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Abstract 

We introduce a regression-based gravity model for commodity flows between 35 regions in 
Austria. We incorporate information regarding the highway network into the spatial 
connectivity structure of the spatial autoregressive econometric model. We find that our 
approach produces improved model fit and higher likelihood values. The model accounts for 
spatial dependence in the origin-destination flows by introducing a spatial connectivity matrix 
that allows for three types of spatial dependence in the origins to destinations flows. We 
modify this origin-destination connectivity structure that was introduced by LeSage and Pace 
(2005) to include information regarding the presence or absence of a major highway/train 
corridor that passes through the regions. Empirical estimates indicate that the strongest 
spatial autoregressive effects arise when both origin and destination regions have 
neighboring regions located on the highway network. Our approach provides a formal spatial 
econometric methodology that can easily incorporate network connectivity information in 
spatial autoregressive models. 
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Commodity flows, spatial autoregression, Bayesian, maximum likelihood, spatial connectivity 
of origin-destination flows 
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1 Introduction

This paper extends the spatial econometric methods for modeling origin-

destination matrices containing interregional flows introduced in LeSage

and Pace (2005). These are general data structures used in a variety of

economic, geography and regional science research contexts. Our focus is on

interregional flows where a network structure exists to connect the regions.

The network literature often makes a distinction between networks that are

“open-access” versus “closed-access”. Our approach would accommodate ei-

ther type of network, focusing only on the presence or absence of a network

route in the regions under study. Following LeSage and Pace (2005), our

methodology allows for three types of spatial/network connectivity between

origin and destination regions. We overlay information regarding the net-

work structure and regions, providing an extension of the LeSage and Pace

(2005) methodology.

We use truck and train commodity flows (measured in tons per kilo-

meter) in our empirical example, and as a concrete example for discussion

purposes. We note that numerous other flows such as telecommunication,

airline passengers, train travel and shipping, and automobile and truck traf-

fic are also heavily dependent on the transport network infrastructure used.

LeSage and Pace (2005) make the intuitively plausible argument that: 1)

large commodity flows from region A (origin) to region Z (destination) might

be accompanied by similarly large flows from neighbors to region A to region

Z; 2) large commodity flows from region A to region Z might be accompanied

by similarly large flows from region A to neighbors to region Z; and 3) large

commodity flows from region A to region Z might be accompanied by large

flows from neighbors to region A to neighbors of region Z.
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Based on this, they devise formal spatial weight matrices that reflect

these three types of spatial connectivity between origin and destination re-

gions. These spatial weights can be used in the family of spatial econometric

models popularized by Anselin (1988) to estimate the relative strength of

these three types of spatial connectivity relations between origin regions

such as A and destination regions Z. They label 1) above as origin-based

dependence, 2) as destination-based dependence and 3) as origin-destination

dependence.

In the context of our commodity flows, origin dependence of type 1)

would be particularly convincing if the transportation network connecting

the origin region A to the destination region Z included highway/railway

routes from regions neighboring the origin A to the destination region Z.

Similar arguments could be made regarding destination dependence of type

2) as well as origin-destination dependence of type 3) above. That is, high-

way/railway routes would seem an essential aspect of the argument in favor

of spatial clustering of flow magnitudes (the dependent variable) that rep-

resent the hallmark of the spatial autoregressive/lag econometric models

under consideration here.

The focus of this study is on a formal method for adjusting the spatial

weights introduced by LeSage and Pace (2005) to reflect a general depen-

dence structure between origin and destination regions that incorporates

the nature of the transport network infrastructure. We are also interested

in whether this type of adjustment will improve the estimates, inferences

and predictions of the model.
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2 The spatial econometric flow model

Models for origin-destination flows start by vectorizing the n by n square

matrix of interregional flows from each of the n origin regions to each of the

n destination regions,. This produces an n2 by 1 vector of flows by stacking

the columns of the flow matrix into a variable vector that we designate

as y. For our model, the n = 35 columns reflect origin regions whereas the

n = 35 rows represent destination regions. The objective of flow models is to

explain variation in the magnitude of flows between each origin-destination

pair. Since our focus is on interregional flows where spatial dependence

is important, we set the diagonal elements of the flow matrix containing

intraregional flows to zero.

Conventional least-squares regression gravity models use explanatory

variables matrices containing characteristics of both the origin and desti-

nation regions in an attempt to explain variation in the vector y containing

interregional flows. In addition, an intercept term and n2 by 1 vector of dis-

tances between all origins and destinations are typically used as additional

variables. This produces the model in (1). In (1), the explanatory variable

matrices Xd, Xo represent n2 by k matrices containing destination and ori-

gin characteristics respectively and the associated k by 1 parameter vectors

are βd and βo. The matrix Xd is constructed using characteristics of the

destination node for each of the origin-destination (O-D) pair observations,

and the matrix Xo is similarly constructed from the origin node in the O-D

pairs representing the sample of observations. The vector D denotes the n2

by 1 origin-destination distances and γ a scalar parameter. Typically, these

regression models assume ε ∼ N(0, σ2In2).
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y = αι + Xdβd + Xoβo + Dγ + ε (1)

The term ‘spatial interaction models’ has been used in the literature to

label models of the type in (1), Sen and Smith (1995). With a few excep-

tions, use of spatial lags typically found in spatial econometric methods have

not been used in these models. The notion that use of distance functions

in conventional spatial interaction models effectively capture spatial depen-

dence in the interregional flows being analyzed has been challenged in recent

work by Porojan (2001) for the case of international trade flows, Lee and

Pace (2004) for retail sales.

There has been widespread recognition of the need for such models in

disciplines such as population migration, Cushing and Poot (2003, p. 317).

There is considerably less recognition of issues related to spatial depen-

dence in the transportation flow modeling literature. LeSage and Pace

(2005) provide a parsimonious way to structure the connectivity of origin-

destination regions in a fashion consistent with conventional spatial autore-

gressive models where each observation represents a region rather than an

origin-destination pair. This seems to have been the stumbling block to ex-

tending conventional spatial econometric methods to origin-destination flow

situations.

