OO0 0000000 aaoaaaaaa0

? ’ ) )
P 2 2, s . s r o, , ,r s ’
* ’ ’ CHG b D UMP ’ ? ' H ? ? /

INCLUDE ias-util.comstred,L1ST

.. COMMON STRCD includes encoded command/option and
.. vectors‘of pointers to fields/subfields in string SPCSIR

ICMDNR..eevvunnn encoded command
IOPTNR(2)..vvv . encoded option containing character and
numerical options
IFLDOVC(10)....... vector pointing to the last character in a field
ISFDVC(H0)..vv e vector pointing to the last character in a subfield

COMMON /stred/ iemdnr,ioptnr(2),ifldve(10),isfdve(40)

INCLUDE ias-util.comstatus,LIST

ISTAT(1) eeeennns read status

ISTAT(2).eevn .. iruntp

ISTAT(3) . evennns numemd

ISTAT(H)....cvnn. numinp

ISTAT(5).eeeennn, isups

ISTAT(6)eevevnn-n numio

ISTAT(10) ceev v ews last input line not yet checked if .gt.0

ISTAT(11)veeeenen number of files in file control table FCT

ISTAT(14) . ..ee.s. continuation record was read at last READ from
MSG-file if ISTAT(15) > O

ISTAT(17)eeennn.. continuation of algebraic string encountered

ISTAT(18)........ record number of EXWS-File record in buffer

ISTAT(19) ... onsn number of changes ocurred to the record of

EXWS~File actually in buffer

ISWTCH(1) e enn o input log on (=1) or off (=0)

ISWTCH(2).eev. .. echo mode on (=1) or off (=0)

ISWTCH(3) . vvvnenn walk in case of system errors. ON/OFF (see above)
ISWTCH(4)..uvn ... debug mode ON/OFF '
ISWTCH(5).....u .. output also to alternate print file. 0,1,2

0 = no output log
1 all ocutput to output log

2 = as above, additionally all input (like echo
mode) to output log
ISWTCH(®6)........ print error message if output is truncated.ON/OFF
ISWTCH(T)vevven s expert mode. ON/OFF
ISWICH(8) . .ovvrwe quantity of print output. 0,1,2,3,4,5,6
ISWTCH(9) v vn .. batch mode. ON/OFF .
ISWTCH(10) .. ... assign total set of files if ISWTCH(10).EQ.1

assign only minimal number of files if
ISWTCH(10).£Q.0
ISWTCH(11).vnn ... switeh for writing results to the mass storage



[

HeReNoReNeNoReRoNoNeNeNesNeoNeNoNoNoReNoNoNeNeEeNeNo N NoNeNoNesNe R Re RoEe No No R Re Re Ro No No o Re R Re o Re Re o Re Ro e

- 117 -

file EXWS (extended working storage) for re-use.

If ON” all records are written to file EXWS3,

if 'OFF " records <= ISIZE(6) are not written.
ISWTCH(13)....... DB-assign. 0,1,2,3

0 = No data base assigned

1 = Data base assigned read-only

2 = Data’base assigned write-only

3 = Data base assigned read/write enabled

ISWTCH(14)....... EXWS assigned. ON/OFF
0 = File EXWS not assigned
1 = File EXWS assigned

ISWTCH(15) ....... internal 0S-file assigned. ON/QFF

ISWTCH(16)....... message file assigned. ON/QFF

ISWTCH(1T) even v input-log assigned. ON/QFF

ISWTCH(18)....... output-log assigned. ON/OFF

ISIZE(4)...oon... record length of file EXWS (extended working
. storage on mass storage)

ISIZE(S5)eeeeeenn. number of records in file EXWS

ISIZE(B)eeevn.... number of records in file EXWS which are

‘ sensitive to ISWTCH(11)

ISIZE(11)eeevv e pointer indicating type of computer

ISIZE(12).evunn.. number of records in MSG-file

ISIZE(13)........maximum number of bits which can be used for

a positive integer, i.e. 2¥*ISIZE(13)-1 is
the largest integer for this implementation
ISIZE(I4) . eve v number of lines per page.
ISIZE(15)........number of characters per print line for
interactive mode, not counting the vertical
spacing character -

ISIZE(10).vu. ... number of characters per print line for
batch mode, not counting the vertical spacing
character

ISIZE(17) eeuun... number of bits per computer word
(see also ISIZE(13))

ISIZE(18)veuuunn. character length in bits

ISIZE(19)........ number of significant bits per character

ISIZE(20)eeunn.n. number of characters per word

IDBST(1).e.evun... record length of file 11

IDBST(2)eeununn. number of records of file 11

IDBST(3)eenvennnn pointer to root record of tree in file 11

IDBST(4)......... pointer to first leaf in B¥-tree

IDBST(6)eeeennennn max. number of keys in root

IDBST(T)eeeneennn max. number of keys in leaf

IDBST(8)veeunnn.. middle key in-leaf

IDBST(9).eeenn... position of middle key in leaf

IDBST(11)een.e.... factor for computing size of file 12 and 13

IDBST(12)........ record length of file 12

IDBST(13)..ennn.. number of records of file 12

IDBST(16).euenn.. record length of file 13

IDBST(17)eeenn... number record in file 13

IDBST(18)...c.... length of integer info. of one record



e ECECECEIECEC NSNS N GG R

aQ

Q

OOOOOOOOOOOOOOOOOOOOOOOOOGOOOGOOO

- 118 -

IDBST(19)........ length of character info. of one record

(in character storage units)
IDBST(21) e pointer to next free record of tree in file 11
IDBST(22).eenvnn. number of keys stored in file 11 (B¥-tree)
IDBST(23)cveennn. number of records used in file 11 for B¥-tree
IDBST(26)....7... number of catalogued IAS-files in file
IDBST(31)eeveone. pointer to next free record of file 12
IDBST(32).cencu.. number of elements scteored in file 12
IDBST(33).cenenene number of records used in file 12
IDBST(36).c.ccesen. pointer to next free record of file 13
IDBST(37)eeuevenn number of elements stored in file 13
IDBST(38)eeeeeens number of records used in file 13