The family of models introduced by LeSage and Pace (2005) rely on a

spatial autoregression filtering shown in (2).

y = ρ1Woy + ρ2Wdy + ρ3Wwy + αι + Xdβd + Xoβo + Dγ + ε (2)
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In this model, Wo = In ⊗ W , where W represents an n by n spatial

weight matrix based on first-order contiguity, or some number say m of

nearest neighbors. The matrix Wo captures origin-based spatial dependence

of the type labelled 1) above. Similarly, Wd = W ⊗ In is used to capture

type 2) dependence, or destination-based dependence relations. Finally,

Ww = W ⊗ W reflects type 3) dependence that we referred to as origin-

destination based dependence.

LeSage and Pace (2005) point out that the model in (2) can give rise to

a family of other models by placing various restrictions on the parameters

ρ1, ρ2 and ρ3. For example, a restriction that: ρ1 = ρ2 = ρ3 = 0 would

produce the regression model from (1). Other restrictions would result in

models that allow for only origin-based dependence (ρ2 = ρ3 = 0), only

destination-based dependence (ρ1 = ρ3 = 0), and so on. Of course, esti-

mates of the parameters ρ1, ρ2 and ρ3 would provide an inference regarding

the relative importance of the three different types of spatial dependence

between the origin and destination regions.

Our example of flows from origin A to destination Z is depicted in Fig-

ure 1, where Queen-type contiguity has been used to define neighbors to

the origin region A and destination region Z. These neighbors to origin

region A are labelled b, c, d, e, f, g, h, i and neighbors to destination region

Z are r, s, t, u, v, w, x, y. The spatial lag vector Woy would be constructed

by averaging flows from neighbors to the origin region A, those labelled

b, c, d, e, f, g, h, i in the figure. The parameter ρ1 associated with this spatial

lag would capture the magnitude of impact from this type of neighboring

observation on the dependent variable vector y (averaged over all sample

observations as is typical of regression models). Similarly, the spatial lag

vector Wdy would be constructed by averaging flows from neighbors to the
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destination region Z, those labelled r, s, t, u, v, w, x, y in the figure. The pa-

rameter ρ2 for this spatial lag would measure the impact and significance on

flows from all origins to all destinations from this type of neighboring obser-

vation. Finally, the third spatial lag in the model Wwy is constructed using

an average over all neighbors to both the origin and destination regions A

and Z, that is: b, c, d, e, f, g, h, i, r, s, t, u, v, w, x, y. Here, the associated pa-

rameter ρ3 represents the overall impact of this particular type of interaction

effect.

Figure 1: Origin-Destination region contiguity relationships
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Our approach is to consider regions through which the transportation

routes pass and to use this information in modifying the spatial weight

6



structure contained in the matrices Wo,Wd and Ww. As an example, con-

sider a highway extending from region A to Z that passes through regions

h,A, c on the way to and from the origin region A, and through regions

x,Z, s as it passes through the destination region Z. If accessibility to this

highway from other regions such as b, d, e, f, g, i or r, t, u, v, w, y is difficult

or impossible, we should modify the matrices Wo,Wd and Ww to reflect this

prior information.

For this example, the modification would construct Woy based on an

average of regions h and c on the highway route neighboring the origin

region A, and Wdy would be an average of regions x and s also on the

highway route neighboring the destination region Z, with Wwy reflecting

the interaction term consisting of an average over regions h, c, x, s. For this

modification of the model of LeSage and Pace (2005), we might expect a large

and significant magnitude of impact to arise from the spatial lag associated

with the interaction term, Wwy. This is because the highway route passing

through these regions would have the effect of raising the level of commodity

flows to a more uniform level than in regions where the highway does not

pass.

It is of interest to note that LeSage and Pace (2005) found the parameter

estimate for ρ3 to be insignificantly different from zero in their application

involving state-level migration flows. That is, after taking into account the

separate effects of neighbors to the origin and neighbors to the destination

captured by the spatial lags Woy and Wdy, the interaction of neighbors to

the origin and neighbors to the destination had no impact on variation in

the state-to-state migration flows.

At this point, we are abstracting from issues related to the number of en-

try and exit points on the highway in each region, and we are assuming that
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access to the highway is limited to those regions through which it passes.

We have assumed for simplicity that the matrix W is a binary Queen-type

contiguity matrix that is row-normalized, where contiguous neighboring re-

gions have a value of 1 and others 0 before normalization. The modified

matrices we suggest represent a subset of the Queen-type contiguous re-

gions, only those through which the highway passes. However, one could

rely on more sophisticated approaches to forming an initial row-normalized

matrix W that would take into account the number of entry and exit points

on the highway in each region, the relative accessibility to the highway from

each region that neighbors the origin and destination regions, etc. All of the

modelling and estimation methods we set forth and illustrate here would

work for these more informative weight structures, provided they were row-

normalized. We provide specific illustrations and further discussion of ex-

tensions along these lines in Sections 3.3 and 3.4.

One issue that could be of great importance is that of accessibility. This

could be quite different for rail versus road networks. For the case of com-

modity flows under examination here, an important factor would be the rel-

ative amounts of rail versus road transportation of commodities. In many

parts of the United States where an extensive road network exists and com-

modities are primarily transported by road with few natural barriers such as

mountains, rivers, or lakes, the unmodified approach to forming the spatial

weight structure set forth in LeSage and Pace (2005) should work well. Our

empirical illustration involves rail and truck commodity flows between 35

regions in Austria where mountains and other natural barriers as well as

more limited road networks place limitations on access.
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3 An empirical illustration

To illustrate the ideas discussed in Section 2 we produced estimates for the

model in (2) using commodity flows transported by both road and rail be-

tween 35 regions in Austria during the years 1999, 2000 and 2001. The

regions were based on the NUTS3 regions.1 The flows that were used repre-

sent tons per kilometer, with the source of the data being Statistik Austria

(with the permission of the Ministry of Transportation). Flows within re-

gions were set to values of zero to emphasize interregional flows that exhibit

spatial dependence of the type we are attempting to model. As is conven-

tional, the interregional flow magnitudes were transformed using logs.

A map of the 35 regions is shown in Figure 2, where regions containing

the main road/rail routes are blue and those not on these routes red. As

already noted, this example illustrates a case where a clear differentiation

can be made between regions that are located along the main transport

routes and those that are not. This should provide a good test of whether

explicitly incorporating such prior information into the spatial connectivity

structure of the model results in substantial differences in the estimates and

inferences.

The map in Figure 3 shows the total flows to all regions as destinations.

(Darker blue colors reflect lower levels of flows while lighter blue and orange

colors indicate higher flow levels.) Examining this map in conjunction with

that of the road/rail network in Figure 2, it is clear that the level of flows

to destination regions that are on the road/rail network is higher than for
1NUTS is the French acronym for Nomenclature of Territorial Units for Statistics used

by Eurostat. In this nomenclature NUTS1 refers to European Community Regions and
NUTS2 to Basic Administrative Units, with NUTS3 reflecting smaller spatial units most
similar to counties in the US.
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regions not on the network.

Figure 2: Austrian regions on the main road/rail network

The algorithms used to produce the estimates were those described in

LeSage and Pace (2005), which involve maximizing the log-likelihood func-

tion concentrated with respect to the parameters β and σ in the model. This

results in a three-parameter optimization problem involving the parameters

ρ1, ρ2, ρ3. Having found optimal values for the ρi, i = 1, . . . , 3 parameters,

estimates for β can be recovered using: β̂ = (X ′X)−1X ′(In2−ρ1Wo−ρ2Wd−
ρ3Ww)y. Similarly, the estimate for σ̂2 is constructed using (e′e)/(n2 − k),

where the vector e denotes the residuals from the model in (2). Estimates of
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Figure 3: Total commodity flows to all destinations

dark blue  light blue

  lighter blue orange

the variance-covariance and measures of dispersion for the parameters used

to construct asymptotic t−statistics and associated marginal probabilities

were based on a numerically constructed Hessian.

Two variants of the model were estimated, one based on the spatial

weight structure proposed by LeSage and Pace (2005) and another reflect-

ing the modification to reflect the road/rail transport routes discussed in

Section 2. The first approach relied on a matrix W based on the first-

order contiguous neighboring regions as the basis for constructing the weight

matrices Wo,Wd,Ww used by the model. The mean number of first-order
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contiguous neighbors was 5.2, with a standard deviation of 1.23, so similar

results would have been obtained by using the 5 nearest neighbors to each

region. The modified weight matrix proposed here selected a subset of the

contiguous neighboring regions that were located on the road/rail network.

Figure 4 presents the non-zero elements from the two 35 by 35 spatial

weight structures. The presentation in the figure is in terms of the n = 35 by

n = 35 square matrix reflecting connectivity relations between the regions,

with the contiguous neighbors labelled with the symbol ‘o’ and the subset of

contiguous neighbors located on the road/rail network indicated by a ‘plus’

sign (+). For example if region 6 is a contiguous neighbor to region 1, then

a symbol ‘o’ would appear in row 1, column 6. Similarly, if the region 6

neighbor also represents a region through which the road/rail routes pass,

there would be a + symbol as well. In comparison to the average of 5.2

contiguous neighbors, the average number of neighbors with road/rail routes

was 3, and the standard deviation was 1.11.

We note that use of some number say m of nearest neighbors in place

of first-order contiguity can allow for more regions along a road/rail route

to enter the subset of regions used to produce the averages that become the

spatial lag variables. As an example, consider the simple case of regions

organized along a line which also contains the road/rail route. Use of first-

order contiguity would allow one neighbor to the left and another to the

right to enter into creation of the spatial lag variable. In contrast, use of the

six nearest neighbors relation would allow for the 3 nearest neighbors to the

left and 3 nearest neighbors to the right to enter when creating the spatial

lag variable. One way to view this is that one can construct spatially lagged

variables that trace out longer segments along the transportation routes by

increasing the number of neighbors used to produce the initial matrix W in

12



Figure 4: Comparison of two weight matrix structures
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the model. In conjunction with the restriction that only neighbors on the

road/rail routes will be included in formation of the spatial lags, this will

result in a direct relationship between increased numbers of nearest neigh-

bors and the length of the road/rail segments that enter into formation of

the spatial lag variables. We will illustrate this aspect of model specification

using our sample data for the 35 Austrian regions in the next section.

As explanatory variables used to form the matrices Xo and Xd we used:

population density of the region; the log of area in each region; and the

change in employment, population and GDP per capita over the previous

year. Note that we produced parameter estimates for three years 1999,

13



2000 and 2001, so the 1999 estimation of the model parameters relied on the

change in employment, population and per capita GDP for the years 1998 to

1999, the year 2000 estimates were based on changes from 1999 to 2000 and

so on. A vector of (logged) distances between the centroids of each regions

was also included as an explanatory variable along with an intercept vector.

We would expect that changes in employment, population, and per capita

GDP would exhibit positive signs, leading to higher levels of commodity

flows at both the origin and destination regions. The coefficient estimate

on distance should be negative indicating a decay of flows with distance,

whereas the impact of population density when controlling for growth in

employment, population and per capita GDP is less clear.

3.1 Estimation results

One focus of estimation is comparison of the model based on spatial weights

constructed from simple contiguity relationships versus the model based on

road/rail network considerations. Table 1 presents the log-likelihood func-

tion values for these two types of models from the 1999, 2000 and 2001 data

samples along with the sum of squared errors (divided by n2, the number of

observations). From the table we see that the modified model that takes into

account the road/rail network produces higher log-likelihoods and smaller

errors for all three years.

A second question that arises regards the nature of the estimates and

inferences from the two types of models. Table 2 presents the parameter

estimates for the contiguity-based spatial weight model and Table 3 shows

estimates from the modified model.