COMMON /status/ istat(20),iswtch(20),isize(20),1idbst(40)
* ,input,iout,kexws,kosint,msguni,loginp,logout

INCLUDE ias-util.parrecl,LIST

PARAMETER (lrec11s510,1lrec12=108,1rci13=20,1lrcec13=120,1lrec14=500)

INCLUDE ias-util.comdbrecs,LIST

. contains data base records of file 12 and file 13

IROOT(1) ... number of keys in data base root
(2).oven. free record concatenation pointer
(3)cceenne not used
€D I not used
(5)ceennn. /

(6)veenennn /

(T)Yeuuennn / for further statistical use
(8)evrnnnn /

(9)eeennn. /

(10)..enns 1st pointer (less than 1st key)
(11) e /

(12)eennns /

(13).cva. /18t key

() ...... /

{(15)...... 2nd pointer (greater than 1st key)
(16) ... /

(17)een.n. /

(18)...... /2nd key

(19)eeennn / ‘

(20)...... 3rd pointer (greater than 2nd key)

ILEAF(1Y)...on.. number of keys in data base leaf
(2)eenennn free record concatenation pointer
(3)eveeenn pointer to left leaf
(B)....... pointer to right leaf
(5)evnnn.. /



sEoNeEcsErEeoNeoNoReReErNoNeEeNeRe e N

leEsNoNeNeoNeNeNeNeRoNeoNoNeo N NeNe e Ke!

A0

[eNeNe]

eNoNeRsNeNeNe Rl

- 119 -
(T)euen... / for further statistical use
(8)evu...n /
(9)evn.... /
(10)...... 1st pointer (less than 1st key)
(11Yeoun.. /
(12)...... /
(13)...... /1st key
(14)...... / ~
(15) et 2nd pointer (greater than 1st key)
(16)...... /
(17 e, /
(18)...... /2nd key
(19).c.n.. /

(20)...... 3rd pointer (greater than 2nd key)

COMMON /dbrecs/ iroot(lreci1),ileaf(lrect?)

INCLUDE ias-util.comintectt,LIST

INDUCT....... use control table, contains pointer to file in FCT
(1)....base file .
(2)....data file
(3)....equation file
(4)....model file
(5)....s0lution file
(6)....text file

KFCT...0vuun. keyed names of assigned IAS-files

IRWPRM..... ..read/write permission indicator, corresponding
to files in KFCT
z==1...array element not in use
0...file assigned read enabled, write protected
1...file assigned write enabled, read protected
2...file assigned read/write enabled

COMMON /intett/ kfct(2,0:10),irwprm(O:10),induct(10),itct(3,40)
DATA induct,kfct,irwprm /10%1,22%0,11%-1/

INCLUDE ias-util.comsys,LIST

. COMMON SYS contains tolerance values for calculation

tol(1) ... EXP(tol(1)) is greatest possible value for single

precision .
tol(2) ... allowed declination for a value to be treated as
integer :

tol(3) ... greatest possible value for single precision



Q

(@]

eNoRe RS QOO0

Q

Q

eBeErEs R KR KT RS

- 120 -

tol(Y4) ... greatest possible value for trigonometric functions

COMMON /sys/ tol(10)
DATA tol /80.0,.1E-20,1.0£32,1.0£6,6%0.0/

INCLUDE ias-util.parcalc,LIST

PARAMETER (maxcal=12,ninvar=7,ninftn=8,maxscl=400,1ipol1=800,
max1bl=800,maxfl=10,maxrft=30,maxval=2000,maxscv=2400,
maxpar=20,maxkey=4,1lclc=500)

INCLUDE ias~util.dclecalel,LIST
CHARACTER#8 intvtb,infnct
CHARACTER¥S keytbl
CHARACTER¥(lclec) clcchr
CHARACTER*1 chrl

INCLUDE ias-util.comcale?l,LIST

COMMON /calcl/ intvtb(ninvar),infnct(ninftn),keytbl(maxkey),
cleehr,chrl

DATA intvtb/ CALC”,’LC”,’C1°,7C2”,7C3",°C4","C5"/

DATA keytbl/'IF','THEN','ELSE','END'/

DATA infnct/'SIN','COS','LOG','LN','LD','EXP','MIN','MAX'/

INCLUDE ias-util.comfnpar,LIST

. COMMON FNPAR contains the number of parameters for

intrinsic functions

COMMON /fnpar/ ninpar{ninfin)
DATA ninpar/1,1,1,1,1,1,2,2/

INCLUDE ijas-util.decltpstp,LIST
PARAMETER (ntyp=5,nsytyp=1,nstyp=20)
CHARACTER*1 tchr(ntyp),stchr(nstyp)
CHARACTER*10 ttxt(ntyp),sttxt(nstyp)

INCLUDE ias-util.comtpstp,LIST

.. COMMON TPSTP allows the conversion of the type-subtype-code

. to text
TCHR ..... type-characters (4 type-characters +
1 system type-character)
STCHR .... subtype-characters
TTXT ..... text for the single types (e.g. 'DATA’ for D)
STTXT .... text for the single subtypes (e.g. “SERIES’ for “S”)
IPTTST ... pointer to the first subtype-character

of a specific type (TCHR) within STCHR



o

T

aoa

@]

aAQaaoaoagaaaaaaa

- 121 -

COMMON /itpstp/ ipttst(ntyp)
COMMON /ctpstp/ tehr,ttxt,stenr,stixt
DATA ipttst /1,4,8,15,19/
DATA tchr /'X','M','E','D','F'/
DATA stohr /3%° * 4%’ > q#b = hyr egr s s oo ey
DATA ttxt /“text’, ‘model’, equation”’, ‘data’, "$sys’/
DATA sttxt /3% 7 4%’ * 7% °
* , value’, “series”, ‘matrix”,” ’, function’,’ °/

INCLUDE ias-util.dclorigin,LIST
CHARACTER*21 origin(0:16)

INCLUDE ias-util.comorigin,LIST
COMMON ORIGIN contains the text for the different origin types

COMMON /origin/ origin
DATA origin /’“terminal input’, formatted data deck’
, calculated by *SER’, calculated by *CALC’, copy”’
, seasonal adj. series’, seasonal fact. series’
, ‘param.variable vector”,3*’ ’,’estim.endogenous var.’
, estimated residuals”,2%” °
, interface to ext. db’, interf.ext.db/transf.’/

*® % % Nk

INCLUDE. ias-util.comexwsbf,LIST

. Table of segments in EXWS

COMMON /exwsbf/ ibuff(lrecil),iexwst(100)
DATA iexwst /1,2,3,4,5,6,7,8,9,10,40%0,51,52,53,15%0,69,70,
* 75,29%0/ :

INCLUDE ias-util.declchrsys,LIST
CHARACTER*20 osflnm(13:18)

INCLUDE ias-util.comchrsys,LIST

. COMMON CHRSYS cohtaining IAS-3YSTEM character information

OSFLNM...... Table of 0S file names
(13) ... data base name
(14) ... external working storage file
(15) ... internal 0S file for (user) communication
(16) ... message file
(17) ... input log
(18) ... output log

COMMON /chrsys/ osflnm



- 122 -

DATA osflnm /°~ *, EXWSFL’, "INTCOM”, 'IAS-80*IAS-MSG’
* , "INPLOG “, "OUTLOG "/

END



£

@}

- 123 =~

. KR

. ¥#%%  pProgram for closing and de-assigning operating system LA
. COMMENT

This is an unportable routine of the first kind because
of the configuration dependent handling of the facility
return codes.

‘The reader should refer to ANSI X3.9-1978 FORTRAN and to

UP-8244.1 SPERRY UNIVAC series 1100 FORTRAN(ASCII) or
Lo appropriate documentation of other vendors if this
program is to be implemented on other machine ranges.

All character variables must be uppercase on input!!!

. INPUT BY PARAMETERLIST

IUNIT I unit number to be closed
FILE C*¥20 < file name to be closed (may be space)
FILSTA C*7 < close-status: ‘KEEP” or ‘DELETE’

IFREE L free (deassign) file if IFREE .le. O,
but keep cataloged if STATUS = KEEP’
INDPRT I print error messages if INDPRT .ge. 1

print warnings if INDPRT .ge. 2

. OUTPUT BY PARAMETERLIST

IERRCD I error code
.. RETURN normal exit
. RETURN 1 , error exit

SUBROUTINE yclose(¥*,ierrcd,iunit,file,filsta,ifree,indprt)

CHARACTER*(*) file,filsta
CHARACTER¥*20 lofile
CHARACTER¥20 yqmacd,cerrcd
CHARACTER*7 lostat

CHARACTER*6 rdkey,wrkey

INCLUDE ias-util.delcommsg,LIST
INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.delesign,LIST
INCLUDE ias-util.comesign,LIST

ierrcd = O
lofile = file
lostat = filsta



- 124 -~

C
C ... compute numerical index for STATUS-specifier
C
IF (filsta.EQ. KEEP’) THEN
ifilst = -1
ELSE IF (filsta.EQ. DELETE’) THEN
ifilst = =2
ELSE
GOTO 920
ENDIF
C
c . FORTRAN-close of specified unit
C
CLOSE(UNIT=iunit,I0STAT=ierOcd,STATUS=1lostat)
C
IF(ierOcd.ne.Q) THEN
C
C ... closing error
C
ierred = =4220
IF(indprt.ge.2) THEN ,
cerred = ygmacd(ierOcd) SEM
msgin(1:20) = cerrcd SEM
WRITE(msgin(21:22),FMT="(i2)") iunit SEM
msgin(23:23) = msgstp SEM
CALL msgprt(¥990,4220)
END IF
END IF
C
C. ... prepare parameters for de-assignment of file
C
IF(lofile.eq.” ’) WRITE(lofile(1:2),FMT="(i2)") iunit
rdkey = ~ °
wrkey =
itrks = 0
indrwr = O
indexc = 0O
iwait = 0
c
C . call YFILE for de-assignment
C
CALL yfile(*990,ierQcd,lofile,rdkey,wrkey,ifilst,itrks,indexc
* ,iwait,ifree, indprt)
C
RETURN
c A
C ... error messages
C
9

ierOcd=101
CALL syserr(*990, "YCLOSE")

20 WRITE(*,*) Invalid STATUS specifier “,filsta

990 RETURN1
END



)

OOOOOOOOOOOOOC\OﬁdOOOOOOOOOOOOOOOOOOOOOOOOO~

«Q

OoaQaan Q

n

- 125 -

.. ¥%%  program for providing date and time
.. %¥%%¥ (1) in CHARACTER FORMAT YYYYMMDDHHMMSS (see below)
. %%% (253)  in BIT-FORMAT YYYYYMMMMDDDDDHHHHHMMMMMMSSSSSS

L. EEE (see below)
. RE%

. COMMENT

This 1s an unportable routine of first order

. INPUT BY PARAMETERLIST

No input from parameterlist

. OUTPUT BY PARAMETERLIST

DATTIM C¥14 > date and time in CHARACTER FORMAT

YYYYMMDDHHMMSS
IDATIM I date and time in BIT FORMAT
32 26 22 17 12 7 1

YYYYY YMMMMDDDDDHHHHHMMMMMMSSSSSS
Y(6) M(4) D(5) H(5) M(6) 3(6)

IDATIM = (Y-198Q) * 2%%24
+ M * D%%DD
+ D ® D%¥1T
+ H * 2¥%12
+ M * 2%%G
+ S
. RETURN unique exit

no error exit

SUBROUTINE. ydatim (dattim,idatim)

CHARACTER*14 dattim
CHARACTER*8 date,time

'CALL zzdate(date,time)

. Calculate INTEGER-value of date & time

. UNIVAC 1100 presents date in format MMDDYY

READ(date,2)m2,m1,m3
FORMAT(3I2)
m3=m3~-80

%%
k%
* %%
*3% %

SEM
SEM



Q

- 126 -

isum=m3*¥2¥¥26 4+ m2¥2¥%22 4+ m1¥2#¥1T

. UNIVAC 1100 presents time in format HHMMSS

READ(time,2)m3,m2,m1
isum=m3¥2%¥%¥12 4+ m2¥2%*¥5 4+ m1 + isum
idatim=isum

. Calculate CHARACTER-variable with date & time

dattim="19"//date(5:6)//date(1:4)//time(1:6)
RETURN

END



™

[

.. COMMENT

- 127 -

That is an unportable routine of first kind

. #%¥%¥  Pprogram for cataloging, assigning, freeing and deleting

.. *¥%¥%  of operating system files
$E%

The reader should refer to ANSI X3.9-1978 FORTRAN and to

UP-8244 .1 SPERRY UNIVAC Series 1100 FORTRAN (ASCII) or the
appropriate documentation of other vendors if this program
is to be implemented on other machine ranges.