Comparing the estimates for the spatial dependence parameters ρ1, ρ2, ρ3

14



Table 1: Comparison of the contiguity-based and road/rail modified spatial
models 1999, 2000, 2001

Model/Year Log Likelihood (e′e)/n2

Contiguity 1999 -2,354.3 5.3655
Road/Rail 1999 -2,319.6 5.0412

Contiguity 2000 -2,312.9 5.0271
Road/Rail 2000 -2,297.7 4.8885

Contiguity 2001 -2,255.0 4.6358
Road/Rail 2001 -2,212.8 4.2697

Table 2: Estimates from the contiguity-based spatial Model 1999, 2000, 2001

1999 2000 2001

Variable β̂o, β̂d t-statistic β̂o, β̂d t-statistic β̂o, β̂d t-statistic
(p-level) (p-level) (p-level)

constant -3.108 -1.74(0.080) -0.229 -0.11(0.908) -3.853 -2.31(0.0209)
popdensity o -1.385 -3.51(0.000) -1.504 -3.38(0.000) 0.529 1.58(0.1125)
area o 0.462 3.01(0.002) 0.289 1.89(0.058) 0.494 3.45(0.0006)
demp o 0.122 1.54(0.123) 0.115 2.81(0.005) 0.089 1.10(0.2702)
dpop o 0.092 0.77(0.440) 0.232 2.14(0.032) 0.280 2.98(0.0029)
dgdp o 3.822 3.42(0.000) 2.009 3.67(0.000) 2.090 2.67(0.0076)
popdensity d -0.800 -2.02(0.042) -1.016 -2.28(0.022) 0.608 1.81(0.0697)
area d 0.586 3.74(0.000) 0.565 3.25(0.001) 0.742 4.95(0.0000)
demp d 0.066 0.82(0.409) 0.120 2.94(0.003) 0.061 0.76(0.4465)
dpop d 0.113 0.95(0.340) 0.159 1.46(0.143) 0.362 3.85(0.0001)
dgdp d 3.058 2.75(0.006) 1.708 3.14(0.001) 2.155 2.75(0.0060)
distance -0.075 -5.66(0.000) -0.077 -5.87(0.000) -0.066 -5.40(0.0000)
ρ1 0.250 7.35(0.000) 0.214 6.28(0.000) 0.105 2.86(0.0043)
ρ2 0.161 4.41(0.000) 0.155 4.36(0.000) 0.067 1.79(0.0733)
ρ3 -0.179 -4.03(0.000) -0.290 -7.03(0.000) -0.043 -0.96(0.3337)
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from the two models we see a distinctly different pattern of values over the

three years. In the contiguity model, ρ1 and ρ2 are positive in all three years

while ρ3 is negative. The (positive) magnitude of ρ1 is always larger than

the (positive) ρ2, pointing to more importance assigned to the spatial lag

involving neighbors to the origin, relative to neighbors to the destination

region. In fact, the parameter ρ2 is not significantly different from zero at

the 0.95 level for the year 2001 sample. The parameter ρ3 that measures the

influence of the interaction term reflecting connectivity between neighbors

to the origin and neighbors to the destination is negative in all three years,

but not significantly different from zero for the year 2001 sample. A negative

sign for this parameter indicates negative spatial dependence between flows

from an origin-destination pair and flows from neighbors to the origin and

neighbors to the destination regions. LeSage and Pace (2005) provide a

motivation for the model in (2) from a spatial filtering perspective as shown

in (3).

(In2 − ρ1Wo)(In2 − ρ2Wd)y = αι + Xdβd + Xoβo + Dγ + ε (3)

This leads to a model that includes the interaction term Ww = Wo ·Wd in

the sequence of spatial lags with a coefficient equal to −ρ1ρ2, as shown in

(4).

y = ρ1Woy + ρ2Wdy − ρ1ρ2Wwy + αι + Xdβd + Xoβo + Dγ + ε (4)

This might provide a partial motivation for the negative sign on the

coefficient ρ3 from the contiguity-based spatial model. It appears clear
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that the estimated parameters ρ3 do not obey the implied restriction that

ρ3 = −ρ1ρ2. However, another motivation is that when one is attempt-

ing to model flows in the presence of a network structure, the relationship

between neighbors to origin and neighbors to destination regions is simply

not important. For the case of household migration decisions, it might be

intuitively plausible that the costs and benefits of moving from region A to

Z are similar to the costs and benefits of moving from regions that neighbor

A to regions that neighbor Z. The presence of an interaction effect such as

this is likely to be enhanced if the variables that come into play in deter-

mining household costs and benefits are positively spatially correlated. For

example, employment and income opportunities in neighboring counties or

states may be similar because of regional economic conditions. In contrast,

for the situation where network routes come into play, there is far less mo-

tivation for the importance of neighbors to the origin and neighbors to the

destination regions if they do not have access to the network.

3.2 The corridor neighborhood model

Turning attention to the corridor (or road/rail modified) model we see a pat-

tern of estimates for ρ1, ρ2, ρ3 where all three parameters are positive. This

should not be surprising since the spatial lags for the origin and destination

(associated with parameters ρ1 and ρ2) average over neighboring regions on

the corridor network which should be positively associated with the level

of commodity flows. In addition, the spatial lag for the interaction term

averages over neighbors to the origin and neighbors to the destination that

are also on the corridor, suggesting that flows between an origin and desti-

nation region that are both on the network corridor should be greater than
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flows between regions where only one of the two is located on the corridor.

Given this type of interpretation for the three parameters ρ1, ρ2, ρ3 in this

model, it should come as no surprise that the magnitude of ρ3 is the largest,

reflecting the positive impact on levels of commodity flows that arise from

both origin and destination regions being located on the network corridor.

There is also a consistent pattern of larger values for the parameter ρ1 than

ρ2 in all three years, suggesting that neighbors to the origin region on the

corridor represent the second most important determinant of high levels of

commodity flows between O-D pairs.