¥ %%
L L]

All character variables must (currently) be uppercase on input !!

This routine contains explicit WRITE-statements rather then
calling the messages from the message file. This cannot be

avoided, however, as the message file might not be available

before having been assigned by this program.

FILE
RDKEY
WRKEY
IFILST

ITRKS
INDEXC

IWAIT
IFREE

INDPRT

IERRCD

RETURN

. RETURN 1

C#*20
C*6
C*6
1

-

1

.. INPUT BY PARAMETERLIST

operating system

file name

read key for specified file
write key for specified file

status for OPEN=-

IFILST = 4 <=>
IFILST = 3 <=>
IFILST = 2 <=>
IFILST = 1 <=>
IFILST ==1 <=>
JIFILST ==2 <=>

number of tracks

or CLOSE-statement

STATUS = ‘NEW’
STATUS = ‘EXTEND”
STATUS = “OLD”
STATUS = "UNKNOWN’
STATUS = “KEEP”
STATUS = ‘DELETE’

to be requested

indicator if file is to be assigned
(INDEXC=1) or not (INDEXC=0)
indicator if program should be kept
position if the file is temporarily not
available (wait if IWAIT=1, don’t wait if

IWAIT=0)

Free file before assigning it
Print error messages if INDPRT .ge. 1
Print warnings if INDPRT .ge. 2

Print program trace if INDPRT .ge. 3

. OUTPUT BY PARAMETERLIST

error code (facility key code)

normal exit
error exit

(OPEN)
(OPEN)
(OPEN)
(OPEN)
(CLOSE)
(CLOSE)

in a wait

exclusively



oNeNeNeNeNe!

aq

aQaQ

- 128 -

SUBROUTINE yfile (¥,ierrcd,file,rdkey,wrkey,ifilst,itrks,indexc

,iwait,ifree,indprt)

CHARACTER¥52 asgstr
CHARACTER*30 frestr
CHARACTER*20 file

CHARACTER*6 key(2),rdkey,wrkey

INCLUDE ias-util.comstatus,LIST

0

,r s,

ierrcd
asgstr
frestr

s 7

. Execute only if UNIVAC

IF(isize(11).NE.1)GOTO 900 :

key(1)
key(2)

rdkey
wrkey

"o

. evaluate exact file name (size)

IPOS I last character of PROJ-ID¥FILE[.] in FILE
IP0OS2 I position of last character in ASGSTR

ipos = jlastc(file)
IF (ipos.le.O) GOTO 950

. generate general part of asgstr

IF (ifilst.GE.2) THEN
asgstr(1:5) = “@ASG,
ipos2 = 10+ipos
asgstr(11:ipos2) = file(1:ipos)

. transfer of keys

DO 800 10 = 1,2
ipos2 = ipos2+1
asgstr(ipos2:ipos2) = /°
ipose = jlaste(key(i0))

. non-blank key ?

IF (iposc.gt.0) THEN
ipos1 = ipos2+1
ipos2 = ipos2+iposc
asgstr(iposi:ipos2) = key(i0)(1:iposc)
END IF

CONTINUE

SEM

SEM
SEM

SEM



D

- 129 -

. number of tracks specified ?

IF(itrks.gt.0) THEN
ipos1 = ipos2+1
ipos2 = ipos2+3
asgstr(iposi:ipos2) = 7,///
WRITE(asgstr(iposl+4:ipos2), "(i4)") itrks

ENDIF

ipos2 = ipos2+3

asgstr(ipos2-2:ipos2) =

4

I ’

. file to be catalogued ?

IF (ifilst.EQ.4) THEN
asgstr(6:10) = ‘UP”
, CALL zcsfpt(*990,ier0cd,asgstr,indprt)
ENDIF
ENDIF

. free file ig IFREE.gt .0

IF (ifree.GT.0.0R.ifilst.EQ.4) THEN
frestr = “@FREE “//file(1:ipos)//” . 7
IF(ifilst.EQ.-2) frestr(6:7) = °,D’
CALL zcsfpt(*990,ierQcd,frestr,indprt)
END IF

. assignment of file, if status = “NEW’ or “OLD”

IF (ifilst.GE.2) THEN
asgstr(6:10) = “A°
IF(indexc.eq.1) THEN

asgstr(7:7) = ‘X’

iposec = 8
ELSE

ipose = 7
ENDIF

IF(iwait.ne.1) asgstr(iposc:ipose) = ‘Z°
CALL zecsfpt(*990,ierOed,asgstr,indprt)
ENDIF :

ierrecd = ierQed
RETURN

. Error messages

WRITE(*,¥)‘File specification missing’
ierOcd=1

ierrcd=ierQed

RETURN 1

END

SEM
SEM

SEM
SEM

SEM
SEM

SEM

SEM

SEM
SEM



(@}

el Re oo R R Re R R R e R R R R R R R R R R e K R R R R e R T R e Re N e N e}

- 130 -

., KEE

.. ¥%% program for inquiring about files (calling FORTRAN LA
. ®#%  TNQUIRE). k¥ %
.. COMMENT

In order to separate all file handling into special modules with a
tendency to non-portability the INQUIRE-statement is located only
in this program unit and in no other program unit throughout the
whole program.

Compare ANSI X3.9-1978, chapter 12.2.%, for the definition of
file existence. File existence does not necessarily imply that
the file is contained in some file directory. On the other hand
a file may be known to the processor but does not exist for the
program.