The estimates and inferences for the explanatory variables in the two

models suggest that distance is negative and significantly related to the level

of flows for all three years in both models, as we would expect. The area of

the origin and destination regions is positively related to the level of flows in

all three years for both models, but differing somewhat in terms of the level

of significance. With one exception, changes in employment, population and

GDP per capita over the previous year are positively related to the level of

flows at both the origin and destination regions for both models and all

three years. The exception being population change in 1999 for the corridor

model which is negative, but not significantly different from zero. Although

the signs of these coefficients are positive, the levels of significance vary

across the two models and the time periods. Finally, population density

is negative and significant at the 0.95 level or above for both origin and

destination regions in both models for the years 1999 and 2000. For the year

2001 sample, we find positive but weakly significant estimates for origin and

destination regions in both models.
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Table 3: Estimates from the road/rail corridor spatial Model 1999, 2000,
2001

1999 2000 2001

Variable β̂o, β̂d t-statistic β̂o, β̂d t-statistic β̂o, β̂d t-statistic
(p-level) (p-level) (p-level)

constant -6.684 -3.24(0.001) -4.050 -2.42(0.015) -6.725 -3.54(0.000)
popdensity o -1.893 -4.94(0.000) -1.283 -2.94(0.003) 0.450 1.43(0.151)
area o 0.393 2.34(0.019) 0.247 1.68(0.093) 0.383 2.39(0.016)
demp o 0.137 1.80(0.071) 0.135 3.39(0.000) 0.101 1.37(0.168)
dpop o -0.037 -0.31(0.749) 0.120 1.12(0.260) 0.198 2.19(0.028)
dgdp o 5.295 4.85(0.000) 1.950 3.63(0.000) 2.224 3.00(0.002)
popdensity d -1.636 -4.27(0.000) -0.882 -2.04(0.041) 0.645 2.09(0.036)
area d 0.553 3.51(0.000) 0.495 3.43(0.000) 0.675 4.79(0.000)
demp d 0.131 1.72(0.085) 0.141 3.54(0.000) 0.112 1.54(0.122)
dpop d 0.002 0.01(0.984) 0.134 1.26(0.207) 0.249 2.75(0.006)
dgdp d 4.707 4.35(0.000) 1.545 2.89(0.003) 1.977 2.68(0.007)
distance -0.055 -4.38(0.000) -0.043 -3.58(0.000) -0.049 -4.21(0.000)
ρ1 0.183 5.79(0.000) 0.186 5.66(0.000) 0.101 2.96(0.003)
ρ2 0.062 1.80(0.070) 0.091 2.62(0.008) 0.055 1.60(0.108)
ρ3 0.437 8.88(0.000) 0.343 6.77(0.000) 0.462 9.09(0.000)
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3.3 Alternative specifications based on varying numbers of

nearest neighbors

We consider the impact of using a nearest neighbors scheme to define the

initial spatial weight matrix W used to form the spatial lags Woy,Wdy and

Wwy in the model. Varying this aspect of model specification might allow

practitioners to produce better model fit and more accurate predictions.

Before turning to the empirical results from this experiment we make

some observations on the nature of a model based on our road/rail network

corridor modification scheme in the context of nearest neighbor weight ma-

trices. As already indicated, an increase in the number of nearest neighbors

used to form the initial weight matrix W will result in spatial lags that place

relatively more emphasis on regions located along the road/rail routes. We

can interpret the extent to which increasing the number of nearest neighbors

extends the spatial lags along the road/rail corridor by calculating the num-

ber of first-order contiguous neighbors, number of second order contiguous

neighbors (these are neighbors to the first-order contiguous neighbors), and

so on for higher order contiguity relationships.

As an example of the interpretative value, consider our case where there

are around 5 first-order contiguous neighbors on average across all 35 re-

gions in the sample. Use of 5 nearest neighbors should result in spatial lags

Woy,Wdy for the origin and destination regions that extend one neighbor

in both the entry and exit directions of the road/rail corridor in this case.

The spatial lag based on Wwy should represent an average over these four

regions. If there were, say 15, second-order contiguous neighbors (again, on

average across all 35 regions in the sample), then a weight matrix based on

15 nearest neighbors should on average result in spatial lags Woy, Wdy con-
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structed from two neighboring regions to the origin and destination regions.

That is, our spatial lags now extend out to the two neighboring regions

that lie in the direction of the entry and two regions that lie in the direc-

tion of exit along the road/rail corridor through the regions in the sample.

Similarly, the spatial lag based on the interaction term Wwy will reflect an

average over these 8 regions.

A point to note is that for reasonably small samples as we increase the

number of nearest neighbors, the spatial lag based on the interaction term

may become a source of redundant information. As the spatial lags based on

Woy and Wdy are extended to include all regions on the road/rail corridor,

there is less need to incorporate an average of these two sets of regions. To

see this, consider that as we extend out along the transport corridor there

will come a point at which the spatial lag Woy and the spatial lag Wdy

are constructed based on many of the same regions. As these two variable

vectors begin to look more similar due to the overlap of regions used to

construct the spatial lags at the origin and destinations, there will be less

of a role for the spatial lag based on the interaction term Wwy, which is

constructed using observations from neighbors based on both origins and

destinations. In fact, the spatial lags Woy and Wdy will come to look more

and more like the spatial lag Wwy based on the interaction term.

These ideas are important for interpreting estimates and inferences from

model specifications based on a weight matrix W constructed using an in-

creasing number of nearest neighbors. One implication is that we should

change our interpretation of the parameters ρ1, ρ2, ρ3 as we increase the

number of neighbors used in the model specification. At some point, the

redundancy of information in the spatial lag vectors will produce a clas-

sic collinear relationship between these three variable vectors. As in the

21



collinear variables situation, we might expect to see all of the importance

placed on a single spatial lag variable (a large and significant coefficient)

with the other two variables becoming small and insignificantly different

from zero. As a limit to the process of increasing the number of nearest

neighbors used to produce W , we will have a single spatial weight matrix

that produces a spatial lag vector that reflects an average of flows from all

regions on the road/rail corridor. In this situation it should be clear that

there is only a role for a single spatial lag vector.