. INPUT BY PARAMETERLIST

FILE C¥(¥*) name of the file being inquired about

.. OQUTPUT BY PARAMETERLIST

IERRCD I error code (currently not used)
IEXIST I existence indicator
<0 : file does not exist
>0 : file exists
IpoMMy I currently not used
. RETURN unique exit

SUBROUTINE yinqu (ierred,file,iexist,idummy)

CHARACTER*(*) file
LOGICAL exist

INQUIRE(IOSTAT=ierrcd,FILE=file,EXIST=exist)

IF (exist) THEN
iexist=1
ELSE
iexist=-1
END IF

idummy=0

END



€D

Q

oOogoOO0OOoOOOOOOOOO000O0OOOOOOoO00O0O000OO0O000000OO0O0000O00000N

- 131 -

. ¥¥%¥ program for editing and printing I/O-errors : LAad
Ty
. COMMENT

This is an unportable routine of first order

.+ INPUT BY PARAMETERLIST

IREC I Record number (-99999 if not applicable)
INDPRT I Print indicator. ]
Print an error message if the machine
independent error code is .LE. INDPRT¥*10.
Nothing is printed if INDPRT.LE.O,
everything is printed if INDPRT.GE.9

. OUTPUT BY PARAMETERLIST

No output by parameterlist

.. TRANSPUT BY PARAMETERLIST

IOERCD 1 I1/0 error code
on input: machine dependent
on output: machine independent
1: other error
21: attempted to read from unassigned mass
storage area and the record read was not
. the first one. This means mostly that the
» ‘file had no ENDFILE record.
31: attempted to read from unassigned mass
storage area and the record read was
the first one. This means mostly that a
READ was performed on an empty file.
41: attempted to read an empty record from
a direct access file

RETURN unique exit

SUBROUTINE yioerr (ioercd,irec,indprt)
CHARACTER*8 arec

INCLUDE ias-util.comstatus,LIST

" IF (ioercd.eq.0) RETURN

IF (iswtch(4).GT.0) THEN
locprt=9



- 132 -

ELSE
locprt=indprt
END IF

ios=zioercd/2¥#27
irestzicercd-ios¥2%%27
iou=irest/2%%1§
ioc=irest-iou*2#¥#18

IF (ioc.EQ.1.AND.ios.EQ.5) THEN
IF (irec.EQ.1) THEN
ioercd=31
ELSE
icercd=21
END IF

ELSE IF (ioc.EQ.1053) THEN
iocercd=41

ELSE
ioercd=1

END IF

IF (ioercd.LE.10*locprt) THEN
IF (irec.eq.-99999) THEN

arecsz —e—mm———-
ELSE
WRITE(arec, "(18) )irec
END IF

WRITE (*,4) iou,arec,ioc,ios
FORMAT(’ Input/output error in unit’,il,8X, ‘Record #
" Status (decimal)’,i8,6x, "Substatus (decimal) ’,i8)
END IF

RETURN
END

*,A8/

SEM
SEM
SEM
SEM

SEM

SEM



]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

LY

- 133 -
. ¥*%  Program for assigning and opening files and i/o-units. LAt
. ¥** This Program calls file-handling procedure YFILE for LA
.. ®%  assignment of an operating system file. LiAd
%%

. COMMENT

This is an unportable routine of the first kind because
of the configuration dependent computation of the number
of needed tracks on mass-storage and the handling of the
facility return codes ’

The reader should refer to ANSI X3.9-1978 FORTRAN and to
UP-82U44.1 SPERRY UNIVAC series 1100 FORTRAN(ASCII) or
to appropriate documentation of other vendors if this
program is to be implemented on other machine ranges.

All character variables must be uppercase on input!!!

This routine contains explicit WRITE-statements rather
than calling the messages from. the message file. This

cannot be avoided, however, as the message file is not
available before being opened by this program.

INPUT BY PARAMETERLIST

IUNIT I file reference number

FILE- C#%¥20 < file name to be associated with the spec. unit

RDKEY C¥*6 < read key for specified file

WRKEY C*6 < write key for specified file

FILSTA C¥7 < status for OPEN~-statement.
Status may be ‘OLD’, ‘NEW’ or "UNKNOWN’.
"SCRATCH” is not implemented.
In accordance with the proposals for FORTRAN 8x
status ‘EXTEND’ has been added.
For a D/A file NRCDS may be increased with.
status ‘EXTEND’. A sequential file will be
positioned after the current last record

. : (before the ENDFILE-record, if one exists)

ACCESS C*10 < access method: “SEQUENTIAL’ or ‘DIRECT”

FORM C*¥11 ( format: ‘FORMATTED  or ‘UNFORMATTED’

IRECL I record length for DIRECT ACCESS FILES

NRCDS I maximum number of records in a D/A file
(RCDS = nreds is used in the OPEN-statement
but this clause is not standard conforming)

INDWRT I indicator if writing is prohibited (INDWRT=0)
or allowed (INDWRT=1)

INDEXC I indicator if file is to be assigned exclusively
(INDEXC=1) or not (INDEXC=0)

IWAIT I - indicator if program should be kept in a wait

position if the file is temporarily not

SIN
SIN
SIN
SIN
SIN

SIN
SIN
SIN



QOO0

OOOOOOOOOOOOOOOOOOOOOOOOOOO

IFREE

LMSIZE

INDPRT

I

I

I

- 134 -

available (wait if IWAIT=1, don’t wait if
IWAIT=0)

Free file before assigning it if IFREE .gt. O.
This parameter is not used if filsta = ‘NEW” .
A4 file with status 'NEW ™ is always freed

-- after -- having been cataloged and than
considered to have status “OLD’

Indicator if (processor dependent) mass storage
size is to be computed (LMSIZE.gt.0) or not
Print error messages if INDPRT .ge. 1

Print warnings if INDPRT .ge. 2

Print program trace if INDPRT .ge. 3

or if ISWTCH(4) .GT. O

. QUTPUT BY PARAMETERLIST

IERRCD I error code
. attention to
-1 ... read key missing
-2 ... write key missing
.. RETURN normal exit
. RETURN 1 error exit

~UBROUTINE yopen(*,ierrcd,iunit,file,rdkey,wrkey,filsta,access
,form,irecl,nrcds,indwrt,indexc,iwait,ifree,lmsize,indprt)