Another implication of these ideas is that simple optimization of the

likelihood function over models specified based on varying numbers of near-

est neighbors may not produce a solution to the model comparison problem

that exhibits desirable statistical operating characteristics. It may be the

case that models based on more neighbors result in a single weight matrix

that represents a more parsimonious model structure capable of producing

a better fit. This remains an area for future research, with Bayesian model

comparison methods representing an approach that may hold an advantage

in this type of situation. Bayesian model comparison requires calculation

of the log-marginal likelihood for the model. For the case of reasonable

model comparison priors on the parameters of this model, it is possible

to analytically integrate the parameters β and σ out of the log-marginal

likelihood function, leaving an integration problem involving only the pa-

rameters ρ1, ρ2, ρ3, a 3-dimensional numerical integration problem. Simple

grid-based numerical integration procedures of the type used by LeSage and

Parent (2005) are not computationally efficient because of the relatively high

cost of calculating the determinant of an n by n matrix that appears in the

log-marginal likelihood after analytical integration of the parameters β and

σ. This determinant of the potentially large n by n matrix would need to
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be calculated repeatedly for a large number of values for the parameters

ρ1, ρ2, ρ3 making up the region of support.

We stress that these ideas are probably not important for large data

samples with a relatively sparse set of regions through which the transport

routes pass. In these situations, overlap in the regions used to produce the

spatially lagged variable vectors is less likely to occur. This means that

interpretation of the role played by the spatial lags and their associated

parameters ρ1, ρ2, ρ3 is relatively constant as we vary the number of nearest

neighbors used to construct the initial weight matrix W . We conjecture

here that the estimated values for the parameters ρ1, ρ2 and ρ3 in these

situations would mirror those presented in the previous section. That is,

the spatial lag vector Wwy constructed based on flows from neighbors to

both the origin and destination regions would exert the greatest impact on

the level of flows between origin-destination pairs. This seems intuitively

plausible since it reflects the fact that O-D flows between two regions both

located on the road/rail network should be greater than those associated

with other types of O-D region pairs. Further, an average of the magnitudes

of flows from neighboring regions at both the origin and destination that lie

on the road/rail network in this case would best be capable of explaining

the high level of flows between these types of O-D region pairs.

An empirical investigation of these issues was carried out for our sample

of 35 regions using an origin matrix W constructed using nearest neighbors

that varied from 5 to 30. As already noted, the average number of first-

order contiguous neighbors for our sample is 5.2, the average number of

second-order neighbors 13.5, with a standard deviation of 3.45, and the

average number of third-order contiguous neighbors is 24.1 with a standard

deviation of 3.86. This suggests that use of 30 nearest neighbors would allow

23



the spatial lags to extend outward beyond the three nearest regions on the

road/rail routes. We note that with a sample of 35 regions, use of the 30

nearest neighbors results in spatial lags constructed on the basis of nearly

the entire sample of 35 observations. Adding our modifying restriction that

only neighbors lying on the road/rail corridor are included, this should result

in a spatial lag that is constructed from almost all regions on the road/rail

corridor.

Table 4 presents results based on the 1999 sample information in the

form of a log-likelihood function value, the standardized sum of squared

errors and the three estimates for the parameters ρ1, ρ2, ρ3 for models based

on the varying number of nearest neighbors. Table 5 presents results for the

year 2000 sample in an identical format. Results for the year 2001 sample

were similar to these two sets of results and were omitted to save space.

We first note that when we use 5 nearest neighbors, the log-likelihood

function values, squared errors and estimates for the parameters ρ1, ρ2, ρ3

are similar to those reported in the previous section where a first-order

contiguity matrix was used. This seems intuitively correct since the average

number of first-order contiguous neighbors in our sample was 5.2, close the

the 5 nearest neighbors.

The results (from both years) suggest a monotonically increasing rela-

tionship between the log-likelihood function and the number of neighbors up

to the very large number of 28 neighbors for both years 1999 and 2000. This

suggests that use of more than 3 neighboring regions on the entry and exit

of the road/rail corridor maximizes the log-likelihood function. However,

there are perhaps reasons to be cautious about these conclusions regarding

a well-defined maximum in the likelihood function. For example, in the

year 2001 sample, no maximum was found, with 30 neighbors exhibiting the
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Table 4: Estimates from the road/rail modified spatial Model for 1999 based
on varying numbers of nearest neighbors

# neighbors Log Likelihood (e′e)/n ρ1 ρ2 ρ3
∑3

i=1 ρi

5 -2309.5151 4.9561 0.1830 0.0927 0.4999 0.7756
6 -2304.6175 4.9187 0.2411 0.1123 0.5351 0.8885
7 -2310.6778 4.9624 0.2630 0.1252 0.4898 0.8780
8 -2308.9902 4.9494 0.2955 0.1329 0.4858 0.9142
9 -2307.4583 4.9387 0.3294 0.1600 0.4420 0.9314
10 -2300.1608 4.8813 0.3394 0.1820 0.4404 0.9618
11 -2292.1025 4.8243 0.3583 0.1806 0.4362 0.9751
12 -2291.1543 4.8167 0.3772 0.2107 0.3898 0.9777
13 -2288.6949 4.7979 0.4166 0.2612 0.3052 0.9830
14 -2290.9517 4.8034 0.4488 0.3032 0.2200 0.9720
15 -2288.3789 4.7773 0.4669 0.3254 0.1754 0.9677
16 -2287.8616 4.7656 0.4927 0.3399 0.1292 0.9618
17 -2281.0262 4.7100 0.5100 0.3591 0.1004 0.9695
18 -2273.1579 4.6543 0.5292 0.3682 0.0804 0.9778
19 -2269.7722 4.6263 0.5384 0.3824 0.0567 0.9775
20 -2266.3698 4.6001 0.5687 0.4121 -0.0041 0.9767
21 -2265.2754 4.5894 0.5857 0.4353 -0.0482 0.9728
22 -2264.0015 4.5824 0.5847 0.4497 -0.0614 0.9730
23 -2263.6736 4.5833 0.5915 0.4509 -0.0682 0.9742
24 -2261.8623 4.5683 0.6003 0.4630 -0.0922 0.9711
25 -2261.5919 4.5618 0.6175 0.4786 -0.1373 0.9588
26 -2257.5913 4.5301 0.6187 0.4925 -0.1493 0.9619
27 -2257.3327 4.5289 0.6213 0.4979 -0.1584 0.9608
28 -2255.0180 4.5072 0.6292 0.5088 -0.1809 0.9571
29 -2255.8023 4.5070 0.6400 0.5245 -0.2186 0.9459
30 -2255.9766 4.5011 0.6602 0.5387 -0.2731 0.9258
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Table 5: Estimates from the road/rail modified spatial Model for 2000 based
on varying numbers of nearest neighbors

# neighbors Log Likelihood (e′e)/n ρ1 ρ2 ρ3
∑3

i=1 ρi

5 -2287.2849 4.7998 0.1966 0.1045 0.4006 0.7017
6 -2285.0632 4.7804 0.2632 0.1457 0.3704 0.7793
7 -2292.5783 4.8390 0.2813 0.1618 0.2989 0.7420
8 -2286.3070 4.7771 0.3223 0.1777 0.3179 0.8179
9 -2282.1868 4.7405 0.3522 0.2018 0.3040 0.8580
10 -2274.4123 4.6748 0.3616 0.2243 0.3338 0.9197
11 -2265.4944 4.6082 0.3782 0.2361 0.3402 0.9545
12 -2262.0356 4.5777 0.4045 0.2658 0.2893 0.9596
13 -2257.9857 4.5486 0.4382 0.3117 0.2193 0.9692
14 -2256.5404 4.5297 0.4625 0.3435 0.1511 0.9571
15 -2251.4005 4.4861 0.4814 0.3596 0.1159 0.9569
16 -2250.5259 4.4728 0.5017 0.3794 0.0680 0.9491
17 -2240.6377 4.3984 0.5168 0.3976 0.0511 0.9655
18 -2233.2543 4.3455 0.5428 0.4196 0.0090 0.9714
19 -2229.5526 4.3167 0.5532 0.4322 -0.0138 0.9716
20 -2226.6024 4.2981 0.5789 0.4569 -0.0631 0.9727
21 -2224.4080 4.2798 0.5949 0.4821 -0.1069 0.9701
22 -2220.3753 4.2498 0.6035 0.5001 -0.1338 0.9698
23 -2219.8217 4.2469 0.6166 0.5049 -0.1526 0.9689
24 -2216.8742 4.2259 0.6235 0.5144 -0.1695 0.9684
25 -2217.1603 4.2240 0.6389 0.5293 -0.2138 0.9544
26 -2215.3852 4.2098 0.6345 0.5358 -0.2107 0.9596
27 -2214.8906 4.2151 0.6333 0.5427 -0.2213 0.9547
28 -2213.5894 4.1995 0.6405 0.5485 -0.2375 0.9515
29 -2214.0158 4.1971 0.6515 0.5602 -0.2718 0.9399
30 -2215.7165 4.2039 0.6679 0.5708 -0.3179 0.9208
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largest log-likelihood function value.

Another cause for concern is the monotonically increasing relationship

between the number of neighbors and estimates for the parameters ρ1, ρ2, ρ3.

We see that an increase in the number of neighbors places more weight on

the parameters ρ1 and ρ2 and less on ρ3. We note that after 18 neighbors

for the 1999 year sample the estimate for ρ3 became insignificantly different

from zero, and this occurred for the year 2000 sample at 14 neighbors.

It should also be noted that a stability restriction requires that the sum:

ρ1 + ρ2 + ρ3 < 1. At 21 neighbors for the 1999 sample (and 20 neighbors

in the 2000 sample) a negative magnitude for ρ3 is required to meet this

restriction. For numbers of neighbors larger than 21 (20), the values of the

parameters ρ1 and ρ2 continue to increase with their sum exceeding unity,

while the parameter ρ3 becomes increasingly negative as is required by the

stability restriction.

We interpret these results as possible pathological behavior arising from

the penalty function imposed during optimization to enforce the stability

restriction. It may also arise from an identification problem that occurs when

the spatial lags Woy, Wdy and Wwy contain a large number of overlapping

regions, and therefore reflect high correlation. This type of situation may

interfere with the ability to identify or properly decompose variation in the

O-D flow vector y that should be attributed to each of the three types

of spatial connectivity relationships. It is of interest in this connection to

consider the sum of the three parameters ρ1 + ρ2 + ρ3 which are shown in

the last columns of Tables 4 and 5.

We note that despite the possible pathological variation of the parame-

ters ρi, i = 1, 2, 3 with respect to changing the number of neighbors, the

parameters β were relatively consistent with those reported in the previous

27



section. For example, in the year 2001 sample: distance was negative and

significant for all neighbors between 5 and 30; population density, area and

change in population, employment and per capita GDP were all positive for

all neighbors between 5 and 30, identical in sign to the results reported for

the year 2001 sample in the previous section.

One way to further investigate this potential problem would be to im-

pose a restriction that ρ3 = 0, or that ρ3 = −ρ1ρ2. This might be useful

for problems involving use of a large number of neighbors in a small sample

environment. In conjunction with the restriction that ρ1 + ρ2 must be less

than one for stability, this might provide enough prior information to over-

come any weak data problems. Other solutions that generally work well in

the face of weak sample data problems are Bayesian priors placed on the

parameters involved.

We tested imposition of a zero restriction on the parameter ρ3 and found

that a unique maximum likelihood function value existed for all three sample

years. For the year 2001 sample where no maximum of the likelihood was

found for neighbors ranging up to 30 in the unrestricted model involving

all three parameters, the restricted model produced parameter estimates

for ρ1, ρ2 that increased monotonically until around 20 neighbors, where

they took on values around: ρ1 = 0.50 and ρ2 = 0.40. As the neighbors

increased from 20 to 30, the value of ρ2 remained around 0.40, while ρ1

increased to 0.5677, with the maximum likelihood estimate at 0.5503 and

28 neighbors. A similar result was found for the year 2000 sample, with a

maximum likelihood at 29 neighbors, ρ1 = 0.5564 and ρ2 = 0.4177. For the

year 1999, the maximum occurred at 28 neighbors with ρ1 = 0.5794 and

ρ2 = 0.4076.