CHARACTER*(*) file,rdkey,wrkey,filsta,access,form
CHARACTER*7 lostat
CHARACTER*6 key(2)

INCLUDE ias-util.comstatus,LIST

. transferring dummy variables to local variables

locprt=MAX(indprt,3¥iswtch(4))

ierrcd = 0
lostat filsta
key(1) = rdkey
IF(indwrt.eq.Q) THEN
key(2) = ° °
ELSE
key(2) = wrkey
ENDIF

C ... compute numerical index for STATUS=-specifier

IF (lostat.EQ. NEW”) THEN
ifilst = 4

ELSE IF (lostat.EQ. EXTEND’) THEN
ifilst = 3

ELSE IF (lostat.EQ. OLD”) THEN



("

e

QO 0QQ

Q

QOO0

- 135 -

ifilst = 2

ELSE IF (lostat.EQ. UNKNOWN') THEN
ifilst = 1

ELSE
GOTO 920

ENDIF

. compute machine dependent size (number of tracks) to be requested

IF (lmsize.gt.0) THEN
IF (indwrt.gt.0) THEN
IF(form.eq. FORMATTED ) THEN
_ iwrddv = isize(20)

ELSE IF(form.eq. UNFORMATTED ) THEN
iwrddv = 13

ELSE
WRITE(*,*) ‘Error: Invalid FORM specifier ’, form
CALL syserr(¥990, "YOPEN")

ENDIF. ‘ .
iwords = nrcds¥(irecl/iwrddv+4)+256 SEM
itrks = iwords/1792+5 SEM
ELSE '
WRITE(*,*) “Warning: File not write-enabled, mass ’
* ,/ storage size not calculated’
itrks=0
END IF
ELSE
itrks = 0
ENDIF

. generate specification string for assignment and assign
. operating system file

CALL yfile(*990,ier0Ocd,file,key(1),key(2),ifilst,itrks
b yindexe,iwait,ifree,locprt)

IF (isize(11).EQ.1.AND.ifilst.eq.4) lostat="OLD”

. FORTRAN-opening for assigned file
. N.B.: Status = ‘EXTEND’ is allowed but not standard conforming SIN

IF(access.eq. "SEQUENTIAL’) THEN
OPEN(UNIT=iunit,IOSTAT:ierOcd,FILE:file,STATUS:lostat
* ,ACCESS=access,FORM=form)
ELSE IF(access.eq.’DIRECT’) THEN
OPEN(UNIT=iunit,IOSTAT=ierOcd,FILE=file,STATUS=1lostat
* 4ACCESS=access,FORM=form,RECL=irecl,RCDS=nrcds) SIN
ELSE
WRITE(¥,%*) "Invalid ACCESS specifier ’,access
CALL syserr(¥*390, "YOPEN")
ENDIF

IF(ierOcd.eq.0) THEN



- 136 -

ierred=0
C
ELSE
c
C ... opening error
C
WRITE(*,*) Error when opening unit “,iunit
CALL yiocerr (ier0cd,-99999,9)
GOTO 990
ENDIF
C
RETURN
C
C ... other error messages
c
920 WRITE(*,%) "Invalid STATUS specifier “,lostat

ierQed=101 . .
CALL syserr(*990, "YOPEN")

390 ierrcd=ierOcd
RETURN1
END



.

~

™

[

[}

)

- 137 -

. %¥%%  PUNCTION subprogram for translating an integer variable  #%#

. EER

. *¥%% 5 3 character variable (machine representatlon of the L
. ¥*¥%*  binary code) with length of 20 char’s el
. COMMENT

This is a FUNCTION subprogram.
This is an unportable routine of first kind.

However, if octal code is used to represent machine code, it
is very likely that this program runs on the corresponding
machine. On byte machines it has to be changed to hexadecimal
code.

. INPUT BY PARAMETERLIST

INTEG I. input variable

. OUTPUT BY FUNCTION VALUE

YQOCT C*20 > octal code output variable

. RETURN nprmal and error exit

CHARACTER¥20 FUNCTION yqmacd (integ)
WRITE (yqmacd,FMT="(020)",I0STAT=ierrcd) integ
IF (ierrcd.ne.0) yqmacd="T777777777777°

RETURN
END



OOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOC)OOOOQOOOOOOOOOQOOOO

- 138 -

. ¥%% Subroutine to set maximal number of errors and other A
. ¥%¥¥ oyxceptions (see below) RE%
| R

. COMMENT

This is a non-portable routine of first order. It sets the maximum
number of various errors and exceptions which may occur during
program execution. If this program is called repeatedly, the error
counts are set to zero any time this program is called.

This program can only be called in connection with routines
YADR, F2CON and it calls routine ZEXCEP which are all located
in the same program file as routine YSET. It also calls routines

UNDSET, OVLSET, DIVSET and CMLSET from the system library.

Therefor a MAP-element should contain the following lines ;

IN main program

IN LHS*FTN-UTIL.YSET,.YADR, .F2CON, .ZEXCEP
IN SYS$*RLIB$.F2MATHFAULTS, .F2MATHERR

EQU ZUNDST/UNDSET

EQU ZOVFST/QVFSET

EQU ZDLVST/DIVSET

EQU ZCMLST/CMLSET

. INPUT BY PARAMETERLIST

IUNDFL I max number of floating point underflows
captured by the exception handling program.
If IUNDFL=0 or if more than IUNDFL underflows
have occured, underflows are no more captured.
Standard action in this case is that the
variable with underflow is set to zero
and no error message 1s printed.

IOVFL I max number of floating point overflows
captured by the exception handling program.
If IOVFL=0, overflows are not captured,
i.e. the program continues normally.
If IOVFL<KO or if more than IOVFL overflows
have occured, the program will terminate.

IDIV 1 max number of divide faults
captured by the exception handling program.
If IDIV=0, divide faults are not captured,
i.e. the program continues normally.
If IDIVK0 or if more than IDIV divide faults
have occured, the program will terminate.

IMATH 1 max number of mathematical faults
captured by the exception handling program.



(""'\

(@]

eReNeoNeoNeNeRsNeoNoNesNeoReNeNo NeNe!

- 139 -

If IMATH<=0Q or if more than IMATH math-faults
have occured, the program will terminate.

IEXCEP I max number of erroneous exceptions
captured by the exception handling program. _
If IEXCEP<=0 or if more than IEXCEP erroneous
exceptions have occured, the program will terminate.

. ‘OUTPUT BY PARAMETERLIST

No- output by parameterlist

. ‘RETURN unique exit

SUBROUTINE yset (iundfl,iovfl,idiv,imath,iexcep)

CALL zundst(iundfl) SEM

CALL zovfst(iovfl) , SEM
CALL zdivst(idiv) . SEM
CALL zcmlst{imath) . A SEM
CALL zexcep(iexcep) SEM
RETURN

END



Q

Qa0

OOOOOOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

. COMMENT

- 140 -

. *%% DProgram to prepare the calling of routine ZCSF in order
. ®#% ¢o perform an ACSF$ executive request (e.g. assign,

. ®¥%%¥ catalog and free operating system files)
wh%

This is an unportable routine of second order

IMAGE C*80 <

INDPRT I

IERRCD I

.. RETURN
. RETURN 1

. INPUT BY PARAMETERLIST

image of executive control statement.
This image must be terminated by the character
sequence : blank period blank

EXAMPLE:
“@ASG,AXZ MYPROG*¥OLDFILE . °

Print error messages if INDPRT .ge. 1
Print warnings if INDPRT .ge. 2
Print program trace if INDPRT .ge. 3

.. OUTPUT BY PARAMETERLIST

EE®
€%
* %%

SEM
SEM
SEM

SEM

Error code. The following special codes apply :

-1 ¢ write key missing
-2 : read key missing
423 : facility error, including read and writ
key (both) missing
=424 : facility warning other than read or wri
key missing

normal exit
error exit

SUBROUTINE zesfpt (¥*,ierrcd,csfstr,indprt)

CHARACTER*(*) csfstr
CHARACTER*20 cerrcd,ygmacd

CHARACTER*1

rdwrky

INCLUDE ias-util .comstatus,LIST

ipos=len(csfstr)

. Call actual executive request ER ACSF$

CALL zzcesf (ierOed,csfstr(1:ipos))

IF (ierQecd.lt.0) THEN

e

te

SEM

SEM



™

rm

- 141 -

ierrcd=423

ELSE IF (ierQecd.GT.0) THEN
ierrcd=-424

ELSE
ierrcd=0

END IF

IF (indprt.lt.3.and.ierOcd.eq.0) RETURN

. Print error messages

cerrced=yqmacd(ier0Oed)

. Read/write keys missing ?

rdwrky=cerrcd(12:12)

IF (rdwrky.eq.’3”) THEN
cerrcd(9:9)="4"
ierrcd=423

else IF (rdwrky.eq.’1’) THEN
ierrcd=-1

else IF (rdwrky.eq.’2’) THEN

- ierrcd=-2

END IF -

.. Printout of CSF-string ?

IF (indprt.ge.3.or.
(indprt.ge.2.and.ierrcd.1t.0).or.
(indprt.ge.tl.and.ierrcd.gt.0)) THEN
ipos1 = INDEX(esfstr(i:ipos),” /")
IF (ipos1.GT.0) ipos=ipos1
WRITE (iout,92) esfstr(1:ipos)
FORMAT(1X,A)
END IF
IF (ierrcd.gt.0.and.indprt.ge.1) WRITE (iout,94) cerrcd
FORMAT (° Facility error °,A)
IF (ierrcd.lt.0.and.indprt.ge.2) WRITE (iout,96) cerrcd
FORMAT (° Facility warning “,A)

IF (ierrcd.gt.0) RETURN 1
RETURN
END

SEM

SEM
SEM

SEM

SEM






O

- 143 -

THE CONVERSION ROUTINES WITHIN THE IAS-SYSTEM

ST5ENC
ST5DEC
ST4ENC
ST4DEC



- 144 -

. ®%%  Sypprogram for converting a character string to a vector ¥¥¥
. ¥%¥%  of numeric Kkeys LA
| EEE

. INPUT BY PARAMETERLIST
STRING C Character string
KEYDIM I Dimension of KSTR
QUTPUT BY PARAMETERLIST

KSTR I(*) Numeric keystring

. Special Case

STRING C¥20 Contains the file name, type, element name and
version name starting at positions 1,9,1'1 and 19

KSTR Contains the numeric keys calculated from STRING
.. RETURN Normal exit
. RETURN 1 Error exit

OOOOOOOOOOOOOOOG"C QOO0

SUBROUTINE st5enc(¥*,ierrcd,string,keydim,kstr)

Q

CHARACTER*(*) string
CHARACTER*(1) chr
DIMENSION kstr(keydim)

INCLUDE ias-util.dclcommsg,LIST
INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.dclesign,LIST
INCLUDE ias-util.comesign,LIST

ierQecd=0
length=len{(string)

kdim=((length=1)/5)+1
IF(kdim.LE.keydim)THEN
mpos=0
DO 220 i=1,kdim
ikey=0
200 mposS=mpos+ 1
IF(mpos.LE.length) THEN
chr=string(mpos:mpos)
ikey=ikey+jchr(chr)*(64**(5*%i_mpos))
IF(mod (mpos,5).GT.0)THEN
GOTO 200
ELSE



™

- 145

kstr(i)=ikey
END IF
ELSE
kstr(i)=ikey
RETURN
- END IF
© 220 CONTINUE
ELSE
ierOcd=2011
CALL msgprt(¥990,ierOcd)
. CALL syserr(*990, ‘STS5ENC ")
END IF
RETURN
990 ierrcd=ierOcd
RETURN 1.
END

c



Q

QA

OOC‘)OOQOOOOOOOOOOOOOOOOOOOOOOOOOOO

- 146 -

. ¥¥%  Syupprogram for converting a vector of numeric keys

., ¥#%  to g character string
| REE

. INPUT BY PARAMETERLIST

KSTR I Numeric keystring
KEYDIM I Dimension of KSTR

. OUTPUT BY PARAMETERLIST

STRING C¥*(¥%) Character string

. Special Case

SUBROUTINE st5dec(*,ierrcd,kstr,keydim,string)