We note that these results are roughly consistent with the large num-
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ber of neighbors identified by the unrestricted model for the years 1999 and

2000. In addition, the sum of the parameters ρ1 + ρ2 at the maximum of

the likelihood function was around 0.95 in all three cases, which is consis-

tent with the values reported for the sum of the three parameters in the

unrestricted models reported in Tables 4 and 5 at 28 neighbors. These con-

firmatory results lend support for our previous conclusion that spatial lags

should extend to include slightly more than 3 neighbors on the entry and

exit of the road/rail route to each region.

A possible conclusion from these exercises is that one can adequately

model spatial dependence in the flows using two approaches. One approach

reflects that of the previous section, where a small number of neighbors

based on first-order contiguity relations are used to construct the initial

weight matrix W . This approach incorporates a more sophisticated spatial

filtering model for the spatial autoregressive lags in the model, where the

filtering specification uses three spatial lags to reflect the three possible types

of dependence motivated by LeSage and Pace (2005). A second approach

is based on increasing the number of neighbors used to produce the initial

weight matrix W , but uses a simpler structure for the spatial autoregressive

lags in the model. Simplification is achieved by eliminating one of the three

types of dependence suggested by LeSage and Pace (2005). Both types of

models produced similar estimates and inferences regarding the parameters

β. Subject to the caveats noted regarding interpretation and identification of

the parameters ρ1, ρ2 and ρ3 in these two types of models, similar conclusions

about the role of spatial dependence between origin-destination flows based

on regions located along the road/rail corridor can also be inferred.
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3.4 Other extensions and areas for further research

Extensions to the modification procedure suggested here could include weight

matrices based on distances from the centroids of each regions to the road/rail

network, where the weight decays with distance. This would allow nearby

regions that are not on the road/rail corridor to enter into determination

of the spatial lags, with the weight assigned decaying inversely with dis-

tance from the network. An additional parameter could be introduced to

determine the rate of decay with distance.

Other characteristics of the regions and transport network could be used

when modifying the matrix W that forms the basis for the model of LeSage

and Pace (2005). For example, the number of entry and exit access points

along the road or rail network, or the length of the route contained in each

region could be used to produce a more tailored set of weights. Similarly,

a combination of regional characteristics could be used to create an accessi-

bility index or variable that might be the basis for assigning spatial weights.

In this vein, anisotropic neighbors could be used to construct the weight

matrices, allowing for directionality in the model. For example, separate

weight matrices reflecting neighbors to the north, south, east and west could

be constructed. In this case, an increase in the number of neighbors could

be used to move along the transportation corridor in separate directions,

or different spatial dependence parameters could be introduced to capture

directional aspects of dependence.

For customized weight structures of the type mentioned above, the prob-

lems found here in distinguishing between alternative weight structures

based on likelihood function values may be aggravated. LeSage and Pace

(2004) provide an illustration of these types of problems in a Bayesian model
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comparison setting. They find that: 1) the strength of spatial dependence

exerts an influence on the quality of model comparison inferences; and 2)

the sample size plays an important role. Intuitively, in the face of weak spa-

tial dependence it will be difficult to distinguish between alternative weight

structures because the role they play in explaining variation in the dependent

variable is small. It is also intuitively plausible that, making fine distinctions

between alternative weight structures will require a large sample with many

regions that exhibit a potentially rich connectivity structure.

LeSage and Pace (2005) point out that the conventional assumption of a

normal distribution for the disturbances in the data generating process (and

the implied normal distribution of the origin-destination flow magnitudes)

may not be a valid one. They suggest and illustrate implementation of a

Bayesian Markov Chain Monte Carlo (MCMC) estimation procedure that

allows for a fat-tailed error distribution (Gelfand and Smith, 1990, Geweke,

1993). This robust estimation approach should be useful for the case of

commodity flows of the type considered here. Outliers or aberrant obser-

vations are downweighted during estimation to preclude these observations

from exerting an undue influence on the resulting estimates and inferences.

They also discuss tobit variants of the model that can be estimated

with the same MCMC procedures, which would be useful for data samples

containing missing values for some of the origin-destination pairs. In fact,

the sample data used in this study contained some missing values which

were set to zero values.

A final point is that models based on spatial dependence in the error

structure or models exhibiting both dependence in the dependent variable

and the error structure can be treated in a similar fashion to those illustrated

here. For example, LeSage and Pace (2005) point to models of the type
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shown in (5) and (6).

y = αι + Xdβd + Xoβo + Dγ + u (5)

u = (In2 − ρ1Wo)(In2 − ρ2Wd)u + ε

ε ∼ N(0, σ2In)

y = λ1Woy + λ2Wdy + λ3Wwy + αι + Xdβd + Xoβo + Dγ + u (6)

u = ρ1Wou + ρ2Wdu + ρ3Wwu + ε

ε ∼ N(0, σ2In)

Without loss of generality, the same modification scheme suggested here

could be used to form the matrices Wo,Wd and Ww in these models.

4 Conclusions

Drawing upon work by LeSage and Pace (2005) for spatial autoregressive

modeling of interregional flows, we propose an extension that seems suitable

for a number of applications where a transport network exists between the

regions. This would be the case for commodities flowing over rail and road

networks, commuters travelling to work along major roads and highways,

as well as international trade flows that must pass through specific ports of

entry and exit. We provide a simple method for incorporating prior informa-

tion regarding the path of the network into the spatial connectivity structure

proposed by LeSage and Pace (2005) for modeling origin-destination flows.
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Our modification involves forming spatial lags for the spatial autoregres-

sive structure used in the model based only on neighboring regions that are

located on the network. In addition to the intuitive appeal of this type of

modification, we show that an improvement in the likelihood function value

and fit of the model arises from the modification.

More sophisticated extensions of our approach to modification were dis-

cussed and illustrated, as well as unresolved issues that should be considered

in future research.
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