CHARACTER*(¥*) string
CHARACTER¥(1) qchr
DIMENSION kstr(keydim)

INCLUDE ias-util.dclcommsg,LIST
INCLUDE ias-util.comcommsg,LIST
INCLUDE ias-util.dclesign,LIST
INCLUDE ias-util.comecsign,LIST

ierQcd=0
length=zlen(string)

. Conversion of kstr to string

IF(length.GE.((keydim=-1)¥5+1))THEN
string = ’
DO 320 i=1,keydim
ikey=kstr(i)
DO 300 m=1,5
mpos=5%(i-1)+n

* %%
L2 ]

KSTR I Is a vector of four keys
KSTR(1) I Is calculated from the first 5 characters of file
KSTR(2) I Is calculated from the last 3 characters of file
and the type of the element

KSTR(3) 1 Is calculated from the first 5 characters of element
KSTR(Y4) I Is calculated from the last 3 characters of element
. and the 2 characters of version

.. RETURN normal exit

. RETURN 1 error exit



™

300
320

340

990

- 147 -

IF(mpos.LE.length)THEN

intden=04 *¥*(5¥%i_mpos)

num=ikey/intden

string(mpos:mpos)=qchr(num)

ikey=ikey-num*intden

IF(ikey.EQ.0.AND.i.EQ.keydim)THEN
GOTO 340

END IF

ELSE '

CALL syserr(*990, "STRCON")

END IF
CONTINUE

CONTINUE
ELSE

ierOcd=2021
CALL msgprt(*990,ier0ed)
CALL syserr(¥*990, "ST5DEC )

END IF
CONTINUE
RETURN

ierrcd=ierOcd

RETURN 1
END



5.
4

QOO0 C QOO0

Q

OO0 OaaQa

- 148 -

. RER

.. %%% SUBROUTINE to encode an arbitrary string in processor *E¥
. ¥#* dependent code into an IAS-SYSTEM code by use of b
. ¥%%  PORTRAN 77 function ICHAR k¥
. COMMENT

Four characters are encoded in every word, using eight bits per
character. The sign bit has to be treated in a special way

for the sake of words with only 32 bits, one of which 1s the sign
bit.

.. INPUT BY PARAMETERLIST

STRING C#*(*) String to be converted
IDIM I Dimension of vector ISTRCD

. OUTPUT BY PARAMETERLIST

ISTRCD I(IDIM) Converted string

.. RETURN Normal exit
. RETURN 1 Error exit

SUBROUTINE stlienc (*,ierrcd,string,idim,istred)

CHARACTER¥(*) string
LOGICAL minus
DIMENSION istrcd(idim)

INCLUDE ias-util.comstatus,LIST

ierrcd=0

iword=1

ibyte=0

CALL vecnul(istrecd,1,idim)

length=LEN(string)
numwrd=(length+3) /4

IF (idim.NE.numwrd) THEN
CALL syserr(*390, ‘STUENC ")
END IF

. Loop over number of characters in input string

DO 600 i0=1,length
iOchar=ICHAR(string(i0:10))



(i

™M

)

QQ

eNeReoNeNe]

- 149 -

Character out of range ?

IF (i0char.GT.254) THEN
iOchar=0
ierrecd=-1
CALL syserr(¥990, "STYENC ")
END IF ‘

ibyte=ibyte+1

. New word ?

IF (ibyte.EQ.5) THEN
ibyte=1
iword=iword+1

END IF

New word, including first word ?

IF (ibyte.EQ.1) THEN
ivalue=0 L
IF (i0char.GT.127.AND.isize(13).LT.32) THEN
minus=.TRUE.
i0char=254~i0char
ELSE .
minus=.FALSE.
END IF
END IF

. Add value for that character in correct byte and with correct
.. 8ign : negative sign if the first character of a word results
. in a value of the ICHAR function that is greater than 127

iadd=iOchar#2¥%(8%(4-ibyte))
IF (minus) THEN
ivalue=ivalue-iadd
ELSE
ivalue=ivalue+iadd
END IF
istred(iword)=ivalue
CONTINUE

RETURN

RETURN 1
END



Q

(@]

aa

[eEeNe!

oo RN R R R R R R R Er ErEs E* N R Eo He Ne RO Ne O e

- 150 -

. R

. ¥%%  SUBROUTINE to convert the code generated by subroutine ke

.. *®%% STUENC back to a character string in processor dependent #¥¥%
. ®#%  ocode, using FORTRAN 77 CHAR~function e
. COMMENT

. INPUT BY PARAMETERLIST

ISTRCD I(IDIM) Code generated by STUENC
IDIM I Number of words to be converted

. OUTPUT BY PARAMETERLIST

STRING C*(*) Output string

.. RETURN Normal exit
.. RETURN 1 Error exit

SUBROUTINE stddec (*,ierrcd,istred,idim,string)

CHARACTER*(¥*) string
LOGICAL minus
DIMENSION istred(idim)

ierrcd=0
iwords=1
ibyte=0
string="’

length=LEN(string)

numwrd= (length+3)/4

IF (idim.NE.numwrd) THEN
CALL syserr(*390, ‘ST4DEC")

END IF

DO 600 i0=1,length
ibyte=ibyte+1

. New word (but not first word !) ?

IF (ibyte.EQ.5) THEN
ibyte=1
iword=iword+1

END IF

. New word, including first word ?



.

600

990

- 151 -

IF (ibyte.EQ.1) THEN
ivalue=istred(iword)
IF (iword.LT.0) THEN
minus=.TRUE.
ivalue=-ivalue
ELSE
minus=.FALSE.
END IF
END IF

idiv=2%*(8#%(4~ibyte))

iOchar=ivalue/idiv

ivalue=ivalue-iOchar¥*idiv

IF (ibyte.EQ.1.AND.minus) THEN
i0char=254-i0char

END IF

IF (iOchar.GT.0Q) THEN
string(i0:10)=CHAR(iOchar)
ELSE
string(i0:i0)="
END IF
CONTINUE

’

RETURN

RETURN 1
END





